Sample records for waipaoa sedimentary system

  1. Provenance of sand on the Poverty Bay shelf, the link between source and sink sectors of the Waipaoa River sedimentary system

    NASA Astrophysics Data System (ADS)

    Parra, Julie G.; Marsaglia, Kathleen M.; Rivera, Kevin S.; Dawson, Shelby T.; Walsh, J. P.

    2012-12-01

    The Poverty Shelf, North Island, New Zealand, is a segment of the Waipaoa Sedimentary System (WSS), a MARGINS Source-to-Sink focus site. Our petrographic analysis of sand from shelf core samples indicates that the sand fraction is mainly derived from intra- and potentially extrabasinal sources, but surprisingly, the major fluvial system that drains into Poverty Bay, the Waipaoa River (mean %QFL = xQyFzL), is not the dominant source. Only one vibracore at the mouth of Poverty Bay contained sand (%QFL = xQyFzL) potentially derived from the Waipaoa River. The shelf sand (mean %QFL = xQyFzL) more strongly resembles beach sand (mean %QFL = xQyFzL) collected along the coast, which is likely sourced from pervasive local cliff erosion of Miocene-Pliocene sedimentary units that exhibit similar sandstone detrital modes (mean %QFL = xQyFzL). Texturally, coarser, more poorly sorted and more angular sand is located along the outer shelf, while finer, well-sorted sand characterizes the mid-shelf. These findings suggest a shorter transport history for the material near the outer-shelf bathymetric high areas, and this observation along with the composition data suggests that they were sourced by erosion of locally exposed Miocene-Pliocene units. A potential extrabasinal source of shelf sediment is indicated by anomalous prolate and equant-shaped greywacke (Torlesse) and minor red chert pebbles collected in two outer-shelf box cores on the Lachlan anticline; these are not lithologies found within the terrestrial segment of the WSS or strata comprising the outer-shelf highs. The clast shapes are also distinctly different from the oblate-shaped, pebble-sized greywacke gravel clasts on beaches in Hawke Bay. Rather, these sediments are more similar to Torlesse stream gravel. Seismic and multibeam data support the possibility that during the most recent sea-level lowstand, the Hawke Bay fluvial system flowed into Poverty Canyon, bringing these unique gravels onto what is now the Poverty

  2. What is the Source? Post-glacial sediment flux from the Waipaoa Catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Bilderback, E. L.; Pettinga, J. R.; Litchfield, N. J.; Quigley, M.; Marden, M.

    2011-12-01

    In the Waipaoa, and for much of the eastern North Island, the shift from the last glacial coldest period to the current interglacial climatic regime resulted in Late Pleistocene-Holocene catchment-wide channel incision (Berryman et al., 2000; Litchfield and Berryman, 2005). Only ~25% of the total post 18 ka sediment yield for the Waipaoa Catchment can be accounted for by channel incision, one of the most widespread and most effective erosive processes in the catchment (Orpin et al., 2006; Marden et al., 2008). We find that deep-seated landslides, which are pervasive, cannot make up this apparent source area sediment deficit. This presents a challenge to our current understanding of the Waipaoa Sedimentary System. New high resolution topographic data sets (lidar and photogrammetry) combined with tephrochronology and field mapping have enabled us to approximate the sediment flux from post 18 ka deep-seated landslides. The sediment delivered to the offshore sink from these upper Waipaoa landslides is likely to be less than 20% of the sediment volume calculated for channel incision. A further GIS analysis of the ~2500 km2 Waipaoa catchment using work from Crosby and Whipple (2006) delineating relict topography and Marden et al. (2008) accounting for river incision and slopes stabilized behind terrace remnants indicates that only about half of the available catchment area could have contributed additional large volumes of sediment to the offshore post 18 ka sink. The presence of tephra cover older than 18 ka on landforms ranging from flat ridgelines to steep (>30 degree) slopes in this remaining terrestrial source area suggests that it has not been eroded en mass. The apparent source deficit remains even though many of the major erosive processes available to fill this deficit have been studied and the potentially contributing catchment area is dramatically reduced by these studies. This analysis raises questions about erosive processes and our ability to balance large

  3. Sediment Dispersal Within Poverty Bay, Offshore of the Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Bever, A. J.; McNinch, J. E.

    2006-12-01

    Transport processes change drastically as sediment crosses the boundary between land and sea. As such, developing conceptual or predictive models of transport and deposition for the shoreline and inner continental shelf is critical to understanding source-to-sink sedimentary systems. In shallow coastal areas, sediment dispersal results from both dilute suspensions driven by energetic waves and current shear stresses, and by gravitationally driven flows of fluid muds. The Waipaoa River, on the east coast of the North Island of New Zealand, delivers approximately 15 million tons per year of sediment to Poverty Bay, a small embayment with water depth less than about 25 m. Instruments deployed during the winter storm season of 2006 captured periods of high discharge from the Waipaoa River that were typically associated with energetic waves and winds from the southeast. During these times, instruments deployed at 9 and 14 m water depths recorded high turbidity. Currents measured in Poverty Bay were correlated with wind velocities, but also showed prolonged periods of offshore flow within the bottom boundary layer. Sediment texture throughout much of Poverty Bay is muddy, and thick deposits have occurred during the Holocene, as evidenced by sub-bottom seismics. Short-lived radioisotopes such as ^7Be have not been found on Poverty Bay sediments during our field work, though depocenters have been identified using ^7Be on the continental shelf. This may imply that muds exist there as ephemeral and spatially patchy deposits that may bypass Poverty Bay. Bypassing mechanisms may include offshore dispersal by dilute suspended sediment, and downslope transport of fluid muds. Energetic waves may resuspend sediment, which is then transported out of Poverty Bay by ambient ocean currents. Alternatively, fluid muds may form and transport material downslope and offshore to the continental shelf. Because of the high sediment loads of the Waipaoa River, these fluid muds may be formed by

  4. Long-term controls on the composition of particulate organic carbon buried offshore from the Waipaoa River, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Leithold, E. L.; Blair, N. E.; Childress, L. B.; Brulet, B.

    2009-12-01

    In the Waipaoa watershed on the North Island of New Zealand, as in many small mountainous watersheds around the world, high sediment yields are accommodated by the weathering and mass wasting of bedrock as well as of its mantle of soil and vegetation. Investigation of both the contemporary Waipaoa system and the sedimentary record preserved in adjacent marine depocenters reveals that these three sources of sediment have also been the primary sources of riverine POC throughout the watershed’s Holocene history, but that their relative roles have varied as a function of environmental perturbations. Mass balance calculations using stable and radiogenic carbon isotopic ratios of organic matter associated with both bulk sediments and clay-sized isolates point to a large and persistent contribution of kerogen to POC in the Waipaoa system. This material has accumulated on the continental margin along with terrestrial plant-derived OC, much of which apparently had a short residence time in the watershed. The accelerated contribution of OC-poor volcanic tephra to the Waipaoa sediment load beginning about 4000 years ago led to dilution of both the kerogen and plant fraction, and ultimately to enhanced marine OC burial on the shelf via production of new mineral surface area and sorption from porewaters. Beginning around 700 years BP, anthropogenic influences have left their mark on the watershed and offshore record, including the introduction of a pulse of fine-grained charcoal from biomass burning. Deforestation of the headwaters has led to more widespread shallow landsliding and to the development of large gully complexes incised into tectonically crushed mudstones. The increased kerogen flux due to chronic gully erosion is apparent in the offshore record, but its impact on the composition and age of OC buried on the continental shelf is muted compared to the increase in riverine sediment discharge and sediment accumulation observed on the margin.

  5. Spatial Extent of Wave-Supported Fluid Mud on the Waipaoa Continental Margin

    NASA Astrophysics Data System (ADS)

    Hale, R. P.; Ogston, A. S.; Walsh, J. P.; Orpin, A. R.

    2013-12-01

    Data from acoustic and optical sensors provide a powerful tool to connect near-bed water-column processes with the deposits they generate. Ideally, the product of water-column and seabed interactions can then be applied more broadly to understand systems as a whole, in both space and time. Recent observational research has allowed for an improved understanding of shelf sediment-transport dynamics in many coastal systems, including the dynamic Waipaoa Sedimentary System (WSS), on the east coast of the north island of New Zealand. This narrow shelf (~20 km) on an active continental margin is subject to strong environmental forcings in the form of high waves (>5 m), strong currents (>50 cm/s), and frequent floods of the Waipaoa River, which delivers an average of 15 MT of sediment to Poverty Bay and the coastal environment each year. A year-long study of the WSS during 2010-2011 combined observational data from instrumented tripods at three locations on the continental shelf, with repeat sediment cores collected in four-month intervals, to identify and assess the mechanisms of cross- and off-shelf sediment transport. Observational data identified that cross-shelf sediment transport is stochastic, typically driven by high-wave events, with 40% of the net annual cross-shelf flux for one tripod location occurring during a single wave-supported fluid mud (WSFM) in July 2010. Fortunately, this event was recorded in the instrument data, and the resulting deposit was plainly visible in x-radiograph images. This particular WSFM was observed in x-radiographs collected as deep as ~50 m, and as far as ~28 km from the mouth of the Waipaoa River, and is more prevalent on the northern portion of the shelf. A critical water depth is not the only criteria for WSFM deposition, as some shallower areas on the southern shelf, which were subject to high bed stress, show no evidence of WSFM in this event, while cores collected in deeper areas (e.g. lower bed stress) on the northern shelf

  6. Source-to-Sink System Evolution as Recorded in Clastic Facies in Two New Zealand Examples: the Bounty System of South Island and the Waipaoa System of North Island

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.

    2010-12-01

    New Zealand river sources and their submarine sinks are excellent examples for modeling source-to-sink systems. In particular, the sand fractions of these systems can be used as tracers to document links and/or disconnects between fluvial, shelf, slope, and bathyal components. Within any given system, the ability to use sand as a tracer depends on the nature of the rocks exposed in source river drainage basins. In evolving systems, the potential for erosional unroofing, change of outcrop lithology through time, can be important. Additionally, the ability of a given lithology to generate sediment of a certain size may also vary. For example in the New Zealand examples, Cenozoic mudstones generate mostly mud but can liberate recycled sand grains (if present), as well as a smaller proportion of mudstone lithic fragments depending on degree of mudstone induration; schist generates copious sand and quartz-vein pebbles; and thin-bedded sandy turbidites can generate significant gravel, as well as mud and sand. Sediment production mode also comes into play with glacial processes (South Island) generating rock flour, as well as coarser debris. The major outcropping unit across both islands is a sedimentary to metasedimentary forearc succession, the Torlesse Terrane. It served as the protolith of the Otago schist (South Island) and the source of detritus for Cretaceous and Cenozoic sedimentary units on both islands. Local magmatism also supplied sand-sized material: intraplate (South Island) volcanism produced intrabasinal epiclastic debris and magmatic arc (North Island) volcanism produced extrabasinal pyroclastic debris. Various lithologies have characteristic detrital signatures. For example, in the Cenozoic units of the Waipaoa system, Pliocene calcareous mudstone fragments are key lithic components in tracing sediment transport from source-to sink, whereas the major fingerprint of Otago schist input into the Bounty System of South Island is mica. Critical to defining

  7. Quantification of Process in AN Actively Eroding Gully-Mass Movement Complex, Waipaoa Catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Fuller, I. C.; Taylor, R.; Massey, C. I.; Marden, M.

    2012-12-01

    Tarndale Gully is a major fluvio-mass movement gully complex in the headwaters of the Waipaoa catchment, contributing c.3% of the Waipaoa sediment yield (Marden et al., 2008). Using a combination of airborne LiDAR (2005) and Terrestrial Laser Scanning (2007, 2008, 2010, 2011), this paper quantifies sediment delivery processes and slope-channel connectivity in this major contributor to the Waipaoa sediment cascade over a seven year period. Building on previous work, which inferred connectivity characteristics using RTK-dGPS surveys of the fan fed by the gully-mass movement complex (Fuller & Marden, 2011), acquisition of terrain data from high-resolution surveys of the whole gully-fan system provides new insights into slope process and slope-channel linkages operating in the complex. Raw terrain data from the airborne and ground-based laser scans were converted into raster DEMs in Arc-GIS using inverse distance weighting interpolation to a vertical accuracy between surveys of < ±0.1m. Using GIS maths functions, grid elevations in each successive DEM were subtracted from the previous DEM to provide models of change across the gully and fan complex. Deposition equates to positive vertical change, while erosion to negative vertical change in these models. Total annualised erosion equates to an average of 125,000m3 generated from the gully-mass movement complex, which is a product of debris flow, slumping and surface erosion by runoff (gullying in the conventional sense). Erosion rates from the gully complex appear to have been consistent year to year between 2005 and 2011. While the average annual volume of sediment exported to the stream system equates to 57,328 m3, this figure varies from 25,000 m3 to 110,000 m3 with no distinct correlation to rainfall. Fluctuations in stored sediment volumes account for this variation, where a critical mass in the upper fan initiates downstream progradation of sediment, building-up the lower fan. When an unknown threshold is reached

  8. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  9. Slip slidin' away: A post-glacial environmental history of the Waipaoa River basin

    NASA Astrophysics Data System (ADS)

    Gomez, Basil; Rosser, Brenda J.

    2018-04-01

    The dramatic changes that occurred to the post-glacial landscape in the headwaters of the Waipaoa River basin are a consequence of perturbations about the equilibrium that exists between the rate of tectonic uplift and fluvial incision. At times when the amount of coarse sediment delivered to channels exceeds the capacity of streams to remove it, the channel bed rises at the rate of tectonic uplift. Once bedload overcapacity is replaced by undercapacity and the alluvial cover is depleted, streams reestablish contact with bedrock and recuperate the time lost to fluvial incision. The first major perturbation occurred during the final phase of the last glaciation (ca. 33-17.5 cal. ka), when aggradation was driven by a climate-forced variation in the relative supplies of sediment and water. We suggest that the subsequent transformation of channels in the headwaters of the Waipaoa River basin, from alluvial to bedrock, occurred as the atmospheric and oceanic circulation converged on their contemporary patterns ca. 12 cal. ka. A second major perturbation that continues to the present began ca. 1910-1912 CE, when a massive increase in sediment load was accompanied by a modest increase in water discharge after the native vegetation cover in the headwaters was replaced by pasture. The processes of terrace creation and incision are inherently unsteady, and in five interim cases incision was arrested by a transient increase in the thickness of the alluvial cover that was a response to climatic forcing. Events that disrupted the native vegetation cover in the headwaters also modulated patterns of sediment dispersal and accumulation in other parts of the fluvial system and caused rapid, storm-driven infilling of the Poverty Bay Flats. Tectonic subsidence dictates the course of the Waipaoa River across Poverty Bay Flats which, because the modern rate of floodplain construction by vertical accretion is rapid relative to the amount of destruction by lateral channel migration, has

  10. Sedimentary and Enhanced Geothermal Systems | Geothermal Technologies |

    Science.gov Websites

    NREL Sedimentary and Enhanced Geothermal Systems Sedimentary and Enhanced Geothermal Systems To innovative technologies, such as sedimentary and enhanced geothermal systems (EGS). Photo of a geothermal power plant in Imperial California. Capabilities To advance EGS and sedimentary geothermal systems, NREL

  11. Spatial and temporal variability in sediment deposition and seabed character on the Waipaoa River margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, J. P.; Corbett, D. R.; Kiker, J. M.; Orpin, A. R.; Hale, R. P.; Ogston, A. S.

    2014-09-01

    The stratigraphic record is the manifestation of a wide range of processes, interactions and responses to environmental drivers. Understanding the functioning of river sediment dispersal systems is necessary to determine the fate of sediment and associated material in the marine environment and differentiate key influences in the development of the stratigraphic record. To that end, this study uses sediment cores collected on four successive cruises (January, May and September 2010 and February 2011) on the Waipaoa River margin, New Zealand, to provide insight into spatial and temporal variability in sediment deposition and seabed character. The Waipaoa River discharges a large sediment load into an energetic coast that has a complex margin morphology. Several flood and wave events occurred during the study, and sedimentation varied spatially and temporally. X-radiographs and short-lived radioisotopes indicate emplacement of new event layers prior to all cruises. Notable variation in surficial seabed character (grain-size composition, loss-on-ignition percentage) was apparent on the inner shelf (water depths <40 m), but mid-shelf areas and seaward had more homogeneous sediment properties. 7Be inventories indicate variable patterns of deposition related to fluvial and oceanographic conditions prior to cruises. Ephemeral sediment storage occurs on the inner-shelf of Poverty Bay, into which the Waipaoa River discharges directly, and subsequent export and dispersal patterns are linked to the relative timing and size of flood and wave events. Surficial deposits with characteristics of fluid muds and wave-enhanced sediment gravity flows were noted at some (<25 sites total) mid-shelf and shallower sites from all cruises. During the last cruise considerable inter- and intra-site seabed variability occurred in the interbedded river-proximal inner-shelf deposits over spatial scales of less than a few kilometers. Evidence from earlier sidescan data infer that this could be

  12. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    NASA Astrophysics Data System (ADS)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded

  13. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methodsmore » for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.« less

  14. Quantifying sediment connectivity in an actively eroding gully complex, Waipaoa catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Taylor, Richard J.; Massey, Chris; Fuller, Ian C.; Marden, Mike; Archibald, Garth; Ries, William

    2018-04-01

    Using a combination of airborne LiDAR (2005) and terrestrial laser scanning (2007, 2008, 2010, 2011), sediment delivery processes and sediment connectivity in an 20-ha gully complex, which significantly contributes to the Waipaoa sediment cascade, are quantified over a 6-year period. The acquisition of terrain data from high-resolution surveys of the whole gully-fan system provides new insights into slope processes and slope-channel linkages operating in the complex. Raw terrain data from the airborne and ground-based laser scans were converted into raster DEMs with a vertical accuracy between surveys of <±0.1 m. Grid elevations in each successive DEM were subtracted from the previous DEM to provide models of change across the gully and fan complex. In these models deposition equates to positive and erosion to negative vertical change. Debris flows, slumping, and erosion by surface runoff (gullying in the conventional sense) generated on average 95,232 m3 of sediment annually, with a standard deviation of ± 20,806 m3. The volumes of debris eroded from those areas dominated by surface erosion processes were higher than in areas dominated by landslide processes. Over the six-year study period, sediment delivery from the source zones to the fan was a factor of 1.4 times larger than the volume of debris exported from the fan into Te Weraroa Stream. The average annual volume of sediment exported to Te Weraroa Stream varies widely from 23,195 to 102,796 m3. Fluctuations in the volume of stored sediment within the fan, rather than external forcing by rainstorms or earthquakes, account for this annual variation. No large rainfall events occurred during the monitoring period; therefore, sediment volumes and transfer processes captured by this study are representative of the background conditions that operate in this geomorphic system.

  15. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  16. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    NASA Astrophysics Data System (ADS)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  17. Predicting S2S in Deep Time Sedimentary Systems and Implications for Petroleum Systems

    NASA Astrophysics Data System (ADS)

    Bhattacharya, J.

    2013-12-01

    The source to sink concept is focused on quantification of the various components of siliciclastic sedimentary systems from initial source areas, through the dispersal system, and deposition within a number of potential ultimate sedimentary sinks. Sequence stratigraphy shows that depositional system are linked through time and show distinctively predictable 3D stratigraphic organization, which can be related to cycles of relative changes in accommodation and sediment supply. For example, erosion and formation of incised fluvial valleys generally occur during periods of falling base level with lowstand reservoir deposits favored in more basin distal settings (e.g. deepwater fans), whereas during highstands of sea level, significantly more sediment may be sequestered in the non-marine realm and more distal environments may favor deposition of slowly-deposited condensed sections, which may make excellent hydrocarbon source rocks. Only more recently have attempts been made to quantify the size and scaling relationships of the ultimate source areas on the basis of analysis of ancient depositional systems, and the use of these scaling relationships to predict the sixe of linked depositional systems along the S2S tract. The maximum size of depositional systems, such as rivers, deltas, and submarine fans, is significantly controlled by the area, relief, and climate regime of the source area, which in turn may linked to the plate tectonic and paleogeographic setting. Classic provenance studies, and more recent use of detrital zircons, provide critical information about source-areas, and may help place limits on the size and relief of a drainage basin. Provenance studies may also provide key information about rates of exhumation of source areas and the link to the tectonic setting, Examination of ancient river systems in the rock record, and especially the largest trunk rivers, which are typically within incised valleys, can also be used to estimate paleodischarge, which in

  18. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less

  19. Evolution of fore-arc and back-arc sedimentary basins with focus on the Japan subduction system and its analogues

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tatsuya; Matenco, Liviu; Nader, Fadi Henri

    2017-07-01

    The International Lithosphere Program (ILP) seeks to elucidate the nature, dynamics, origin and evolution of the lithosphere through international, multidisciplinary geoscience research projects and coordinating committees (Cloetingh and Negendank, 2010). The focus of the Task Force VI Sedimentary Basins activities is to foster collaborations between academia, research institutes and industry in all domains relevant for the understanding of sedimentary basins, from regional to nano-scale, from the deep earth to near surface processes (e.g., Roure et al., 2010, 2013). In this activity, it is important to develop and validate novel concepts of sedimentary basin evolution and topography building by incorporating geological/geophysical datasets and methodologies applied to worldwide natural laboratories (Cloetingh et al., 2011; Cloetingh and Willett, 2013; Matenco and Andriessen, 2013). The Task Force aims to understand and predict the processes that control the formation and evolution of the coupled orogens and sedimentary basins system through integration of field studies, analytical techniques and numerical/analogue modelling. At the same time, the Task Force aims to promote research in the domain of sedimentary basins evolution and quantitative tectonics for the study of mountain building and the subsequent extensional collapse, and their quantitative implications for vertical motions on different temporal and spatial scales (Gibson et al., 2015; Matenco et al., 2016; Roure, 2008; Seranne et al., 2015). The implications of tectonics on basin fluids (fluid-flow and rock-fluid interactions) are important to understand and predict geo-resources (e.g., Nader, 2016). Important is to initiate innovative research lines in linking the evolution of sedimentary systems by integrating cross-disciplinary expertise with a focus on integrated sedimentary basins and orogenic evolution. The key is to strengthen the synergy between academic research and applied industry in large

  20. Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Budd, D. A.

    2014-12-01

    A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.

  1. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  2. Seafloor environments within the Boston Harbor- Massachusetts Bay sedimentary system: A regional synthesis

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1995-01-01

    Modern seafloor sedimentary environments within the glaciated, topographically complex Boston Harbor and Massachusetts Bay area have been interpreted and mapped from an extensive collection of sidescan sonar records and supplemental marine geologic data. Three categories of environments are present that reflect the dominant long-term processes of erosion or nondeposition, deposition, and sediment reworking. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, coarse lag deposits, and possibly coastal plain rocks that contain sediments (where present) ranging from boulder fields to gravelly sands and occur in areas of relatively strong currents. (2) Environments of deposition contain fine-grained sediments ranging from muddy sands to muds that have accumulated in areas of predominantly weak bottom currents. (3) Environments of sediment reworking contain patches with textures ranging from sandy gravels to muds that have been produced by a combination of erosion and deposition in areas with variable bottom currents. The distribution of sedimentary environments across the Boston Harbor-Massachusetts Bay area is extremely patchy. Locally, this patchiness is due either to modifications of bottom-current strength (caused by the irregular topography and differences in water depth) or to small-scale changes in the supply of fine-grained sediments. Regional patchiness, however, reflects differences in geologic and oceanographic conditions among the estuarine, inner shelf, and basinal parts of the sedimentary system. The estuarine part of the system (Boston Harbor) is a depositional trap for fine-grained sediments because it is protected from large waves, has generally weak and variable tidal currents, and receives a large supply of fine grained detritus from natural and anthropogenic sources. The inner shelf, on the other hand, is largely an area of erosion or nondeposition due to sediment removal and redistribution during past sea

  3. Formation of Ocean Sedimentary Rocks as Active Planets and Life-Like Systems

    NASA Astrophysics Data System (ADS)

    Miura, Y.

    2017-10-01

    Wet shocked rocks are discarded globally and enriched elements in ocean-sedimentary rocks, which is strong indicator of ocean water of other planets. Ocean-sedimentary rocks are strong indicator of water planets and possible exo-life on planet Mars.

  4. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-02-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less

  5. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-01-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.« less

  6. Neogene marine sedimentary record of the Gulf of Alaska: from the glaciers to the distal submarine fan systems

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Moy, C. M.; Müller, J.; Ribeiro, F.; Gupta, S.; Gulick, S. P.; Jaeger, J. M.

    2013-12-01

    The marine sedimentary record of Miocene to Pleistocene tectonics and glaciation is well preserved along the southern Alaska convergent margin. This margin is well suited for linking proximal to distal sediment transport processes because sediment is being generated by glacial erosion in the highest coastal mountain range on earth and subsequently being transported to the Aleutian subduction zone. We will discuss the sedimentary record from two end members of this system: (1) the proximal marine record now exposed onshore in the high peaks of the coastal ranges, and (2) the offshore distal record preserved in the Surveyor submarine fan system that was cored during the 2013 IODP Expedition 341. Onshore the Miocene non-glacial strata are represented by the Poul Creek Fm. This unit is 2000 m thick and in its upper part consists of mudstone, thin sandstone beds (10-30 cm thick), and thick bedded (1-2 m) highly bioturbated green sandstone beds that contain hummocky stratification. We interpret this unit as being deposited mainly in marine shelf environments. A gradational contact between the Poul Creek and the overlying upper Miocene-Pleistocene Yakataga Formation is marked by a transition to mudstone, thick bedded sandstone and glacial diamictite. This transition to glacial dominated deposition is interpreted to have occurred around 5 Ma based on previous studies. The onshore glacimarine strata are 5 km thick and grade up section from submarine fan to marine shelf strata. In the distal submarine fan record at IODP Site U1417, the upper Miocene strata in the lower part of the Site consist of 340 m of highly bioturbated gray to green mud interbedded with coarse sand and sandy diamict. These coarse-grained units are lithic rich with mainly sedimentary, volcanic, and coal clasts. We interpret these units as being derived from coal-bearing sedimentary strata exposed in the onshore thrust belt. These facies are interbedded with diatom ooze; we interpret this combination of

  7. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display

  8. Sedimentary Framework of an Inner Continental Shelf Sand-Ridge System, West-Central Florida

    NASA Astrophysics Data System (ADS)

    Locker, S. D.; Hine, A. C.; Wright, A. K.; Duncan, D. S.

    2002-12-01

    The west-central Florida inner continental shelf is a dynamic environment subject to current flows on a variety of temporal and spatial scales. A site survey program, undertaken in support of the Office of Naval Research's Mine Burial prediction program, is focused on the sedimentary framework and sediment accumulation patterns in 10-18 meters water depth. Our specific goals are to image the shallow subsurface and to monitor changes in bedform distribution patterns that coincide with physical processes studies ongoing in the area. Methods of study include side-scan sonar imaging, boomer and chirp subbottom profiling, and sedimentary facies analysis using surface sediment sampling and vibracoring. A well-defined sand-ridge system was imaged, trending oblique to the west-Florida coastline. The side-scan clearly shows that there is extensive three-dimensional structure within these large-scale NW-SE trending sedimentary bedforms. The sand ridges commonly are approximately 1 km wide and 4-8 km in length. The characteristics of these ridges are distinctly different than the sand ridges in < 8 m water that we have previously studied. Ridges in the offshore area tend to be thicker, have a flatter morphology, and exhibit fewer smaller-scale sand waves. Sand-ridge thickness ranges 2-3 meters, and typically consists of fining upward medium to fine quartz sand facies with occasional centimeter-scale coarser-grained carbonate-rich intervals. Time series investigations tracking the shift in position of the sand ridge margins have found undetectable net annual movement. However significant resuspension and bedform development accompanies high-energy events such as winter cold front passage. Thus the large-scale bedforms (sand ridges) are in a state of dynamic equilibrium with the average annual hydrodynamic regime. Repeated field surveys will focus on monitoring small-scale sedimentological and stratal framework changes that will be integrated with the quantitative process

  9. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems

    USGS Publications Warehouse

    Stow, D.A.V.; Howell, D.G.; Nelson, C.H.

    1984-01-01

    To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences. ?? 1984 Springer-Verlag New York Inc.

  10. The problem of genesis and systematic of sedimentary units of hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Zhilina, E. N.; Chernova, O. S.

    2017-12-01

    The problem of identifying and ranking sedimentation, facies associations and their constituent parts - lithogenetic types of sedimentary rocks was considered. As a basis for paleo-sedimentary modelling, the author has developed a classification for terrigenous natural reservoirs,that for the first time links separate sedimentological units into a single hierarchical system. Hierarchy ranking levels are based on a compilation of global knowledge and experience in sediment geology, sedimentological study and systematization, and data from deep-well coresrepresentingJurassichydrocarbon-bearing formationsof the southeastern margin of the Western Siberian sedimentary basin.

  11. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  12. A Guide to Oceanic Sedimentary Layering.

    DTIC Science & Technology

    1983-07-28

    Profiling," J. Geophys. Res. 73, 2597-2614. L3 Lee, H. J., 1980. "Physical Properties of Northeast Pacific Sedi- ments Related to Sedimentary Environment and...7i -AI33 060 A GUIDE TO OCEANIC SEDIMENTARY LAYERING(U) TEXAS UNIV 1/i AT AUSTIN APPLIED RESEARCH LABS C B BENNETT ET AL, 28 JUL 83 RRL-TR-83-25...Copy No. 3 A GUIDE TO OCEANIC SEDIMENTARY LAYERING Christopher B. Bennett J. Mark Daniels APPLIED RESEARCH LABORATORIES THE UNIVERSITY OF TEXAS AT

  13. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  14. Sedimentary environments within a glaciated estuarine-inner shelf system: Boston Harbor and Massachusetts Bay

    USGS Publications Warehouse

    Knebel, H.J.

    1993-01-01

    Three modern sedimentary environments have been identified and mapped across the glaciated Boston Harbor estuary and adjacent inner shelf of Massachusetts Bay by means of an extensive set of sidescan sonar records and supplemental bathymetric, sedimentary, subbottom and bottom-current data. 1. (1) Environments of erosion and nondeposition appear on the sonographs either as patterns with isolated reflections (caused by outcrops of bedrock, glacial drift, and coastal plain rocks) or as patterns of strong backscatter (caused by coarse-grained lag deposits). Sediments in these environments range from boulder fields to gravelly sands with megaripples. Inside the harbor, areas of erosion or nondeposition are found primarily near mainland and insular shores and within constricted tidal channels, whereas, on the shelf, they are present over extensive areas of hummocky topography near the coast and atop local bathymetric highs offshore. 2. (2) Environments of sediment reworking are characterized on the sonographs by patterns with patches of strong to weak backscatter caused by a combination of erosional and depositional processes. These environments have diverse grain sizes that range from sandy gravels to muds. Within the harbor, the locations of reworked sediments are uncorrelated with the bottom topography, but, on the shelf, they are found on the lower flanks of bathymetric highs, within broad lows and in relatively deep water (30-50 m). 3. (3) Environments of deposition are depicted on the sonographs as uniform patterns of weak backscatter. These areas contain relatively fine-grained muddy sands and muds. Inside the harbor, depositional environments are found over extensive subtidal flats and within sheltered depressions, whereas, on the shelf, they are restricted to broad lows mainly in deep water. The extreme patchiness of modern sedimentary environments within the Boston Harbor-Massachusetts Bay system reflects the interaction between the irregular bottom topography

  15. Clastic sedimentary rocks of the Michipicoten Volcanic-sedimentary belt, Wawa, Ontario

    NASA Technical Reports Server (NTRS)

    Ojakangas, R. W.

    1983-01-01

    The Wawa area, part of the Michipicoten greenstone belt, contains rock assemblages representative of volcanic sedimentary accumulations elsewhere on the shield. Three mafic to felsic metavolcanic sequences and cogenetic granitic rocks range in age from 2749 + or - 2Ma to 2696 + or - 2Ma. Metasedimentary rocks occur between the metavolcanic sequences. The total thickness of the supracrustal rocks may be 10,000 m. Most rocks have been metamorphosed under greenschist conditions. The belt has been studied earlier and is currently being remapped by Sage. The sedimentrologic work has been briefly summarized; two mainfacies associations of clastic sedimentary rocks are present - a Resedimented (Turbidite) Facies Association and a Nonmarine (Alluvial Fan Fluvial) Facies Association.

  16. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater

    DOE PAGES

    Le Deit, L.; Mangold, N.; Forni, O.; ...

    2016-05-13

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less

  17. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Deit, L.; Mangold, N.; Forni, O.

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K 2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K 2Omore » abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less

  18. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  19. Atmospheric methane from organic carbon mobilization in sedimentary basins — The sleeping giant?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; di Primio, R.; Horsfield, B.

    2011-08-01

    The mass of organic carbon in sedimentary basins amounts to a staggering 10 16 t, dwarfing the mass contained in coal, oil, gas and all living systems by ten thousand-fold. The evolution of this giant mass during subsidence and uplift, via chemical, physical and biological processes, not only controls fossil energy resource occurrence worldwide, but also has the capacity for driving global climate: only a tiny change in the degree of leakage, particularly if focused through the hydrate cycle, can result in globally significant greenhouse gas emissions. To date, neither climate models nor atmospheric CO 2 budget estimates have quantitatively included methane from thermal or microbial cracking of sedimentary organic matter deep in sedimentary basins. Recent estimates of average low latitude Eocene surface temperatures beyond 30 °C require extreme levels of atmospheric CO 2. Methane degassing from sedimentary basins may be a mechanism to explain increases of atmospheric CO 2 to values as much as 20 times higher than pre-industrial values. Increased natural gas emission could have been set in motion either by global tectonic processes such as pulses of activity in the global alpine fold belt, leading to increased basin subsidence and maturation rates in the prolific Jurassic and Cretaceous organic-rich sediments, or by increased magmatic activity such as observed in the northern Atlantic around the Paleocene-Eocene boundary. Increased natural gas emission would have led to global warming that was accentuated by long lasting positive feedback effects through temperature transfer from the surface into sedimentary basins. Massive gas hydrate dissociation may have been an additional positive feedback factor during hyperthermals superimposed on long term warming, such as the Paleocene-Eocene Thermal Maximum (PETM). As geologic sources may have contributed over one third of global atmospheric methane in pre-industrial time, variability in methane flux from sedimentary

  20. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  1. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman

  2. Sulfur and iron geochemistry of the dynamic sedimentary system at the Costa Rica margin, IODP Expedition 344

    NASA Astrophysics Data System (ADS)

    Gott, C.; Riedinger, N.; Formolo, M.; Solomon, E. A.; Torres, M. E.; Bates, S. M.; Lyons, T. W.; 344 Scientific Party, I.

    2013-12-01

    One of the major targets of the CRISP (Costa Rica Seismogenesis Project) was to explore diagenetic processes, including fluid flow, related to the complex sedimentary and tectonic behavior of the Costa Rica margin system. Here we present preliminary results of the iron and sulfur geochemistry from sediments collected during the IODP Expedition 344 at Holes U1413B and U1414A. Our specific goal was to investigate the impact of this dynamic system on biogeochemical processes - especially regarding the sulfur cycle - and how minerals record these processes in the geologic record. The sediments at both investigated locations display non-steady state pore water conditions. Specifically, the deposits at Hole U1413B are characterized by a shallow sulfate-methane transition zone (SMTZ; approximately 15 mbsf), where released hydrogen sulfide reacts with reactive iron minerals to form iron sulfides. At Hole U1414A pore water sulfate is present at several hundreds of meters sediment depth, while the concentration of hydrogen sulfide is low (<4 μM). The measured concentrations of solid phase iron sulfides in the sediments indicate that pyrite is the main sulfur-bearing phase, reaching concentrations of 2 and 3 wt.%, in U1413B and U1414A, respectively. Sequential extractions of iron oxides reveal the presence of reactive iron phases, although in low concentrations (total iron oxides are below 1.1 wt.%), indicating ongoing alteration of iron oxides. The occurrence of these reactive iron minerals in the deeply buried sediments at Hole U1414A has implications for the deep biosphere - as those minerals can still be utilized by the microbial community. The non-steady state condition of the sedimentary system at both locations is also mirrored in the S-isotopic signal in the pore fluids as well as solid phase. The 34S-enriched sulfate (δ34S >+60 ‰) in the deeper sediment column is reflected in the δ34S profile of the in situ formed iron sulfides - the results can have

  3. Quantitative characterisation of sedimentary grains

    NASA Astrophysics Data System (ADS)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  4. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  5. Supercomputer analysis of sedimentary basins.

    PubMed

    Bethke, C M; Altaner, S P; Harrison, W J; Upson, C

    1988-01-15

    Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.

  6. Sedimentary Parameters Controlling Occurrence and Preservation of Microbial Mats in Siliciclastic Depositional Systems

    NASA Technical Reports Server (NTRS)

    Noffke, Nora; Knoll, Andrew H.

    2001-01-01

    Shallow-marine, siliciclastic depositional systems are governed by physical sedimentary processes. Mineral precipitation or penecontemporaneous cementation play minor roles. Today, coastal siliciclastic environments may be colonized by a variety of epibenthic, mat-forming cyanobacteria. Studies on microbial mats showed that they are not randomly distributed in modern tidal environments. Distribution and abundancy is mainly function of a particular sedimentary facies. Fine-grained sands composed of "clear" (translucent) quartz particles constitute preferred substrates for cyanobacteria. Mat-builders also favor sites characterized by moderate hydrodynamic flow regimes, which permit biomass enrichment and construction of mat fabrics without lethal burial of mat populations by fine sediments. A comparable facies relationship can be observed in ancient siliciclastic shelf successions from the terminal Neoproterozoic Nama Group, Namibia. Wrinkle structures that record microbial mats are present but sparsely distributed in mid- to inner shelf sandstones of the Nudaus Formation. The sporadic distribution of these structures reflects both the narrow ecological window that governs mat development and the distinctive taphonomic conditions needed to preserve the structures. These observations caution that statements about changing mat abundance across the Proterozoic-Cambrian boundary must be firmly rooted in paleoenvironmental and taphonomic analysis. Understanding the factors that influence the formation and preservation of microbial structures in siliciclastic regimes can facilitate exploration for biological signatures in Earth's oldest rocks. Moreover, insofar as these structures can be preserved on bedding surfaces and are not easily mimicked by physical processes, they constitute a set of biological markers that can be searched for on Mars by remotely controlled rovers.

  7. Influence of Fault-Controlled Topography on Fluvio-Deltaic Sedimentary Systems in Eberswalde Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.

    2011-01-01

    Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.

  8. A process-sedimentary framework for characterizing recent and ancient sabkhas

    USGS Publications Warehouse

    Handford, C.R.

    1981-01-01

    The discovery of sabkha environments during the 1960's, marked the beginning of Recent evaporite sedimentological studies and their perception as models for facies analysis. However, variation among Recent sabkhas, though recognized by the geologic community, has not been duly addressed, which has resulted in overuse of the Trucial Coast model in comparative sedimentological studies. Knowledge of the dominant physical processes which determine sabkha morphology, and of the sedimentary response to those processes, can lead to a fundamental understanding of a sabkha's origin and of how it differs from other sabkhas. Physical processes thought to be most important (besides evaporation) include those operative under: (1) marine-; (2) fluvial-lacustrine-; and (3) eolian-dominated conditions. Dominance of one or more of these in the proper settings give rise to marine coastal sabkhas, continental playas, and interdune sabkhas. Sedimentary responses to dominant physical processes lead to the development of sabkhas consisting of a combination of either: (1) terrigenous clastics; (2) carbonate-sulfate (anhydrite-gypsum) minerals; or (3) soluble salts (halite, sylvite, polyhalite, etc.). Sediment characterization can also allow discrimination of the range or compositional variety in, for example, coastal sabkhas. Where applied to the stratigraphic record, this classification system may help unravel the sedimentary history of an ancient sabkha system, and a determination of the dominant physical processes that ruled its development. ?? 1981.

  9. Major Perspectives of The Dfg-research Programm (schwerpunktprogramm) Dynamics of Sedimentary Systems Under Varying Stress Conditions By Example of The Central European Basin-system

    NASA Astrophysics Data System (ADS)

    Bayer, U.; Littke, R.; Gajewski, D.; Brink, H.-J.

    In 2001 a major research program "Dynamics of Sedimentary Systems under Varying Stress Conditions" has been established by the German Science Foundation (DFG). The programme effectively will start early in 2002 and in some sense provides a continuation of the EUROPROBE project TESZ. However, it will focus mainly on post-Paleozoic processes. The following sub-themes for this programme capture a wide range of areas of interest, calling for interdisciplinary research: 1. Structure and evolution of the crust. This topic will be based on the three- dimensional structural interpretation, pre-stack migration, and modelling of geophysi- cal data such as seismic, gravimetric, magnetic, and magnetotelluric data. The deriva- tion of interval velocities and the prediction of lateral inhomogeneities will be essential for the interpretation of rheological properties on one hand and historical geodynamic processes on the other. 2. Basin dynamics in space and time. Methods of basin anal- ysis, seismic stratigraphy,sedimentology, sequence- and event stratigraphy should be used in combination with subsidence analysis and basin modelling to interpret facies distributions within the evolving accomodation space of a sedimentary basin. An ad- vanced interpretation of seismic lines using new modelling tools is of key interest to extract facies patterns and related petrophysical properties for the three dimensional space of a sedimentary basin. 3. Fluid- and salt dynamics. Salt dynamics is related to the recent and historic stress fields of a basin and greatly governs the sedimentation and erosion processes at the surface. In addition, the rheology of the upper crust and the temperature field within sedimentary basins greatly depends on salt doming. Fluid dynamics is coupled to the temperature and pressure field, but depends also on the permeability of sedimentary rocks which varies by more than 15 orders of magnitude. The origin of non-hydrocarbon gases (CO2, N2, H2S), each dominating

  10. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  11. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  12. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to

  13. Sedimentary Cover of the Central Arctic

    NASA Astrophysics Data System (ADS)

    Kireev, Artem; Poselov, Viktor; Butsenko, Viktor; Smirnov, Oleg

    2017-04-01

    Partial revised Submission of the Russian Federation for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean is made to include in the extended continental shelf of the Russian Federation, in accordance with article 76 of the Convention, the seabed and its subsoil in the central Arctic Ocean which is natural prolongation of the Russian land territory. To submit partial revised Submission in 2016, in 2005 - 2014 the Russian organizations carried out a wide range of geophysical studies, so that today over 23000 km of MCS lines, over hundreds of wide-angle reflection/refraction seismic sonobuoy soundings and 4000 km of deep seismic sounding are accomplished. All of these MCS and seismic soundings data were used to establish the seismic stratigraphy model of the Arctic region. Stratigraphy model of the sedimentary cover was successively determined for the Cenozoic and pre-Cenozoic parts of the section and was based on correlation of the Russian MCS data and seismic data documented by existing boreholes. Interpretation of the Cenozoic part of the sedimentary cover was based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin, while interpretation of the Pre-Cenozoic part of the sedimentary cover was based on correlation with MCS and boreholes data from Chukchi sea shelf. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to estimate the total thickness of the sedimentary cover of the Arctic Ocean and adjacent Eurasian shelf using top of acoustic basement correlation data and bathymetry data

  14. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  15. Petroleum system modeling of the western Canada sedimentary basin - isopach grid files

    USGS Publications Warehouse

    Higley, Debra K.; Henry, Mitchell E.; Roberts, Laura N.R.

    2005-01-01

    This publication contains zmap-format grid files of isopach intervals that represent strata associated with Devonian to Holocene petroleum systems of the Western Canada Sedimentary Basin (WCSB) of Alberta, British Columbia, and Saskatchewan, Canada. Also included is one grid file that represents elevations relative to sea level of the top of the Lower Cretaceous Mannville Group. Vertical and lateral scales are in meters. The age range represented by the stratigraphic intervals comprising the grid files is 373 million years ago (Ma) to present day. File names, age ranges, formation intervals, and primary petroleum system elements are listed in table 1. Metadata associated with this publication includes information on the study area and the zmap-format files. The digital files listed in table 1 were compiled as part of the Petroleum Processes Research Project being conducted by the Central Energy Resources Team of the U.S. Geological Survey, which focuses on modeling petroleum generation, 3 migration, and accumulation through time for petroleum systems of the WCSB. Primary purposes of the WCSB study are to Construct the 1-D/2-D/3-D petroleum system models of the WCSB. Actual boundaries of the study area are documented within the metadata; excluded are northern Alberta and eastern Saskatchewan, but fringing areas of the United States are included.Publish results of the research and the grid files generated for use in the 3-D model of the WCSB.Evaluate the use of petroleum system modeling in assessing undiscovered oil and gas resources for geologic provinces across the World.

  16. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  17. Eolian Dust and the Origin of Sedimentary Chert

    USGS Publications Warehouse

    Cecil, C. Blaine

    2004-01-01

    This paper proposes an alternative model for the primary source of silica contained in bedded sedimentary chert. The proposed model is derived from three principal observations as follows: (1) eolian processes in warm-arid climates produce copious amounts of highly reactive fine-grained quartz particles (dust), (2) eolian processes in warm-arid climates export enormous quantities of quartzose dust to marine environments, and (3) bedded sedimentary cherts generally occur in marine strata that were deposited in warm-arid paleoclimates where dust was a potential source of silica. An empirical integration of these observations suggests that eolian dust best explains both the primary and predominant source of silica for most bedded sedimentary cherts.

  18. Effects of Hypoxia on Sedimentary Nitrogen Cycling in the Pensacola Bay Estuary

    EPA Science Inventory

    Eutrophic-induced hypoxic events pose a serious threat to estuaries in coastal systems. Hypoxic events are becoming more intense and widespread with changes in land use and increased anthropogenic pressures. Microbial communities involved in sedimentary nitrogen (N) cycling may h...

  19. Tide-Dominated Tract (TDT) as a key sedimentary zone characterizing tide-dominated large-river delta and estuary systems

    NASA Astrophysics Data System (ADS)

    Saito, Y.

    2017-12-01

    Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic

  20. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  1. The Zambezi sedimentary system (coastal plain - deep sea fan): a record of the vertical movements of the Mozambican margin since Cretaceous times.

    NASA Astrophysics Data System (ADS)

    Ponte, Jean Pierre; Robin, Cecile; Guillocheau, Francois; Baby, Guillaume; Dall'Asta, Massimo; Popescu, Speranta; Suc, Jean Pierre; Droz, Laurence; Rabineau, Marina; Moulin, Maryline

    2016-04-01

    The Mozambique margin is an oblique to transform margin which feeds one of the largest African turbiditic system, the Zambezi deep-sea fan (1800 km length and 400 km wide; Droz and Mougenot., AAPG Bull., 1987). The Zambezi sedimentary system is characterized by (1) a changing catchment area through time with evidences of river captures (Thomas and Shaw, J. Afr. Earth. Sci, 1988) and (2) a delta, storing more than 12 km of sediment, with no gravitary tectonics. The aim of this study is to carry out a source to sink study along the Zambezi sedimentary system and to analyse the margin evolution (vertical movements, climate change) since Early Cretaceous times. The used data are seismic lines (industrial and academic) and petroleum wells (with access to the cuttings). Our first objective was to perform a new biochronostratigraphic framework based on nannofossils, foraminifers, pollen and spores on the cuttings of three industrial wells. The second target was to recognize the different steps of the growth of the Zambezi sedimentary systems. Four main phases were identified: • Late Jurassic (?) - early Late Cretaceous: from Neocomian to Aptian times, the high of the clinoforms is getting higher, with the first occurrence of contouritic ridges during Aptian times. • Late Cretaceous - Early Paleocene: a major drop of relative sea-level occurred as a consequence of the South African Plateau uplift. The occurrence of two depocenters suggests siliciclastic supplies from the Bushveld and from the North Mozambique domain. • Early Paleocene - Eocene: growth of carbonate platforms and large contouritic ridges. • Oligocene - Present-day: birth of the modern Zambezi Delta, with quite low siliciclastic supply during Oligocene times, increasing during Miocene times. As previously expected (Droz and Mougenot) some sediments of the so-called Zambezi fans are coming from a feeder located east of the Davie Ridge. This study was founded by TOTAL and IFREMER in the frame of the

  2. Sedimentary exhalative (sedex) zinc-lead-silver deposit model

    USGS Publications Warehouse

    Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K.

    2016-10-28

    This report draws on previous syntheses and basic research studies of sedimentary exhalative (sedex) deposits to arrive at the defining criteria, both descriptive and genetic, for sedex-type deposits. Studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins have also been used to select defining criteria. The focus here is on the geologic characteristics of sedex deposit-hosting basins that contain greater than 10 million metric tons of zinc and lead. The enormous size of sedex deposits strongly suggests that basin-scale geologic processes are involved in their formation. It follows that mass balance constraints of basinal processes can provide a conceptual underpinning for the evaluation of potential ore-forming mechanisms and the identification of geologic indicators for ore potential in specific sedimentary basins. Empirical data and a genetic understanding of the physicochemical, geologic, and mass balance conditions required for each of these elements are used to establish a hierarchy of quantifiable geologic criteria that can be used in U.S. Geological Survey national assessments.  In addition, this report also provides a comprehensive evaluation of environmental considerations associated with the mining of sedex deposits.

  3. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed

  4. A Hydrothermal-Sedimentary Context for the Origin of Life

    PubMed Central

    Hickman-Lewis, K.; Hinman, N.; Gautret, P.; Campbell, K.A.; Bréhéret, J.G.; Foucher, F.; Hubert, A.; Sorieul, S.; Dass, A.V.; Kee, T.P.; Georgelin, T.; Brack, A.

    2018-01-01

    Abstract Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5–4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5–3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life—Hadean environment—Mineral surface reactions—Hydrothermal fluids—Archean volcanic sediments. Astrobiology 18, 259–293. PMID:29489386

  5. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-Wei; Chen, Jian-Fang; Ye, Ying; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Jiang, Zong-Pei; Lin, Yu-Shih; Chen, Chen-Tung Arthur; Loh, Pei Sun

    2017-10-01

    Lignin oxidation products, δ13C values, C/N ratios and particle size were used to investigate the sources, distribution and chemical stability of sedimentary organic matter (OM) along the Andong salt marsh located in the southwestern end of Hangzhou Bay, China. Terrestrial OM was highest at the upper marshes and decreased closer to the sea, and the distribution of sedimentary total organic carbon (TOC) was influenced mostly by particle size. Terrestrial OM with a C3 signature was the predominant source of sedimentary OM in the Spartina alterniflora-dominated salt marsh system. This means that aside from contributions from the local marsh plants, the Andong salt marsh received input mostly from the Qiantang River and the Changjiang Estuary. Transect C, which was situated nearer to the Qiantang River mouth, was most likely influenced by input from the Qiantang River. Likewise, a nearby creek could be transporting materials from Hangzhou Bay into Transect A (farther east than Transect C), as Transect A showed a signal resembling that of the Changjiang Estuary. The predominance of terrestrial OM in the Andong salt marsh despite overall reductions in sedimentary and terrestrial OM input from the rivers is most likely due to increased contributions of sedimentary and terrestrial OM from erosion. This study shows that lower salt marsh accretion due to the presence of reservoirs upstream may be counterbalanced by increased erosion from the surrounding coastal areas.

  6. Schiaparelli Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-403, 26 June 2003

    Some of the most important high resolution imaging results of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) experiment center on discoveries about the presence and nature of the sedimentary rock record on Mars. This old meteor impact crater in northwestern Schiaparelli Basin exhibits a spectacular view of layered, sedimentary rock. The 2.3 kilometer (1.4 miles) wide crater may have once been completely filled with sediment; the material was later eroded to its present form. Dozens of layers of similar thickness and physical properties are now expressed in a wedding cake-like stack in the middle of the crater. Sunlight illuminating the scene from the left shows that the circle, or mesa top, at the middle of the crater stands higher than the other stair-stepped layers. The uniform physical properties and bedding of these layers might indicate that they were originally deposited in a lake (it is possible that the crater was at the bottom of a much larger lake, filling Schiaparelli Basin); alternatively, the layers were deposited by settling out of the atmosphere in a dry environment. This picture was acquired on June 3, 2003, and is located near 0.9oS, 346.2oW.

  7. Specific Heat Capacities of Martian Sedimentary Analogs at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Vu, T. H.; Piqueux, S.; Choukroun, M.; Christensen, P. R.; Glotch, T. D.; Edwards, C. S.

    2017-12-01

    Data returned from Martian missions have revealed a wide diversity of surface mineralogies, especially in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (300-700 J.m-2.K-1.s-1/2, indicative of a combination of low thermal conductivity, specific heat, and density) that are difficult to reconcile with their bedrock morphologies (where hundreds of magmatic bedrock occurrences have been mapped with thermal inertia values >> 1200 J.m-2.K-1.s-1/2). While low thermal conductivity and density values are sometimes invoked to lower the thermal inertia of massive bedrock, both are not sufficient to lower values below 1200 J.m-2.K-1.s-1/2, far above the numbers reported in the literature for Martian sedimentary/altered rocks. In addition, our limited knowledge of the specific heat of geological materials and their temperature dependency, especially below room temperature, have prevented accurate thermal modeling and impeded interpretation of the thermal inertia data. In this work, we have addressed that knowledge gap by conducting experimental measurements of the specific heat capacities of geological materials relevant to Martian sedimentary rocks at temperatures between 100 and 350 K. The results show that variation of the specific heat with temperature, while appreciable to some extent, is rather small and is unlikely to contribute significantly in the lowering of thermal inertia values. Therefore, thermal conductivity is the parameter that has the most potential in explaining this phenomenon. Such scenario could be possible if the sedimentary rocks are finely layered with poor thermal contact between each internal bed. As the density of most geological materials is well-known, the obtained specific heat data can be used to

  8. Sedimentary architecture of the Shaler outcrop, Gale Crater, Mars: paleoenvironmental and sediment transport implications

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Edgar, L. A.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Muller, J.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    Sedimentary rocks are archives of ancient depositional processes and environments on planetary surfaces. Reconstructing such processes and environments requires observations of sedimentary structures and architecture (the large-scale geometry and organisation of sedimentary bedsets). We report the analysis of the distinct Shaler outcrop, a prominent stratified unit located between the Bathurst Inlet outcrop and the floor of Yellowknife bay. The Shaler outcrop is an ~1 m thick stratal unit that spans approximately 30 m outcrop in length, and was examined by Curiosity on sols 120-121 and more recently on sols 309-324. Detailed stereo observations of the outcrop across most of its entire lateral extent were made using Navigation and Mast Cameras. These data permit detailed analysis of stratal geometries, distribution of sedimentary structures, and broad grain size trends. Overall the Shaler outcrop comprises a heterogeneous assemblage of interstratified platy sandstones separated by recessive, likely finer-grained beds. Coarser-grained beds are characterised by decimeter-scale trough cross-bedding. The north-eastern section of the outcrop shows greater abundance of interstratified sandstones and finer-grained beds. The southwestern section is characterised by darker bedsets that are likely coarser grained interstratified with finer-grained sandstones. The darker bedsets appear to comprise stacked trough-cross stratified bedsets. Finer-grained recessive intervals are not apparent in this section. The presence and scale of trough cross-stratification indicates that sediment was transported by the migration of sinuous crested dunes. Bedding geometries indicate sub-critical angles of climb. We examine the large-scale bedset architecture to evaluate the original depositional geometry of the Shaler sedimentary system, and consider its plausible depositional processes and paleoenvironmental setting. Finally, we consider its relationship to the sedimentary succession exposed

  9. Chemical composition of sedimentary rocks in California and Hawaii

    USGS Publications Warehouse

    Hill, Thelma P.

    1981-01-01

    A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of

  10. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  11. Research into Surface Wave Phenomena in Sedimentary Basins.

    DTIC Science & Technology

    1981-12-31

    150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for

  12. Sedimentary Geochemistry of Martian Samples from the Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    McLennan, Scott M.

    2001-01-01

    The purpose of this research project was to evaluate the APXS data collected on soils and rocks at the Pathfinder site in terms of sedimentary geochemistry. Below are described the major findings of this research: (1) An influential model to explain the chemical variation among Pathfinder soils and rocks is a two component mixing model where rocks of fairly uniform composition mix with soil of uniform composition; (2) The very strong positive correlation between MgO and SO, points to a control by a MgSO4 mineral however, spectroscopic data continue to suggest that Fe-sulfates, notably schwertmannite and jarosite, may be important components; (3) In an attempt to better understand the causes of complexities in mixing relationships, the possible influence of sedimentary transport has been evaluated; (4) Another aspect of this research has been to examine the possibility of sedimentary silica being a significant phase on Mars; and (5) On Earth, the geochemistry of sedimentary rocks has been used to constrain the chemical composition of the continental crust and an important part of this research was to evaluate this approach for Mars.

  13. Large sedimentary aquifer systems functioning. Constraints by classical isotopic and chemical tools, and REE in the Eocene sand aquifer, SW France

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.

    2010-12-01

    Large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems, e.g. with seepage between aquifer layers that can lead to water quality degradation. These large aquifer systems thus require rational water management at the sedimentary basin scale in order to preserve both water quantity and quality. In addition to hydrogeological modelling mainly dealing with water quantity, chemical and isotopic methods were applied to evidence the spatial variability of water characteristics and to turn this into better understanding of hydrosystems functioning. The large Eocene Sand aquifer system of the Adour-Garonne sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 (one-fifth of the French territory, located in the South west part). The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The ‘Eocene Sands’, composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres..The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. According to δ18O and δ2H values and estimated 14C ages, both present-day recharge (mainly located in the north of the area) and old recharge (16-35 ky) can be evidenced. High spatial variability was evidenced within a same aquifer layer, with temporal variability over one hydrological cycle limited to a few points located in the recharge areas. These results and especially the very old waters recharged under colder climate combined with the

  14. Sedimentary Processes on Earth, Mars, Titan, and Venus

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.

    The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.

  15. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  16. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    PubMed

    McLennan, S M; Anderson, R B; Bell, J F; Bridges, J C; Calef, F; Campbell, J L; Clark, B C; Clegg, S; Conrad, P; Cousin, A; Des Marais, D J; Dromart, G; Dyar, M D; Edgar, L A; Ehlmann, B L; Fabre, C; Forni, O; Gasnault, O; Gellert, R; Gordon, S; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; King, P L; Le Mouélic, S; Leshin, L A; Léveillé, R; Lewis, K W; Mangold, N; Maurice, S; Ming, D W; Morris, R V; Nachon, M; Newsom, H E; Ollila, A M; Perrett, G M; Rice, M S; Schmidt, M E; Schwenzer, S P; Stack, K; Stolper, E M; Sumner, D Y; Treiman, A H; VanBommel, S; Vaniman, D T; Vasavada, A; Wiens, R C; Yingst, R A

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  17. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  18. The Lusi eruption and implications for understanding fossil piercement structures in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Mazzini, Adriano; Planke, Sverre; Hadi, Soffian

    2016-04-01

    The Lusi eruption started in northeast Java, Indonesia, on May 29th 2006, and it has been erupting rocks, mud, water, and gas ever since. We have been doing field work and research on Lusi ever since the eruption commenced. This work was initially motivated from studying the initiation of a mud volcano. However, the longevity of the eruption has made it possible to describe and monitor the lifespan of this unique piercement structure. . One of the first-order questions regarding the eruption is how it should be classified and if there are any other modern or fossil analogues that can place Lusi in a relevant geological context. During the initial stages of eruption, Lusi was classified as a mud volcano, but following geochemical studies the eruption did not show the typical CH4-dominated gas composition of other mud volcanoes and the temperature was also too high. Moreover, mud volcano eruptions normally last a few days, but Lusi never stopped during the past decade. In particular, the crater fluid geochemistry suggests a connection to the neighboring volcanic complex. Lusi represent a sedimentary hosted hydrothermal system. This opens up new possibilities for understanding fossil hydrothermal systems in sedimentary basins, such as hydrothermal vent complexes and breccia-pipes found in sedimentary basins affected by the formation of Large igneous provinces. We will present examples from the Karoo Basin (South Africa) and the Vøring Basin (offshore Norway) and discuss how Lusi can be used to refine existing formation models. Finally, by comparing Lusi to fossil hydrothermal systems we may get insight into the processes operating at depth where the Lusi system interacts with the igneous rocks of the neighbouring volcanic arc.

  19. Assessment of undiscovered conventional oil and gas resources of the Western Canada Sedimentary Basin, Canada, 2012

    USGS Publications Warehouse

    Higley, Debra K.

    2013-01-01

    The U.S. Geological Survey recently completed a geoscience-based assessment of undiscovered oil and gas resources of provinces within the Western Canada Sedimentary Basin. The Western Canada Sedimentary Basin primarily comprises the (1) Alberta Basin Province of Alberta, eastern British Columbia, and the southwestern Northwest Territories; (2) the Williston Basin Province of Saskatchewan, southeastern Alberta, and southern Manitoba; and (3) the Rocky Mountain Deformed Belt Province of western Alberta and eastern British Columbia. This report is part of the U.S. Geological Survey World Petroleum Resources Project assessment of priority geologic provinces of the world. The assessment was based on geoscience elements that define a total petroleum system (TPS) and associated assessment unit(s). These elements include petroleum source rocks (geochemical properties and petroleum generation, migration, and accumulation), reservoir description (reservoir presence, type, and quality), and petroleum traps (trap and seal types, and timing of trap and seal formation relative to petroleum migration). Using this framework, the Elk Point-Woodbend Composite TPS, Exshaw-Fernie-Mannville Composite TPS, and Middle through Upper Cretaceous Composite TPS were defined, and four conventional assessment units within the total petroleum systems were quantitatively assessed for undiscovered resources in the Western Canada Sedimentary Basin.

  20. Sedimentary Signs of a Martian Lakebed

    NASA Image and Video Library

    2014-12-08

    This evenly layered rock photographed by the Mast Camera Mastcam on NASA Curiosity Mars Rover on Aug. 7, 2014, shows a pattern typical of a lake-floor sedimentary deposit not far from where flowing water entered a lake.

  1. Sedimentary rocks of the coast of Liberia

    USGS Publications Warehouse

    White, Richard William

    1969-01-01

    Two basins containing sedimentary rocks o# probable Cretaceous age have been recognized near the coast of Liberia in the area between Monrovia and Buchanan; geophysical evidence suggests that similar though larger basins exist on the adjacent continental shelf. The oldest sedimentary unit recognized, the Paynesville Sandstone of possible early to middle Paleozoic age, is intruded by dikes and sills of diabase of early Jurassic age and lies unconformably on crystalline rocks of late Precambrian age. Dips in the Paynesville Sandstone define a structural basin centered south of Roberts International Airport (formerly called Roberts Field) about 25 miles east of Monrovla. Wackes and conglomerates of Cretaceous age, herein named the Farmington River Formation, unconformably overlie the Paynesville Sandstone and constitute the sedimentary fill in the Roberts basin. The Bassa basin lies to the southeast of the Roberts basin and is separated from it by an upwarp of crystalline rocks. The basin is occupied by wackes and conglomerates of the Farmington River Formation, which apparently lie directly on the crystalline basement. Both basins are bounded on the northeast by northwest-trending dip-slip faults. The best potential for petroleum deposits that exists in Liberia is beneath the adjacent continental shelf and slope. Geophysical exploration and drilling will be required to evaluate this potential.

  2. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.

    2011-12-01

    The study of rare earth elements (REEs) in natural waters initially involved an examination of their occurrence and behavior in seawater and coastal waters such as estuaries. Since the 1990s, REE geochemistry has been applied to continental waters such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique characteristics and have been used in the study of many geological processes like weathering and water-rock interaction processes, provenance of sediments, etc... With the evolution of analytical techniques like new generation ICP-MS, much attention had been paid towards the water geochemistry of REEs. However, there is a need of more investigations devoted to REEs in large groundwater systems, especially on the understanding of the distribution of REEs and their evolution in such systems. In this frame, large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems. These large aquifer systems thus require water management at the basin scale in order to preserve both water quantity and quality. The large Eocene Sand aquifer system of the Aquitaine sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 in the South west part of the French territory. The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The 'Eocene Sands', composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres. The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene

  3. The Importance of Actualistic Source-to-Sink Sand Provenance Studies in Illuminating the Nature of Ancient Fluvial Systems From the Deep-Marine Clastic Successions They Sourced

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Parra, J. G.; Dawson, S.

    2006-12-01

    Successions of gravity-flow deposits in deep-marine fan systems have the potential to record the evolution of their fluvial source region as well as specific tectonic, climatic, eustatic and anthropogenic events. Deciphering these signals involves the description and quantification of key sediment attributes such as fan volume, the rate of sediment accumulation, the frequency of depositional events, sediment texture, and sediment composition. Sediment composition/provenance provides insight into the nature of the fluvial source, including drainage basin geology and drainage development. For example, Marsaglia et al. (1995) demonstrated a connection between source river lengthening owing to eustatic change and sand composition in Quaternary turbidite successions of the Santa Barbara Basin at Ocean Drilling Program (ODP) Site 893. In contrast, longer-term compositional trends recognized in the Mesozoic to Cenozoic rift-to-drift successions cored by various ODP legs on the North Atlantic margins are more likely associated with continental margin drainage development and fluvial system evolution (Marsaglia et al., in press). These two connections between sink and source were made possible by well-documented petrologic data sets for both modern onshore fluvial systems and older offshore deep-marine successions, but in each case different workers collected the onshore and offshore data sets. In the Waipaoa River Sedimentary System of North Island, New Zealand we have taken a different, more holistic approach, with a limited and linked group of researchers and sample data base covering the complete system. The study area is an active forearc margin characterized by uplifted and deformed sedimentary successions and periodic input of arc-derived ash. Recently, the modern onshore system has been thoroughly documented via studies of the petrology of outcropping Mesozoic to Cenozoic units, fluvial terrace deposits, and modern fluvial sediments (e.g., James et al., in press

  4. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  5. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity

    USGS Publications Warehouse

    Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.

  6. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  7. Sedimentary textures formed by aqueous processes, Erebus crater Meridiani Planum, Mars

    USGS Publications Warehouse

    Grotzinger, J.; Bell, J.; Herkenhoff, K.; Johnson, J.; Knoll, A.; McCartney, E.; McLennan, S.; Metz, J.; Moore, J.; Squyres, S.; Sullivan, R.; Ahronson, O.; Arvidson, R.; Joliff, B.; Golombek, M.; Lewis, K.; Parker, T.; Soderblom, J.

    2006-01-01

    New observations at Erebus crater (Olympia outcrop) by the Mars Exploration Rover Opportunity between sols 671 and 735 (a sol is a martian day) indicate that a diverse suite of primary and penecontemporaneous sedimentary structures is preserved in sulfate-rich bedrock. Centimeter-scale trough (festoon) cross-lamination is abundant, and is better expressed and thicker than previously described examples. Postdepositional shrinkage cracks in the same outcrop are interpreted to have formed in response to desiccation. Considered collectively, this suite of sedimentary structures provides strong support for the involvement of liquid water during accumulation of sedimentary rocks at Meridiani Planum. ?? 2006 Geological Society of America.

  8. Sedimentary environment and facies of St Lucia Estuary Mouth, Zululand, South Africa

    NASA Astrophysics Data System (ADS)

    Wright, C. I.; Mason, T. R.

    The St. Lucia Estuary is situated on the subtropical, predominantly microtidal Zululand coast. Modern sedimentary environments within the estuary fall into three categories: (1) barrier environments; (2) abandoned channel environments; and (3) estuarine/lagoonal environments. The barrier-associated environment includes tidal inlet channel, inlet beach face, flood-tidal delta, ebb-tidal delta, spit, backspit and aeolian dune facies. The abandoned channel environment comprises washover fan, tidal creek tidal creek delta and back-barrier lagoon facies. The estuarine/lagoonal environment includes subtidal estuarine channel, side-attached bar, channel margin, mangrove fringe and channel island facies. Each sedimentary facies is characterised by sedimentary and biogenic structures, grain-size and sedimentary processes. Vertical facies sequences produced by inlet channel migration and lagoonal infilling are sufficiently distinct to be recognized in the geological record and are typical of a prograding shoreline.

  9. Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars

    NASA Astrophysics Data System (ADS)

    Salese, Francesco; Di Achille, Gaetano; Neesemann, Adrian; Ori, Gian Gabriele; Hauber, Ernst

    2016-02-01

    Moa Valles is a well-preserved, likely Amazonian (younger than 2 Ga old), paleodrainage system that is nearly 300 km long and carved into ancient highland terrains west of Idaeus Fossae. The fluvial system apparently originated from fluidized ejecta blankets, and it consists of a series of dam breach paleolakes with associated fan-shaped sedimentary deposits. The paleolakes are interconnected and drain eastward into Liberta crater, forming a complex and multilobate deltaic deposit exhibiting a well-developed channelized distributary pattern with evidence of switching on the delta plain. A breach area, consisting of three spillover channels, is present in the eastern part of the crater rim. These channels connect the Liberta crater to the eastward portion of the valley system, continuing toward Moa Valles with a complex pattern of anabranching channels that is more than 180 km long. Based on hydrological calculations of infilling and spillover discharges of the Liberta crater lake, the formation of the whole fluvial system is compatible with short to medium (<1000 year) timescales, although the length and morphology of the observed fluvial-lacustrine features suggest long-term periods of activity based on terrestrial analogs. Water for the 300 km long fluvial system may have been primarily sourced by the melting of shallow ice due to the thermal anomaly produced by impact craters. The occurrence of relatively recent (likely Amazonian) hydrological activity, which could have been primarily supported by groundwater replenishment, supports the hypothesis that hydrological activity could have been possible after the Noachian-Hesperian boundary, which is commonly considered as the onset epoch of the present cold-dry climate.

  10. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    PubMed

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.

  11. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China

    PubMed Central

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID

  12. Prediction of sedimentary facies of x-oilfield in northwest of China by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Ling, Ke; Tingting, He

    2017-03-01

    In the early stage of oilfield development, there are only a few wells and well spacing can reach several kilometers. for the alluvial fans and other heterogeneous reservoirs, information from wells alone is not sufficient to derive detailed reservoir information. In this paper, the method of calculating sand thickness through geostatistics inversion is studied, and quantitative relationships between each sedimentary micro-facies are analyzed by combining with single well sedimentary facies. Further, the sedimentary facies plane distribution based on seismic inversion is obtained by combining with sedimentary model, providing the geological basis for the next exploration and deployment.

  13. The Fate of Soil OC in the Marine Environment: Examples from the Rapidly Eroding Landscapes of Two New Zealand North Island Rivers

    NASA Astrophysics Data System (ADS)

    Blair, N. E.; Leithold, E. L.; Thompson, C. E.; Childress, L. B.; Fournillier, K. M.

    2014-12-01

    Approximately 10% of the OC lost from soils as a result of land use has been argued to be delivered to the ocean (Lal 2003). The fate of this OC is highly dependent on the organic geochemical composition of the soil pool and the nature of the marine environment that receives it. The conversion of bush to pastureland via burning in the Waipaoa and Waiapu watersheds increased erosion rates by an order of magnitude. Surface and bank erosion, coupled with landsliding and gullying deliver OC to the rivers. Visual observations, sediment budgets, C-isotope (12C, 13C, 14C) mass balances and biomarker analyses all indicate that the OC is a mixture of recent plant debris, charcoal, aged soil C (< 18 kyrs old) and Cretaceous - Neogene sedimentary rock-derived C. The vastly different ages of the OC pools might be expected to lead to different reactivities and fates in the seabed. Nearshore wave-driven deposition-resuspension cycles winnow fines from sands in water depths ~<50 m. The sand-sized sedimentary OC is dominated by rock C. Younger fractions of soil C are transported primarily as fines to deeper water. Marine OC is added to the fine-grained sediments as they encounter zones of primary production. Dissolved inorganic C (DIC) within the interstitial (pore) waters of the marine sediments is a mixture of seawater DIC and benthic respired C. The C-isotopic composition of the DIC reflects its source. Stable isotope and radiocarbon measurements indicate that contemporary terrestrial C3 plant OC oxidation dominates respiration on the Waiapu shelf nearshore (~60 m). Marine OC is preferentially oxidized at water depths >80 m. The rock-derived C does not seem to be oxidized on the shelf or upper slope. A comparison of riverine particulate organic C (POC) with shelf depocenter OC concentrations suggest the Waipaoa and Waiapu soil C burial efficiencies are ~50 and 85% respectively. This does not consider the fate of soil C dispersed beyond the depocenter where preservation

  14. Modeling the Sedimentary Infill of Lakes in the East African Rift: A Case Study of Multiple versus Single Rift Basin Segments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Scholz, C. A.

    2016-12-01

    The sedimentary basins in the East African Rift are considered excellent modern examples for investigating sedimentary infilling and evolution of extensional systems. Some lakes in the western branch of the rift have formed within single-segment systems, and include Lake Albert and Lake Edward. The largest and oldest lakes developed within multi-segment systems, and these include Lake Tanganyika and Lake Malawi. This research aims to explore processes of erosion and sedimentary infilling of the catchment area in single-segment rift (SSR) and multi-segment rift (MSR) systems. We consider different conditions of regional precipitation and evaporation, and assess the resulting facies architecture through forward modeling, using state-of-the-art commercial basin modeling software. Dionisos is a three-dimensional numerical stratigraphic forward modeling software program, which simulates basin-scale sediment transport based on empirical water- and gravity-driven diffusion equations. It was classically used to quantify the sedimentary architecture and basin infilling of both marine siliciclastic and carbonate environments. However, we apply this approach to continental rift basin environments. In this research, two scenarios are developed, one for a MSR and the other for a SSR. The modeled systems simulate the ratio of drainage area and lake surface area observed in modern Lake Tanganyika and Lake Albert, which are examples of MSRs and SSRs, respectively. The main parameters, such as maximum subsidence rate, water- and gravity-driven diffusion coefficients, rainfall, and evaporation, are approximated using these real-world examples. The results of 5 million year model runs with 50,000 year time steps show that MSRs are characterized by a deep water lake with relatively modest sediment accumulation, while the SSRs are characterized by a nearly overfilled lake with shallow water depths and thick sediment accumulation. The preliminary modeling results conform to the features

  15. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  16. A New Unusual Ice-induced Sedimentary Structure: the Silt Mushroom

    PubMed Central

    Jianhua, Zhong; Liangtian, Ni; Ningliang, Sun; Chuang, Liu; Bing, Hao; Mengchun, Cao; xin, Chen; Ke, Luo; Shengxin, Liu; Leitong, Huang; Guanqun, Yang; Shaojie, Wang; Feifei, Su; Xuejing, He; Yanqiu, Xue

    2016-01-01

    Upon channel bars or point bars within the lows of the Yellow River, a new sedimentary structure, named ‘silt mushroom’, has been observed. The process of their formation is interpreted to be via the ice process. The name, the silt mushroom comes from their figurative form. This is because they look somewhat similar to mushroom’s in size and shape; being in the range of 1 to 10 cm in diameter, with the medium 3–5 cm, and on average 10 cm in height, occuring generally in groups, and occasionally in isolation in relatively soft silt. They develop in the transition from winter to spring, and are convincingly related to ice processes. Ice-induced silt mushrooms are best examined in association with the many other newly discovered ice-induced sedimentary structures (over 20 kinds). Clearly, up to now, ice processes have been significantly underestimated. With the substantial discovery of the ice-induced silt mushroom, it opens up new questions. This is because its structure mirrors the same sedimentary structures found in rocks, questioning their genesis, and sedimentary environment analysis. This achievement is significant not only in sedimentology, but also in palaeogeography, palaeoclimate, geological engineering, hydraulics and fluviology. PMID:27833155

  17. Permanganate diffusion and reaction in sedimentary rocks.

    PubMed

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.

    2008-12-01

    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  19. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system

    NASA Astrophysics Data System (ADS)

    Vonk, Jorien E.; Giosan, Liviu; Blusztajn, Jerzy; Montlucon, Daniel; Graf Pannatier, Elisabeth; McIntyre, Cameron; Wacker, Lukas; Macdonald, Robie W.; Yunker, Mark B.; Eglinton, Timothy I.

    2015-12-01

    The Mackenzie River in Canada is by far the largest riverine source of sediment and organic carbon (OC) to the Arctic Ocean. Therefore the transport, degradation and burial of OC along the land-to-ocean continuum for this riverine system is important to study both regionally and as a dominant representative of Arctic rivers. Here, we apply sedimentological (grain size, mineral surface area), and organic and inorganic geochemical techniques (%OC, δ13C-OC and Δ14C-OC, 143Nd/144Nd, δ2H and δ18O, major and trace elements) on particulate, bank, channel and lake surface sediments from the Mackenzie Delta, as well as on surface sediments from the Mackenzie shelf in the Beaufort Sea. Our data show a hydrodynamic sorting effect resulting in the accumulation of finer-grained sediments in lake and shelf deposits. A general decrease in organic carbon (OC) to mineral surface area ratios from river-to-sea furthermore suggests a loss of mineral-bound terrestrial OC during transport through the delta and deposition on the shelf. The net isotopic value of the terrestrial OC that is lost en route, derived from relationships between δ13C, OC and surface area, is -28.5‰ for δ13C and -417‰ for Δ14C. We calculated that OC burial efficiencies are around 55%, which are higher (∼20%) than other large river systems such as the Amazon. Old sedimentary OC ages, up to 12 14C-ky, suggest the delivery of both a petrogenic OC source (with an estimated contribution of 19 ± 9%) as well as a pre-aged terrestrial OC source. We calculated the 14C-age of this pre-aged, biogenic, component to be about 6100 yrs, or -501‰, which illustrates that terrestrial OC in the watershed can reside for millennia in soils before being released into the river. Surface sediments in lakes across the delta (n = 20) showed large variability in %OC (0.92-5.7%) and δ13C (-30.7‰ to -23.5‰). High-closure lakes, flooding only at exceptionally high water levels, hold high sedimentary OC contents (>2.5%) and

  20. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  1. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru

    PubMed Central

    Biddle, Jennifer F.; Lipp, Julius S.; Lever, Mark A.; Lloyd, Karen G.; Sørensen, Ketil B.; Anderson, Rika; Fredricks, Helen F.; Elvert, Marcus; Kelly, Timothy J.; Schrag, Daniel P.; Sogin, Mitchell L.; Brenchley, Jean E.; Teske, Andreas; House, Christopher H.; Hinrichs, Kai-Uwe

    2006-01-01

    Studies of deeply buried, sedimentary microbial communities and associated biogeochemical processes during Ocean Drilling Program Leg 201 showed elevated prokaryotic cell numbers in sediment layers where methane is consumed anaerobically at the expense of sulfate. Here, we show that extractable archaeal rRNA, selecting only for active community members in these ecosystems, is dominated by sequences of uncultivated Archaea affiliated with the Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group, whereas known methanotrophic Archaea are not detectable. Carbon flow reconstructions based on stable isotopic compositions of whole archaeal cells, intact archaeal membrane lipids, and other sedimentary carbon pools indicate that these Archaea assimilate sedimentary organic compounds other than methane even though methanotrophy accounts for a major fraction of carbon cycled in these ecosystems. Oxidation of methane by members of Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group without assimilation of methane–carbon provides a plausible explanation. Maintenance energies of these subsurface communities appear to be orders of magnitude lower than minimum values known from laboratory observations, and ecosystem-level carbon budgets suggest that community turnover times are on the order of 100–2,000 years. Our study provides clues about the metabolic functionality of two cosmopolitan groups of uncultured Archaea. PMID:16505362

  2. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  4. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  5. Radiographic analysis of sedimentary structures and depositional histories in Apollo 15 cores

    NASA Technical Reports Server (NTRS)

    Coch, N. K.

    1977-01-01

    Radiographs of the Apollo 15 deepdrill drive tubes were analyzed on an SDS electronic enhancer to determine sedimentary structures in the core samples. The data obtained were compared with all other Apollo mission radiographs and used to make inferences on the character of sedimentary depositional processes on the lunar surface.

  6. Variety of Sedimentary Process and Distribution of Tsunami Deposits in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Yamaguchi, N.; Sekiguchi, T.

    2017-12-01

    As an indicator of the history and magnitude of paleotsunami events, tsunami deposits have received considerable attention. To improve the identification and interpretation of paleotsunami deposits, an understanding of sedimentary process and distribution of tsunami deposits is crucial. Recent detailed surveys of onshore tsunami deposits including the 2004 Indian Ocean tsunami and the 2011 Tohoku-oki tsunami have revealed that terrestrial topography causes a variety of their features and distributions. Therefore, a better understanding of possible sedimentary process and distribution on such influential topographies is required. Flume experiments, in which sedimentary conditions can be easily controlled, can provide insights into the effects of terrestrial topography as well as tsunami magnitude on the feature of tsunami deposits. In this presentation, we report laboratory experiments that focused on terrestrial topography including a water body (e.g. coastal lake) on a coastal lowland and a cliff. In both cases, the results suggested relationship between the distribution of tsunami deposits and the hydraulic condition of the tsunami flow associated with the terrestrial topography. These experiments suggest that influential topography would enhance the variability in thickness of tsunami deposits, and thus, in reconstructions of paleotsunami events using sedimentary records, we should take into account such anomalous distribution of tsunami deposits. Further examination of the temporal sequence of sedimentary process in laboratory tsunamis may improve interpretation and estimation of paleotsunami events.

  7. STEPPE: Supporting collaborative research and education on Earth's deep-time sedimentary crust.

    NASA Astrophysics Data System (ADS)

    Smith, D. M.

    2014-12-01

    STEPPE—Sedimentary geology, Time, Environment, Paleontology, Paleoclimate, and Energy—is a National Science Foundation supported consortium whose mission is to promote multidisciplinary research and education on Earth's deep-time sedimentary crust. Deep-time sedimentary crust research includes many specialty areas—biology, geography, ecology, paleontology, sedimentary geology, stratigraphy, geochronology, paleoclimatology, sedimentary geochemistry, and more. In fact, the diversity of disciplines and size of the community (roughly one-third of Earth-science faculty in US universities) itself has been a barrier to the formation of collaborative, multidisciplinary teams in the past. STEPPE has been working to support new research synergies and the development of infrastructure that will encourage the community to think about the big problems that need to be solved and facilitate the formation of collaborative research teams to tackle these problems. Toward this end, STEPPE is providing opportunities for workshops, working groups and professional development training sessions, web-hosting and database services and an online collaboration platform that facilitates interaction among participants, the sharing of documentation and workflows and an ability to push news and reports to group participants and beyond using social media tools. As such, STEPPE is working to provide an interactive space that will serve as both a gathering place and clearinghouse for information, allowing for broader integration of research and education across all STEPPE-related sub disciplines.

  8. Origin and time-space distribution of hydrothermal systems in east-central Australian sedimentary basins: Constraints from illite geochronology and isotope geochemistry.

    NASA Astrophysics Data System (ADS)

    Uysal, I. Tonguç

    2016-04-01

    Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of hydrothermal systems responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of hydrothermal processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic

  9. Application of MSS/LANDSAT images to the structural study of recent sedimentary areas: Campos Sedimentary Basin, Rio de Janeiro, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Barbosa, M. P.

    1983-01-01

    Visual and computer aided interpretation of MSS/LANDSAT data identified linear and circular features which represent the ""reflexes'' of the crystalline basement structures in the Cenozoic sediments of the emergent part of the Campos Sedimentary Basin.

  10. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by

  11. Velocity Models of the Sedimentary Cover and Acoustic Basement, Central Arctic

    NASA Astrophysics Data System (ADS)

    Bezumov, D. V.; Butsenko, V.

    2017-12-01

    As the part of the Russian Federation Application on the Extension of the outer limit of the continental shelf in the Arctic Ocean to the Commission for the limits of the continental shelf the regional 2D seismic reflection and sonobuoy data was obtained in 2011, 2012 and 2014 years. Structure and thickness of the sedimentary cover and acoustic basement of the Central Arctic ocean can be refined due to this data. "VNIIOkeangeologia" created a methodology for matching 2D velocity model of the sedimentary cover based on vertical velocity spectrum calculated from wide-angle reflection sonobuoy data and the results of ray tracing of reflected and refracted waves. Matched 2D velocity models of the sedimentary cover in the Russian part of the Arctic Ocean were computed along several seismic profiles (see Figure). Figure comments: a) vertical velocity spectrum calculated from wide-angle reflection sonobuoy data. RMS velocity curve was picked in accordance with interpreted MCS section. Interval velocities within sedimentary units are shown. Interval velocities from Seiswide model are shown in brackets.b) interpreted sonobuoy record with overlapping of time-distance curves calculated by ray-tracing modelling.c) final depth velocity model specified by means of Seiswide software.

  12. Aptian-Albian boundary in Central Southern Atlas of Tunisia: New tectono-sedimentary facts

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Barhoumi, Amine; Ghanmi, Mohamed; Zargouni, Fouad

    2017-08-01

    The Aptian-Albian boundary preserves one of the most important events in Central-Southern Atlas of Tunisia, which belongs to the Southern Tethyan margin. A major sedimentary break was recorded between Early Aptian and Albian series in Bouhedma-Boudouaou Mountains. This major hiatus probably linked to the ''Austrian phase'' and to the Aptian and Albian ''Crisis'' testify a period of major tectonic events. In this paper, field observations on the Mid-Cretaceous stratigraphy combined with seismic profile interpretation were used for the first time to characterize the Aptian-Albian boundary in Central-Southern Atlas of Tunisia. Our new results reveal that Aptian-Albian boundary marks a critical interval not only in Maknassy-Mezzouna orogenic system but also in the Tunisian Atlas. Furthermore, Aptian-Albian series outcrop is marked by the important sedimentary gaps as well as a dramatic thickness change from West to East and predominately from North to South. This is linked to the extensional tectonic features which characterize all the Central-Southern Atlas of Tunisia.

  13. Sedimentary denitrification: Isotope fractionation and its impact on water column nitrate isotopes

    NASA Astrophysics Data System (ADS)

    Dähnke, K.; Thamdrup, B.

    2012-04-01

    The global marine nitrogen cycle is constrained by one major source and two processes that act as nitrogen sinks: nitrogen fixation on the one side and denitrification or anammox on the other. These processes with their respective isotope effecst set the marine nitrate 15N-isotope value to a relatively constant average of 5 per mil. This value can be used to better assess the magnitude of these source and sink terms, but the underlying assumption at present is that sedimentary denitrification, a process responsible for approximately one third of global nitrogen removal, has little to no isotope effect on the water column. We tested this hypothesis in sediment incubations, measuring net denitrification and nitrogen and oxygen stable isotope fractionation in surface sediments from the coastal Baltic Sea (Boknis Eck, Northern Germany). We found tremendously high denitrification rates, and regardless of current paradigms assuming little fractionation during sediment denitrification, we measured fractionation factors of 19 per mil for nitrogen and 11 per mil for oxygen in nitrate. These results potentially challenge the current view of fractionation during sedimentary denitrification and imply that nitrogen budget calculation may need to consider this variability. Furthermore, the ratio of fractionation factors for nitrogen and oxygen is distinct from the 1 : 1 ratio otherwise found in marine systems, and suggests that isotope kinetics of sedimentary denitrification might be entirely different from water column denitrification. Acknowledgements: This work was funded by the German Research Foundation (DFG) and in parts by the Danish National Research Foundation.

  14. Coastal sedimentary research examines critical issues of national and global priority

    USGS Publications Warehouse

    Fletcher, Chip; Anderson, John; Crook, Keith A.W.; Kaminsky, George; Larcombe, Piers; Murray-Wallace, Colin V.; Sansone, Frank; Scott, David B.; Riggs, Stan; Sallenger, Asbury; Shennan, Ian; Thieler, E. Robert; Wehmiller, John F.

    2000-01-01

    An international conference was held recently in Honolulu, Hawaii, to examine and plan for coastal sedimentary research in the United States and globally. Participants agreed that sedimentary coastal environments constitute a critical national and global resource that suffers widespread degradation due to human impacts. Moreover, human population growth and inappropriate development in the coastal zone are escalating public asset losses due to coastal hazards and placing large numbers of communities at growing risk (Figure 1).

  15. Compaction and sedimentary basin analysis on Mars

    NASA Astrophysics Data System (ADS)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  16. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.

    2017-03-01

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e

  17. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE PAGES

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.; ...

    2016-11-05

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary

  18. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary

  19. Pre-lithification tectonic foliation development in a clastic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John

    2016-04-01

    The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.

  20. Sedimentary archives of the French Atlantic coast (inner Bay of Vilaine, south Brittany): Depositional history and late Holocene climatic and environmental signals

    NASA Astrophysics Data System (ADS)

    Sorrel, Philippe; Tessier, Bernadette; Demory, François; Baltzer, Agnès; Bouaouina, Firas; Proust, Jean-Noël; Menier, David; Traini, Camille

    2010-06-01

    The late Holocene is of particular interest to our understanding of the evolution of coastal sedimentary systems because this period encompasses warmer and cooler periods, and rising sea level in northern Europe. Based on an approach combining AMS 14C, sedimentological and rock magnetic analyses on sediment cores complemented with seismic data collected in the macrotidal Bay of Vilaine (south Brittany), we document the depositional history of the inner bay coeval to the mid- to late-Holocene transgression in south Brittany. Correlation between sedimentary archives revealed the main sedimentary infilling phases during the last 6000 years. Four units (U1-U4) are recognized in the coastal sediment wedge of the system, corresponding to the stepwise marine invasion of the bay. We show that (1) marine inundation, due to the steep morphology of the bedrock, is diachronous between distal and proximal records. A time lag of ˜1000 years is inferred over a distance of less than 5 km; (2) in the outer areas, the sedimentation has been condensed since 3000 years; (3) proximal estuarine archives offer the best record of sedimentary processes covering the last 2000 years, including the Medieval Warm Period (MWP). Correlations in proximal records in the Bay of Vilaine assess the connection between coastal sedimentary dynamics, climatic conditions and anthropogenic activities during the MWP. We match the preservation of clay deposits to increased river-borne suspended matter transported to the estuary probably as a result of accelerated land-use development (higher soil erosion) in the catchment area between ca. 880 and 1050 AD. Because the preservation of estuarine sedimentary successions is favoured when coastal wave sediment reworking is minimal, it is proposed that the prevailing climatic regime in south Brittany during the MWP likely resembled to that of the preferred negative phase of the North Atlantic Oscillation (NAO). Our data are fairly consistent with other late

  1. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  2. Modern sedimentary environments in Boston Harbor, Massachusetts

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.

    1991-01-01

    Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.

  3. Characteristics of depositional environment and evolution of Upper Cretaceous Mishrif Formation, Halfaya Oil field, Iraq based on sedimentary microfacies analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Zhou, Lu; Tan, Xiucheng; Guo, Rui; Zhao, Limin; Li, Fei; Jin, Zhimin; Chen, Yantao

    2018-04-01

    As one of the most important carbonate targets in the Middle East, Upper Cretaceous Mishrif Formation has been highlighted for a long time. Although consensus has been reached on the overall sedimentary background, disputes still exist in understanding the sedimentary environment changes among sub-regions due to relatively limited research, rare outcrop, and incomplete drilled core, which hinders the analysis on sedimentary environment and thus the horizontal and vertical correlation. In this study, taking the Halfaya Oil Field as an example, the sedimentary microfacies analysis method was introduced to comprehensively characterize the cored interval of Mishrif Formation, including Single Layers MC1-1 to MA2. A total of 11 sedimentary microfacies are identified through system identification of sedimentary microfacies and environmental analysis, with reference to the standard microfacies classification in the rimmed carbonate platform. Then three kinds of environments are identified through microfacies assemblage analysis, namely restricted platform, open platform, and platform margin. Systematic analyses indicate that the deposits are mainly developed in the open platform and platform margin. Meanwhile, rock-electricity interpretation model is established according to the electricity response to cored intervals, and is then employed to interpret the uncored intervals, which finally helps build the sedimentary evolution pattern through horizontal and vertical correlation. It is proposed that the Single Layers MC1-1 to MB2-3 were deposited in the open platform featured by low water level, including sub-environments of low-energy shoal within platform and inter-shoal sea; Single Layers MB2-2 to MB1-2B were deposited in the open platform and platform margin, including sub-environments of high-energy shoal on the platform margin, low-energy shoal within platform, inter-shoal sea, and open sea; and Single Layers MB1-2A to MA2 were again deposited in the open platform

  4. Permo-Carboniferous sedimentary basins related to the distribution of planetary cryptoblemes

    USGS Publications Warehouse

    Windolph, J.F.

    1997-01-01

    Massive/high velocity solar, galactic, and cosmic debris impacting the Earths surface may account for the enormous energy required for the formation of Permo-Carboniferous sedimentary basins and related mountain building orogenies. Analysis of satellite immagry, sea floor sonar, geophysical data, and geotectonic fabrics show a strong correlation throughout geologic time between sedimentary basin origin and planetary cryptoblemes. Cryptoblemes are subtile, multi-ringed, radial centric impact shock signatures covering the entire terrestrial surface and ocean floors, having a geometry and distribution strikingly similar to the surfaces of the lunar planetary bodies in the solar system. Investigations of Permo-Carboniferous basins show an intensely overprinted pattern of cryptoblemes coinciding with partial obliteration and elliptical compression of pre-existing basins and accompanying shock patterns. Large distorted cryptoblemes may incorporate thin skin deformation, localized sediment diagenesis, regional metamorphism, and juxtaposed exotic terrains. These data, related to basin morphogenic symmetry, suggest that large episodic impact events are the primary cause of tectonogenic features, geologic boundary formation and mass extinction episodes on the planet Earth. Plate tectonics may be only a slow moving, low energy secondary effect defined and set in motion by megacosmic accretion events. Permo-Carboniferous sediments of note are preserved or accumulated in relatively small rectangular to arcuate rift valleys and synclinal down warps, such as the Narraganset basin of Massachusetts, USA, and Paganzo basin in Argentina, S.A. These deposits and depocenters may originate from dynamic reinforcement/cancellation impact effects, as can be seen in the Basin Range of Nevada and Utah, USA. Large circular to oval sedimentary basins commonly include internal ring structures indicating post depositional subsidence and rebound adjustments with growth faulting, notable in the

  5. Arctic Ocean Sedimentary Cover Structure, Based on 2D MCS Seismic Data.

    NASA Astrophysics Data System (ADS)

    Kireev, A.; Kaminsky, V.; Poselov, V.; Poselova, L.; Kaminsky, D.

    2016-12-01

    In 2016 the Russian Federation has submitted its partial revised Submission for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean. In order to prepare the Submission, in 2005 - 2014 the Russian organizations carried out a wide range of geological and geophysical studies, so that today over 23000 km of MCS lines and 4000 km of deep seismic sounding are accomplished. For correct time/depth conversion of seismic sections obtained with a short streamer in difficult ice conditions wide-angle reflection/refraction seismic sonobuoy soundings were used. All of these seismic data were used to refine the stratigraphy model, to identify sedimentary complexes and to estimate the total thickness of the sedimentary cover. Seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin. Pre-Cenozoic part of the sedimentary cover is based on tracing major unconformities from boreholes on the Chukchi shelf (Crackerjack, Klondike, Popcorn) to the North-Chuckchi Trough and further to the Mendeleev Rise as well as to the Vilkitsky Trough and the adjacent Podvodnikov Basin. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to generalize all seismic surveys (top of acoustic basement correlation data) and bathymetry data in the sedimentary cover thickness map

  6. Sedimentary particulate iron: the missing micronutrients ?

    NASA Astrophysics Data System (ADS)

    Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène

    2017-04-01

    Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter

  7. Sedimentary Mounds on Mars: Tracing Present-day Formation Processes into the Past

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.; Edwards, C. S.

    2014-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one and revealed spectacular views of finely layered sedimentary materials throughout the globe [1]. Some of these sedimentary deposits are 'mound' shaped and lie inside of craters (Fig 1). Crater mound deposits are found throughout the equatorial region, as well as ice-rich deposits found in craters in the north and south polar region [2-4]. Despite their wide geographical extent and varying volatile content, the 'mound' deposits have a large number of geomorphic and structural similarities that suggest they formed via equivalent processes. Thus, modern depositional processes of ice and dust can serve as an invaluable analog for interpreting the genesis of ancient sedimentary mound deposits.

  8. Alteration mineralogy and geochemistry as an exploration tool for detecting basement heat sources in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Uysal, Tonguc; Gasparon, Massimo; van Zyl, Jacobus; Wyborn, Doone

    2010-05-01

    The Cooper Basin located in South Australia and Queensland hosts some of the hottest granites in the world at economic drilling depths (240°C at 3.5 km). Investigating the mechanism of heat-producing element enrichment in the Cooper Basin granite is crucial for understanding hot-dry rock geothermal systems and developing exploration strategies. Trace element (by ICP-MS) and stable isotope geochemistry of whole rock granite samples and hydrothermal phyllosilicate alteration minerals separated from the granite and overlying sandstones and mudstones of the Cooper Basin were examined in detail. Granite core samples from relatively shallow depths in Moomba 1 and Big Lake 1 are strongly altered with pervasive sericite (illite) and quartz precipitation, probably associated with intense micro-fracturing and veining. The intensity of hydrothermal alteration is less in deeper samples from Mcleod 1, Jolokia and Habanero 1. Highly altered granites from former holes are substantially enriched in lithophile elements, particularly in Cs, Rb, Be, Th, U and rare earth elements (REE) relative to the upper continental crust (UCC). U and Th contents with concentrations of up to 30 and 144 ppm, respectively, are 10 and 13 times higher than those of the UCC. Comparison of the trace element composition of the same samples dissolved by open beaker acid digestion and high-pressure acid bomb digestion (to dissolve zircon) shows that zircon is not the main repository of U and Th in the Cooper Basin granite. Instead, we propose that the enrichment of heat-producing elements was promoted by a regional hydrothermal event leading to the precipitation of U and Th- bearing minerals such as illite, K-feldspar and thorite. Crystallinity index (illite crystallinity) of the sericite indicates hydrothermal temperatures ranging from 250°C (in Moomba 1 and Big Lake 1) to 350°C (in McLeod 1 and Jolokia 1). In the overlying sedimentary rocks, crystallinity of authigenic illites translates to lower

  9. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  10. The White Nile sedimentary system

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Resentini, Alberto; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    The Nile River flows for ~6700 km from south of the Equator to finally reach the Mediterranean Sea at northern subtropical latitudes (Woodward et al. 2007). This is the longest sedimentological laboratory on Earth, a unique setting in which we are investigating changes in sediment composition associated with diverse chemical and physical processes, including weathering and hydraulic sorting. The present study focuses on the southern branch of the Nile across 20° of latitude, from hyperhumid Burundi and Rwanda highlands in central Africa to Khartoum, the capital city of Sudan at the southern edge of the Sahara. Our study of the Kagera basin emphasizes the importance of weathering in soils at the source rather than during stepwise transport, and shows that the transformation of parent rocks into quartzose sand may be completed in one sedimentary cycle (Garzanti et al. 2013a). Micas and heavy minerals, less effectively diluted by recycling than main framework components, offer the best key to identify the original source-rock imprint. The different behaviour of chemical indices such as the CIA (a truer indicator of weathering) and the WIP (markedly affected by quartz dilution) helps us to distinguish strongly weathered first-cycle versus polycyclic quartz sands (Garzanti et al. 2013b). Because sediment is efficiently trapped in East African Rift lakes, the composition of Nile sediments changes repeatedly northwards across Uganda. Downstream of both Lake Kyoga and Lake Albert, quartzose sands are progressively enriched in metamorphiclastic detritus supplied from tributaries draining amphibolite-facies basements. The evolution of White Nile sediments across South Sudan, a scarcely accessible region that suffered decades of civil war, was inferred from the available information (Shukri 1950), integrated by original petrographic, heavy-mineral and geochemical data (Padoan et al. 2011). Mineralogical and isotopic signatures of Bahr-el-Jebel and Sobat sediments, derived

  11. Enigmatic Sedimentary Deposits Within Partially Exhumed Impact Craters in the Aeolis Dorsa Region, Mars: Evidence for Past Crater Lakes

    NASA Astrophysics Data System (ADS)

    Peel, S. E.; Burr, D. M.

    2018-06-01

    We mapped enigmatic sedimentary deposits within five partially exhumed impact craters within the Aeolis Dorsa Region of Mars. Ten units have been identified and are found to be consistent with deposition within and adjacent to lacustrine systems.

  12. Salix alba and Populus nigra seedlings resistance to physical hydro-sedimentary stresses: nursery experimental approach compared to in situ measurements

    NASA Astrophysics Data System (ADS)

    Wintenberger, Coraline; Rodrigues, Stephane; Breheret, Jean-Gabriel; Jugé, Philippe; Villar, Marc

    2014-05-01

    In Europe, riparian Salicaceae is declining following the loss of potential germination areas associated with river management. Nevertheless, as an exception for lowland rivers, the Loire River (France) shows in its middle reaches an efficient sexual regeneration of Populus nigra and Salix alba species on bare sediments deposited during flood events. The study focuses on the influence of flow, sediment dynamics and fluvial maintenance operations on the establishment and survival of black poplar and white willow seedlings during the first year of development in a lowland sandy-gravel river, the Middle Loire. Main questions are: what is the influence of morphological and sedimentary features on seedlings recruitment and how do they withstand the hydro-sedimentary stresses occurring during high flow periods? How fluvial management works, and induced morphology and sedimentary features, modify the sediment dynamics and subsequent establishment and maintenance of seedlings? To answer these questions, we developed an ex-situ approach which allowed, under controlled conditions, to determine the influence of the sedimentological characteristics of the substrate on the development and maintenance of seedlings with a specific focus on the root system. Three experiments were carried out for three sedimentary mixtures from the river (sand, sand-gravel and 0.2 m of sand superimposed on sand-gravel mixture) that correspond to grain size and stratigraphy conditions often observed on bars and secondary channels in the Loire. The experimental design includes 108 plots of 1 m3, with 400 seeds per plot (corresponding to the Loire density measurements) and combining seeds from two species, three sedimentary mixtures, four replicates and three experiments. Experiment 1 (control) is based on the architecture of root systems using the WinRHIZO image analysis software. Experiment 2 is relative to the evaluation of constraints leading to "uprooting" of seedlings. Experiment 3 provides data

  13. Excess europium content in Precambrian sedimentary rocks and continental evolution

    NASA Technical Reports Server (NTRS)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  14. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  15. Sedimentary sequence evolution in a Foredeep basin: Eastern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano, C.; Funes, D.; Sarzalho, S.

    1996-08-01

    Well log-seismic sequence stratigraphy analysis in the Eastern Venezuela Foreland Basin leads to study of the evolution of sedimentary sequences onto the Cretaceous-Paleocene passive margin. This basin comprises two different foredeep sub-basins: The Guarico subbasin to the west, older, and the Maturin sub-basin to the east, younger. A foredeep switching between these two sub-basins is observed at 12.5 m.y. Seismic interpretation and well log sections across the study area show sedimentary sequences with transgressive sands and coastal onlaps to the east-southeast for the Guarico sub-basin, as well as truncations below the switching sequence (12.5 m.y.), and the Maturin sub-basin showsmore » apparent coastal onlaps to the west-northwest, as well as a marine onlap (deeper water) in the west, where it starts to establish. Sequence stratigraphy analysis of these sequences with well logs allowed the study of the evolution of stratigraphic section from Paleocene to middle Miocene (68.0-12.0 m.y.). On the basis of well log patterns, the sequences were divided in regressive-transgressive-regressive sedimentary cycles caused by changes in relative sea level. Facies distributions were analyzed and the sequences were divided into simple sequences or sub- sequences of a greater frequencies than third order depositional sequences.« less

  16. Restoration of original 3D sedimentary geometries in deformed basin fill supporting reservoir characterization

    NASA Astrophysics Data System (ADS)

    Back, S.

    2009-04-01

    A large progradational clastic system centred on Brunei Darussalam has been present on the NW Borneo margin since the early middle Miocene. This system has many sedimentary and structural similarities with major deltaic provinces such as the Niger and Nile. It differs from these systems by being affected in the hinterland by contemporaneous compressional tectonics. Uplift partially forced strong progradation of the clastic system, but also folded older deltaic units. Erosion and the exhumation of folded strata in the area of the Jerudong Anticline resulted in the exposure of large-scale prograding clinoforms and syn-sedimentary deltaic faults of middle Miocene age along a natural cross-section of several tens of kilometres in extent. Westward of the key outcrop sites on the Jerudong Anticline, the middle Miocene deltaic units are overlain by late Miocene, Pliocene and Quaternary clastics up to 3 kilometres thick. Both, the middle Miocene target units of this study as well as the late Miocene to recent overburden are recorded in the subsurface of the Belait Syncline on regional 2D seismic lines (total line length around 1400 km) and at 7 well locations. In this study, we integrate the available geophysical subsurface information with existing structural, sedimentological and geomorphological field data of the "classic" Jerudong Anticline exposures (e.g., Back et al. 2001, Morley et al. 2003, Back et al. 2005) into a static 3D surface-subsurface model that provides quantitative constraints on the structural and stratigraphic architecture of the Miocene Belait delta and the overlying units in three dimensions, supporting basin-scale as well as reservoir-scale analysis of the subsurface rock volume. Additionally, we use the static surface-subsurface model as input for a tectonic retro-deformation of the study area, in which the 3D paleo-relief of the middle Miocene Belait delta is restored by unfolding and fault balancing (Back et al. 2008). This kinematic

  17. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    NASA Astrophysics Data System (ADS)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness

  18. Characteristics of sedimentary structures in coarse-grained alluvial rivers

    NASA Astrophysics Data System (ADS)

    Ackerley, David; Powell, Mark

    2013-04-01

    The characteristics of coarse-grained alluvial surfaces have important implications for the estimation of flow resistance, entrainment thresholds and sediment transport rates in gravel-bed rivers. This area of research has, thus, demanded attention from geomorphologists, sedimentologists, and river engineers. The majority of research has focused towards understanding the characteristics and adjustments in surface grain size. Bed stability, however, is not ultimately defined by particle size but how grains are arranged within the bed surface. For example, by the organisation of particles into a variety of grain and form scale sedimentary structures and bedforms (e.g. imbrication; pebble clusters, stone nets, transverse ribs). While it is widely acknowledged sedimentary structuring must be considered within estimates of flow resistance and sediment transport, relatively little is known about the structural properties of water-worked river gravels. As a consequence, we remain woefully ignorant of this important aspect of gravel-bed river sedimentology. The aim of this poster is to present some preliminary results of a study designed to characterise the morphodynamics of sedimentary structures in coarse-grained alluvial rivers and their implications upon entrainment thresholds and sediment transport rates. The poster focuses on investigating the variability in grain and form scale sedimentary structuring across a number of field sites. Representative patches of three gravel bars on the Rivers Wharfe, Manifold and Afon Elan, UK, have been surveyed using a Leica HDS 3000 Terrestrial Laser Scanner. The resultant raw point-cloud data, recorded at a 4mm resolution, has been registered, filtered, and interpolated to produce highly detailed 2½D digital elevation models of gravel-bed surface topography. These surfaces have been analysed using a number of structural parameters including bed elevation probability distribution function statistics (standard deviation, skewness

  19. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  20. Palynostratigraphy of the Erkovtsy field of brown coal (the Zeya-Bureya sedimentary basin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kezina, T.V.; Litvinenko, N.D.

    2007-08-15

    The Erkovtsy brown coal field in the northwestern Zeya-Bureya sedimentary basin (129-130{sup o}E, 46-47{sup o}N) is structurally confined to southern flank of the Mesozoic-Cenozoic Belogor'e depression. The verified stratigraphic scheme of the coalfield sedimentary sequence is substantiated by palynological data on core samples from 18 boreholes sampled in the course of detailed prospecting and by paleobotanical analysis of sections in the Yuzhnyi sector of the coalfield (data of 1998 by M.A. Akhmetiev and S.P. Manchester). Sections of the Erkovtsy, Arkhara-Boguchan, and Raichikha brown-coal mines are correlated. Stratigraphic subdivisions distinguished in the studied sedimentary succession are the middle and upper Tsagayanmore » subformations (the latter incorporating the Kivda Beds), Raichikha, Mukhino, Buzuli, and Sazanka formations.« less

  1. The Totumo mud volcano and its near-shore marine sedimentological setting (North Colombia) - From sedimentary volcanism to epithermal mineralization

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Kaufhold, S.

    2018-04-01

    The Holocene mud volcano exposed at Totumo (younger than 4150 ± 50 yr BP) lines up together with some other landforms of its kind along the Caribbean Coast in northern Colombia. It currently vents a mud of the silicate-phosphate-bearing sulfur-sodium chloride type. The mud volcanoes evolved in an active continental margin setting of the South American Cordillera with high seismicity and affected by pervasive neotectonic structural disturbances. During the Neogene and Quaternary linear terrigenous shoreline sediments alternating with delta deposits evolved on this mobile crustal segment between the Andes and ancient Precambrian cratons. Meso- to microtidal sedimentary settings during transgression and progradation created meta- to instable sedimentary and petrophysical conditions (e.g. overpressure and gas-bearing bubble sands), favorable for the formation of mud volcanoes, whose lithofacies is subdivided into (1) footwall facies (detritus from metabasic, -pelitic source rocks), (2) mud volcano plus lateral facies (material from deep-seated hydrothermal sources, hydrocarbon plays, and brine reflux from the sea), (3) hanging wall facies, sand characterized by a strong longshore drift. The sedimentary volcanism in the area is characterized by different temperatures of formation: (1) pre-stage (<100 °C) and (2) recent stage (≈25 °C). Heavy (pyroxene, amphibole, epidote-clinozoisite, Fe-Ti silicates and oxides, garnet, alumosilicates, tourmaline, zircon, barite, Fe sulfides and -sulfates), light (Ca sulfates, calcite, quartz, feldspar) and clay minerals (kaolinite, mica, pyrophyllite, chlorite, vermiculite) are efficient tools to determine the source of mud, to subdivide the mud volcano system as to its facies and describe its physical-chemical regime as to the temperature of formation, pH and Eh values. The mud volcano system of Totumo bridges the gap between sedimentary "volcanism" and epithermal hot spring deposits of intermediate to high sulfidation and forms a

  2. Geology, Geochemistry and Geophysics of Sedimentary Rock-Hosted Au Deposits in P.R. China

    USGS Publications Warehouse

    Peters, Stephen G.

    2002-01-01

    This is the second report concerning results of a joint project between the U.S. Geological Survey and the Tianjin Geological Academy to study sedimentary rock-hosted Au deposits in P.R. China. Since the 1980s, Chinese geologists have devoted a large-scale exploration and research effort to the deposits. As a result, there are more than 20 million oz of proven Au reserves in sedimentary rock-hosted Au deposits in P.R. China. Additional estimated and inferred resources are present in over 160 deposits and occurrences, which are undergoing exploration. This makes China second to Nevada in contained ounces of Au in Carlin-type deposits. It is likely that many of the Carlin-type Au ore districts in China, when fully developed, could have resource potential comparable to the multi-1,000-tonne Au resource in northern Nevada. The six chapters of this report describe sedimentary rock-hosted Au deposits that were visited during the project. Chapters 1 and 2 provide an overview of sedimentary rock-hosted Au deposits and Carlin-type Au deposits and also provide a working classification for the sedimentary rock-hosted Au deposits. Chapters 3, 4, and 5 provide descriptions that were compiled from the literature in China in three main areas: the Dian-Qian-Gui, the Qinling fold belt, and Middle-Lower Yangtze River areas. Chapter 6 contains a weights-of-evidence (WofE), GIS-based mineral assessment of sedimentary rock-hosted Au deposits in the Qinling fold belt and Dian-Qian-Gui areas. Appendices contain scanned aeromagnetic (Appendix I) and gravity (Appendix II) geophysical maps of south and central China. Data tables of the deposits (Appendix III) also are available in the first report as an interactive database at http://geopubs.wr.usgs.gov/open-file/of98-466/. Geochemical analysis of ore samples from the deposits visited are contained in Appendix IV.

  3. Sedimentary structures and stratal geometries at the foothills of Mount Sharp: their role in paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Rubin, D. M.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Stack, K.; Kah, L. C.; Banham, S.; Edgett, K. S.

    2015-12-01

    The Mars Science Laboratory Curiosity rover has been exploring sedimentary rocks at the foothills of Mount Sharp since August 2014. Robust interpretation of the paleoenvironmental contexts requires detailed facies analysis of these rocks including analysis and interpretation of sedimentary structures and sediment body geometries. Here, we describe some of the detailed sedimentary structures and sedimentary geometries observed by Curiosity between the Pahrump_Hills field site and its current location at Marias Pass. The Pahrump Hills sedimentary section comprises a succession dominated by finely laminated mudstones of the Murray formation that are interpreted to have been deposited in an ancient lake within Gale crater. Toward the top of the Pahump Hills succession, we observe the appearance of coarser-grained sandstones that are interstratified within the lacustrine mudstones. These sandstones that include Whale Rock and Newspaper Rock show lenticular geometries, and are pervasively cross-stratified. These features indicate that currents eroded shallow scours in the lake beds that were then infilled by deposition from migrating subaqueous dunes. The paleoenvironmental setting may represent either a gullied delta front setting or one in which lake level fall caused fluvial erosion and infilling of the shallow scours. Since leaving Pahrump_Hills, Curiosity has imaged extensive exposures of strata that are partly correlative with and stratigraphically overlie the uppermost part of the Pahrump section. Isolated cross-bedded sandstones and possible interstratified conglomerates beds occur within Murray formation mudstones. Capping sandstones with a likely variety of environmental contexts overlie mudstones. Where imaged in detail, sedimentary structures, such as trough-cross bedding and possible eolian pinstriping, provide constraints on plausible sedimentary processes and bounds on depositional setting.

  4. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords - Signs of maturing of Arctic fjordic systems?

    NASA Astrophysics Data System (ADS)

    Zaborska, Agata; Włodarska-Kowalczuk, Maria; Legeżyńska, Joanna; Jankowska, Emilia; Winogradow, Aleksandra; Deja, Kajetan

    2018-04-01

    Mature ecosystems sequester little organic carbon (Corg) in sediments, as the complex and effective food webs consume most available organic matter within the water column and sediment, in contrast to young systems, where a large proportion of Corg is buried in deeper sediment layers. In this paper we hypothesize that "warmer" Atlantic water influenced fjord exhibits the 'mature' system features as compared to "cooler" Arctic water influenced fjord. Corg concentrations, sources and burial rates, as well as macrobenthic community standing stocks, taxonomic and functional composition and carbon demand, were compared in two west Spitsbergen fjords that are to different extents influenced by Atlantic water and can be treated as representing a cold one (Hornsund) and a warm one (Kongsfjorden). Water, sediments and macrofauna were collected at three stations in the central basin of each fjord. Corg, Ntot, δ13Corg and δ15N were measured in suspended matter, sediment cores and possible organic matter sources. The composition of sources of sedimentary organic matter was modeled by Mix-SIAR Bayesian stable isotope mixing models. The 210Pb method was used to calculate sediment accumulation rates, Corg accumulation and burial rates. The sedimentary Corg concentration and accumulation rate were larger in Hornsund than in Kongsfjorden. The contributions of pelagic sources to the Corg in sediments were similar in both fjords, macroalgal detritus had a higher importance in Kongsfjorden, while terrestrial sources were more important in Hornsund. Similar density and species richness were noted in both fjords, but higher biomass, individual biomass, production and carbon demand of benthic communities were noted in Kongsfjorden despite the lower amounts of Corg in sediments, indicating that macrobenthos responds to quality rather than quantity of available food. Subsurface tube-building conveyer belt detritus feeders (maldanids and oweniids) were responsible for higher standing

  5. Evolution of a Permo-Triassic sedimentary melange, Grindstone terrane, east-central Oregon

    USGS Publications Warehouse

    Blome, C.D.; Nestell, M.K.

    1991-01-01

    Perceives the Grindstone rocks to be a sedimentary melange composed of Paleozoic limestone slide and slump blocks that became detached from a carbonate shelf fringing a volcanic knoll or edifice in Late Permian to Middle Triassic time and were intermixed with Permian and Triassic slope to basinal clastic and volcaniclastic rocks in a forearc basin setting. Paleogeographic affinities of the Grindstone limestone faunas and volcaniclastic debris in the limestone and clastic rocks all indicate deposition in promixity to an island-arc system near the North American craton. -from Authors

  6. The interplay of fractures and sedimentary architecture: Natural gas from reservoirs in the Molina sandstones, Piceance Basin, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.

    1997-03-01

    The Molina Member of the Wasatch Formation produces natural gas from several fields along the Colorado River in the Piceance Basin, northwestern Colorado. The Molina Member is a distinctive sandstone that was deposited in a unique fluvial environment of shallow-water floods. This is recorded by the dominance of plane-parallel bedding in many of the sandstones. The Molina sandstones crop out on the western edge of the basin, and have been projected into the subsurface and across the basin to correlate with thinner sandy units of the Wasatch Formation at the eastern side of the basin. Detailed study, however, has shownmore » that the sedimentary characteristics of the type-section Molina sandstones are incompatible with a model in which the eastern sandstones are its distal facies equivalent. Rather, the eastern sandstones represent separate and unrelated sedimentary systems that prograded into the basin from nearby source-area highlands. Therefore, only the subsurface {open_quotes}Molina{close_quotes} reservoirs that are in close proximity to the western edge of the basin are continuous with the type-section sandstones. Reservoirs in the Grand Valley and Rulison gas fields were deposited in separate fluvial systems. These sandstones contain more typical fluvial sedimentary structures such as crossbeds and lateral accretion surfaces. Natural fractures play an important role in enhancing the conductivity and permeability of the Molina and related sandstones of the Wasatch Formation.« less

  7. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  8. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  9. Geoengineering Research for a Deep Underground Science and Engineering Laboratory in Sedimentary Rock

    NASA Astrophysics Data System (ADS)

    Mauldon, M.

    2004-12-01

    A process to identify world-class research for a Deep Underground Science and Engineering Laboratory (DUSEL) in the USA has been initiated by NSF. While allowing physicists to study, inter alia, dark matter and dark energy, this laboratory will create unprecedented opportunities for biologists to study deep life, geoscientists to study crustal processes and geoengineers to study the behavior of rock, fluids and underground cavities at depth, on time scales of decades. A substantial portion of the nation's future infrastructure is likely to be sited underground because of energy costs, urban crowding and vulnerability of critical surface facilities. Economic and safe development of subsurface space will require an improved ability to engineer the geologic environment. Because of the prevalence of sedimentary rock in the upper continental crust, much of this subterranean infrastructure will be hosted in sedimentary rock. Sedimentary rocks are fundamentally anisotropic due to lithology and bedding, and to discontinuities ranging from microcracks to faults. Fractures, faults and bedding planes create structural defects and hydraulic pathways over a wide range of scales. Through experimentation, observation and monitoring in a sedimentary rock DUSEL, in conjunction with high performance computational models and visualization tools, we will explore the mechanical and hydraulic characteristics of layered rock. DUSEL will permit long-term experiments on 100 m blocks of rock in situ, accessed via peripheral tunnels. Rock volumes will be loaded to failure and monitored for post-peak behavior. The response of large rock bodies to stress relief-driven, time-dependent strain will be monitored over decades. Large block experiments will be aimed at measurement of fluid flow and particle/colloid transport, in situ mining (incl. mining with microbes), remediation technologies, fracture enhancement for resource extraction and large scale long-term rock mass response to induced

  10. Sedimentary Flux to Passive Margins From Inversion of Drainage Patterns: Examples from Africa

    NASA Astrophysics Data System (ADS)

    Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair

    2017-04-01

    We show that inversion of more than 14000 rivers from the African continent provides information about Cenozoic uplift and sedimentary flux to its passive margins. We test predicted sedimentary flux using a dense two-dimensional seismic dataset offshore northwest Africa. First, six biostratigraphically dated horizons were mapped (seabed, 5.6 Ma, 23.8 Ma, 58.40 Ma, 89.4 Ma and basement) across the Mauritanian margin and used to construct isopachs. Check-shot data were used to convert time to depth and to determine best-fitting compaction parameters. Observed solid sedimentary fluxes are ˜2x103 km3 /Ma between 58.4 and 23.8 Ma, ˜4x103 km3 /Ma between 23.8 and 5.6 Ma, and ˜28x103 km3 /Ma between 5.6 and 0 Ma. Compaction errors were propagated into our history of sedimentary flux. Secondly, we inverted our drainage inventory to explore the relationship between uplift and erosion onshore and our measured flux. The stream power erosional model was calibrated using independent observations of marine terrace elevations and ages. We integrate incision rates along best-fitting theoretical river profiles to predict sedimentary flux at mouths of the rivers draining northwest Africa (e.g. Senegal). Calculated Neogene uplift and erosion is staged. Our predicted history of sedimentary flux increases in three stages towards the present-day, which agrees with the offshore measurements. Finally, using our inverse approach we systematically tested different erosional scenarios. We find that sedimentary flux to Africa's passive margins is controlled up the history of uplift and erosional processes play a moderating role. Predicted fluxes are indistinguishable if precipitation rate varies with a period less than ˜ 1 Ma or drainage area varies by less than 50%. To investigate the geodynamic setting of the Mauritanian margin we backstripped eight commercial wells that penetrate Neogene stratigraphy. Wells in the central part of the Mauritania basin include 500-800 m of Neogene water

  11. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning

    NASA Astrophysics Data System (ADS)

    Cawood, Adam J.; Bond, Clare E.

    2018-01-01

    Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.

  12. Sea-floor morphology and sedimentary environments in western Block Island Sound, offshore of Fishers Island, New York

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Danforth, William W.; Blackwood, Dann S.; Winner, William G.; Parker, Castle E.

    2015-01-01

    Multibeam-bathymetric and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 114-square-kilometer area of Block Island Sound, southeast of Fishers Island, New York, are combined with sediment samples and bottom photography collected by the U.S. Geological Survey from 36 stations in this area in order to interpret sea-floor features and sedimentary environments. These interpretations and datasets provide base maps for studies on benthic ecology and resource management. The geologic features and sedimentary environments on the sea floor are products of the area’s glacial history and modern processes. These features include bedrock, drumlins, boulders, cobbles, large current-scoured bathymetric depressions, obstacle marks, and glaciolacustrine sediments found in high-energy sedimentary environments of erosion or nondeposition; and sand waves and megaripples in sedimentary environments characterized by coarse-grained bedload transport. Trawl marks are preserved in lower energy environments of sorting and reworking. This report releases the multibeam-bathymetric, sidescan-sonar, sediment, and photographic data and interpretations of the features and sedimentary environments in Block Island Sound, offshore Fishers Island.

  13. Sedimentary Environment Changes between Tsunami Events in the Central Fukushima Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Kusumoto, S.; Goto, T.; Satake, K.; Sugai, T.; Yoneda, M.; Omori, T.; Ozaki, H.

    2016-12-01

    Many tsunami deposits were found in the Tohoku region, Japan from recent and past tsunamis. Study of tsunami deposits is particularly important in the central to southern Fukushima Prefecture, which is the southern limit of the distributions of tsunami deposits of the 869 Jogan, 1454 Kyotoku and 1611 Keicho-Sanriku earthquakes. Previous studies reported that there were at least five tsunami deposits (EV1-EV5) consisted of fine-middle sand and the sedimentary environment was inner-bay or lagoon for the past 2,600 years (Goto and Aoyama, 2005; JpGU, Oikawa et al., 2011; JpGU, Oota and Hoyanagi, 2014; GSJ, Kusumoto et al., 2016; JpGU). However, the sedimentary environment changes between or across historical tsunamis have not been examined. In this study, we try to estimate the sedimentary environment changes using Total Organic Carbon (TOC), Total Nitrogen (TN) concentrations and organic Carbon-to-Nitrogen (C/N) ratio. We took 13 geological core samples of length 2.0-2.5 m at 11 locations 0.6-2.7 km from the coast. The deposits consisted of silt and massive sand with graded beddings, laminas and rip-up clasts. For samples, we performed grain-size analysis, radiocarbon age measurement and CN elemental analysis. We found three interesting characteristics. First, grain size of ordinary deposits between EV4 and EV5 tend to fine upward slightly. It suggests that tidal current became gradually weak. Second, C/N ratio is about 5-10 at every depth, meaning that organic material source was phytoplankton or zooplankton (Müller, 1977; GCA). Finally, TOC and TN concentrations slowly increase between EV4 and EV5, and they rapidly decrease across EV3 and EV4. Their slow increases correspond to sedimentary environment change from anaerobic to aerobic, whereas rapid decreases correspond to sedimentary environment change from aerobic to anaerobic. These characteristics might indicate development of sand bar between tsunami events and sudden collapse of sand bar by historical

  14. In-situ Micro-structural Studies of Gas Hydrate Formation in Sedimentary Matrices

    NASA Astrophysics Data System (ADS)

    Kuhs, Werner F.; Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Schwarz, Jens-Oliver; Wolf, Martin; Enzmann, Frieder; Kersten, Michael; Haberthür, David

    2015-04-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in-situ with sub-micron resolution. Here, we report on synchrotron-based micro-tomographic studies by which the nucleation and growth processes of gas hydrate were observed in different sedimentary matrices (natural quartz, glass beds with different surface properties, with and without admixtures of kaolinite and montmorillonite) at varying water saturation. The nucleation sites can be easily identified and the growth pattern is clearly established. In under-saturated sediments the nucleation starts at the water-gas interface and proceeds from there to form predominantly isometric single crystals of 10-20μm size. Using a newly developed synchrotron-based method we have determined the crystallite size distributions (CSD) of the gas hydrate in the sedimentary matrix confirming in a quantitative and statistically relevant manner the impressions from the tomographic reconstructions. It is noteworthy that the CSDs from synthetic hydrates are distinctly smaller than those of natural gas hydrates [1], which suggest that coarsening processes take place in the sedimentary matrix after the initial hydrate formation. Understanding the processes of formation and coarsening may eventually permit the determination of the age of gas hydrates in sedimentary matrices [2], which are largely unknown at present. Furthermore, the full micro-structural picture and its evolution will enable quantitative digital rock physics modeling to reveal poroelastic properties and in this way to support the exploration and exploitation of gas hydrate resources in the future. [1] Klapp S.A., Hemes S., Klein H., Bohrmann G., McDonald I., Kuhs W.F. Grain size measurements of natural gas hydrates. Marine Geology 2010; 274(1-4):85-94. [2] Klapp S.A., Klein H, Kuhs W.F. First determination of gas hydrate

  15. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Tang, Qiang; Bao, Yuhai; He, Xiubin; Fu, Bojie; Collins, Adrian L; Zhang, Xinbao

    2016-04-01

    have profound implications in affecting sedimentary equilibrium in the reservoir fluctuation zone. The results herein provide insights of how big dams have disrupted the sediment conveyance processes of large scale fluvial systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Examining the association of DDX compounds to sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Weathers, N.; Rowlett, K.; Geng, Z.; Morrison, A.; White, H. K.

    2016-02-01

    The association of hydrophobic organic contaminants (HOCs) with sedimentary organic matter (OM) influences their mobility and bioavailability in the environment. Determining whether these associations result from mechanisms such as sorption, chemical binding or encapsulation is critical for predicting their long-term fate. The pesticide DDT (dichlorodiphenyltrichloroethane) has been previously observed to form bound residues with sedimentary OM although the mechanisms of this association are yet to be fully explored. DDT, which was sprayed ubiquitously in the 1950s and early 1960s, can still be found in the environment today along with its three major metabolites, DDE, DDD and DDMU (collectively known as DDX compounds), and therefore presents a unique opportunity to further explore its long-term associations with OM. To this end, a sediment core from a salt marsh in Dover, Delaware known to contain DDX compounds was collected. A maximum concentration of DDX compounds was found at sediment depths corresponding to the time of the widespread usage of DDT. An initial solvent extraction with toluene provided data on the loosely associated DDX fraction followed by subsequent treatments with sulfuric acid and saponification to release DDX that was encapsulated or bound to the sedimentary matrix. Determining the physical disposition of DDX compounds that persist in sediments for several decades is integral to determining the extent to which they are mobile, bioavailable or sequestered in the marsh.

  17. Supercritical bedforms and sedimentary structures from field and core studies, Middle Eocene deep-marine base-of-slope environment, Ainsa Basin, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Cornard, Pauline; Pickering, Kevin

    2017-04-01

    In recent years, many researchers have focussed on supercritical- and subcritical-flow deposits using flume-tank experiments (e.g., Cartigny el al., 2011; Postma et al., 2014; Postma and Cartigny, 2014), or from direct observations on presently active deep-water systems (e.g., Hughes et al., 2012). Using outcrop and core examples from a base-of-slope environment in the Middle Eocene Ainsa Basin, Spanish Pyrenees, and with published experimental work, a range of deposits are interpreted as upper-flow regime sedimentary structures. This contribution focusses on the interpretation of several supercritical bedforms (antidunes and chutes-and-pools) observed on the field and upper-flow regime sedimentary structures recognized in cores. The spatial distribution of supercritical-flow deposits obtained from an analysis of field outcrops and core sedimentary logs are evaluated in relation to the depositional environment (channel axis, off-axis, margin and interfan). The frequency distributions of the bed thicknesses are also analysed in relation to supercritical versus subcritical bed-thickness distributions.

  18. Morphology and modern sedimentary deposits of the macrotidal Marapanim Estuary (Amazon, Brazil)

    NASA Astrophysics Data System (ADS)

    Araújo da Silva, Cléa; Souza-Filho, Pedro Walfir M.; Rodrigues, Suzan W. P.

    2009-03-01

    The northern Brazilian coast, east of the Amazon River is characterized by several macrotidal estuarine systems that harbor large mangrove areas with approximately 7600 km 2. The Marapanim Estuary is influenced by macrotidal regime with moderate waves influence. Morphologic units were investigated by using remote sensing images (i.e., Landsat-7 ETM+, RADARSAT- 1 Wide and SRTM) integrated with bathymetric data. The modern sedimentary deposits were analyzed from 67 cores collected by Vibracore and Rammkersonde systems. Analysis of morphology and surface sedimentary deposits of the Marapanim River reveal they are strongly influenced by the interaction of tidal, wave and fluvial currents. Based on these processes it was possible to recognize three distinct longitudinal facies zonation that revels the geological filling of a macrotidal estuary. The estuary mouth contain fine to medium marine sands strongly influenced by waves and tides, responsible for macrotidal sandy beaches and estuarine channel development, which are characterized by wave-ripple bedding and longitudinal cross-bedding sands. The estuary funnel is mainly influenced by tides that form wide tidal mudflats, colonized by mangroves, along the estuarine margin, with parallel laminations, lenticular bedding, root fragments and organic matter lenses. The upstream estuary contains coarse sand to gravel of fluvial origin. Massive mud with organic matter lenses, marks and roots fragments occur in the floodplain accumulates during seasonal flooding providing a slowly aggrading in the alluvial plain. This morphologic and depositional pattern show easily a tripartite zonation of a macrotidal estuary, that are in the final stage of filling.

  19. Holistic Approach Offers Potential to Quantify Mass Fluxes Across Continental Margins

    NASA Astrophysics Data System (ADS)

    Kuehl, Steven; Carter, Lionel; Gomez, Basil; Trustrum, Noel

    Most humans live on and utilize the continental margin, the surface of which changes continually in response to environmental perturbations such as weather, climate change, tectonism, earthquakes, volcanism, sea level, and human settlement and land use. Part of the margin is above sea level and the rest is submarine, but these land and seascape components are contiguous, and material transport from source to sink occurs as a seamless cascade. The margin responds to environmental perturbations by changing the nature and magnitude of a variety of important functions, including the distribution of soil formation and erosion; biogeochemical functioning (especially the storage and release of water, limiting nutrients and contaminants); and the form and behavior of geomorphic components from hill slopes and floodplains through the coastal zone to the continental rise. While some areas of the margin are eroding-for example, hill slopes-others accumulate sediment, such as tectonic basins and continental slope and rise. These areas record the history of surface changes. A major goal of the Earth science community is to provide quantitative explanations and predictions of the effects of environmental perturbations on surface changes and preserved sedimentary strata of continental margins. In past decades, margins have been investigated piecemeal by researchers who have tended to focus on a particular segment from one disciplinary perspective while eschewing the broader perspective of the margin as an interconnected whole. Recognizing this shortcoming, the U.S. National Science Foundation (NSF) has initiated the MARGINS Source-to-Sink (S2S) program, which, for the first time, will attempt to understand the functioning of entire margin systems through dedicated observational and community modeling studies. Following input from the Earth science community, the Waipaoa Sedimentary System (WSS) of the North Island, New Zealand, was chosen as one of the focus sites for possible

  20. [Distribution Characteristics of Sedimentary Pigments in the Changjiang Estuary and Zhe-Min Coast and its Implications].

    PubMed

    Li, Dong; Yao, Peng; Zhao, Bin; Wang, Jin-peng; Pan, Hui-hui

    2015-08-01

    Compositions and contents of sedimentary pigments were examined using high performance liquid chromatography in order to discuss the spatial distributions of phytoplankton primary production, phytoplankton functional type and the preservation efficiency of phytoplankton pigments and their influencing factors. The results showed that: chloropigments [Chlorins, including chlorophyll-a (Chl-a) and pheopigments (Pheo-a), such as pheophytin-a (PHtin-a), pheophorbide-a (PHide-a), pPheophytin-a (pPHtin-a), sterol chlorin esters (SCEs) and carotenol chlorin esters (CCEs)] were the major type of sedimentary pigments. The nutrients inputs from Changjiang Diluted Water and upwelling in the Zhe-Min coastal mud area were the major cause for the patchy distribution with high sedimentary chloropigment contents. Carotenoid contents showed no trending changes and exhibited high values in the Changjiang Estuary and Zhe-Min Coasts. Based on the relative proportions of each diagnostic carotenoid to the total diagnostic carotenoids in the sediments, the relative contributions of diatoms, dinoflagellates, prymnesiophytes, prasinophytes, cryptophytes and cyanobacterias in the phytoplankton fuctional types were 48.8% +/- 17.4%, 10.7% +/- 11.5%, 8.1% +/- 7.2%, 18.6% +/- 8.2%, 9.4% +/- 6.4% and 4.3% +/- 3.2%, respectively. The preference for external environmental conditions (e.g., nutrient level and water salinity) was the main cause for the decreasing trends of diatoms and dinoflagellates proportions and the increasing trends of prasinophytes, cryptophytes and cyanobacterias seawards. Based on the spatial distribution of Chl-a/Pheo-a ratios, the higher preservation efficiencies of sedimentary pigments in the coastal regions (e.g., outer edge of maximum turbidity zone in the Changjiang Estuary, mouth of the Hangzhou Bay and upwelling region in the Zhe-Min Coast) were mainly due to the higher sedimentation rate and seasonal occurrences of hypoxia in bottom water, and these regions with

  1. The Upstream and Downstream impact of Milankovitch cycles in continental nonmarine sedimentary records

    NASA Astrophysics Data System (ADS)

    Valero, Luis; Garcés, Miguel; Huerta, Pedro; Cabrera, Lluís

    2016-04-01

    Discerning the effects of climate in the stratigraphic record is crucial for the comprehension of past climate changes. The signature of climate in sedimentary sequences is often assessed by the identification of Milankovitch cycles, as they can be recognized due to their (quasi) periodic behaviour. The integration of diverse stratigraphic disciplines is required in order to understand the different processes involved in the expression of the orbital cycles in the sedimentary records. New advances in Stratigraphy disclose the different variables that affect the sedimentation along the sediment routing systems. These variables can be summarized as the relationship between accommodation and sediment supply (AS/SS), because they account for the shifts of the total mass balance of a basin. Based in these indicators we propose a synthetic model for the understanding of the expression of climate in continental basins. Sedimentation in internally drained lake basins is particularly sensitive to net precipitation/evaporation variations. Rapid base level oscillations modify the AS/SS ratio sufficiently as to mask possible sediment flux variations associated to the changing discharge. On the other hand, basins lacking a central lacustrine system do not experience climatically-driven accommodation changes, and thus are more sensitive to archive sediment pulses. Small basins lacking carbonate facies are the ideal candidates to archive the impact of orbital forcing in the landscapes, as their small-scale sediment transfer systems are unable to buffer the upstream signal. Sedimentation models that include the relationship between accommodation and sediment supply, the effects of density and type of vegetation, and its coupled response with climate are needed to enhance their reliability.

  2. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    NASA Astrophysics Data System (ADS)

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-10-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42-) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  3. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event.

    PubMed

    Killingsworth, Bryan A; Hayles, Justin A; Zhou, Chuanming; Bao, Huiming

    2013-10-29

    The ~635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently (17)O-depleted sulfate (SO4(2-)) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly (17)O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous (17)O signal was imparted to sulfate of oxidative weathering origin. However, (17)O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate (17)O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The (17)O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ(13)C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  4. Sedimentary record of erg migration

    NASA Astrophysics Data System (ADS)

    Porter, M. L.

    1986-06-01

    The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.

  5. Microbially mediated carbon cycling as a control on the δ 13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record

    NASA Astrophysics Data System (ADS)

    Hollander, David J.; Smith, Michael A.

    2001-12-01

    An isotopic study of various carbon phases in eutrophic Lake Mendota (Wisconsin, USA) indicates that the δ13C composition of sedimentary organic and inorganic carbon has become more negative in response to increasing microbially mediated carbon cycling and processes associated with the intensification of seasonal and long-term eutrophication. Progressive increases in the contributions of isotopically depleted chemoautotrophic and methanotrophic biomass (reflected in the -40 to -90‰ values of hopanols and FAMES), attributed to seasonal and long-term increases in production and expansion of the anaerobic water mass, accounts for carbon isotopic trends towards depleted δ13C values observed in both seasonal varves and over the past 100 years. Changes in the intensities of certain microbial processes are also evident in the sedimentary geochemical record. During the period of most intense cultural eutrophication, when the oxic-anoxic interface was located close to the surface, methanogenesis/methanotrophy and the oxidation of biogenic methane increased to the extent that significant quantities of 13C-depleted CO2 were added into the epilimnion. This depleted CO2 was subsequently utilized by phytoplankton and incorporated into CaCO3 during biogenically induced calcite precipitation. A comparative study between eutrophic Lakes Mendota and Greifen, further indicate that the extent of nutrient loading in the epilimnion determines whether the δ13C record of sedimentary organic carbon reflects intensification of microbial processes in the hypolimnion and sediments, or changes in the primary productivity in the photic zone. From this comparison, a series of eutrophication models are developed to describe progressive transitions through thresholds of microbial and eukaryotic productivity and their influence on the δ13C record of sedimentary carbon. With increasing eutrophication, the models initially predict a negative and then a subsequent positive carbon isotopic

  6. Laboratory simulated hydrothermal alteration of sedimentary organic matter from Guaymas Basin, Gulf of California. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leif, Roald N.

    1993-01-01

    High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the

  7. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  8. Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William; Davies, Althea; Howe, John

    2017-04-01

    Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2

  9. Tectonic Impact on the Sedimentary Magnetic Record in Active Margin Settings

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Torres, M. E.; Solomon, E. A.

    2017-12-01

    Here we explore the impact of depositional and tectonic dynamics on sedimentary magnetic signals using samples collected during the Integrated Ocean Drilling Project (IODP) Expedition 334 off Costa Rica. This active margin system displays fast convergence rates, abundant seismicity, and subduction erosion, and thus allows us to study fluid flow responses to rapid episodes of uplift and subsidence in an erosional convergent margin - one of the main goals of the Costa Rica Seismogenesis Project (CRISP). The sediments at the middle slope site (Site U1378; 533 m water depth) vary strongly in their magnetic susceptibility and geochemical signals compared to the upper slope site (Site U1379; 139 m water depth). The more recent sediments at each site (upper 50 m) clearly show that Site U1378 experienced relative steady state conditions (with respect to pore water geochemistry), while at Site U1379 dynamic conditions lead to non-steady state geochemical profiles - and consequently to a differing magnetic susceptibility profile. These differences are most likely related to changes in methane flux and subsequent shifting of the sulfate-methane transition. Throughout the sediment column at Hole U1379C intervals showing a strong decrease in the magnetic susceptibility can be correlated with specific lithological horizons with abundant carbonate layers. Our data show that these layers are formed diagenetically, based on a depleted carbonate carbon isotope signal (up to -25‰) that is consistent with the pore water record. The carbonate layers not only caused a dilution in the magnetic mineral assemblages, but also point to a concurrent alteration process of iron oxides to iron sulfides. This is recorded in the sedimentary record as iron sulfide (pyrite) enrichments and their associated sulfur isotopic signature (δ34S; up to +6.3‰). These alterations can be tied to a location fluctuation of the sulfate-methane transition due to changes in the methane flux. The strong

  10. Global perspectives on oxidative weathering of organic carbon in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; Hilton, R. G.; West, A. J.; Horan, K.; Gaillardet, J.

    2016-12-01

    Over geological timescales, the oxidation of organic carbon in sedimentary rocks is major source of carbon dioxide (CO2) to the atmosphere. The global magnitude of this flux remains poorly constrained, but it is likely to be between 40-100 x 1012 g C yr-1, similar to the CO2 emissions from volcanism. The rates of CO2 emission ultimately set the rate of silicate weathering by carbonic acid and new organic carbon burial, which act together to stabilise the climate system. To constrain how the geological carbon cycle operates and modifies Earth's climate over millions of years, we must better understand the controls on the oxidation of sedimentary rock-derived organic carbon (`petrogenic' OC, OCpetro). Here we examine new and published constraints on OCpetro oxidation flux, which come from indirect measurements (e.g. trace element proxies such as rhenium) and direct measurements (e.g. CO2 trapping and 14C). Existing datasets track the gaseous and dissolved products of weathering as well as the solid residues over a range of spatial scales, from soil profiles to large river catchments. Although the datasets are still sparse, they indicate that physical denudation plays a major role in setting OCpetro oxidation flux. These measurements are interrogated in the framework of a catchment-scale numerical model of OCpetro oxidation. By harnessing approaches developed to examine and quantify acid-hydrolysis reactions (i.e. silicate mineral weathering by carbonic acid) the model considers realistic geochemical processes and the links between erosion and weathering. Key parameters emerge, such as the `weathering thickness' which describes a depth to which oxidative waters penetrate. The reaction kinetics of OCpetro remain poorly constrained, but nevertheless, the model predicts that the kinetic limitation of OCpetro oxidation is not reached until physical erosion rates exceed 2 mm yr-1, which is much higher than for CO2 consumption by silicate weathering. These findings mirror

  11. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression, Bohai Bay Basin, east China

    NASA Astrophysics Data System (ADS)

    Liu, Jianping; Xian, Benzhong; Wang, Junhui; Ji, Youliang; Lu, Zhiyong; Liu, Saijun

    2017-12-01

    The sedimentary architectures of submarine/sublacustrine fans are controlled by sedimentary processes, geomorphology and sediment composition in sediment gravity flows. To advance understanding of sedimentary architecture of debris fans formed predominantly by debris flows in deep-water environments, a sub-lacustrine fan (Y11 fan) within a lacustrine succession has been identified and studied through the integration of core data, well logging data and 3D seismic data in the Eocene Dongying Depression, Bohai Bay Basin, east China. Six types of resedimented lithofacies can be recognized, which are further grouped into five broad lithofacies associations. Quantification of gravity flow processes on the Y11 fan is suggested by quantitative lithofacies analysis, which demonstrates that the fan is dominated by debris flows, while turbidity currents and sandy slumps are less important. The distribution, geometry and sedimentary architecture are documented using well data and 3D seismic data. A well-developed depositional lobe with a high aspect ratio is identified based on a sandstone isopach map. Canyons and/or channels are absent, which is probably due to the unsteady sediment supply from delta-front collapse. Distributary tongue-shaped debris flow deposits can be observed at different stages of fan growth, suggesting a lobe constructed by debrite tongue complexes. Within each stage of the tongue complexes, architectural elements are interpreted by wireline log motifs showing amalgamated debrite tongues, which constitute the primary fan elements. Based on lateral lithofacies distribution and vertical sequence analysis, it is proposed that lakefloor erosion, entrainment and dilution in the flow direction lead to an organized distribution of sandy debrites, muddy debrites and turbidites on individual debrite tongues. Plastic rheology of debris flows combined with fault-related topography are considered the major factors that control sediment distribution and fan

  12. Using Aluminum Foil to Record Structures in Sedimentary Rock.

    ERIC Educational Resources Information Center

    Metz, Robert

    1982-01-01

    Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)

  13. Sea-floor morphology and sedimentary environments in southern Narragansett Bay, Rhode Island

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Blackwood, Dann S.; Nardi, Matthew J.; Andring, Matthew A.

    2015-09-09

    Multibeam echosounder data collected by the National Oceanic and Atmospheric Administration along with sediment samples and still and video photography of the sea floor collected by the U.S. Geological Survey were used to interpret sea-floor features and sedimentary environments in southern Narragansett Bay, Rhode Island, as part of a long-term effort to map the sea floor along the northeastern coast of the United States. Sea-floor features include rocky areas and scour depressions in high-energy environments characterized by erosion or nondeposition, and sand waves and megaripples in environments characterized by coarse-grained bedload transport. Two shipwrecks are also located in the study area. Much of the sea floor is relatively featureless within the resolution of the multibeam data; sedimentary environments in these areas are characterized by processes associated with sorting and reworking. This report releases bathymetric data from the multibeam echosounder, grain-size analyses of sediment samples, and photographs of the sea floor and interpretations of the sea-floor features and sedimentary environments. It provides base maps that can be used for resource management and studies of topics such as benthic ecology, contaminant inventories, and sediment transport.

  14. An evaluation of multiband photography for rock discrimination. [sedimentary rocks of Front Range, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator); Raines, G. L.

    1974-01-01

    The author has identified the following significant results. With the advent of ERTS and Skylab satellites, multiband imagery and photography have become readily available to geologists. The ability of multiband photography to discriminate sedimentary rocks was examined. More than 8600 in situ measurements of band reflectance of the sedimentary rocks of the Front Range, Colorado, were acquired. Statistical analysis of these measurements showed that: (1) measurements from one site can be used at another site 100 miles away; (2) there is basically only one spectral reflectance curve for these rocks, with constant amplitude differences between the curves; and (3) the natural variation is so large that at least 150 measurements per formation are required to select best filters. These conclusions are supported by subjective tests with aerial multiband photography. The designed multiband photography concept for rock discrimination is not a practical method of improving sedimentary rock discrimination capabilities.

  15. Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: A case study of the late Middle and Late Pleistocene Rhine system in the Netherlands

    NASA Astrophysics Data System (ADS)

    Peeters, J.; Busschers, F. S.; Stouthamer, E.; Bosch, J. H. A.; Van den Berg, M. W.; Wallinga, J.; Versendaal, A. J.; Bunnik, F. P. M.; Middelkoop, H.

    2016-01-01

    This paper describes the sedimentary architecture, chronostratigraphy and palaeogeography of the late Middle and Late Pleistocene (Marine Isotope Stage/MIS 6-2) incised Rhine-valley fill in the central Netherlands based on six geological transects, luminescence dating, biostratigraphical data and a 3D geological model. The incised-valley fill consists of a ca. 50 m thick and 10-20 km wide sand-dominated succession and includes a well-developed sequence dating from the Last Interglacial: known as the Eemian in northwest Europe. The lower part of the valley fill contains coarse-grained fluvio-glacial and fluvial Rhine sediments that were deposited under Late Saalian (MIS 6) cold-climatic periglacial conditions and during the transition into the warm Eemian interglacial (MIS 5e-d). This unit is overlain by fine-grained fresh-water flood-basin deposits, which are transgressed by a fine-grained estuarine unit that formed during marine high-stand. This ca. 10 m thick sequence reflects gradual drowning of the Eemian interglacial fluvial Rhine system and transformation into an estuary due to relative sea-level rise. The chronological data suggests a delay in timing of regional Eemian interglacial transgression and sea-level high-stand of several thousand years, when compared to eustatic sea-level. As a result of this glacio-isostatic controlled delay, formation of the interglacial lower deltaic system took only place for a relative short period of time: progradation was therefore limited. During the cooler Weichselian Early Glacial period (MIS 5d-a) deposition of deltaic sediments continued and extensive westward progradation of the Rhine system occurred. Major parts of the Eemian and Weichselian Early Glacial deposits were eroded and buried as a result of sea-level lowering and climate cooling during the early Middle Weichselian (MIS 4-3). Near complete sedimentary preservation occurred along the margins of the incised valley allowing the detailed reconstruction presented

  16. Use Of The Gpr To Characterize Sedimentary Structures Of Lakes In Sub-Humid Drainage System, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Aranha, P. A.; Augustin, C. H.

    2012-12-01

    PAULO ROBERTO ANTUNES ARANHA IGC - UNIVERSIDADE FEDERAL DE MINAS GERAIS - AV ANTONIO CARLOS 6.627 - CEP: 31270901-BELO HORIZONTE- MG - BRAZIL CRISTINA ROCHA AUGUSTIN - IGC - UNIVERSIDADE FEDERAL DE MINAS GERAIS - AV ANTONIO CARLOS 6.627 - CEP: 31270901-BELO HORIZONTE- MG - BRAZIL System of lakes located in the sandstones domains of Supergrupo Urucuia, in the State Park Veredas do Peruaçu, north of the State of Minas Gerais, Brazil, are common features in ecosystems of the Veredas, a biome of the Cerrado (Savanna-Open pasture). The linearity of these lakes suggests that they could have, in the past, belonged to the same drainage system, that would have been disconnected throughout the evolution of the Vereda system. The objective of this research is with the help of the GPR and using 100 MHz antennaes to obtain radargram images that could assist in the interpretation of the structures occurring at the bottom of these lakes. It is possible do identify on the radargrams reflectors that can be correlated with depositional system. These reflectore have the concave form. The results of these radargrames indicate great conformity between the concave form of the sediments and that of the bottom of the lake, allowing to assume that this deposition has been occurring since a long time ago. Therefore, if there was a connection between the study lake and those located in its proximity it has occurred a long time, before the deposition of the sedimentary sequences had been deposited. The thickness of the sediments, that varies since 2m until 5m, indicates that or either this deposition was either a very rapid one so that could generate a fast deposition, or it has been taking place during a considerable geologic long time.; Data acquisitiont;

  17. Mantle convective support, drainage patterns and sedimentary flux: Examples from the West Africa passive margin

    NASA Astrophysics Data System (ADS)

    Lodhia, B. H.; Roberts, G. G.; Fraser, A.; Goes, S. D. B.; Fishwick, S.; Jarvis, J.

    2017-12-01

    Sedimentary flux measurements, regional subsidence patterns, inversion of drainage patterns, tomographic models and simple isostatic calculations are combined to constrain the history of sub-plate support of North West Africa. Backstripping of 8 commercial wells and mapping of 53,000 line-km of 2D seismic reflection data show that rapid ( 0.03 mm a-1) Neogene-Recent subsidence occurred in a 500 x 500 km region offshore Mauritania. 0.4-0.8 km of water-loaded subsidence occurred in the center of the basin during the last 23 Ma. Salt withdrawal, thin-skinned tectonics, glacio-eustasy and flexure of the lithosphere due to the emplacement of Cape Verde cannot explain the timing or magnitude of this phase of subsidence. Instead, conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Our results indicate that asthenospheric flow from Cape Verde to Mauritania generated a bathymetric gradient of 1/300 at a wavelength of 103 km during the last 23 Ma. We explore the relationship between uplift and erosion onshore and measured solid sedimentary flux offshore. First, the history of sedimentary flux to the margin was determined by depth-converting and decompacting biostratigraphically-dated isopachs. Compaction and velocity errors, determined using check-shot data, were propagated into calculated sedimentary flux history. Solid-sedimentary flux rates of 0.2-0.1+0.2 ×103 km3 /Ma between 23.8-5.6 Ma, and 1.9-1.4+2.0 ×103 km3 /Ma from 5.6-0 Ma are observed. Secondly, a calibrated stream power erosional model was used to invert 14700 river profiles for a history of regional uplift rate. Incision rates were integrated along best-fitting theoretical river profiles to predict sedimentary flux at mouths of the rivers draining NW Africa. Our predicted history of sedimentary flux increases in two stages towards the present-day, in agreement with our offshore

  18. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  19. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  20. Space Station Views of African Sedimentary Basins-Analogs for Subsurface Patterns

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. Justin

    2007-01-01

    Views of African sedimentary basins from the International Space Station (ISS) is presented. The images from ISS include: 1) Inland deltas; 2) Prediction; 3) Significance; 4) Exploration applications; and 5) Coastal megafans

  1. The organic geochemistry of black sedimentary barite: significance and implications of trapped fatty acids

    USGS Publications Warehouse

    Miller, R.E.; Brobst, D.A.; Beck, P.C.

    1977-01-01

    Fatty acids isolated in sedimentary black barite (BaSO4) from Arkansas and Nevada were identified by gas chromatography-mass spectroscopy. The dominant or major fatty acids found in these beds of barite are C16:0, C18:0, and C18:1. The occurrence and distribution of these acids in this type of rock may serve as "molecular fingerprints" of microbial biogeochemical processes. The organic matter and associated microorganisms are shown to be trapped within the finely crystalline barite, thus forming a closed system for microbial diagenesis. Important differences that occur in the distribution of the lesser or minor fatty acids probably result from: (1) the nature of the progenitor organic detritus in the environment of barite deposition: and (2) the subsequent degree of microbiological alteration of the parent organic debris swept into and trapped in the depositional environment. Three general models of sedimentary environments are proposed in which anoxic conditions may prevail and where barium sulfate (BaSO4) may precipitate: (1) in a silled basin with semi-restricted circulation; (2) on an outer continental shelf where the slope is encroached upon by water of the oxygen minimum layer; (3) on a low-energy, inner shelf or semi-restricted embayment impinged by a wedge of anoxic water. The major geochemical and geological parameters which are believed to be the significant factors controlling the formation and high grade of these organic-rich, black bedded barites are: (1) a unique source of barium-rich fluid that only contains trace amounts of other elements; (2) the presence of an anoxic bottom environment within the depositional basin; (3) a reflux source of sulfate ion; (4) an adequate source of organic matter. The results of this study may serve as guidelines for future exploration in similar, untested sedimentary basins, especially those with rocks of middle Paleozoic age. ?? 1977.

  2. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  3. Marine and Lacustrine Organic-rich Sedimentary Unit Time Markers: Implications from Rhenium-Osmium Geochronology

    NASA Astrophysics Data System (ADS)

    Selby, D.

    2011-12-01

    Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In

  4. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  5. Sedimentary record and structural analysis of the opening of the European Cenozoic Rift System: The case of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Briais, Justine; Lasseur, Eric; Homberg, Catherine; Beccaletto, Laurent; Couëffé, Renaud; Bellahsen, Nicolas; Chateauneuf, Jean-Jacques

    2017-04-01

    The European Cenozoic Rift System (ECRIS) attests to an intracontinental rifting period attributed to the late Eocene-Oligocene period of time. The opening mechanisms of ECRIS still remain discussed, mainly because they took place during the regional compressive period related to the Africa-Eurasia convergence. Several geodynamic-related mechanisms are proposed, such as (1) a mantle activity, (2) an extension of the European plate related to the Alpine subduction (slab pull or slab roll-back), (3) a transtension related to strike slips induced by the Iberia-Eurasia and Apulia-Eurasia convergences. Our study discusses the mechanism for opening the Upper Rhine Graben (URG), located in the middle part of the ECRIS. Using reprocessed seismic lines and well data, we carried out a detailed sedimentary infilling analysis coupled with a structural study of the graben and its borders. As a result, three steps are identified for its tectonic evolution: (1) Lutetian-Bartonian: the first step of the opening is recorded by small lacustrine basins bounded by N060- and N010-020-trending inherited normal faults. These basins open either by transtension in a NS compressive context, or by NW-SE extension. (2) Priabonian-Rupelian: the subsidence occurs at a wider scale; the geographic extension of the basin is larger than the current borders of the URG. The structure is controlled essentially by N010-20-trending normal faults and by N060-trending transfer faults. Three structural blocks, bounded by N060-trending transfer faults, are identified from north to south. Each structural block displays an E-W sedimentary filling asymmetry. This period records an NW-SE extension. (3) Chattian-Miocene: the tectonic activity increases and a large-scale strike slip (sinistral) system takes place. This sinistral strike slip is contemporaneous with an uplift of the southern part of the URG and a rapid subsidence of its northern part. These events are related to compressive alpine constraints

  6. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  7. Sedimentary and tectonic evolution of Plio Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy)

    NASA Astrophysics Data System (ADS)

    Cavinato, Gian Paolo; Carusi, Claudio; Dall'Asta, Massimo; Miccadei, Enrico; Piacentini, Tommaso

    2002-04-01

    The Fucino Basin was the greatest lake of the central Italy, which was completely drained at the end of 19th century. The basin is an intramontane half-graben filled by Plio-Quaternary alluvial and lacustrine deposits located in the central part of the Apennines chain, which was formed in Upper Pliocene and in Quaternary time by the extensional tectonic activity. The analysis of the geological surface data allows the definition of several stratigraphic units grouped in Lower Units and Upper Units. The Lower Units (Upper Pliocene) are exposed along the northern and north-eastern basin margins. They consist of open to marginal lacustrine deposits, breccia deposits and fluvial deposits. The Upper Units (Lower Pliocene-Holocene) consist of interbedded marginal lacustrine deposits and fluvial deposits; thick coarse-grained fan-delta deposits are interfingered at the foot of the main relief with fluvial-lacustrine deposits. Most of the thickness of the lacustrine sequences (more than 1000-m thick) is buried below the central part of the Fucino Plain. The basin is bounded by E-W, WSW-ENE and NW-SE fault systems: Velino-Magnola Fault (E-W) and Tremonti-Celano-Aielli Fault (WSW-ENE) and S. Potito-Celano Fault (NW-SE) in the north; the Trasacco Fault, the Pescina-Celano Fault and the Serrone Fault (NW-SE) in the south-east. The geometry and kinematic indicators of these faults indicate normal or oblique movements. The study of industrial seismic profiles across the Fucino Basin gives a clear picture of the subsurface basin geometry; the basin shows triangular-shaped basin-fill geometry, with the maximum deposits thickness toward the main east boundary fault zones that dip south-westward (Serrone Fault, Trasacco Fault, Pescina-Celano Fault). On the basis of geological surface data, borehole stratigraphy and seismic data analysis, it is possible to recognize and to correlate sedimentary and seismic facies. The bottom of the basin is well recognized in the seismic lines

  8. Sedimentary modeling and analysis of petroleum system of the upper Tertiary sequences in southern Ulleung sedimentary Basin, East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, D.; Kim, Y.

    2010-12-01

    The block 6-1 located in the southwestern margin of the Ulleung basin, East Sea (Sea of Japan) is an area where recently produces commercial natural gas and condensate. A total of 17 exploratory wells have been drilled, and also many seismic explorations have been carried out since early 1970s. Among the wells and seismic sections, the Gorae 1 well and a seismic section through the Gorae 1-2 well were chosen for this simulation work. Then, a 2-D graphic simulation using SEDPAK elucidates the evolution, burial history and diagenesis of the sedimentary sequence. The study area is a suitable place for modeling a petroleum system and evaluating hydrocarbon potential of reservoir. Shale as a source rock is about 3500m deep from sea floor, and sandstones interbedded with thin mud layers are distributed as potential reservoir rocks from 3,500m to 2,000m deep. On top of that, shales cover as seal rocks and overburden rocks upto 900m deep. Input data(sea level, sediment supply, subsidence rate, etc) for the simulation was taken from several previous published papers including the well and seismic data, and the thermal maturity of the sediment was calculated from known thermal gradient data. In this study area, gas and condensate have been found and commercially produced, and the result of the simulation also shows that there is a gas window between 4000m and 6000m deep, so that three possible interpretations can be inferred from the simulation result. First, oil has already moved and gone to the southeastern area along uplifting zones. Or second, oil has never been generated because organic matter is kerogen type 3, and or finally, generated oil has been converted into gas by thermally overcooking. SEDPAK has an advantage that it provides the timing and depth information of generated oil and gas with TTI values even though it has a limit which itself can not perform geochemical modeling to analyze thermal maturity level of source rocks. Based on the result of our simulation

  9. Sedimentary processes and depositional environments of the Horn River Shale in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk

    2017-04-01

    The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea

  10. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    NASA Astrophysics Data System (ADS)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    sediment dynamics during whether extreme flood events or mass-movements due to deltaic scarp failures. The active canyon shows a classic turbiditic system with frequent spillover processes in the canyon floor/levee complex. Geotechnical measurements, a decrease in the frequency of turbidites and a fining upward sequence along the levee suggest that erosion dominates sedimentation in the canyon floor, while sedimentation dominates in the rapid levee building-up process, with sedimentation rates that exceed 3cm/yr in the proximal areas. Therefore, mechanisms controlling the sedimentary evolution on the active canyon result in a complex interplay between erosion and sedimentation. Further research will provide a detailed evaluation of the human impact on sedimentary dynamic in the Rhone Delta subaquatic canyons.

  11. Prediction of hydrocarbons in sedimentary basins

    USGS Publications Warehouse

    Harff, J.E.; Davis, J.C.; Eiserbeck, W.

    1993-01-01

    To estimate the undiscovered hydrocarbon potential of sedimentary basins, quantitative play assessments specific for each location in a region may be obtained using geostatistical methods combined with the theory of classification of geological objects, a methodology referred to as regionalization. The technique relies on process modeling and measured borehole data as well as probabilistic methods to exploit the relationship between geology (the "predictor") and known hydrocarbon productivity (the "target") to define prospective stratigraphic intervals within a basin. It is demonstrated in case studies from the oil-producing region of the western Kansas Pennsylvanian Shelf and the gas-bearing Rotliegend sediments of the Northeast German Basin. ?? 1993 International Association for Mathematical Geology.

  12. Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves

    PubMed Central

    Balke, Thorsten; Webb, Edward L; van den Elzen, Eva; Galli, Demis; Herman, Peter M J; Bouma, Tjeerd J

    2013-01-01

    1. Vegetated biogeomorphic systems (e.g. mangroves, salt marshes, dunes, riparian vegetation) have been intensively studied for the impact of the biota on sediment transport processes and the resulting self-organization of such landscapes. However, there is a lack of understanding of physical disturbance mechanisms that limit primary colonization in active sedimentary environments. 2. This study elucidates the effect of sediment disturbance during the seedling stage of pioneer vegetation, using mangroves as a model system. We performed mesocosm experiments that mimicked sediment disturbance as (i) accretion/burial of plants and (ii) erosion/excavation of plants of different magnitudes and temporal distribution in combination with water movement and inundation stress. 3. Cumulative sediment disturbance reduced seedling survival, with the faster-growing Avicennia alba showing less mortality than the slower-growing Sonneratia alba. The presence of the additional stressors (inundation and water movement) predominantly reduced the survival of S. alba. 4. Non-lethal accretion treatments increased shoot biomass of the seedlings, whereas non-lethal erosion treatments increased root biomass allocation. This morphological plasticity in combination with the abiotic disturbance history determined how much maximum erosion the seedlings were able to withstand. 5. Synthesis and applications. Seedling survival in dynamic sedimentary environments is determined by the frequency and magnitude of sediment accretion or erosion events, with non-lethal events causing feedbacks to seedling stability. Managers attempting restoration of mangroves, salt marshes, dunes and riparian vegetation should recognize sediment dynamics as a main bottleneck to primary colonization. The temporal distribution of erosion and accretion events has to be evaluated against the ability of the seedlings to outgrow or adjust to disturbances. Our results suggest that selecting fast-growing pioneer species and

  13. Finite-strain analysis of Metavolcano-sedimentary rocks at Gabel El Mayet area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2010-09-01

    Finite strain was estimated in the metavolcano-sedimentary rocks, which surround by serpentinites of Gabel El Mayet area. Finite strain shows a relationship to nappe contacts between the metavolcano-sedimentary rocks and serpentinite and sheds light on the nature of the subhorizontal foliation typical for the Gable Mayet shear zone. We used the Rf/ ϕ and Fry methods on feldspar porphyroclasts and mafic grains from 10 metasedimentary and six metavolcanic samples in Gabel El Mayet region. Our finite-strain data show that the metavolcano-sedimentary rocks were moderately deformed and axial ratios in the XZ section range from 1.9 to 3.9. The long axes of the finite-strain ellipsoids trend W/WNW in the north and W/WSW in the south of the Gabel El Mayet shear zone. Furthermore, the short axes are subvertical to a subhorizontal foliation. The strain magnitudes increase towards the tectonic contacts between the metavolcano-sedimentary rocks and serpentinite. The data indicate oblate strain symmetry in the metavolcano-sedimentary rocks. Hence, our strain data also indicate flattening strain. We assume that the metasedimentary and metavolcanics rocks have similar deformation behaviour. The fact that finite strain accumulated during the metamorphism indicates that the nappe contacts formed during the accumulation of finite strain and thus during thrusting. We conclude that the nappe contacts formed during progressive thrusting under brittle to semi-brittle deformation conditions by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gabel El Mayet shear zone.

  14. High resolution model studies of transport of sedimentary material in the south-western Baltic

    NASA Astrophysics Data System (ADS)

    Seifert, Torsten; Fennel, Wolfgang; Kuhrts, Christiane

    2009-02-01

    The paper presents high resolution model simulations of transport, deposition and resuspension of sedimentary material in the south-western Baltic, based on an upgrade of the sediment transport model described in the work of Kuhrts et al. [Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the Western Baltic. Journal of Marine Systems 52, 167.]. In the western Baltic, a grid spacing of at least 1 nautical mile is required to resolve the shallow and narrow bathymetry and the associated current patterns. A series of experimental model simulations is carried out with forcing data for the year 1993, which include a sequence of storms in January. Compared to earlier model versions, a more detailed description of potential deposition areas can be provided. The study quantifies the influence of enhanced bottom roughness caused by biological structures, like mussels and worm holes, provides estimates of the regional erosion risks for fine grained sediments, and analyses scenarios of the settling and spreading of material at dumping sites. Although the effects of changed bottom roughness, as derived from more detailed, re-classified sea floor data, are relatively small, the sediment transport and deposition patterns are clearly affected by the variation of the sea bed properties.

  15. Case study of a sabkha sedimentary environment: Mallahat al Bariquah, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krason, J.

    1987-05-01

    The importance of the sabkha sedimentary environment for formation and/or accumulation of hydrocarbons, salts, and various metalliferous mineral deposits has been recognized by many geologists. A sabkha in which sedimentation and the formation of salt deposits and hydrocarbons is in progress is located along the Mediterranean Sea coast, in northwestern Libya and northeastern Tunisia. The sabkha Mallahat al Bariquah was drilled in a regular grid at 1-km spacing; 63 holes have been completed. The sabkha and its vicinity were geologically mapped (1:20,000). Several hundred core and loose rock samples were thoroughly examined with regard to the lithology, mineralogy, paleontology, andmore » chemical composition. The chemistry of brine from each drill hole and solar pan was determined. Three 24-hour pumping tests were performed, and the hydrogeological conditions of the sabkha were analyzed in detail. Economically valuable bedded salt reserves of 170,800,000 MT of NaCl were discovered and proven. Additionally, over 30 million MT of potassium, magnesium, and sodium salts including bromides are recoverable from the brine. Although marine-coastal sabkhas are common, the extensive scope of this study is unique. Mallahat al Bariquah sabkha is not unique with regard to its geographic, climatic, or sedimentary environments. Therefore, Mallahat al Bariquah can be considered as a model applicable in exploration for and study of similar sedimentary environments in other geographic regions and older geologic epochs.« less

  16. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  17. The impact of sedimentary coatings on the diagenetic Nd flux

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; McManus, James

    2016-09-01

    Because ocean circulation impacts global heat transport, understanding the relationship between deep ocean circulation and climate is important for predicting the ocean's role in climate change. A common approach to reconstruct ocean circulation patterns employs the neodymium isotope compositions of authigenic phases recovered from marine sediments. In this approach, mild chemical extractions of these phases is thought to yield information regarding the εNd of the bottom waters that are in contact with the underlying sediment package. However, recent pore fluid studies present evidence for neodymium cycling within the upper portions of the marine sediment package that drives a significant benthic flux of neodymium to the ocean. This internal sedimentary cycling has the potential to obfuscate any relationship between the neodymium signature recovered from the authigenic coating and the overlying neodymium signature of the seawater. For this manuscript, we present sedimentary leach results from three sites on the Oregon margin in the northeast Pacific Ocean. Our goal is to examine the potential mechanisms controlling the exchange of Nd between the sedimentary package and the overlying water column, as well as the relationship between the εNd composition of authigenic sedimentary coatings and that of the pore fluid. In our comparison of the neodymium concentrations and isotope compositions from the total sediment, sediment leachates, and pore fluid we find that the leachable components account for about half of the total solid-phase Nd, therefore representing a significant reservoir of reactive Nd within the sediment package. Based on these and other data, we propose that sediment diagenesis determines the εNd of the pore fluid, which in turn controls the εNd of the bottom water. Consistent with this notion, despite having 1 to 2 orders of magnitude greater Nd concentration than the bottom water, the pore fluid is still <0.001% of the total Nd reservoir in the

  18. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Hallot, Erwan

    2013-09-01

    A systematic bias towards low palaeomagnetic inclination recorded in clastic sediments, that is, inclination shallowing, has been recognized and studied for decades. Identification, understanding and correction of this inclination shallowing are critical for palaeogeographic reconstructions, particularly those used in climate models and to date collisional events in convergent orogenic systems, such as those surrounding the Neotethys. Here we report palaeomagnetic inclinations from the sedimentary Eocene upper Linzizong Group of Southern Tibet that are ˜20° lower than conformable underlying volcanic units. At face value, the palaeomagnetic results from these sedimentary rocks suggest the southern margin of Asia was located ˜10°N, which is inconsistent with recent reviews of the palaeolatitude of Southern Tibet. We apply two different correction methods to estimate the magnitude of inclination shallowing independently from the volcanics. The mean inclination is corrected from 20.5° to 40.0° within 95 per cent confidence limits between 33.1° and 49.5° by the elongation/inclination (E/I) correction method; an anisotropy-based inclination correction method steepens the mean inclination to 41.3 ± 3.3° after a curve fitting- determined particle anisotropy of 1.39 is applied. These corrected inclinations are statistically indistinguishable from the well-determined 40.3 ± 4.5º mean inclination of the underlying volcanic rocks that provides an independent check on the validity of these correction methods. Our results show that inclination shallowing in sedimentary rocks can be corrected. Careful inspection of stratigraphic variations of rock magnetic properties and remanence anisotropy suggests shallowing was caused mainly by a combination of syn- and post-depositional processes such as particle imbrication and sedimentary compaction that vary in importance throughout the section. Palaeolatitudes calculated from palaeomagnetic directions from Eocene sedimentary

  19. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover.

    PubMed

    Cox, R; Lowe, D R

    1995-01-02

    Both sediment recycling and first-cycle input influence the composition of clastic material in sedimentary systems. This paper examines conceptually the roles played by these processes in governing the composition of clastic sediment on a regional scale by outlining the expected effects on sediment composition of protracted sediment recycling and of continuous first-cycle input on a maturing continental block. Generally speaking, long-term recycling tends to enrich sediments in the most chemically and mechanically stable components: quartz in the sand and silt size fractions, and illite among the clay minerals. Sandstones trend towards pure quartz arenites, and mudrocks become more potassic and aluminous. The average grain size of clastic sediment decreases by a combination of progressive attrition of sand grains and ongoing breakdown of primary silicate minerals to finer-grained clay minerals and oxides. Sandstones derived by continuous first-cycle input from an evolving continental crustal source also become increasingly rich in quartz, but in addition become more feldspathic as the proportion of granitic material in the upper continental crust increases during crustal stabilization. Associated mudrocks also become richer in potassium and aluminum, but will have higher K2O/Al2O3 ratios than recycled muds. The average grain size of the sediment may increase with time as the proportion of sand-prone granitic source rocks increases at the expense of more mud-prone volcanic sources. In general, except in instances where chemical weathering is extreme, first-cycle sediments lack the compositional maturity of recycled detritus, and are characterized by the presence of a variety of primary silicate minerals. Sedimentary systems are not usually completely dominated by either recycling or first-cycle detritus. Generally, however, sedimentary systems associated with the earliest phases of formation and accretion of continental crust are characterized by first-cycle input

  20. Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    NASA Astrophysics Data System (ADS)

    Llave, Estefanía; Jané, Gloria; Maestro, Adolfo; López-Martínez, Jerónimo; Hernández-Molina, F. Javier; Mink, Sandra

    2018-07-01

    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning 90,000 km2 and water depths of 300 m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms

  1. Sedimentary Petrography and Facies Analysis at the Shaler Outcrop, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.

    2013-12-01

    The Mars Science Laboratory Curiosity rover has recently completed an investigation of a large fluvial deposit known informally as the Shaler outcrop (~1 m thick). Curiosity acquired data at the Shaler outcrop during sols 120-121 and 309-324. The Shaler outcrop is comprised of cross-bedded coarse-grained sandstones and recessive finer-grained intervals. Shaler is distinguished from the surrounding units by the presence of resistant beds exhibiting decimeter scale trough cross-bedding. Observations using the Mast Cameras, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro Imager (RMI) enable the recognition of several distinct facies. MAHLI images were acquired on five distinct rock targets, and RMI images were acquired at 33 different locations. On the basis of grain size, erosional resistance, color, and sedimentary structures, we identify four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Panoramic Mastcam observations reveal facies distributions and associations, and show cross-bedded facies that are similar to those observed at the Rocknest and Bathurst_Inlet locations. MAHLI and RMI images are used to determine the grain size, sorting, rounding and sedimentary fabric of the different facies. High-resolution images also reveal small-scale diagenetic features and sedimentary structures that are used to reconstruct the depositional and diagenetic history.

  2. Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada

    NASA Technical Reports Server (NTRS)

    Hayashi, K. I.; Fujisawa, H.; Holland, H. D.; Ohmoto, H.

    1997-01-01

    Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the

  3. CUTS FOR MTR EXCAVATION ILLUSTRATE SEDIMENTARY MANTLE OF SOIL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CUTS FOR MTR EXCAVATION ILLUSTRATE SEDIMENTARY MANTLE OF SOIL AND GRAVEL OVERLAYING LAVA ROCK FIFTY FEET BELOW. SAGEBRUSH HAS BEEN SCOURED FROM REST OF SITE. CAMERA PROBABLY FACES SOUTHWEST. INL NEGATIVE NO. 67. Unknown Photographer, 6/4/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Organic sedimentary deposits in Titan's dry lakebeds: Probable evaporite

    USGS Publications Warehouse

    Barnes, J.W.; Bow, J.; Schwartz, J.; Brown, R.H.; Soderblom, J.M.; Hayes, A.G.; Vixie, G.; Le, Mouelic S.; Rodriguez, S.; Sotin, Christophe; Jaumann, R.; Stephan, K.; Soderblom, L.A.; Clark, R.N.; Buratti, B.J.; Baines, K.H.; Nicholson, P.D.

    2011-01-01

    We report the discovery of organic sedimentary deposits at the bottom of dry lakebeds near Titan's north pole in observations from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). We show evidence that the deposits are evaporitic, making Titan just the third known planetary body with evaporitic processes after Earth and Mars, and is the first that uses a solvent other than water. ?? 2011 Elsevier Inc.

  5. Consumption and diffusion of dissolved oxygen in sedimentary rocks.

    PubMed

    Manaka, M; Takeda, M

    2016-10-01

    Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (D e , in m 2 s -1 ) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of D e for DO to lie within the range 2.69×10 -11

  6. Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo state, Brazil

    NASA Astrophysics Data System (ADS)

    Hirata, Ricardo; Gesicki, Ana; Sracek, Ondra; Bertolo, Reginaldo; Giannini, Paulo César; Aravena, Ramón

    2011-04-01

    This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in São Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of São Paulo state. Both the underlying Pirambóia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Pirambóia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Pirambóia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na-HCO 3 groundwater type with old water and enriched δ 13C values (<-3.9), which evolved from a neutral pH, Ca-HCO 3 groundwater type with young water and depleted δ 13C values (>-18.8) close to the SAG

  7. Preservation of overmature, ancient, sedimentary organic matter in carbonate concretions during outcrop weathering.

    PubMed

    Loyd, S J

    2017-01-01

    Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings

  8. Isolation of Geobacter species from diverse sedimentary environments

    USGS Publications Warehouse

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  9. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    USGS Publications Warehouse

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  10. Net Flux of Sedimentary Carbon to the Mantle During the Cenozoic

    NASA Astrophysics Data System (ADS)

    Clift, P. D.

    2017-12-01

    Quantification of the long-term cycling of carbon from the mantle to the surface remains contentious despite its importance in governing the climate and biosphere of Earth. Sedimentary carbon represents a significant part of the budget and can be recycled to the mantle if it reaches subduction zones and is not preserved in an accretionary prism. By estimating rates of sediment supply and accretion and taking into account carbonate and carbon contents it appears that 60 Mt/yr is presently being subducted below forearcs. 80% is in the form of carbonate, significantly more than previously estimated. Sedimentary carbon represents around two thirds of the total carbon input at the trenches, the rest being in the igneous crust. An additional 7 Mt/yr is averaged over the Cenozoic as a result of passive margin subduction during continental collision. My revised budget puts the input and output budgets within the range of uncertainties, compared to the previous deficit. Degassing from arc volcanoes and in forearcs totals 55 Mt/yr. A net flux to the mantle is probable. The efficiency of carbon subduction is largely controlled by the carbonate contents of the sediment column, and is partly linked to the latitude of the trench. Accretionary margins are the biggest suppliers of carbon to the mantle wedge, especially Java, Sumatra, Andaman-Burma and Makran because the offscraping is inefficient and the thickness of the trench sediment and trench length are both large. The Western Pacific trenches are negligible sinks of sedimentary carbon.

  11. Sedimentary facies and depositional history of the Swan Islands, Honduras

    NASA Astrophysics Data System (ADS)

    Ivey, Marvin L.; Breyer, John A.; Britton, Joseph C.

    1980-10-01

    Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence. The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.

  12. Exhumation and stress history in the sedimentary cover during Laramide thick-skinned tectonics assessed by stylolite roughness analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin

    2017-04-01

    Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in

  13. To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; Kah, Linda C.

    2015-03-01

    Craters within Arabia Terra, Mars, contain hundreds of meters of layered strata showing systematic alternation between slope- and cliff-forming units, suggesting either rhythmic deposition of distinct lithologies or similar lithologies that experienced differential cementation. On Earth, rhythmically deposited strata can be examined in terms of stratal packaging, wherein the interplay of tectonics, sediment deposition, and base level (i.e., the position above which sediment accumulation is expected to be temporary) result in changes in the amount of space available for sediment accumulation. These predictable patterns of sediment deposition can be used to infer changes in basin accommodation regardless of the mechanism of deposition (e.g. fluvial, lacustrine, or aeolian). Here, we analyze sedimentary deposits from three craters (Becquerel Crater, Danielson Crater, Crater A) in Arabia Terra. Each crater contains layered deposits that are clearly observed in orbital images. Although orbital images are insufficient to specifically determine the origin of sedimentary deposits, depositional couplets can be interpreted in terms of potential accommodation space available for deposition, and changes in the distribution of couplet thickness through stratigraphy can be interpreted in terms of changing base level and the production of new accommodation space. Differences in stratal packaging in these three craters suggest varying relationships between sedimentary influx, sedimentary base level, and concomitant changes in accommodation space. Previous groundwater upwelling models hypothesize that layered sedimentary deposits were deposited under warm climate conditions of early Mars. Here, we use observed stacking patterns to propose a model for deposition under cold climate conditions, wherein episodic melting of ground ice could raise local base level, stabilize sediment deposition, and result in differential cementation of accumulated strata. Such analysis demonstrates that

  14. Mid-depth sedimentary oxygenation variation in the western Pacific since the last glacial period: geochemical evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zou, J. J.; Shi, X.; Zhu, A.

    2017-12-01

    In this study, we investigate a suite of sediment geochemical proxies (total organic carbon and carbonate contents, carbon to nitrogen ratio, aluminum and redox-sensitive elements) to reconstruct the history of sedimentary oxygenation in the northern Okinawa Trough (OT) over the last 50 thousand years (ka). Our data support the presence of oxygen-deficient deep waters during the late deglacial and Preboreal phases (15‒9.5 ka), but oxygenated water column during the Heinrich Stadial 1 (HS1) and the Last Glacial Maximum (LGM). In contrast, increased sedimentary oxygenations are evident during the late glacial period and since 8.5 ka. Fluctuations of sedimentary oxygenation were widespread and apparently coherent over the entire North Pacific basin, reflecting broad effects of North Pacific Intermediate Water (NPIW) ventilation and export productivity. Intensified Kuroshio, however, improved the sedimentary oxygenation since 8.5 ka. We found the correspondence between changes in deglacial sedimentary oxygenation in the OT and Atlantic Meridional Overturning Circulation through the NPIW ventilation. The mechanism behind Atlantic-Pacific ventilation seesaw seems to be attributed to the perturbation of sea ice formation in high latitude North Pacific through atmospheric teleconnection.

  15. Riverine Carbon and the Sedimentary Record on the Continental Shelves

    DTIC Science & Technology

    2004-09-30

    Riverine Carbon and the Sedimentary Record on the Continental Shelves Stefano Miserocchi Istituto Scienze Marine, Sezione Geologia Marina...formerly Istituto di Geologia Marina) Consiglio Nazionale delle Ricerche Via Gobetti, 101 40129 Bologna, Italy phone: +39 (051) 6398880 Fax. +39 (051... Geologia Marina,,(formerly Istituto di Geologia Marina),Consiglio Nazionale delle Ricerche,,Via Gobetti, 101,40129 Bologna, Italy, , 8. PERFORMING

  16. Hydrodynamic Controls on Muddy Sedimentary Fabric Development on Low-Gradient Shelves: Atchafalaya Chenier Plain Subaqueous Delta

    NASA Astrophysics Data System (ADS)

    Denommee, K.; Bentley, S. J.; Harazim, D.; Macquaker, J.

    2016-02-01

    Short sediment cores and geophysical data collected on the Southwest Louisiana Chenier Plain inner shelf have been studied in order to examine the sedimentary products of current-wave-enhanced sediment gravity flows (CWESGFs), a type of sediment gravity flow where the driving energy required to transport sediment across low-gradient settings is augmented by the near-bed orbital velocity of surface gravity wave and near-bed currents. Sedimentary fabrics observed on the SWLA shelf document the following flow evolution: (1) the erosion of the underlying substrate in response to wave-generated shear stresses in the bottom boundary layer, followed by (2) the deposition of ripple a crossbeded unit during wave-mediated oscillatory motions in low-viscosity suspension; (3) the deposition of subtle intercalated laminae during laminar flow at higher suspended sediment concentrations; followed by the deposition of (4) normally graded sediments during the waning phases of the flow. Significantly, the sedimentary fabrics deposited by CWESGFs on SWLA shelf show diagnostic variations from CWESGF-generated sedimentary fabrics observed on the Eel and Amazon shelves. Differences between the observed sedimentary fabrics are hypothesized to result from variations in the relative contribution of near-bed currents, wave orbital velocities, and bed slope (gravity) to the driving energy of the CWESGF, and as such can be catalogued as diagnostic recognition criteria using a prismatic ternary diagram where current-, wave-, and gravity-dominated end members form the vertices of a triangle, and wave period forms the prism axis. In this framework forcing mechanisms can be represented quantitatively, based on wave period and the relative contribution of each of the CWESGF velocity terms. This framework can be used to explore relationships between hydrodynamics and CWESGF fabrics, providing geologists with a tool with which to better recognize the depositional products of CWESGFs in the rock

  17. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  18. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay.

    PubMed

    Kubo, Atsushi; Kanda, Jota

    2017-01-30

    Total organic carbon (TOC), total nitrogen (TN) contents, their stable C and N isotope ratio (δ 13 C and δ 15 N), and chlorophyll a ([Chl a] sed ) of surface sediments were investigated monthly to identify the seasonal variations and sources of organic matter in Tokyo Bay. The sedimentary TOC (TOC sed ) and TN (TN sed ) contents, and the sedimentary δ 13 C and δ 15 N (δ 13 C sed and δ 15 N sed ) values were higher in summer than other seasons. The seasonal variations were controlled by high primary production in the water column and hypoxic water in the bottom water during summer. The fraction of terrestrial and marine derived organic matter was estimated by Bayesian mixing model using stable isotope data and TOC/TN ratio. Surface sediments in Tokyo Bay are dominated by marine derived organic matter, which accounts for about 69±5% of TOC sed . Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evidence for only minor contributions from bacteria to sedimentary organic carbon

    NASA Technical Reports Server (NTRS)

    Hartgers, W. A.; Sinninghe Damste, J. S.; Requejo, A. G.; Allan, J.; Hayes, J. M.; de Leeuw, J. W.

    1994-01-01

    Because their molecular signatures are often prominent in extracts of sediments, bacteria are thought to be important contributors to petroleum source beds. It has been shown recently, however, that abundances of biomarkers do not always reflect relative contributions to sedimentary organic carbon (Corg). The contribution of photosynthetic green sulphur bacteria to sediments can be assessed effectively because the diagenetic products of distinctive carotenoids from these organisms occur widely and their biomass is isotopically labelled, being enriched in 13C. We show here that, although sediments and oils from the Western Canada and Williston basins contain prominent biomarkers of photosynthetic bacteria, the absence of 13C enrichment in the total Corg requires that the bacterial contribution is in fact minimal. Although the importance of bacterial reworking of sedimentary debris cannot be doubted, we argue that our findings, when considered in conjunction with those from other settings, suggest that bacterial biomass may commonly represent only a minor component of total Corg in carbonaceous rocks.

  20. Sedimentary organic matter variations in the Chukchi Borderland over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2011-03-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), C/N and CaCO3 from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on correlation of our CaCO3 record with the benthic δ18O stack, supplemented by lithological constraints, suggests that the piston core records paleoenvironmental changes of the last 155 kyr. According to this age model, TOC and C/N show orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC and C/N appear to correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 40 ka before present (BP) and thus seem to respond to abrupt northern hemispheric temperature changes. Between 65 and 40 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC and C/N variability. CaCO3 content tends to anti-correlate with TOC and C/N on both orbital and millennial time scales, which we interpret as enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased terrestrial organic carbon advection from the Siberian Arctic during cold periods when the

  1. Sedimentary Deposits within Ius Chasma

    NASA Image and Video Library

    2015-07-15

    Sedimentary deposits are common within Valles Marineris. Most larger chasmata contain kilometer-thick light-toned layered deposits composed of sulfates. However, some of the chasmata, like Ius Chasma shown in this image from NASA Mars Reconnaissance Orbiter, lack these deposits or have much thinner deposits. The light-toned deposits in Ius Chasma are observed both along the floor and inner wallrock materials. Some of the light-toned deposits appear to post-date formation of the chasma floor, whereas other deposits appear to lie beneath wallrock materials, indicating they are older. By examining the stratigraphy using digital terrain models and 3D images, it should be possible to decipher the relative ages of the different geologic units. CRISM data may also provide insight into the mineralogy, which will tell scientists about the aqueous conditions that emplaced the light-toned deposits. http://photojournal.jpl.nasa.gov/catalog/PIA19855

  2. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    PubMed Central

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-01-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities. PMID:28233856

  3. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    NASA Astrophysics Data System (ADS)

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  4. Bottom-trawling along submarine canyons impacts deep sedimentary regimes.

    PubMed

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-24

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20 th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  5. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  6. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  7. An Aquatic Journey toward Aeolis Mons (Mount Sharp): Sedimentary Rock Evidence observed by Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Edgar, Lauren; Williams, Rebecca; Rubin, David; Yingst, Aileen; Lewis, Kevin; Kocurek, Gary; Anderson, Ryan; Dromart, Gilles; Edgett, Ken; Hardgrove, Craig; Kah, Linda; Mangold, Nicolas; Milliken, Ralph; Minitti, Michelle; Palucis, Marisa; Rice, Melissa; Stack, Katie; Sumner, Dawn; Williford, Ken

    2014-05-01

    Since leaving Yellowknife Bay (summer 2013), Mars Science Laboratory Curiosity has investigated a number of key outcrops as it traverses along the Rapid Transit Route toward the entry point to begin its investigations of the extensive rock outcrops at the base of Mount Sharp. Rover observations are characterizing the variability of lithologies and sedimentary facies along the traverse and establishing stratigraphic relationships with the aim of reconstructing depositional processes and palaeoenvironments. Here, we report on sedimentological and stratigraphic observations based on images from the Mastcam and MAHLI instruments at Shaler and the Darwin waypoint. The informally named Shaler outcrop, which forms part of the Glenelg member of the Yellowknife Bay formation [1] is remarkable for the preservation of a rich suite of sedimentary structures and architecture, and was investigated on sols 120-121 and 309-324. The outcrop forms a pebbly sandstone body that is ~0.7 m thick and extends for up to 20 m. Shaler is largely characterized by pebbly sandstone facies showing well-developed decimeter-scale trough cross-stratification. Bedding geometries indicate sub-critical angles of climb, resulting in preservation of only the lee slope deposits. The grain size, and the presence and scale of cross-stratification imply sediment transport and deposition by unidirectional currents in a fluvial sedimentary environment. Curiosity investigated the informally named Darwin waypoint between sols 390 and 401, making detailed Mastcam and MAHLI observations at two separate locations. The Darwin outcrop comprises light-toned sandstone beds separated by darker pebbly sandstones. MAHLI observations permit differentiation of distinct sedimentary facies. The Altar Mountain facies is a poorly sorted pebbly sandstone that is rich in fine pebbles. Pebbles are sub-angular to sub-rounded in shape and show no preferred orientation or fabric. Pebbles and sand grains show clast-to-clast contacts

  8. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  9. Continental Drilling to Explore Earth's Sedimentary, Paleobiological, and Biogeochemical Record

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew; Soreghan, Gerilyn

    2013-07-01

    A workshop to promote research using continental scientific drilling to explore the Earth's sedimentary, paleobiological, and biogeochemical record was held in Norman, Okla. The workshop, funded by the U.S. National Science Foundation (NSF), was intended to encourage U.S.-based scientists to take advantage of the exceptional capacity of unweathered, continuous sediment cores to serve as archives of the Earth's history.

  10. The South China - Indochina collision: a perspective from sedimentary basins analysis

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Peyrotty, Giovan

    2017-04-01

    Sedimentary basins, through the sedimentary successions and the nature of the deposits, reflect the geology of the area from which the sediments were derived and thus provide valuable record of hinterland tectonism. As the collision between the South China and the Indochina blocks (i.e., the Indosinian orogeny) is still the object of a number of controversies regarding, for instance, its timing and the polarity of the subduction, the sedimentary basins associated with this mountain belt are likely to provide clues to reconstruct its geodynamic evolution. However, both the Sam Nua Basin (located to the south of the inner zones of the Indosinian orogeny and the Song Ma ophiolites) and the Song Da Basin (located to the north of the inner zones), northern Vietnam, are still lacking important information regarding the depositional environments and the ages of the main formations that they contain. Using sedimentological and dating analyses (foraminifers biostratigraphy and U-Pb dating on detrital zircon), we provide a new stratigraphic framework for these basins and propose a geodynamic evolution of the present-day northern Vietnam. During the Early Triassic, the Sam Nua Basin was mainly supplied by volcaniclastic sediments originating from an active volcanic activity. Geochemical investigations, combined with sedimentological and structural analyses, support an arc-related setting for this magmatism. This magmatic arc resulted from the subduction of a south dipping oceanic slab that once separated the South China from the Indochina blocks. During the Middle to the Late Triassic, the Sam Nua Basin underwent erosion that lead to the formation of a major unconformity, termed the Indosinian unconformity. This unconformity is interpreted to result from the erosion of the Indosinian mountain belt, built after the continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, the Sam Nua Basin experienced the deposition of very coarse

  11. New Advances in Re-Os Geochronology of Organic-rich Sedimentary Rocks.

    NASA Astrophysics Data System (ADS)

    Creaser, R. A.; Selby, D.; Kendall, B. S.

    2003-12-01

    dissolution, compared with the inverse aqua regia medium used for Carius tube analysis. Using these "organic-selective" dissolution techniques, precise depositional ages have now been obtained from samples with very low TOC contents ( ˜0.5%), meaning that a greater range of clastic sedimentary rocks is amenable for Re-Os age dating. Well-fitted Re-Os isochrons of plausible geological age have also been determined from low-TOC shales subjected to chlorite-grade regional metamorphism. These results further illustrate the wide, but currently underutilized, potential of the Re-Os geochronometer in shales. The precision of age data attainable by the Re-Os system directly from black shales can be better than +/- 1% uncertainty (2σ , derived from isochron regression analysis), and the derived ages are demonstrably accurate.

  12. Is Dam Removal a Benefit for Environment? Input of Sedimentary Archives

    NASA Astrophysics Data System (ADS)

    Debret, M.; Laberdesque, Y.; Patault, E.; Copard, Y.; Koltalo, F.; Marcotte, S.; Sabatier, P.; Develle, A. L.; Chaumillon, E.; Coulombier, T.; Deloffre, J.; Fournier, M.; Landemaine, V.; Laignel, B.; Desmet, M.

    2016-12-01

    In October 2015, the scientific news EOS entitled: « Contaminated sediment and dam removal: problem or opportunity? ». This title clearly highlights the problems that societies of every country are facing: many dam are about to exceed their engineered life expectancies and large quantities of contaminated sediments are stored by theses structures. Moreover in Europe, since the 2000s, the European legislative and regulatory framework highlights the consideration of the morphological operation for hydro-systems. The objective of achieving good ecological status of waters by 2015 brings watershed management authorities to consider the removal of dams to restore the free movement of sediment. But until now, the impacts associated with the removal of structures are poorly studied. The Martot dam, chosen in this study is located on the Eure River (Seine river tributary, north of France). It is an ideal case study, because its coming destruction, for ecological continuity restoration, is a "priority" and a large quantity of contaminated sediments is supposed to be stored upstream, related to high industrial concentration since decades. We investigated the evolution of the hydro-sedimentary transfers on the watershed of the Eure River and determined the nature of the contaminants stored in the sediments that are subject to be remobilized after the dam removal. To achieve these goals, we reconstructed the Eure catchment area history by studying seismic profiles, in-situt high frequency monitoring (since 2 years: flow, electrical conductivity, temperrature, turbidity, suspended particulate matter concentration) and sedimentary cores. Then, the nature, origin and timing of pollutants stored in the Eure sediments were determined. The next step will be to evaluate their bio-accessibility and the danger for trophic chain and evaluate if the removal was a benefit or problem for environment.

  13. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  14. Questioning the Sedimentary Paradigm for Granites

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Boudreau, A.; Walker, J. D.

    2007-12-01

    A critical question regarding volcano-pluton links is whether plutons are samples of magma that passed through on its way to eruption, or residues left behind after volcanic rocks were extracted. A persistent theme of recent work on granites sensu lato is that many are sedimentary accumulations of crystals that lost significant volumes of magmatic liquid. This view is based on observations of structures that clearly seem to reflect deposition on a magma chamber floor (e.g., flows of chilled mafic magma into silicic magma) and on the inference that many other structures, such as modal layering, truncated layering, and crystal accumulations, reflect crystal sedimentation on such chamber floors. There are significant physical and geochemical reasons to question this view, based on observations in the Sierra Nevada of California and similar results from other batholiths. First, few granites show the enrichments in Ba, Sr, and relative Eu that feldspar accumulation should produce. Second, sedimentary features such as graded bedding and cross-bedding form in highly turbulent flows, but turbulence is unachievable in viscous silicic liquids, where velocities on the order of 104 m/s would be required to induce turbulence in a liquid with η=104 Pa s. Third, tabular modally layered domains commonly cut surrounding modal layering on both sides, and orientations of modal layering and of the troughs of "ladder dikes" commonly scatter widely within hectare-sized areas; it is difficult to reconcile these features with gravity-driven settling. Fourth, accumulations of K-feldspar megacrysts are typically inferred to be depositional, but this is precluded by crystallization of most K- feldspar after rheologic lock-up occurs. Finally, accumulations of K-feldspar and hornblende are typically packed too tightly to be depositional. With analogy to layered mafic intrusions, many features attributed to crystal sedimentation in granites may be better explained by crystal aging and other in

  15. Deformation style of the Mesozoic sedimentary rocks in southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong

    2014-10-01

    Mesozoic sedimentary rocks in southern Thailand are widespread from NNE-SSW and N-S in Chumphon and Trang provinces. The Mesozoic stratigraphic units are the marine Triassic Sai Bon Formation and the non-marine Jurassic-Cretaceous Thung Yai Group, the latter subdivided into Khlong Min, Lam Thap, Sam Chom, and Phun Phin Formations. These units overlie Permian carbonate rocks with an angular unconformity, and are overlain unconformably by Cenozoic units and the Quaternary sediments. The Mesozoic rocks have been folded to form two huge first-ordered syncline or synclinoria, the Chumphon and Surat Thani-Krabi-Trang synclinoria. These synclinoria are elongated in NNE-SSW to N-S direction, and incorporate asymmetric lower-order parasitic folds. The folds have moderately to steeply dipping eastward limbs and more gently dipping westward limbs. These folds were transected by brittle fractures in four major directions. These geologic structures indicate WNW-ESE to E-W contraction with top-to-the-east simple shear at some time before the deposition of the Cenozoic sedimentary units. No major deformation has affected the rocks subsequently, apart from the formation of the fault-controlled Cenozoic basins.

  16. Magnetic fabrics in tectonically inverted sedimentary basins: a review

    NASA Astrophysics Data System (ADS)

    García-Lasanta, Cristina; Román-Berdiel, Teresa; Casas-Sainz, Antonio; Oliva-Urcia, Belén; Soto, Ruth; Izquierdo-Llavall, Esther

    2017-04-01

    Magnetic fabric studies in sedimentary rocks were firstly focused on strongly deformed tectonic contexts, such as fold-and-thrust belts. As measurement techniques were improved by the introduction of high-resolution equipments (e.g. KLY3-S and more recent Kappabridge susceptometers from AGICO Inc., Czech Republic), more complex tectonic contexts could be subjected to anisotropy of magnetic susceptibility (AMS) analyses in order to describe the relationship between tectonic conditions and the orientation and shape of the resultant magnetic ellipsoids. One of the most common complex tectonic frames involving deformed sedimentary rocks are inverted extensional basins. In the last decade, multiple AMS studies revealed that the magnetic fabric associated with the extensional stage (i.e. a primary magnetic fabric) can be preserved despite the occurrence of subsequent deformational processes. In these cases, magnetic fabrics may provide valuable information about the geometry and kinematics of the extensional episode (i.e. magnetic ellipsoids with their minimum susceptibility axis oriented perpendicular to the deposit plane and magnetic lineation oriented parallel to the extension direction). On the other hand, several of these studies have also determined how the subsequent compressional stage can modify the primary extensional fabric in some cases, particularly in areas subjected to more intense deformation (with development of compression-related cleavage). In this contribution we present a compilation of AMS studies developed in sedimentary basins that underwent different degree of tectonic inversion during their history, in order to describe the relationship of this degree of deformation and the degree of imprint that tectonic conditions have in the previous magnetic ellipsoid (primary extension-related geometry). The inverted basins included in this synthesis are located in the Iberian Peninsula and show: i) weak deformation (W Castilian Branch and Maestrazgo basin

  17. Magnetic resonance imaging analyses of varved marine sedimentary records of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Briskin, Madeleine; Robins, Jon; Riedel, William R.; Booker, Ron

    1986-08-01

    Nuclear Magnetic Resonance Imaging used for the first time to analyze marine sedimentary records of the Gulf of California is a remarkable improvement over the more conventional X-ray technique in the identification of organic rich layers. Analytical results indicate that NMRI differentiates clearly between organic rich (light) and organic poor (dark) deposits. It also provides a fine resolution of sedimentary structures, laminae and stratigraphic subtleties. It may be made to yield a three-dimensional stratigraphy; the procedure is nondestructive. The organic vs. inorganic resolution provided by NMRI technology complemented by X-ray when needed should facilitate future studies of paleoceanographic, paleoclimatic and biogeochemical cycles recorded in the vast deposits of marine clays.

  18. Extensional deformation of the Guadalquivir Basin: rate of WSW-ward tectonic displacement from Upper Tortonian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Roldán, Francisco J.; Azañón, Jose Miguel; Rodríguez-Fernández, Jose; María Mateos, Rosa

    2016-04-01

    The Guadalquivir Basin (Upper Tortonian-Quaternary sedimentary infilling) has been considered the foreland basin of the Betic Orogen built up during its collision with the Sudiberian margin. The basin is currently restricted to its westernmost sector, in the Cadiz Gulf, because the Neogene-Quaternary uplift of the Betic Cordillera has produced the emersion of their central and eastern parts. The upper Tortonian chronostratigraphic unit is the oldest one and it was indistinctly deposited on the South Iberian paleomargin and the External units from the Betic Cordillera. However, these rocks are undeformed on the Sudiberian paleomargin while they are deeply affected by brittle deformation on the External Betic Zone. Outcrops of Upper Tortonian sedimentary rocks on External Betic Zone are severely fragmented showing allocthonous characters with regard to those located on the Sudiberian paleomargin. This post- Upper Tortonian deformation is not well known in the External Zones of the Cordillera where the most prominent feature is the ubiquity of a highly deformed tecto-sedimentary unit outcropping at the basement of the Guadalquivir sedimentary infilling. This tecto-sedimentary unit belongs to the Mass Wasting Extensional Complex (Rodríguez-Fernández, 2014) formed during the collision and westward migration of the Internal Zone of the Betic Cordillera (15-8,5 Ma). In the present work, we show an ensemble of tectonic, geophysical and cartographic data in order to characterize the post-Upper Tortonian deformation. For this, seismic reflection profiles have been interpreted with the help of hidrocarbon boreholes to define the thickness of the Upper Tortonian sedimentary sequence. All these data provide an estimation of the geometrical and kinematic characteristics of the extensional faults, direction of movement and rate of displacement of these rocks during Messinian/Pliocene times. References Rodríguez-Fernández, J., Roldan, F. J., J.M. Azañón y Garcia-Cortes, A

  19. Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data

    NASA Astrophysics Data System (ADS)

    Tunwal, M.; Mulchrone, K. F.; Meere, P. A.

    2017-12-01

    Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)

  20. Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets Basin, Ukraine).

    PubMed

    van Hinsbergen, Douwe J J; Abels, Hemmo A; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G; Geluk, Mark; Stephenson, Randell A

    2015-03-20

    The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential.

  1. Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin, Ukraine)

    PubMed Central

    van Hinsbergen, Douwe J. J.; Abels, Hemmo A.; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G.; Geluk, Mark; Stephenson, Randell A.

    2015-01-01

    The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential. PMID:25791400

  2. Derivation of S and Pb in phanerozoic intrusion-related metal deposits from neoproterozoic sedimentary pyrite, Great Basin, United States

    USGS Publications Warehouse

    Vikre, Peter G.; Poulson, S.R.; Koenig, Alan E.

    2011-01-01

    The thick (≤8 km), regionally extensive section of Neoproterozoic siliciclastic strata (terrigenous detrital succession, TDS) in the central and eastern Great Basin contains sedimentary pyrite characterized by mostly high δ34S values (−11.6 to 40.8‰, >70% exceed 10‰; 51 analyses) derived from reduction of seawater sulfate, and by markedly radiogenic Pb isotopes (207Pb/204Pb >19.2; 15 analyses) acquired from clastic detritus eroded from Precambrian cratonal rocks to the east-southeast. In the overlying Paleozoic section, Pb-Zn-Cu-Ag-Au deposits associated with Jurassic, Cretaceous, and Tertiary granitic intrusions (intrusion-related metal deposits) contain galena and other sulfide minerals with S and Pb isotope compositions similar to those of TDS sedimentary pyrite, consistent with derivation of deposit S and Pb from TDS pyrite. Minor element abundances in TDS pyrite (e.g., Pb, Zn, Cu, Ag, and Au) compared to sedimentary and hydrothermal pyrite elsewhere are not noticeably elevated, implying that enrichment in source minerals is not a precondition for intrusion-related metal deposits.Three mechanisms for transferring components of TDS sedimentary pyrite to intrusion-related metal deposits are qualitatively evaluated. One mechanism involves (1) decomposition of TDS pyrite in thermal aureoles of intruding magmas, and (2) aqueous transport and precipitation in thermal or fluid mixing gradients of isotopically heavy S, radiogenic Pb, and possibly other sedimentary pyrite and detrital mineral components, as sulfide minerals in intrusion-related metal deposits. A second mechanism invokes mixing and S isotope exchange in thermal aureoles of Pb and S exsolved from magma and derived from decomposition of sedimentary pyrite. A third mechanism entails melting of TDS strata or assimilation of TDS strata by crustal or mantle magmas. TDS-derived or assimilated magmas ascend, decompress, and exsolve a mixture of TDS volatiles, including isotopically heavy S and

  3. Tectonic evolution of the Neoproterozoic Tandilia sedimentary cover, Argentina: New evidence of contraction and extensional events in the southwest Gondwana margin

    NASA Astrophysics Data System (ADS)

    Hernández, Mariano; Arrouy, María Julia; Scivetti, Nicolás; Franzese, Juan R.; Canalicchio, José M.; Poiré, Daniel G.

    2017-11-01

    At the northwestern portion of the Tandilia System, a detailed structural analysis on the Precambrian sedimentary units exposed in the quarries of the Olavarría-Sierras Bayas area was carried out. These units exhibit deformational structures of several scales, from centimeters to hundreds of meters. The hundreds of meters scale involves E-W- and NW-SE-trending normal faults and NW-SE- and NE-SW-trending contractional folds. The centimeters to meters scale involves veins, joints, normal faults, shear fractures and stylolites, with a prevailing ∼ E-W to NW-SE trend. All these structures were formed by two major tectonic events. The first was the folding event at ∼580 Ma, with NNE-SSW to NE-SW and NW-SE direction of contraction. The second was the extensional faulting event, given by the widespread NNE-SSW-directed extension event during the Atlantic Ocean opening (Jurassic-Cretaceous). Both major events would have been controlled by the reactivation of basement anisotropies. These major tectonic events controlled the deformation of the Precambrian sedimentary cover of the Tandilia system, leading to an economically important aspect in the mining development of the Olavarría-Sierras Bayas area.

  4. Subglacial sedimentary basin characterization of Wilkes Land, East Antarctica via applied aerogeophysical inverse methods

    NASA Astrophysics Data System (ADS)

    Frederick, B. C.; Gooch, B. T.; Richter, T.; Young, D. A.; Blankenship, D. D.; Aitken, A.; Siegert, M. J.

    2013-12-01

    Topography, sediment distribution and heat flux are all key boundary conditions governing the stability of the East Antarctic ice sheet (EAIS). Recent scientific scrutiny has been focused on several large, deep, interior EAIS basins including the submarine basal topography characterizing the Aurora Subglacial Basin (ASB). Numerical ice sheet models require accurate deformable sediment distribution and lithologic character constraints to estimate overall flow velocities and potential instability. To date, such estimates across the ASB have been derived from low-resolution satellite data or historic aerogeophysical surveys conducted prior to the advent of GPS. These rough basal condition estimates have led to poorly-constrained ice sheet stability models for this remote 200,000 sq km expanse of the ASB. Here we present a significantly improved quantitative model characterizing the subglacial lithology and sediment in the ASB region. The product of comprehensive ICECAP (2008-2013) aerogeophysical data processing, this sedimentary basin model details the expanse and thickness of probable Wilkes Land subglacial sedimentary deposits and density contrast boundaries indicative of distinct subglacial lithologic units. As part of the process, BEDMAP2 subglacial topographic results were improved through the additional incorporation of ice-penetrating radar data collected during ICECAP field seasons 2010-2013. Detailed potential field data pre-processing was completed as well as a comprehensive evaluation of crustal density contrasts based on the gravity power spectrum, a subsequent high pass data filter was also applied to remove longer crustal wavelengths from the gravity dataset prior to inversion. Gridded BEDMAP2+ ice and bed radar surfaces were then utilized to establish bounding density models for the 3D gravity inversion process to yield probable sedimentary basin anomalies. Gravity inversion results were iteratively evaluated against radar along-track RMS deviation and

  5. Determining the Accuracy of Paleomagnetic Remanence and High-Resolution Chronostratigraphy for Sedimentary Rocks using Rock Magnetics

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.

    2017-12-01

    The talk will consider two broad topics in rock magnetism and paleomagnetism: the accuracy of paleomagnetic remanence and the use of rock magnetics to measure geologic time in sedimentary sequences. The accuracy of the inclination recorded by sedimentary rocks is crucial to paleogeographic reconstructions. Laboratory compaction experiments show that inclination shallows on the order of 10˚-15˚. Corrections to the inclination can be made using the effects of compaction on the directional distribution of secular variation recorded by sediments or the anisotropy of the magnetic grains carrying the ancient remanence. A summary of all the compaction correction studies as of 2012 shows that 85% of sedimentary rocks studied have enjoyed some amount of inclination shallowing. Future work should also consider the effect of grain-scale strain on paleomagnetic remanence. High resolution chronostratigraphy can be assigned to a sedimentary sequence using rock magnetics to detect astronomically-forced climate cycles. The power of the technique is relatively quick, non-destructive measurements, the objective identification of the cycles compared to facies interpretations, and the sensitivity of rock magnetics to subtle changes in sedimentary source. An example of this technique comes from using rock magnetics to identify astronomically-forced climate cycles in three globally distributed occurrences of the Shuram carbon isotope excursion. The Shuram excursion may record the oxidation of the world ocean in the Ediacaran, just before the Cambrian explosion of metazoans. Using rock magnetic cyclostratigraphy, the excursion is shown to have the same duration (8-9 Myr) in southern California, south China and south Australia. Magnetostratigraphy of the rocks carrying the excursion in California and Australia shows a reversed to normal geomagnetic field polarity transition at the excursion's nadir, thus supporting the synchroneity of the excursion globally. Both results point to a

  6. Relating Gestures and Speech: An analysis of students' conceptions about geological sedimentary processes

    NASA Astrophysics Data System (ADS)

    Herrera, Juan Sebastian; Riggs, Eric M.

    2013-08-01

    Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture (e.g. giving directions, or describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image schemas as a source of concept representations for students' learning of sedimentary processes. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures about four core geological ideas that involve sea-level change and sediment deposition. The study included 25 students from three US universities. Participants were enrolled in upper-level undergraduate courses on sedimentology and stratigraphy. We used semi-structured interviews for data collection. Our gesture coding focused on three types of gestures: deictic, iconic, and metaphoric. From analysis of video recorded interviews, we interpreted image schemas in gestures and verbal reports. Results suggested that students attempted to make more iconic and metaphoric gestures when dealing with abstract concepts, such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns including time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary systems. Our research also supports the hypothesis that gestures provide an independent and non-linguistic indicator of image schemas that shape conceptual development, and also play a role in the construction and communication of complex spatial and temporal concepts in the geosciences.

  7. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    NASA Astrophysics Data System (ADS)

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  8. Benthic foraminiferal response to sedimentary disturbance in the Capbreton canyon (Bay of Biscay, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Duros, P.; Silva Jacinto, R.; Dennielou, B.; Schmidt, S.; Martinez Lamas, R.; Gautier, E.; Roubi, A.; Gayet, N.

    2017-02-01

    Living (Rose Bengal stained) and dead benthic foraminifera were investigated at 6 deep-sea sites sampled in the Capbreton canyon area (Bay of Biscay, France). Three sites were located along the canyon axis at 301 m, 983 m and 1478 m and 3 stations were positioned on adjacent terraces at 251 m, 894 m and 1454 m. Sedimentary features indicate that frequent sedimentary disturbances of different magnitudes occur along the Capbreton canyon axis and adjacent terraces. Such environmental conditions cause the presence of very particular benthic environments. Along the 6 studied sites, different foraminiferal responses to various sedimentary patterns are observed revealing the complexity of this canyon environment. Some sites (Gitan 3 (canyon axis), Gitan 5 (canyon axis) and Gitan 6 (terrace)) are characterized by moderate to low standing stocks and low diversity and are mainly dominated by pioneer taxa such as Fursenkoina brady, Reophax dentaliniformis and Technitella melo suggesting a recent response to turbidite deposits recorded at these sites. Others sites (Gitan 1 and Gitan 2) show extremely high standing stocks and are mainly dominated by the opportunistic Bolivina subaenariensis and Bulimina marginata. Such faunal characteristics belonging to a more advanced stage of ecosystem colonization indicates strongly food-enriched sediment but extremely unstable conditions. Moderate standing stocks and diverse assemblage composed of species such as Uvigerina mediterranea and U. peregrina has only been observed at the terrace site Gitan 4. More stable sedimentary conditions recorded at this terrace seem to be suitable to the development of a dense and diverse foraminiferal community. Numerous neritic allochtonous species were observed in the dead foraminiferal fauna. These allochthonous species mainly originate from shelf areas (<60 m).

  9. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Nilsen, E.B.; Delaney, M.L.

    2005-01-01

    This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.

  10. A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity

    NASA Astrophysics Data System (ADS)

    Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.

    2018-06-01

    A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.

  11. Geologic Criteria for the Assessment of Sedimentary Exhalative (Sedex) Zn-Pb-Ag Deposits

    USGS Publications Warehouse

    Emsbo, Poul

    2009-01-01

    Sedex deposits account for more than 50 percent of the world's zinc and lead reserves and furnish more than 25 percent of the world's production of these two metals. This report draws on previous syntheses as well as on topical studies of deposits in sedex basins to determine the characteristics and processes that produced sedex deposits. This analysis also uses studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins and mass balance constraints to identify the hydrothermal processes that are required to produce sedex deposits. This report demonstrates how a genetic model can be translated into geologic criteria that can be used in the U.S. Geological Survey National Assessments for sedex zinc-lead-silver deposits to define permissive tracts, assess the relative prospectivity of permissive tracts, and map favorability within permissive tracts.

  12. 87Sr/86Sr ratios in some eugeosynclinal sedimentary rocks and their bearing on the origin of granitic magma in orogenic belts

    USGS Publications Warehouse

    Peterman, Z.E.; Hedge, C.E.; Coleman, R.G.; Snavely, P.D.

    1967-01-01

    Rb and Sr contents and 87Sr/86Sr values were determined for samples of eugeosynclinal sedimentary rocks, mostly graywackes, from Oregon and California. These data are compatible with the theory of anataxis of eugeosynclinal sedimentary rocks in orogenic belts to produce granitic magmas provided that the melting occurs within several hundreds of m.y. after sedimentation. The low (87Sr/86Sr)0 values of the eugeosynclinal sedimentary rocks are related to the significant amounts of volcanogenic detritus present which probably were originally derived from the mantle. ?? 1967.

  13. Recent benthic foraminifera and sedimentary facies distribution of the Abu Dhabi (United Arab Emirates) coastline

    NASA Astrophysics Data System (ADS)

    Fiorini, Flavia; Lokier, Stephen W.

    2014-05-01

    The distribution of benthic foraminifera and sedimentary facies from Recent coastline environments adjacent to the coastline of Abu Dhabi (UAE) was studied in detail with the aim to: 1) provide reliable analogs for understanding and interpreting the depositional environment of ancient shallow-marine sediments from the UAE; 2) assess any modifications in the distribution of benthic environments and sedimentary facies in an area affected by significant anthropogenic activities - particular construction and land reclamation. A total of 100 sea-floor sediment samples were collected in different shallow-marine sedimentary environments (nearshore shelf, beach-front, channels, ooid shoals, lagoon and mangals) close to the coastline of Abu Dhabi Island. Where possible, we revisited the sampling sites used in several studies conducted in the middle of last century (prior to any significant anthropogenic activities) to assess temporal changes in Recent benthic foraminifera and sedimentary facies distribution during the last 50 years. Five foraminiferal assemblages were recognized in the studied area. Species with a porcellaneous test mainly belonging to the genera Quinqueloculina, Triloculina, Spiroloculina, Sigmoilinita are common in all studied areas. Larger benthic foraminifera Peneroplis and Spirolina are particularly abundant in samples collected on seaweed. Hyaline foraminifera mostly belonging to the genera Elphidium, Ammonia, Bolivina and Rosalina are also common together with Miliolidae in the nearshore shelf and beach front. Agglutinated foraminifera (Clavulina, Textularia, Ammobaculites and Reophax) are present in low percentages. The species belonging to the genera Ammobaculites and Reophax are present only in the finest grain samples particularly in lagoons and mangal environments and have not been reported previously in the studied area. The majority of the ooid shoal sediments, the coarser sediments of the beach-front and samples collected in dredged channels

  14. Sedimentary records of metal contamination and eutrophication in Jinhae-Masan Bay, Korea.

    PubMed

    Lim, Dhong-il; Jung, Hoi Soo; Kim, Kyung Tae; Shin, Hyeon Ho; Jung, Seung Won

    2012-11-01

    Historical environmental pollution in a semi-enclosed coastal bay was investigated using high-resolution sedimentary records for C(org), N(tot), CaCO(3,) δ(13)C, and δ(15)N signatures, and trace metals. A temporal increase in organic matter might have been attributable to enhanced primary marine productivity, presumably caused by increased anthropogenic nutrient inputs in the semi-enclosed, eutrophic system. Metal accumulation occurred in three stages: a preindustrial stage before the 1930s with natural concentrations of metals, an industrialization stage (1940s-1970s) with the highest concentrations, and a postindustrial stage (post 1970s) with stable or decreasing concentrations. However, Hg exhibited a different accumulation history, with concentrations increasing in the early 1900s and accelerating after the 1920s, probably in response to coal burning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Sedimentary evolution of the Pliocene and Pleistocene Ebro margin, northeastern Spain

    USGS Publications Warehouse

    Alonso, B.; Field, M.E.; Gardner, J.V.; Maldonado, A.

    1990-01-01

    The Pliocene and Pleistocene deposits of the Spanish Ebro margin overlie a regional unconformity and contain a major disconformity. These unconformities, named Reflector M and Reflector G, mark the bases of two seismic sequences. Except for close to the upper boundary where a few small channel deposits are recognized, the lower sequence lacks channels. The upper sequence contains nine channel-levee complexes as well as base-of-slope aprons that represent the proximal part of the Valencia turbidite system. Diverse geometries and variations in seismic units distinguish shelf, slope, base-of-slope and basin-floor facies. Four events characterize the late Miocene to Pleistocene evolution of the Ebro margin: (a) formation of a paleodrainage system and an extensive erosion-to-depositional surface during the latest Miocene (Messinian), (b) deposition of hemipelagic units during the early Pliocene, (c) development of canyons during the late Pliocene to early Pleistocene, and (d) deposition of slope wedges, channel-levee complexes, and base-of-slope aprons alternating with hemipelagic deposition during the Pleistocene. Sea-level fluctuations influenced the evolution of the sedimentary sequences of the Ebro margin, but the major control was the sediment supply from the Ebro River. ?? 1990.

  16. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Feng, Youliang; Jiang, Shu; Wang, Chunfang

    2015-06-01

    The Lower Jurassic Junggar Basin is a low-accommodation basin in northwestern China. Because of low subsidence rates and a warm, wet climate, deposits of the Central subbasin of the Junggar Basin formed from fluvial, deltaic, shallow lake facies. Sequence stratigraphy and sedimentary systems of the Lower Jurassic members of the Sangonghe Formation (J1s) were evaluated by observing cores, interpreting wireline logs and examining seismic profiles. Two third-order sequences were recognized in the strata. The distribution of the sedimentary systems in the systems tracts shows that tectonic movement, paleorelief, paleoclimate and changes in lake level controlled the architecture of individual sequences. During the development of the lowstand systems tract (LST), the intense structural movement of the basin resulted in a significant fall in the water level in the lake, accompanied by rapid accommodation decrease. Braided rivers and their deltaic systems were also developed in the Central Junggar Basin. Sediments carried by braided rivers were deposited on upward slopes of the paleorelief, and braid-delta fronts were deposited on downward slopes. During the transgressive systems tract (TST), the tectonic movement of the basin was quiescent and the climate was warm and humid. Lake levels rose and accommodation increased quickly, shoal lines moved landward, and shore- to shallow-lake deposits, sublacustrine fans and deep-lake facies were deposited in shallow- to deep-lake environments. During the highstand systems tract (HST), the accommodation no longer increased but sediment supply continued, far exceeding accommodation. HST deposits slowly formed in shallow-lake to meandering river delta-front environments. Relatively low rates of structural subsidence and low accommodation resulted in coarse-grained successions that were fining upward. Deposits were controlled by structural movement and paleorelief within the LST to TST deposits in the Central subbasin. Fine- to medium

  17. Pre-lithification tectonic foliation development in a clastic sedimentary rock sequence from SW Ireland

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David

    2017-04-01

    The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.

  18. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    USGS Publications Warehouse

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  19. Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Rawson, Harriet; Van Daele, Maarten; Moernaut, Jasper; Abarzúa, Ana M.; Heirman, Katrien; Bertrand, Sébastien; Pyle, David M.; Mather, Tamsin A.; De Batist, Marc; Naranjo, Jose-Antonio; Moreno, Hugo

    2016-04-01

    Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42°S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude ≥ 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordón Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaitén volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial.

  20. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to

  1. Geodynamic evolution and sedimentary infill of the northern Levant Basin: A source to sink-perspective

    NASA Astrophysics Data System (ADS)

    Hawie, N.

    2013-12-01

    Nicolas Hawie a,b,c (nicolas.hawie@upmc.fr) Didier Granjeon c (didier.granjeon@ifpen.fr) Christian Gorini a,b (christian.gorini@upmc.fr) Remy Deschamps c (remy.deschamps@ifpen.fr) Fadi H. Nader c (fadi-henri.nader@ifpen.fr) Carla Müller Delphine Desmares f (delphine.desmares@upmc.fr) Lucien Montadert e (lucien.montadert@beicip.com) François Baudin a (francois.baudin@upmc.fr) a UMR 7193 Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie/ Univ. Paris 06, case 117. 4, place Jussieu 75252 Paris Cedex 05, France b iSTEP, UMR 7193, CNRS, F-75005, Paris, France c IFP Energies nouvelles, 1-4 avenue du Bois Préau 92852 Rueil Malmaison Cedex, France d UMR 7207, Centre de Recherche sur la Paleobiodiversité et les Paleoenvironnements. Université Pierre et Marie Curie, Tour 46-56 5ème. 4, place Jussieu 75252 Paris Cedex 05, France e Beicip Franlab, 232 Av. Napoléon Bonaparte, 95502 Rueil-Malmaison, France Sedimentological and biostratigraphic investigations onshore Lebanon coupled with 2D offshore reflection seismic data allowed proposing a new Mesozoic-Present tectono-stratigraphic framework for the northern Levant Margin and Basin. The seismic interpretation supported by in-depth facies analysis permitted to depict the potential depositional environments offshore Lebanon as no well has yet been drilled. The Levant region has been affected by successive geodynamic events that modified the architecture of its margin and basin from a Late Triassic to Middle Jurassic rift into a Late Cretaceous subduction followed by collision and Miocene-Present strike slip motion. The interplay between major geodynamic events as well as sea level fluctuations impacted on the sedimentary infill of the basin. During Jurassic and Cretaceous, the Levant Margin is dominated by the aggradation of a carbonate platform while deepwater mixed-systems prevailed in the basin. During the Oligo-Miocene, three major sedimentary pathways are expected to drive important

  2. Modern and Fossil Raindrop Impressions as a Lesson in Interpretation of Ancient Sedimentary Features.

    ERIC Educational Resources Information Center

    Pardi, Richard R.; Brickner, Dorene

    1990-01-01

    Procedures for duplicating fossil raindrop impressions are presented. The use of modern and fossil imprints as the basis for qualitative and quantitative lessons in the interpretation of ancient sedimentary features is discussed. (CW)

  3. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  4. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE PAGES

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.; ...

    2017-03-09

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  5. A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration.

    PubMed

    Goovaerts, P; Albuquerque, Teresa; Antunes, Margarida

    2016-11-01

    This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R 2 =0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.

  6. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  7. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    NASA Astrophysics Data System (ADS)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  8. Sedimentary response to halfgraben dipslope faults evolution -Billefjorden Trough, Svalbard.

    NASA Astrophysics Data System (ADS)

    Smyrak-Sikora, Aleksandra; Kristensen, Jakob B.; Braathen, Alvar; Johannessen, Erik P.; Olaussen, Snorre; Sandal, Geir; Stemmerik, Lars

    2017-04-01

    Fault growth and linkage into larger segments has profound effect on the sedimentary architecture of rift basins. The uplifted Billefjorden Through located in central Spitsbergen is an excellent example of half-graben basin development. Detailed sedimentological and structural investigations supported by helicopter and ground base lidar scans along with photogrammetry analysis have been used to improve our understanding of the sedimentary response to faulting and along strike variations in footwall uplift and hanging wall subsidence. The early syn-rift basin fill, the Serpukhovian to Bashkirian Hultberget Formation and the Bashkirian Ebbaelven Member consists of fluvial to deltaic sandstones with minor marine incursions. During this early stage tens to hundred- meters-scale syn-tectonic faults disrupted the dipslope, and created local hanging wall depocentres where sediments were arrested. Changes in fluvial drainage pattern, development of small lacustrine basins along the faults, and the sharp based boundaries of some facies associations are interpreted as response to activity along these, mostly antithetic faults. The basin fill of the late syn-rift stage is composed of shallow marine to tidal mixed evaporite -carbonate facies in the hanging wall i.e. the Bashkirian Trikolorfjellet Member and the Moscovian Minkenfjellet Formation. These sediments interfinger with thick alluvial fan deposits outpouring from relay ramps on the master fault i.e. drainage from the footwall. The carbonate-evaporite cycles deposited on the hanging wall responded to both the eustatic sea level variations and tectonic movements in the rift basin. Intra-basinal footwall uplift of the dipslope controlled development of an internal unconformity and resulted in dissolution of the gypsum to produce stratiform breccia. In contrast thick gypsum-rich subbasins are preserved locally in hanging wall positions where they were protected from the erosion. The syn rift basin fill is capped by post

  9. Contaminant behavior in fractured sedimentary rocks: Seeing the fractures that matter

    NASA Astrophysics Data System (ADS)

    Parker, B. L.

    2017-12-01

    High resolution spatial sampling of continuous cores from sites contaminated with chlorinated solvents over many decades was used as a strategy to quantify mass stored in low permeability blocks of rock between hydraulically active fractures. Given that core and geophysical logging methods cannot distinguish between hydraulically active fractures and those that do not transmit water, these samples were informed by careful logging of visible fracture features in the core with sample spacing determined by modelled diffusion transport distances given rock matrix properties and expected ages of contamination. These high resolution contaminant concentration profiles from long term contaminated sites in sedimentary rock showed evidence of many more hydraulically active fractures than indicated by the most sophisticated open-hole logging methods. Fracture density is an important attribute affecting fracture connectivity and influencing contaminant plume evolution in fractured porous sedimentary rock. These contaminant profile findings were motivation to find new borehole methods to directly measure hydraulically active fracture occurrence and flux to corroborate the long term "DNAPL tracer experiment" results. Improved sensitivity is obtained when boreholes are sealed using flexible fabric liners (FLUTeTM technology) and various sensor options are deployed in the static water columns used to inflate these liners or in contact with the borehole wall behind the liners. Several methods rely on high resolution temperature measurements of ambient or induced temperature variability such as temperature vector probes (TVP), fiber optic cables for distributed temperature sensing (DTS), both using active heat; packer testing, point dilution testing and groundwater flux measurements between multiple straddle packers to account for leakage. In all cases, numerous hydraulically active fractures are identified over 100 to 300 meters depth, with a large range in transmissivities and

  10. Sedimentary processes on the Storfjorden trough-mouth fan during last deglaciation phase: the role of subglacial meltwater plumes on continental margin sedimentation

    NASA Astrophysics Data System (ADS)

    Lucchi, Renata G.; Camerlenghi, Angelo; Colmenero-Hidalgo, Elena; Sierro, Francisco J.; Bárcena, Maria Angeles; Flores, José-Abel; Urgeles, Roger; Macrı, Patrizia; Sagnotti, Leonardo; Caburlotto, Andrea

    2010-05-01

    The continental margin of the Southern Storfjorden trough-mouth fan was investigated within the SVAIS project (BIO Hesperides cruise, August 2007) as a Spanish contribution to IPY Activity N. 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). The objectives were to investigate the glacially-dominated late-Neogene-Quaternary sedimentary architecture of the NW Barents Sea continental margin and reconstruct its sedimentary system in response to natural climate change. The paleo-ice streams in Storfjorden had a small catchment area draining ice from the southern Spitsbergen and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. Here ground truthing recovered the last few thousands years sedimentary sequence thought to represent last deglaciation phase. Detailed palaeostratigraphic investigations together with paleomagnetic and rock magnetic analyses and AMS dating define the constraints for high-resolution inter-core correlation and dating. Most of the cores contain at the base gravity-mass deposits including debris flows and over-consolidated glacigenic diamicton. Mass deposits are overlain by an oxidized interval originated at the release and sink of fresh, cold and oxygenated melt-waters at the inception of the deglaciation phase. On the upper slope the oxidized interval is overlain by several meters of finely-stratified sediments composed of sandy-silt layers cyclically recurring within finer-grained laminated silty-clay sediments. Textural and compositional analyses suggest preferential deposition by settling from meltwater sediment-laden plumes (plumites) occurred during deglaciation with coarser layers representing episodes of subglacial meltwater discharge (glacial hyperpycnal flows) accompanying the ice streams retreat. The laminated sequence is truncated at uppermost part by a more recent

  11. Supercritical sedimentary structures and bedforms and criteria for recognition in the field: insights from the Middle Eocene deep-marine Morillo and Guaso systems, Ainsa Basin, Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Torley, John; Pickering, Kevin

    2017-04-01

    It has long been acknowledged that for most submarine slopes with gradients > 0.5, common to many deep-water environments, they should contain abundant evidence of supercritical flows and their deposits. However, it is common for deep-marine sands/sandstones to be routinely modelled using the Bouma (1962) sequence for turbidites. Recently, the importance of supercritical flows has been highlighted from seafloor observations, with numerical and physical experiments. Such experiments have produced previously unrecognised bedforms which fail to be interpreted adequately by Bouma's model, including antidunes, chutes-and-pools, and cyclic steps. Fieldwork in the Middle Eocene Ainsa Basin, Spanish Pyrenees, has been undertaken in the Morillo and Guaso systems of the Upper Hecho Group. Approximately 5,000 beds were measured and documented in detail, e.g., grain size, sedimentary structures, bedforms and facies. Collectively, this data can be used to understand supercritical versus subcritical flow. The relative importance of supercritical flow can then be compared and contrasted within individual ancient deep-marine systems. The Morillo System is relatively coarse-grained, compared with the Guaso System. The results of this research contribute to an improved understanding of the processes in deep-marine systems, and directly benefit the hydrocarbon industry by providing better constraints to predict deep-water reservoir composition and architecture.

  12. Low frequency of endospore-specific genes in subseafloor sedimentary metagenomes.

    PubMed

    Kawai, Mikihiko; Uchiyama, Ikuo; Takami, Hideto; Inagaki, Fumio

    2015-04-01

    Spore formation is considered to be one of the microbial strategies for long-term survival in subseafloor sedimentary habitats. However, our knowledge of the genetic and physiological characteristics of subseafloor microbes is limited. Here, we studied the distribution and frequency of genes that are related to endospore formation in 10 subseafloor sedimentary metagenomes from Site C9001 off Japan and Site 1229 off Peru. None or very low frequencies of endospore-specific genes (e.g. dpaA, dpaB, sspA, spo0A, spoIIGA, spoIIM, spoIIIAB, spoIVA, spoIVB, yabP, yunB, spoVM) were observed in the subseafloor metagenomes. Based on the number of universally conserved single copy genes, the frequency ratio of putative endospore-formers was estimated to be < 10%, which is consistent with the frequency of Clostridia-derived genomes (2-4%) but is lower than previous estimates based on the concentration of dipicolinic acid. Conceivable explanations for this discrepancy are as follows: the efficiency of lysis and DNA extraction of subseafloor endospore cells may have been lower than those of vegetative cells, conversion factor of dipicolinic acid content per cell may differ, and/or sporulation-related genes and other functional strategies for long-term survival in the deep subseafloor biosphere are evolutionarily distinct from known spore-forming gene repertoires. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Predicted sedimentary record of reflected bores

    USGS Publications Warehouse

    Higman, B.; Gelfenbaum, G.; Lynett, P.; Moore, A.; Jaffe, B.

    2007-01-01

    Where a steep slope blocks an inrushing tsunami, the tsunami commonly reverses direction as a reflected bore. A simple method for relating vertical and horizontal variation in sediment size to output from numerical models of depth-averaged tsunami flow yields predictions about the sedimentary record of reflected bores: 1. Near the reflector, a abrupt slowing of the flow as the reflected bore passes is recorded by a normally graded layer that drapes preexisting topography. 2. At intermediate distances from the reflector, the deposit consists of a single normally graded bed deposited preferentially in depressions, possibly including a sharp fine-over-coarse contact. This contact records a brief period of erosion as the front of the reflected bore passes. 3. Far seaward of the reflector, grading in the deposit includes two distinct normally graded beds deposited preferentially in depressions separated by an erosional unconformity. The second normally graded bed records the reflected bore.

  14. Complex Rayleigh Waves Produced by Shallow Sedimentary Basins and their Potential Effects on Mid-Rise Buildings

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.

    2017-12-01

    Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of

  15. Provenance and paleo-weathering of Tertiary accretionary prism-forearc sedimentary deposits of the Andaman Archipelago, India

    NASA Astrophysics Data System (ADS)

    Awasthi, Neeraj

    2017-12-01

    In order to understand the provenance and tectono-sedimentary processes occurring in the Andaman Subduction Zone (ASZ), the Late Cretaceous to Oligocene sedimentary records from the Andaman Islands have been studied. These sedimentary records are considered to have preserved the history of the India-Asia collision, evolution of the Himalayas, climatic development and palaeo-drainage reorganizations on the Indian and Asian plates. About 47 sandstones and mudstones (shales and siltstones) samples were analyzed for whole rock major, trace, and rare earth element compositions. The geochemical results suggest mixing of sediments derived from the mafic igneous sources comprising local ophiolites and volcanic arc of the ASZ and an older Archean to Proterozoic age felsic cratonic source with compositions similar to average granodiorite or upper continental crustal sources. The compositions were dominated by sources of the mafic arc during deposition of the Mithakhari Group, whereas they were controlled by continental sources during deposition of the Andaman Flysch Group. The Hope Town Conglomerate unit of the Mithakhari Group was mainly derived from weathering and erosion of the subaerially exposed local ophiolite thrust sheets, whereas its Namunagarh unit contains significant detritus from volcanic arcs. The Andaman Flysch turbidites were deposited with a greater supply of sediments from first-cycle active continental margin sources probably located in the Tibetan and eastern Myanmar region and recycled quartzose sedimentary sources within the nascent Himalayas. The sediments supplied to both the Mithakhari and the Andaman Flysch Groups were characterized by varying values of CIA, PIA and W. These variable values were either due to non-steady state weathering conditions in the sources or the changing climatic conditions owing to the motion of Indian plate with reference to the equator. The uniformly high CIA and W values in the Andaman Flysch rocks can be related to high

  16. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration

    PubMed Central

    Goovaerts, P.; Albuquerque, Teresa; Antunes, Margarida

    2015-01-01

    This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R2=0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold’s paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization. PMID:27777638

  18. Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system

    NASA Astrophysics Data System (ADS)

    Picard, Michel; Schneider, Jean-Luc; Boudon, Georges

    2006-12-01

    Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.

  19. Engaging a Diverse Group of Students with a Broad Spectrum of Geological Experience: The CSUN Catalyst Approach and a MARGINS Application

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Vazquez, J.; Yule, J. D.; Simila, G.

    2007-12-01

    Imagine the challenge of teaching a one-unit Geoscience course composed of a diverse mix of first-year graduate majors, senior to freshman majors, and high school students with little earth science background. With the help of Geodiversity grants from NSF (CSUN Catalyst program), we have developed a successful environment for learning and mentorship via a series of short (2-3 week) inquiry-based exercises that emphasize teamwork. Each exercise is organized around research projects headed by Catalyst Faculty members: Northridge Earthquake, San Andreas Fault System, Yellowstone and Long Valley supervolcanoes, and New Zealand MARGIN geology. After participating in the course, students conduct independent research within one of four research groups as part of their MS or BS theses including summer research experiences. One exercise, constructed as a version of "The Oil Game," is meant to familiarize students with MARGINS Source-to-Sink focus (Waipaoa Sedimentary System, North Island) and alternate focus (Bounty Fan, South Island) sites in New Zealand. Students are divided into rival petroleum companies (Tiger Oil and Flower Petroleum) and asked to evaluate offshore areas for an impending government lease sale and to provide the rationale for competitive sealed bids that they recommend in a final presentation to management (Catalyst Faculty). To accomplish this they are supplied with reference materials on onshore geology and known petroleum production, samples of New Zealand rock units and stream sediments, and a limited budget. In addition to geological parameters (source rocks, seals, reservoir rocks, trapping mechanisms) they must also take into account environmental, economic and infrastructure concerns. Other projects included documenting volcanic hazards around Long Valley caldera and evaluating seismic hazards of local high school sites. The tiered structure of the projects perhaps best serves the undergraduate participants, who benefit from being mentored by

  20. Influences of Sedimentary Environments and Volcanic Sources on Diagenetic Alteration of Volcanic Tuffs in South China.

    PubMed

    Gong, Nina; Hong, Hanlie; Huff, Warren D; Fang, Qian; Bae, Christopher J; Wang, Chaowen; Yin, Ke; Chen, Shuling

    2018-05-16

    Permian-Triassic (P-Tr) altered volcanic ashes (tuffs) are widely distributed within the P-Tr boundary successions in South China. Volcanic altered ashes from terrestrial section-Chahe (CH) and marine section-Shangsi (SS) are selected to further understand the influence of sedimentary environments and volcanic sources on diagenetic alterarion on volcanic tuffs. The zircon 206 Pb/ 238 U ages of the corresponding beds between two sections are almost synchronous. Sedimentary environment of the altered tuffs was characterized by a low pH and did not experience a hydrothermal process. The dominant clay minerals of all the tuff beds are illite-smectite (I-S) minerals, with minor chlorite and kaolinite. I-S minerals of CH (R3) are more ordered than SS (R1), suggesting that CH also shows a higher diagenetic grade and more intensive chemical weathering. Besides, the nature of the volcanism of the tuff beds studied is derived from different magma sources. The clay mineral compositions of tuffs have little relation with the types of source volcanism and the depositional environments. Instead, the degree of the mixed-layer clay minerals and the REE distribution are mainly dependent upon the sedimentary environments. Thus, the mixed-layer clay minerals ratio and their geochemical index can be used as the paleoenvironmental indicator.

  1. Strong motion from surface waves in deep sedimentary basins

    USGS Publications Warehouse

    Joyner, W.B.

    2000-01-01

    It is widely recognized that long-period surface waves generated by conversion of body waves at the boundaries of deep sedimentary basins make an important contribution to strong ground motion. The factors controlling the amplitude of such motion, however, are not widely understood. A study of pseudovelocity response spectra of strong-motion records from the Los Angeles Basin shows that late-arriving surface waves with group velocities of about 1 km/sec dominate the ground motion for periods of 3 sec and longer. The rate of amplitude decay for these waves is less than for the body waves and depends significantly on period, with smaller decay for longer periods. The amplitude can be modeled by the equation log y = f(M, RE) + c + bRB where y is the pseudovelocity response, f(M, RE) is an attenuation relation based on a general strong-motion data set, M is moment magnitude, RE is the distance from the source to the edge of the basin, RB is the distance from the edge of the basin to the recording site, and b and c are parameters fit to the data. The equation gives values larger by as much as a factor of 3 than given by the attenuation relationships based on general strong-motion data sets for the same source-site distance. It is clear that surface waves need to be taken into account in the design of long-period structures in deep sedimentary basins. The ground-motion levels specified by the earthquake provisions of current building codes, in California at least, accommodate the long-period ground motions from basin-edge-generated surface waves for periods of 5 sec and less and earthquakes with moment magnitudes of 7.5 or less located more than 20 km outside the basin. There may be problems at longer periods and for earthquakes located closer to the basin edge. The results of this study suggest that anelastic attenuation may need to be included in attempts to model long-period motion in deep sedimentary basins. To obtain better data on surface waves in the future

  2. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    NASA Astrophysics Data System (ADS)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  3. Late Holocene sedimentary environments of south San Francisco Bay, California, illustrated in gravity cores

    USGS Publications Warehouse

    Woodrow, Donald L.; Fregoso, Theresa A.; Wong, Florence L.; Jaffe, Bruce E.

    2014-01-01

    Data are reported here from 51 gravity cores collected from the southern part of San Francisco Bay by the U.S. Geological Survey in 1990. The sedimentary record in the cores demonstrates a stable geographic distribution of facies and spans a few thousand years. Carbon-14 dating of the sediments suggests that sedimentation rates average about 1 mm/yr. The geometry of the bay floor and the character of the sediment deposited have remained about the same in the time spanned by the cores. However, the sedimentary record over periods of centuries or decades is likely to be much more variable. Sediments containing a few bivalve shells and bivalve or oyster coquinas are most often found west of the main channel and near the San Mateo Bridge. Elsewhere in the south bay, shells are rare except in the southernmost reaches where scattered gastropod shells are found.

  4. The integration of gravity, magnetic and seismic data in delineating the sedimentary basins of northern Sinai and deducing their structural controls

    NASA Astrophysics Data System (ADS)

    Selim, El Sayed Ibrahim

    2016-01-01

    The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.

  5. Hawai'i and Gale Crater: A Mars Analogue Study of Igneous, Sedimentary, Weathering, and Alteration Trends in Geochemistry

    NASA Technical Reports Server (NTRS)

    Berger, J. A.; Flemming, R. L.; Schmidt, M. E.; Gellert, R.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Sedimentary rocks in Gale Crater on Mars indicate a varied provenance with a range of alteration and weathering [1, 2]. Geochemical trends identified in basaltic and alkalic sedimentary rocks by the Alpha Particle X-ray Spectrometer (APXS) on the Mars rover Curiosity represent a complex interplay of igneous, sedimentary, weathering, and alteration processes. Assessing the relative importance of these processes is challenging with unknown compositions for parent sediment sources and with the constraints provided by Curiosity's instruments. We therefore look to Mars analogues on Earth where higher-resolution analyses and geologic context can constrain interpretations of Gale Crater geochemical observations. We selected Maunakea (AKA Mauna Kea) and Kohala volcanoes, Hawai'i, for an analogue study because they are capped by post-shield transitional basalts and alkalic lavas (hawaiites, mugearites) with compositions similar to Gale Crater [1, 3]. Our aim was to characterize Hawaiian geochemical trends associated with igneous processes, sediment transport, weathering, and alteration. Here, we present initial results and discuss implications for selected trends observed by APXS in Gale Crater.

  6. Quantification of CO2 generation in sedimentary basins through carbonate/clays reactions with uncertain thermodynamic parameters

    NASA Astrophysics Data System (ADS)

    Ceriotti, G.; Porta, G. M.; Geloni, C.; Dalla Rosa, M.; Guadagnini, A.

    2017-09-01

    We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2 generated by Carbonate-Clays Reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2 resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2 generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2 in sedimentary systems, (ii) the order of magnitude of the CO2 generation rate that can be associated with CCR processes.

  7. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  8. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    NASA Astrophysics Data System (ADS)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    The Ohre River springs in the Eastern Germany and it is a tributary of the Labe (Elbe) River in Northwest Bohemia. The river received pollution from several sources during the last five centuries. Most of the pollution sources located along the upper and middle reaches, where the depositional and erosional pattern of the river is highly variable. The upper part of the catchment consists of mainly felsic rocks and the river has a broad floodplain. The middle reach and its right-bank tributaries are deeply incised into the Doupovske Hory Mts., which consists of mafic volcanic rocks; whereas the left-bank tributaries are incised into intrusive and metamorphic rocks of the Krusne Hory Mts. (Ore mountains) with several local ore mines (Ag, Pb and U) in particular in around Olovi and Jachymov. Due to the geologic and geomorphologic complexity, deposition of historical sediments in the middle reach has been spatially limited and uneven, and anomalous background concentrations of risk elements are expected. As a consequence, in the middle reach of the Ohre River it is difficult to find a useful sedimentary archive of historical pollution, though it is desired for two main reasons: (1) to decipher the undocumented and poorly described pollution history from the Krusne Hory Mts. and (2) to better understand the retention of pollutants in the transport zones of a confined river system. Based on historical maps we identified a side-bar (35x320 m) in the middle reach of the river near Straz on Ohre and aimed to describe its formation, its recent erosion/deposition history and to evaluate its sedimentary archive value. In the first half of the 19th century it was an island separated from the valley edge by a side channel. Since then there has been no apparent lateral accretion of the bar (its shape has not been changed), but the upstream part of the side channel aggraded by a sediment plug. We evaluated the current bar topography and geomorphology by a detailed field survey

  9. Sponges as a complement of sedimentary facies analysis in island deposits of Upper Paraná River

    NASA Astrophysics Data System (ADS)

    Zviejkovski, I. P.; Stevaux, J. C.; Leli, I. T.; Parolin, M.; Campos, J. B.

    2017-11-01

    This paper shows the importance of the sponge spicules as complement of sedimentary facies analysis in order to reconstruct the hydrach stages involved in island formation in the Upper Paraná River, Brazil. River in the study reach is anabranching with islands of different sizes covered by typical alluvial forest. We noted that the sponge spicules communities vary according to the changes in the environments involved in the island formation processes. The sponges were identified by their microscleres and gemoscleres in optical microscope as Metania spinata, Oncosclera navicella, Oncosclera jewelli, and possibly the genus Corvoheteromeyenia sp. (Ezcurra de Drago, 1979). By correlating the information coming from the sponges and sedimentary facies, it was possible to identify five phases of the island construction and their respective hydrach stages: 1) bar-island channel (Eupotamic stage), 2) blind channel (Parapotamic stage), 3) lake, 4) swamp (both Paleopotamic stage), and 5) forested island (Terrestrial stage). Using 14C dating and rate of sedimentation, we observed that the development of these five phases took ∼900-1000 years. The data also supported the idea that the forest begin to be formed 134-160 years ago. We concluded that sponge is a strong tool on paleoenvironmetal reconstruction when used with another indicators (in this case the facies analysis) and can be applied other fluvial studies as river management especially for long-term impacted systems (by dams) as those of the Paraná River Basin.

  10. Sedimentary manganese metallogenesis in response to the evolution of the Earth system

    NASA Astrophysics Data System (ADS)

    Roy, Supriya

    2006-08-01

    The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O 2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn 2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O 2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO 2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn 2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO 2 drawdown causing glaciation on the Neoproterozoic Rodinia

  11. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-12-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were 29° where grainflows were present and 33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  12. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  13. Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation

    NASA Astrophysics Data System (ADS)

    Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.

    2018-04-01

    This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.

  14. Sedimentary laminations in the Isheyevo (CH/CBb) carbonaceous chondrite formed by gentle impact-plume sweep-up

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Knauth, L. Paul; Morris, Melissa A.

    2017-08-01

    meteorite provides evidence of gentle layer-by-layer accretion in the early Solar System, and also extends the terrestrial sedimentary source-to-sink paradigm to a near vacuum environment where neither fluvial nor aeolian processes operate.

  15. Determination of total sulfur content of sedimentary rocks by a combustion method

    USGS Publications Warehouse

    Coller, M.E.; Leininger, R.K.

    1955-01-01

    Total sulfur has been determined in common sedimentary rocks by a combustion method. Sulfur contents range from 0.001 to 5.0%. Experiments show that the combustion method can be used in analyzing sedimentary rocks in which sulfur is present as sulfide, sulfate, or both. Pulverized samples from 0.100 to 0.500 gram in weight are used in this method. Each sample is placed in a No. 6 Leco combustion boat and covered with two fluxes: 0.50 gram of standard ingot iron and approximately 1.0 gram of 30-mesh granular tin. The boat with sample then is placed in the combustion tube of a Burrell Unit Package Model T29A tube furnace which is controlled at a temperature of 1310?? to 1320?? C. After the sample has been heated for 1 minute, oxygen is admitted at a rate of about 1 liter per minute. The sulfur dioxide formed is absorbed in a starch solution and is titrated with standard potassium iodate in a Leco sulfur determinator. Thirteen values obtained for National Bureau of Standards standard sample 1a, argillaceous limestone, range from 0.273 to 0.276% sulfur (certificate value 0.27% by calculation).

  16. Determination of petrophysical properties of sedimentary rocks by optical methods

    NASA Astrophysics Data System (ADS)

    Korte, D.; Kaukler, D.; Fanetti, M.; Cabrera, H.; Daubront, E.; Franko, M.

    2017-04-01

    Petrophysical properties of rocks (thermal diffusivity and conductivity, porosity and density) as well as the correlation between them are of great importance for many geoscientific applications. The porosity of the reservoir rocks and their permeability are the most fundamental physical properties with respect to the storage and transmission of fluids, mainly oil characterization. Accurate knowledge of these parameters for any hydrocarbon reservoir is required for efficient development, management, and prediction of future performance of the oilfield. Thus, the porosity and permeability, as well as the chemical composition must be quantified as precisely as possible. This should be done along with the thermal properties, density, conductivity, diffusivity and effusivity that are intimately related with them. For this reason, photothermal Beam Deflection Spectrometry (BDS) technique for determination of materials' thermal properties together with other methods such as Energy Dispersive X-ray Scanning Electron Microscopy (SEM-EDX) for determining the chemical composition and sample structure, as well as optical microscopy to determine the particles size, were applied for characterization of sedimentary rocks. The rocks were obtained from the Andes south flank in the Venezuela's western basin. The validation of BDS applicability for determination of petrophysical properties of three sedimentary rocks of different texture and composition (all from Late Cretaceous associated with the Luna, Capacho and Colón-Mito Juan geological formations) was performed. The rocks' thermal properties were correlated to the microstructures and chemical composition of the examined samples.

  17. Sedimentary petrography of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Schreiber, U. M.; Eriksson, P. G.; van der Neut, M.; Snyman, C. P.

    1992-11-01

    Sandstone petrography, geochemistry and petrotectonic assemblages of the predominantly clastic sedimentary rocks of the Early Proterozoic Pretoria Group, Transvaal Sequence, point to relatively stable cratonic conditions at the beginning of sedimentation, interrupted by minor rifting events. Basement uplift and a second period of rifting occurred towards the end of Pretoria Group deposition, which was followed by the intrusion of mafic sill swarms and the emplacement of the Bushveld Complex in the Kaapvaal Craton at about 2050 Ma, the latter indicating increased extensional tectonism, and incipient continental rifting. An overall intracratonic lacustrine tectonic setting for the Pretoria Group is supported by periods of subaerial volcanic activity and palaeosol formation, rapid sedimentary facies changes, significant arkosic sandstones, the presence of non-glacial varves and a highly variable mudrock geochemistry.

  18. Searching for Biosignatures in Martian Sedimentary Systems

    NASA Astrophysics Data System (ADS)

    Stevens, A. H.; McDonald, A.; Cockell, C. S.

    2018-04-01

    We present experiments designed to simulate an inhabited martian lacustrine system analogous to Gale Crater. We describe the microbes found to thrive in this simulated environment and identify issues detecting biomarkers in this context.

  19. Fluid flow and sediment transport in evolving sedimentary basins

    NASA Astrophysics Data System (ADS)

    Swenson, John Bradley

    This thesis consists of three studies that focus on groundwater flow and sediment transport in evolving sedimentary basins. The first study considers the subsurface hydrodynamic response to basin-scale transgression and regression and its implications for stratiform ore genesis. I demonstrate that the transgressive sequence focuses marginward-directed, compaction-driven discharge within a basal aquifer during progradation and deposition of the overlying regressive sequence, isolates the basal aquifer from overlying flow systems, and serves as a chemical sink for metal-bearing brines. In the second study, I develop a new theory for the shoreline response to subsidence, sediment supply, and sea level. In this theory, sediment transport in a fluvio-deltaic basin is formally equivalent to heat transfer in a two-phase (liquid and isothermal solid) system: the fluvial system is analogous to a conduction-dominated liquid phase, the shoreline is the melting front, and the water depth at the delta toe is equivalent to the latent heat of fusion. A natural consequence of this theory is that sediment-starved basins do not possess an equilibrium state. In contrast to existing theories, I do not observe either strong phase shifting or attenuation of the shoreline response to low-frequency eustatic forcing; rather, shoreline tracks sea level over a spectrum of forcing frequencies, and its response to low-frequency forcing is amplified relative to the high-frequency response. For the third study, I use a set of dimensionless numbers from the previous study as a mathematical framework for providing a unified treatment of existing stratigraphic theories. In the limit of low-amplitude eustatic forcing, my study suggests that strong phase shifting between shoreline and sea level is a consequence of specifying the sedimentation rate at the shoreline; basins free of this constraint do not develop strong phase shifts.

  20. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Person, M. A.

    2008-12-01

    The hydrodynamic consequences of a glaciation/deglaciation cycle within an intercratonic sedimentary basin on subsurface transport processes is assessed using numerical models. In our analysis we consider the effects of mechanical ice sheet loading, permafrost formation, variable density fluids, and lithospheric flexure on solute/isotope transport, groundwater residence times, and transient hydraulic head distributions. The simulations are intended to apply, in a generic sense, to intercratonic sedimentary basins that would have been near the southern limit of the Laurentide Ice Sheet during the last glacial maximum (˜20 ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid flow and recharge rates are strongly elevated during glaciation as compared to nonglacial periods. Furthermore, our results illustrate that steady state hydrodynamic conditions in these basins are probably never reached during a 32.5 ka cycle of advance and retreat of a wet-based ice sheet. Present-day hydrogeological conditions across formerly glaciated areas are likely to still reflect the impact of the last glaciation and associated processes that ended locally more than 10 ka B.P. Our results reveal characteristic spatial patterns of underpressure and overpressure that occur in aquitards and aquifers, respectively, as a result of recent glaciation. The calculated emplacement of low salinity, isotopically light glacial meltwater along basin margins is roughly consistent with observations from formerly glaciated basins in North America. The modeling presented in this study will help to improve the management of groundwater resources in formerly glaciated basins as well as to evaluate the viability on geological timescales of nuclear waste repositories located at high latitudes.

  1. The amplitude effects of sedimentary basins on through-passing surface waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.; Pasyanos, M.

    2016-12-01

    Understanding the effect of sedimentary basins on through-passing surface waves is essential in many aspects of seismology, including the estimation of the magnitude of natural and anthropogenic events, the study of the attenuation properties of Earth's interior, and the analysis of ground motion as part of seismic hazard assessment. In particular, knowledge of the physical causes of amplitude variations is important in the application of the Ms:mb discriminant of nuclear monitoring. Our work addresses two principal questions, both in the period range between 10 s and 20 s. The first question is: In what respects can surface wave propagation through 3D structures be simulated as 2D membrane waves? This question is motivated by our belief that surface wave amplitude effects down-stream from sedimentary basins result predominantly from elastic focusing and defocusing, which we understand as analogous to the effect of a lens. To the extent that this understanding is correct, 2D membrane waves will approximately capture the amplitude effects of focusing and defocusing. We address this question by applying the 3D simulation code SW4 (a node-based finite-difference code for 3D seismic wave simulation) and the 2D code SPECFEM2D (a spectral element code for 2D seismic wave simulation). Our results show that for surface waves propagating downstream from 3D sedimentary basins, amplitude effects are mostly caused by elastic focusing and defocusing which is modeled accurately as a 2D effect. However, if the epicentral distance is small, higher modes may contaminate the fundamental mode, which may result in large errors in the 2D membrane wave approximation. The second question is: Are observations of amplitude variations across East Asia following North Korean nuclear tests consistent with simulations of amplitude variations caused by elastic focusing/defocusing through a crustal reference model of China (Shen et al., A seismic reference model for the crust and uppermost

  2. Towards the development of a consensual chronostratigraphy for Arctic Ocean sedimentary records

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; de Vernal, Anne; Polyak, Leonid; Stein, Rüdiger; Maccali, Jenny; Jacobel, Allison; Cuny, Kristan

    2017-04-01

    Deciphering Arctic paleoceanograpy and paleoclimate, and linking it to global marine and atmospheric records is much needed for comprehending the Earth's climate history. However, this task is hampered by multiple problems with dating Arctic Ocean sedimentary records related notably to low and highly variable sedimentation rates, scarce and discontinuous biogenic proxies due to low productivity and/or poor preservation, and difficulties correlating regional records to global stacks (e.g., paleomagnetic). Despite recent advances in developing an Arctic Ocean sedimentary stratigraphy, and attempts at setting radiometric benchmark ages of respectively 300 and 150 ka, based on the final decay of 230Th and 231Pa excesses (Thxs, Paxs) (Not et al., 2008), consensual age models are still missing, preventing reliable integration of Arctic records in a global paleoclimatic scheme. Here, we intend to illustrate these issues by comparing consistent Thxs-Paxs chronostratigraphic records from the Mendeleev-Alpha and Lomonosov ridges with the currently used age model based on climatostratigraphic interpretation of sedimentary records (e.g., Polyak et al., 2009; Stein et al., 2010). Data used were collected from the 2005 HOTRAX core MC-11 (northern Mendeleev Ridge) and the 2014 Polarstern core PS87-30 (Lomonosov Ridge). Total collapse depths of Thxs and Paxs are observed by a factor of 3 deeper in core PS87-30 vs core MC-11, indicating average sedimentation rates 3 times higher at the Lomonosov Ridge site. Litho-biostratigraphic markers, such as foraminiferal peaks and manganese-enriched layers, show a similar pattern, with their occurrence 3 times deeper in core PS87-30 than in core MC-11. These very consistent downcore features highlight a gaping difference between the benchmark ages assigned to the total decay of Paxs and Thxs and the current age model based on climatostratigraphic approach involving significantly higher sedimentation rates. This discrepancy begs for its in

  3. Identifying and Interpreting Stratification in Sedimentary Rocks on Mars: Insight from Rover and Orbital Observations and Terrestrial Field Analogs

    NASA Astrophysics Data System (ADS)

    Edgar, Lauren A.

    Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.

  4. Seismic stratigraphy of sedimentary cover in Amerasian Basin based on the results of Russian High Arctic expeditions

    NASA Astrophysics Data System (ADS)

    Poselov, Viktor; Kireev, Artem; Smirnov, Oleg; Butsenko, Viktor; Zholondz, Sergey; Savin, Vasily

    2016-04-01

    Massive amount of multichannel seismic (MCS) data were obtained by Russian High Arct ic expeditions "Arctica-2011", "Acrtica-2012" and "Arctica-2014". More than 40 MCS lines are located in the Amerasian basin and help to substantiate the seismic stratigraphy model of its sedimentary cover. The proposed seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge. Two major unconformities are traced. The upper regional unconformity (RU) is associated with a major pre-Miocene hiatus. Another major hiatus is recorded in the borehole section between the Campanian and the Upper Paleocene units. It is recognized as the post-Campanian unconformity (pCU) in the seismic sections. Formation of the regional unconformities is associated with a fundamental change in depositional environment. Formation of RU was initiated by opening of the Fram Strait gateway at the Paleogene/Neogene boundary. Post-Campanian unconformity is linked with the initial stage of the Eurasian Basin opening between the Cretaceous and the Paleogene. Cenozoic sedimentary units are continuously traced from the East-Siberian and Chukchi sea shelves across the transit zone to the Amerasian basin. Paleogene unit (between pCU and RU) is formed under the neritic depositional environment and it is characterized by an extremely small thickness on the Lomonosov Ridge (less than 200 m), on the Mendeleev Rise and in the Podvodnikov Basin (not more than 300-400 m). Neogene unit (above RU) consists of hemipelagic deposits and occupies the essential part of thickness of the Cenozoic section in Podvodnikov and Makarov Basins. Interval velocities in the Paleogene unit vary within 2.8-3.2 km/s, in the

  5. Structural development of the onshore Otway passive margin (Australia): the interaction of rotating syn-sedimentary faults

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Ziesch, Jennifer; Krawczyk, Charlotte M.

    2017-04-01

    Within the context of long-term CO2 storage integrity, we interpreted the faults within the 2.2 km thick, syn-rift, Late Cretaceous to Recent sediments below the CO2CRC Otway Project site in Australia using a detailed interpretation of a 3-D reflection seismic cube (32.3 km×14.35 km × 4100 ms TWT). All the faults in the onshore Otway passive margin basin in this area were active to varying degrees during sedimentation, between ca. 120 and 50 Ma, before they died out. From analysis of fault juxtaposition and fault tip-line propagation maps, as well as analysis of individual stratigraphic thickness maps, we determine the direction and incremental amount of syn-sedimentary movement on each fault. Thickening of the hanging-walls of the faults occurred, as is typical for syn-sedimentary faults. However, we also determine that substantial local footwall thinning took place. Although the syn-sedimentary behaviour of the faults was constantly maintained until 50 Ma, there were two main phases of footwall thinning, separated by a quiescent phase. We postulate that these phases of footwall thinning represent rotation of the fault blocks that correlate with prograding sediment pulses within the passive margin. The rotation of the fault blocks occurred simultaneously, i.e., they could only rotate if they interacted.

  6. Structural and sedimentary evolution of the Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, M.T.; Rudolph, K.W.; Abdullah, S.A.

    1994-07-01

    The Malay Basin is a back-arc basin that formed via Eocene ( ) through Oligocene extension. This early extensional episode is characterized by large east-west and northwest-southeast-trending normal fault systems with associated block rotation. Extensional subbasins are filled with a thick succession of alluvial and fluvial sediments that show increasing lacustrine influence toward the central basin dep. In the early Miocene, the basin entered a passive sag phase in which depositional relief decreased, and there is the first evidence of widespread marine influence. Lower Miocene sediments consist of cyclic offshore marine, tidal-estuarine, and coastal plain fluvial sediments with very widemore » facies tracts. The middle Miocene is dominated by increasing compressional inversion, in which preexisting extensional lows were folded into east-west anticlines. This compression continues well into the Pliocene-Pleistocene, especially in the northwest portion of the basin and is accompanied by an increase in basin-wide subsidence. There is significant thinning over the crest of the growing anticlines and an angular unconformity near the top of the middle Miocene in the southeast portion of the basin. Middle Miocene sedimentary facies are similar to those seen in the lower Miocene, but are influenced by the contemporaneous compressional folding and normal faulting. Based on this study, there is no evidence of through-going wrench-fault deformation in the Malay Basin. Instead, localized strike-slip faulting is a subsidiary phenomenon associated with the extensional and compressional tectonic episodes.« less

  7. Sedimentary Geothermal Feasibility Study: October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Zerpa, Luis

    The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less

  8. Thermal regimes of Malaysian sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, M.F.

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less

  9. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders

  10. New Insights into the Provenance of the Southern Junggar Basin in the Jurassic from Heavy Mineral Analysis and Sedimentary Characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, T. Q.; Wu, C.; Zhu, W.

    2017-12-01

    Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed

  11. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    PubMed Central

    Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.

    2017-01-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915

  12. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    PubMed

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  13. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars.

    PubMed

    Ewing, R C; Lapotre, M G A; Lewis, K W; Day, M; Stein, N; Rubin, D M; Sullivan, R; Banham, S; Lamb, M P; Bridges, N T; Gupta, S; Fischer, W W

    2017-12-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  14. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    PubMed Central

    Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-01-01

    Abstract The Mars Science Laboratory rover Curiosity visited two active wind‐blown sand dunes within Gale crater, Mars, which provided the first ground‐based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial‐like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large‐ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter‐scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune‐field pattern dynamics and basin‐scale boundary conditions will dictate the style and distribution of sedimentary processes. PMID:29497590

  15. Regional variations in the provenance of desert sedimentary systems: An example from the Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bertolini, G.; Marques, J. C.; Hartley, A. J.; Scherer, C.; Macdonald, D.; Hole, M.; Stipp Basei, M. A. A. S.; Frantz, J. C.; Rosa, A. A. S.

    2017-12-01

    Large desert basins (>1.000.000 km²) are likely to contain sediment derived from different sources due to variations in factors such as wind direction, sand availability, and sediment influx. Provenance analysis is key to determining sediment sources and to constrain the nature of the sediment fill in desert basins. The Cretaceous Botucatu Desert dunefield extended across a large area of the interior of the SW Gondwana and was then buried by extensive lava flows that covered the active erg. The onset of volcanic activity triggered climatic and topographic variations that changed the depositional setting, however, the aeolian system remained active during this time period. Twenty samples were collected along the southern border of the basin (Brazil and Uruguay). Heavy mineral (HM) and petrographic analyses indicate very mature sediment, with a high ZTR index and quartz dominated sandstones. Despite the regularity of high ZTR index, garnet input occurs in eastern samples. Ten samples were selected for MC-LA-ICP-MS zircon dating with the aim of comparing pre- and syn-volcanic sandstones. More than 800 detrital zircons (DZ) were analyzed and the results allowed the identification of 5 relevant peaks interpreted as: 1) Choiyoi volcanism; 2) Famatian Cycle; 3) Brazilian Cycle (BC); 4) Grenvillian Cycle (GC); 5) Transamazonic Cycle. The DZ ages from the pre and syn-volcanic sandstones show no significant variation. However, when comparing the provenance between the eastern and western areas, samples from the eastern border show a major BC contribution (61%), while the western samples contain 40%. The GC contribution is more significant in the western part of the basin (>18%), contrasting with 6% in eastern samples. The main conclusions are: 1) the DZ record reveals a distinct signature for sedimentary sources; 2) climatic and topographic changes caused by the onset of volcanic activity had no impact on DZ populations; 3) heavy mineral types are very similar in all

  16. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model

  17. Improving age-depth models using sedimentary proxies for accumulation rates in fluvio-lacustrine deposits

    NASA Astrophysics Data System (ADS)

    Minderhoud, Philip S. J.; Cohen, Kim M.; Toonen, Willem. H. J.; Erkens, Gilles; Hoek, Wim Z.

    2017-04-01

    Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation. The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from 4.7 to 2.9 ka cal BP and consists of 5.5 meters of laminated lacustrine, organo-clastic mud, covered by 1 meter of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in

  18. Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.

    2005-11-01

    The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of

  19. Sedimentary Record of the Back-Arc Basins of South-Central Mexico: an Evolution from Extensional Basin to Carbonate Platform.

    NASA Astrophysics Data System (ADS)

    Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.

    2015-12-01

    The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.

  20. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    USGS Publications Warehouse

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  1. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    NASA Astrophysics Data System (ADS)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with

  2. Diverse microbially induced sedimentary structures from 1 Ga lakes of the Diabaig Formation, Torridon Group, northwest Scotland

    NASA Astrophysics Data System (ADS)

    Callow, Richard H. T.; Battison, Leila; Brasier, Martin D.

    2011-08-01

    The siliciclastic lacustrine rocks of the ~ 1000 Ma Diabaig Formation, northwest Scotland, contain a remarkable diversity of macroscopic structures on bedding planes that can be compared with various kinds of microbially induced sedimentary structures (MISS). Field sedimentological investigations, combined with laboratory analysis of bedding planes and petrographic study of thin sections have allowed us to characterise a range of depositional environments and document the spectrum of biological structures. MISS are reported from frequently subaerial environments, through commonly submerged facies, and down to permanently sub-wavebase settings. Palaeoenvironmental conditions (water depth, exposure, hydrodynamic energy) control the distribution of MISS within these facies. This demonstrates that mat-forming microbial communities were arguably well adapted to low light levels or periodic exposure. Some MISS from the Diabaig Formation are typical of Precambrian microbial mats, including reticulate fabrics and 'old elephant skin' textures. In addition to these, a number of new and unusual fabrics of putative microbial origin are described, including linear arrays of ridges and grooves (cf. 'Arumberia') and discoidal structures that are comparable with younger Ediacaran fossils such as Beltanelliformis. These observations indicate that benthic microbial ecosystems were thriving in freshwater lake systems ~ 1000 Ma, and indicate how microbially induced sedimentary structures may be applied as facies indicators for Proterozoic lacustrine environments. The discovery of structures closely resembling Ediacaran fossils (cf. Beltanelliformis) also serves to highlight the difficulty of interpreting simple discoidal bedding plane structures as metazoan fossils.

  3. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min

    2017-04-01

    intermediate-felsic igneous rocks, highlighting both crustal growth and recycling. Importantly, a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sedimentary sequence of the GA. These detrital zircons possibly have the same source as their counterpart from the AM. This implies that the two terranes with countrary evolutionary history, i.e. the GA and AM, amalgamated before the early Devonian. To summary, the AM and GA represented two separated subduction-accretion systems in the early Paleozoic and subsequently amalgamated prior to the early Devonian, documenting complicated accretionary orogenesis and significant lateral crustal growth in the CAOB. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705313P and HKU17303415), National Science Foundation of China (41273048) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132731).

  4. Thin-skinned deformation of sedimentary rocks in Valles Marineris, Mars

    USGS Publications Warehouse

    Metz, Joannah; Grotzinger, John P.; Okubo, Chris; Milliken, Ralph

    2010-01-01

    Deformation of sedimentary rocks is widespread within Valles Marineris, characterized by both plastic and brittle deformation identified in Candor, Melas, and Ius Chasmata. We identified four deformation styles using HiRISE and CTX images: kilometer-scale convolute folds, detached slabs, folded strata, and pull-apart structures. Convolute folds are detached rounded slabs of material with alternating dark- and light-toned strata and a fold wavelength of about 1 km. The detached slabs are isolated rounded blocks of material, but they exhibit only highly localized evidence of stratification. Folded strata are composed of continuously folded layers that are not detached. Pull-apart structures are composed of stratified rock that has broken off into small irregularly shaped pieces showing evidence of brittle deformation. Some areas exhibit multiple styles of deformation and grade from one type of deformation into another. The deformed rocks are observed over thousands of kilometers, are limited to discrete stratigraphic intervals, and occur over a wide range in elevations. All deformation styles appear to be of likely thin-skinned origin. CRISM reflectance spectra show that some of the deformed sediments contain a component of monohydrated and polyhydrated sulfates. Several mechanisms could be responsible for the deformation of sedimentary rocks in Valles Marineris, such as subaerial or subaqueous gravitational slumping or sliding and soft sediment deformation, where the latter could include impact-induced or seismically induced liquefaction. These mechanisms are evaluated based on their expected pattern, scale, and areal extent of deformation. Deformation produced from slow subaerial or subaqueous landsliding and liquefaction is consistent with the deformation observed in Valles Marineris.

  5. The Itajaí foreland basin: a tectono-sedimentary record of the Ediacaran period, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Basei, M. A. S.; Drukas, C. O.; Nutman, A. P.; Wemmer, K.; Dunyi, L.; Santos, P. R.; Passarelli, C. R.; Campos Neto, M. C.; Siga, O.; Osako, L.

    2011-04-01

    The Itajaí Basin located in the southern border of the Luís Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajaí Group is represented by sandstones and conglomerates (Baú Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeirão Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeirão Neisse (arkosic sandstones and siltites), and Ribeirão do Bode (distal silty turbidites) formations. The Apiúna Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajaí Basin. The Brusque Group and the Florianópolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, São Miguel and Camboriú complexes. The lack of any oceanic crust in the Itajaí Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajaí Basin is temporally and tectonically correlated with the Camaquã Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriápolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.

  6. Early rifting deposition: examples from carbonate sequences of Sardinia (Cambrian) and Tuscany (Triassic-Jurassic), Italy: an analogous tectono-sedimentary and climatic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozza, T.; Gandin, A.

    Lower Cambrian Ceroide Limestone (Sardinia) and Lower Jurassic Massiccio Limestone (Tuscany) belong to sequences deposited in analogous tectono-sedimentary context: the former linked to the Caledonian Sardic Phase, the latter to the Alpine Orogeny. Both units consist of massive pure limestone characterized by marginal and lagoonal sequences repeatedly interfingering in the same geological structure. This distribution indicates a morphology of the platforms composed of banks (marginal facies) and shallow basins (lagoonal facies) comparable with a Bahamian complex. Dolomitization affects patchily the massive limestone bodies, and karstic features, breccias, and sedimentary dikes occur at their upper boundary. Both units overlie early dolomitemore » and evaporites (sabkha facies) containing siliciclastic intercalations in their lower and/or upper part and are unconformably covered by open-shelf red (hematitic), nodular limestone Ammonitico Rosso facies). The sedimentary evolution of the two sequences appears to have been controlled by synsedimentary tectonics whose major effects are the end of the terrigenous input, the bank-and-basin morphology of the platform, the irregular distribution of the dolomitization, and the nodular fabric of the overlying facies. The end of the Bahamian-type system is marked by the karstification of the emerged blocks and is followed by their differential sinking and burial under red-nodular facies. From a geodynamic viewpoint, sequences composed of Bahamian-like platform carbonates followed by Ammonitico Rosso facies imply deposition along continental margins subjected to block-faulting during an extensional regime connected with the beginning of continental rifting. Moreover, the variation from sabkha to Bahamian conditions suggests the drifting of the continent from arid to humid, tropical areas.« less

  7. Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin F.; Burisch, Mathias; Marks, Michael A. W.; Markl, Gregor

    2017-12-01

    Mixing of sedimentary formation fluids with basement-derived brines is an important mechanism for the formation of hydrothermal veins. We focus on the sources of the sediment-derived fluid component in ore-forming processes and present a comprehensive fluid inclusion study on 84 Jurassic hydrothermal veins from the Schwarzwald mining district (SW Germany). Our data derive from about 2300 fluid inclusions and reveal differences in the average fluid composition between the northern, central, and southern Schwarzwald. Fluids from the northern and southern Schwarzwald are characterised by high salinities (18-26 wt% NaCl+CaCl2), low Ca/(Ca+Na) mole ratios (0.1-0.4), and variable Cl/Br mass ratios (30-1140). In contrast, fluids from the central Schwarzwald show even higher salinities (23-27 wt% NaCl+CaCl2), higher Ca/(Ca+Na) mole ratios (0.2-0.9), and less variable Cl/Br mass ratios (40-130). These fluid compositions correlate with the nature and thickness of the now eroded sedimentary cover rocks. Compared to the northern and the southern Schwarzwald, where halite precipitation occurred during the Middle Triassic, the sedimentary basin in the central Schwarzwald was relatively shallow at this time and no halite was precipitated. Accordingly, Cl/Br ratios of fluids from the central Schwarzwald provide no evidence for the reaction of a sedimentary brine with halite, whereas those from the northern and southern Schwarzwald do. Instead, elevated Ca/(Ca+Na), high SO4 contents, and relatively low Cl/Br imply the presence of a gypsum dissolution brine during vein formation in the central Schwarzwald which agrees with the reconstructed regional Triassic geology. Hence, the information archived in fluid inclusions from hydrothermal veins in the crystalline basement has the potential for reconstructing sedimentary rocks in the former overburden.

  8. Assessment of sedimentary Cu availability: A comparison of biomimetic and AVS approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Mayer, L.M.

    1999-02-15

    Sedimentary Cu bioavailability during deposit feeding is determined by both the digestive physiology of the organisms and the geochemistry of the sediments. The authors assessed the contribution of these two factors by using a biomimetic approach involving extraction of Cu with digestive fluids of two deposit feeders and one suspension feeder and a geochemical approach measuring Cu associated with acid-volatile sulfide (AVS) in sediments. Cu bioavailability determined by the biomimetic method varied among species with varying digestive physiology but all showed a marked increase when SEM{sub Cu}-AVS {ge} 0, corroborating the premise underlying the AVS method in determining sedimentary Cumore » bioavailability. The existence of a positive SEM{sub Cu}-AVS threshold suggests the existence of additional Cu-binding phases or mixed Cu(I)--Cu(II) sulfides in sediments. In addition, Cu bioavailable to digestive fluids was much less than that measured as SEM{sub Cu}-AVS, indicating that the AVS method overestimates Cu bioavailability to digestive fluid of deposit feeders. Incubation of digestive fluids with two Cu-bound model phases, goethite and sulfide, corroborated the relative unavailability of sulfide-bound Cu. Subsurface deposit feeders feeding on anoxic sediments may be exposed to less Cu than their surface-feeding counterparts in Cu-contaminated environments.« less

  9. Seeking Signs of Life on Mars: The Importance of Sedimentary Suites as Part of Mars Sample Return

    NASA Astrophysics Data System (ADS)

    iMOST Team; Mangold, N.; McLennan, S. M.; Czaja, A. D.; Ori, G. G.; Tosca, N. J.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    Sedimentary, and especially lacustrine, depositional environments are high-priority geological/astrobiological settings for Mars Sample Return. We review the detailed investigations, measurements, and sample types required to evaluate such settings.

  10. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter

  11. Geochemical Aspects of Formation of Large Oil Deposits in the Volga-Ural Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Plotnikova, I.; Nosova, F.; Pronin, N.; Nosova, J.; Budkevich, T.

    2012-04-01

    C35/hC34, GAM / HOP, S27/S28/S29 (steranes), DIA / REG, Ts / Tm, MOR / HOP, NOR / HOP, TET / TRI, C29SSR, C29BBAA, C31HSR, S30STER, TRI / PENT, TRI / HOP. Comparison in the rock-oil system was performed primarily according to the parameters indicating the depositional environment of the source rock that contains syngenetic DOM - according to the coefficients that determine lithological conditions for the formation of the supposed oil-source bed strata (DIA / REG, Ts / Tm, NOR / HOP, TRI / HOP and STER / PENT). Biomarker ratios indicate a different type of sedimentation basins. Sediments, which accumulated DOM from Semilukskiy horizon, can be characterized by low clay content, or its absence, that is consistent with the carbonate type of cut of the horizon. The bacterial material that was accumulated under reducing conditions of sedimentation appeared to be the source of syngenetic OM. Chemofossils found in oils from Pashiyskiy horizon are typical of sedimentary strata that contain clay - for clastic rocks, which in the study area are mainly represented by deposits and Eyfel Givetian layers of the Middle Devonian and lowfransk substage of the Upper Devonian. The study of correlations obtained for the different coefficients of OM and oils showed that only the relationships between Ts/Tm and DIA/REG and between NOR/HOP and TRI/HOP are characteristic of close, almost similar values of correlation both for the dispersed organic matter and for oil. In all other cases, the character of the correlation of OM is significantly different from that of oil. The differences in values and ranges of biomarker ratios as well as the character of their correlation indicates the absence of genetic connection between the oil from Pashiyskiy horizon for the dispersed organic matter from Semilukskiy horizon. This conclusion is based on the study of five biomarker parameters (DIA/REG, Ts/Tm, NOR/HOP, TRI/HOP and STER/PENT). The research results described in the article clearly indicate the

  12. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  13. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  14. Structural geology of Amazonian-aged layered sedimentary deposits in southwest Candor Chasma, Mars

    USGS Publications Warehouse

    Okubo, C.H.

    2010-01-01

    The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.

  15. Genetic data from algae sedimentary DNA reflect the influence of environment over geography.

    PubMed

    Stoof-Leichsenring, Kathleen R; Herzschuh, Ulrike; Pestryakova, Luidmila A; Klemm, Juliane; Epp, Laura S; Tiedemann, Ralph

    2015-08-11

    Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.

  16. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  17. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling

    USGS Publications Warehouse

    Srodon, J.; Clauer, Norbert; Eberl, D.D.D.

    2002-01-01

    K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.

  18. Employing extant stable carbon isotope data in Gulf of Mexico sedimentary organic matter for oil spill studies

    NASA Astrophysics Data System (ADS)

    Rosenheim, Brad E.; Pendergraft, Matthew A.; Flowers, George C.; Carney, Robert; Sericano, José L.; Amer, Reda M.; Chanton, Jeff; Dincer, Zeynep; Wade, Terry L.

    2016-07-01

    We have compiled and mapped available carbon isotope data from sedimentary organic material sampled from the Gulf of Mexico prior to 2010. These data provide a baseline to which any changes in the Gulf of Mexico after the 2010 Deepwater Horizon oil spill can be compared. The mean (±1σ) δ13C values, relative to PDB, are -21.4±1.9‰ (entire Gulf of Mexico), -21.7±1.2‰ (shelf sediments), -20.4±1.6‰ (deepwater sediments), and -25.2±4.1‰ (seep-affected sediments). We compare pre-spill mean δ13C values to carbon isotope measurements of sedimentary organic material from coretop samples collected after the 2010 Deepwater Horizon oil spill. The differences between the mean compiled δ13C values and the post-spill δ13C values are corroborated by qualitative relationships with the concentration of polycyclic aromatic hydrocarbons (PAHs), a proxy for oil contamination, in the sediment. The relationships between δ13C of the sedimentary organic material and PAH concentrations allow estimation of background levels of PAHs on the shelf and in the deep Gulf of Mexico. Higher background levels of PAH on the shelf likely relate to Mississippi River outflow and its deposition of petrogenic PAH in riverine sediments.

  19. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    NASA Astrophysics Data System (ADS)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of

  20. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  1. Spatial Distribution and Sedimentary Facies of the 2007 Solomon Islands Tsunami Deposits

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Nishimura, Y.; Woodward, S.

    2007-12-01

    We conducted a field survey of the extent of damage, crustal deformation, and onshore deposits caused by 2007 Solomon Islands tsunami in Ghizo and adjacent islands in the western Solomon Islands, from 13th to 18th April, 2007. Our survey team was comprised of six Japanese and one American researcher. Three of us, the authors, mainly investigated tsunami deposits in three villages (Titiana, Suva, and Pailongge) in southern Ghizo Island. One member of our team re-investigated the deposits in June 2007. The tsunami generated sheet-like deposits of coral beach sand on the flat plain in Titiana. Beside the sea coast, the tsunami wave eroded ground surfaces and formed small scarps at 30 m from the sea. Just interior of the scarps, tsunami deposits accumulated up to 9 cm in thickness. The thickness decreased with distance from the sea and was also affected by microtopography. No sandy tsunami deposits were observed on the inland area between 170 m and 210 m from the sea. The upper boundary of inundation was recognized at about 210 m from the sea because of accumulation of driftwood and floating debris. In Suva and Pailongge, the outline of sand-sheet distribution is the same as it in Titiana. The tsunami had a maximum thickness of 10 cm and two or three sand layers are separated by thin humic sand layers. These humic layers were likely supplied from hillslopes eroded by the tsunami and transported by return-flows. These successions of deposits suggest that tsunami waves inundated at least two times. This is consistent with the number of large waves told by eyewitnesses. In the Solomon Islands, the plentiful rainfall causes erosion and resedimentation of tsunami deposits. Furthermore, the sedimentary structures will be destroyed by chemical weathering in warm and moist environment, and bioturbation by plants, animals, and human activities. The sedimentary structures had been preserved till the end of June 2007, but had already been penetrated by plant roots and sandpipes

  2. Scale dependant compensational stacking of channelized sedimentary deposits

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Straub, K. M.; Hajek, E. A.

    2010-12-01

    Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.

  3. Microbial shaping of sedimentary wrinkle structures

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.

    2014-10-01

    Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.

  4. Reinterpretation of the Quaternary sedimentary infill of the Ría de Vigo, NW Iberian Peninsula, as a compound incised valley

    NASA Astrophysics Data System (ADS)

    Martínez-Carreño, N.; García-Gil, S.

    2017-10-01

    Seismic data have been used to investigate the stratigraphy of the Galician rias for more than two decades. Here, we present a new interpretation of the sedimentary infill of an incised valley (Ría de Vigo, NW Iberian Peninsula), based on high-resolution seismic profiles, core sediment analysis, and radiocarbon 14C data. The new data indicate that the stratigraphic architecture of the Galician rias result from multiple incision/infill phases and, therefore, they are reclassified as compound rather than simple incised valleys. Seven seismic units were identified: one of Tertiary age (U1), four of Pleistocene age (U2-U5) which are interpreted as 4th-order sequences deposited between MIS 11 and MIS 2, and Late Pleistocene (U6) and Holocene (U7) units corresponding with post-glacial sedimentation. The sedimentary infill overlies a highly faulted irregular granitic and metamorphic basement; the inherited morphology is shown to be important for controlling the pathway and evolution of the fluvial network as well as preservation of the sedimentary deposits during several glacial/interglacial cycles. The presence of a rocky barrier at the mouth of the ria is a distinctive feature that conditions sedimentation and exchange of sediment between the ria and the adjacent shelf. For the first time, faults and tilted blocks affecting Late Pleistocene (MIS 3) deposits have been identified. The new data presented here provide the opportunity to reconstruct the evolution of the sedimentary infill of a ria, with especially high-resolution during the last post-glacial transgression.

  5. Nd Isotopic Provenance of Sedimentary Rocks Along Margins of North America: ten Years of Study

    NASA Astrophysics Data System (ADS)

    Patchett, J.; Ross, G. M.

    2001-12-01

    Ten years of effort, principally employing Nd isotopes, have resulted in substantial advances in understanding of the movements of sedimentary material around North America from Cambrian to Cretaceous time. This synthesis has depended upon work of current and former students S. Samson, J. Gleason, N. Boghossian, C. Garzione, M. Roth, B. Canale and E. Rosenberg, as well as collaborators W. Dickinson and A. Embry, among others. Nd isotopes are particularly good at documenting movements of sedimentary material on the largest (continental) scale and over extended times. What has emerged is a picture of a largely exposed North America-Greenland craton from Neoproterozoic to Ordovician time, a partial to complete burial by detritus from Caledonian-Appalachian mountains starting in the Ordovician, a gradual exhumation during Late Paleozoic and Mesozoic time, followed by a partial burial with Cordilleran detritus during Late Jurassic to Tertiary time. One current question is the nature of the Mesozoic and Tertiary sedimentary material eroded from the North American Cordillera, and its relevance for Cordilleran orogenesis. Another current question is the extent to which Caledonian-Appalachian detritus covered the craton in Devonian-Carboniferous time, and the timing and manner of its removal during Mesozoic time. At first glance, available Nd isotopic data appear to suggest that the Canada-Greenland Shield was largely covered during most of Mesozoic time, a conclusion that would have profound effects on models of dynamic topography. However, this conclusion is also very dependent on the relationship between topography and erosion, because in certain situations a geographically-restricted cover sequence could dominate over low-relief cratonic terrain as a sediment source.

  6. Fine-grained rutile in the Gulf of Maine: Diagenetic origin, source rocks, and sedimentary environment of deposition

    USGS Publications Warehouse

    Valentine, P.C.; Commeau, J.A.

    1990-01-01

    The Gulf of Maine, an embayment of the New England margin, is floored by shallow, glacially scoured basins that are partly filled with late Pleistocene and Holocene silt and clay containing 0.7 to 1.0 wt percent TiO2 chiefly in the form of silt-size rutile. Much of the rutile in the Gulf of Maine mud probably formed diagenetically in poorly cemented Carboniferous and Triassic coarse-grained sedimentary rocks of Nova Scotia and New Brunswick after the dissolution of titanium-rich detrital minerals (ilmenite, ilmenomagnetite). The diagenesis of rutile in coarse sedimentary rocks (especially arkose and graywacke) followed by erosion, segregation, and deposition (and including recycling of fine-grained rutile from shales) can serve as a model for predicting and prospecting for unconsolidated deposits of fine-grained TiO2. -from Authors

  7. Estimation of groundwater recharge in sedimentary rock aquifer systems in the Oti basin of Gushiegu District, Northern Ghana

    NASA Astrophysics Data System (ADS)

    Afrifa, George Yamoah; Sakyi, Patrick Asamoah; Chegbeleh, Larry Pax

    2017-07-01

    Sustainable development and the management of groundwater resources for optimal socio-economic development constitutes one of the most effective strategies for mitigating the effects of climate change in rural areas where poverty is a critical cause of environmental damage. This research assessed groundwater recharge and its spatial and temporal variations in Gushiegu District in the Northern Region of Ghana, where groundwater is the main source of water supply for most uses. Isotopic data of precipitation and groundwater were used to infer the origin of groundwater and the possible relationship between groundwater and surface water in the partially metamorphosed sedimentary aquifer system in the study area. Though the data do not significantly establish strong relation between groundwater and surface water, the study suggests that groundwater in the area is of meteoric origin. However, the data also indicate significant enrichment of the heavy isotopes (18O and 2H) in groundwater relative to rainwater in the area. The Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) techniques were used to quantitatively estimate the groundwater recharge in the area. The results suggest groundwater recharge in a range of 13.9 mm/y - 218 mm/y, with an average of 89 mm/yr, representing about 1.4%-21.8% (average 8.9%) of the annual precipitation in the area. There is no clearly defined trend in the temporal variations of groundwater recharge in the area, but the spatial variations are discussed in relation to the underlying lithologies. The results suggest that the fraction of precipitation that reaches the saturated zone as groundwater recharge is largely controlled by the vertical hydraulic conductivities of the material of the unsaturated zone. The vertical hydraulic conductivity coupled with humidity variations in the area modulates the vertical infiltration and percolation of precipitation.

  8. STABLE CARBON ISOTOPE EVIDENCE FOR COUPLING BETWEEN SEDIMENTARY BACTERIA AND SEAGRASSES IN A SUB-TROPICAL LAGOON

    EPA Science Inventory

    We measured stable carbon isotope ratios (d13C) in phospholipid fatty acids (PLFAs) to identify the primary carbon source utilized by sedimentary bacteria in Lower Laguna Madre, Texas, which is a seagrass dominated lagoon. Comparisons were made between three differing habitat ty...

  9. Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin

    NASA Astrophysics Data System (ADS)

    Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia

    2017-04-01

    The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of sediment rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that sediments fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle Miocene, sediments amassed almost solely and then connected like a band parallel to the continent in a low average sediment rate (<10 m/Myr) in the northern oceanic basin. These sediments were deposited mainly in the form of submarine fans and mass transport deposits. Sediments were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest early Miocene end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late Miocene, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average sediment rate ( 30 m/Myr). Sediments were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of sediment rate in the Northwest Sub-basin reflects late Miocene slip reversal of the Red River Fault. Finally, since the Pliocene, sediments gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average sediment rate about 60-80 m/Myr. These sediments were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. Sediments came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary

  10. The geological and microbiological controls on the enrichment of Se and Te in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Bullock, Liam; Parnell, John; Armstrong, Joseph; Boyce, Adrian; Perez, Magali

    2017-04-01

    Selenium (Se) and tellurium (Te) have become elements of high interest, mainly due to their photovoltaic and photoconductive properties, and can contaminate local soils and groundwater systems during mobilisation. Due to their economic and environmental significance, it is important to understand the processes that lead to Se- and Te-enrichment in sediments. The distribution of Se and Te in sedimentary environments is primarily a function of redox conditions, and may be transported and concentrated by the movement of reduced fluids through oxidised strata. Se and Te concentrations have been measured in a suite of late Neoproterozoic Gwna Group black shales (UK) and uranium red bed (roll-front) samples (USA). Due to the chemical affinity of Se and sulphur (S), variations in the S isotopic composition of pyrite have also been measured in order to provide insights into their origin. Scanning electron microscopy of pyrite in the black shales shows abundant inclusions of the lead selenide mineral clausthalite. The data for the black shale samples show marked enrichment in Te and Se relative to crustal mean and several hundreds of other samples processed through our laboratory. While Se levels in sulphidic black shales are typically below 5 ppm, the measured values of up to 116 ppm are remarkable. The Se enrichment in roll-fronts (up to 168 ppm) is restricted to a narrow band of alteration at the interface between the barren oxidised core, and the highly mineralised reduced nose of the front. Te is depleted in roll-fronts with respect to the continental crust and other geological settings and deposits. S isotope compositions for pyrite in both the black shales and roll-fronts are very light and indicate precipitation by microbial sulphate reduction, suggesting that Se was microbially sequestered. Results show that Gwna Group black shales and U.S roll-front deposits contain marked elemental enrichments (particularly Se content). In Gwna Group black shales, Se and Te were

  11. The volcano-sedimentary succession of Upper Permian in Wuli area, central Qinghai-Tibetan Plateau: Sedimentology, geochemistry and paleogeography

    NASA Astrophysics Data System (ADS)

    Liu, Shengqian; Jiang, Zaixing; Gao, Yi

    2017-04-01

    Detailed observations on cores and thin sections well documented a volcano-sedimentary succession from Well TK2, which is located in Wuli area, central Qinghai-Tibetan Plateau. The TK2 volcano-sedimentary succession reflects an active sedimentary-tectonic setting in the north margin of North Qiangtang-Chamdo terrane in the late Permian epoch. Based on the observation and recognition on lithology and mineralogy, the components of TK2 succession are mainly volcanic and volcaniclastic rocks and four main lithofacies are recognized, including massive volcanic lithofacies (LF1), pyroclastic tuff lithofacies (LF2), tuffaceous sandstone lithofacies (LF3) and mudstone lithofacies (LF4). LF1 is characterized by felsic components, massive structure and porphyrotopic structure with local flow structure, which indicates submarine intrusive domes or extrusion-fed lavas that formed by magma ascents via faults or dykes. Meanwhile, its eruption style may reflect a relative high pressure compensation level (PCL) that mainly determined by water depth, which implies a deep-water environment. LF2 is composed of volcanic lapilli or ash and featured with massive structure, parallel bedding and various deformed laminations including convolve structure, slide deformation, ball-and-pillow structure, etc.. LF2 indicates the sedimentation of initial or reworked explosive products not far away from volcano centers, reflecting the proximal accumulation of volcano eruption-fed clasts or their resedimentation as debris flows. In addition, the submarine volcano eruptions may induced earthquakes that facilitate the resedimentation of unconsolidated sediments. LF3 contains abundant pyroclastic components and is commonly massive with rip-up mudstone clasts or usually interbedded with LF4. In addition, typical flute casts, scour structures and graded beddings in thin-interbedded layers of sandstone and mudstone are commonly observed, which also represents the sedimentation of debris flows or

  12. Multiproxy Late Quaternary stratigraphy of the Nile deep-sea turbidite system — Towards a chronology of deep-sea terrigeneous systems

    NASA Astrophysics Data System (ADS)

    Ducassou, E.; Capotondi, L.; Murat, A.; Bernasconi, S. M.; Mulder, T.; Gonthier, E.; Migeon, S.; Duprat, J.; Giraudeau, J.; Mascle, J.

    2007-08-01

    Understanding the recent formation of a sedimentary system such as a deep-sea turbidite system (DSTS) requires an accurate stratigraphic control on deposits. Due to the important terrigeneous input which disrupts the sedimentary record, DSTS is an environment where stratigraphic control is difficult to assess. Most of the time, traditional stratigraphic tools are not accurate enough. This has led to a rather limited number of studies concerning stratigraphy in DSTS. In this study, we examine several hemipelagic long piston cores collected from the Nile DSTS (eastern Mediterranean), in order to understand the recent evolution of the complex sedimentary system in this area. The first aim of this study is to show how to obtain a reliable timeframe in DSTS. Indeed, we provided a detailed ecostratigraphical scheme based on planktonic foraminiferal distribution, oxygen isotope records and lithostratigraphy (sapropels and tephra) of three cores where the sedimentation is least disturbed. We have identified 29 foraminiferal ecozones during the last 250,000 years BP, with an approximately 2000-year time resolution. The time span of each ecozone was constrained by the oxygen isotope record, 14C AMS radiometric data, tephrochronology and the sapropel chronology. These high-resolution ecostratigraphical time subdivisions have been applied in discontinuous mixed hemipelagic/turbiditic sequences of a levee record. This example shows how to date gravity events, formation and time periods of sedimentary accumulations.

  13. Sources of Minor and Rare-Earth Elements in Hydrothermal Edifices of Near-Continental Rifts with Sedimentary Cover: Evidence from the Guaymas Basin, Southern Trough

    NASA Astrophysics Data System (ADS)

    Lein, A. Yu.; Dara, O. M.; Bogdanova, O. Yu.; Novikov, G. V.; Ulyanova, N. V.; Lisitsyn, A. P.

    2018-03-01

    The mineralogy and geochemistry of a fragment of an active hydrothermal edifice from the Hydrothermal Hill of the Southern Trough valley of the Guaymas Basin in the Gulf of California were studied. The sample was collected from a depth of 1995 m by the Pisces manned submersible on cruise 12 of the R/V Akademik Mstislav Keldysh, Institute of Oceanology, Russian Academy of Sciences. The fragment and the edifice itself consists of two accrete pipes: ore (pyrrhotite) and barren (carbonate) combined in a single edifice by an outer barite-opal zone. The ore edifice is located in the rift zone of the Guaymas Basin with a thick sedimentary cover and is depleted in metals in comparison with ores from rift zones of the open ocean, which are not blocked by sedimentary deposits. This is explained by loss of metals at the boundary between hot sills and sedimentary rocks and by the processes of interaction of hydrothermal solutions with sedimentary deposits. The sedimentary series faciitates long-term preservation of endogenous heat and the ore formation process. Ore edifices of the Guaymas Basin are mostly composed of pyrrhotite, have a specific set of major elements, microelements and REEs, and contain naphthenic hydrocarbons. They may be search signs of hidden polymetallic deposits, considered to be the roots of ore occurrences localized under the surface of the bottom in young active rifts with high spreading and sedimentation rates, i.e., in near-continental areas of rifts of the humid zone with avalanche sedimentation.

  14. Preservation of carbonate clumped isotopes in sedimentary paleoclimate archives

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Shenton, B.; Perez-Huerta, A.

    2014-12-01

    Carbonate clumped isotope thermometry is increasingly used to reconstruct paleotemperatures of ancient terrestrial environments. One promising application is elucidating paleoelevation from carbonate archives such as paleosols, lacustrine marls, and fossil freshwater shells. Unlike conventional stable isotope approaches (e.g., mineral δ18O or δD), clumped isotope thermometry is independent of the isotopic composition of the precipitating waters and can therefore be used to reconstruct elevation by both the temperature-altitude relationship and the rainfall δ18O-altitude relationship. However, interpretation of clumped isotope data is not without its own complications. Like conventional stable isotopes, clumped isotope paleotemperatures can be effectively reset to warmer values by dissolution/reprecipitation-type diagenesis during sedimentary burial. It is also known that carbonate clumped isotope bonds (i.e., 13C-18O) are susceptible to 'reordering' in the solid mineral lattice at warmer burial temperatures, with laboratory studies of natural carbonates indicating activation of this phenomenon at temperatures as low as 100 °C over geologic timescales. A challenge in applying carbonate clumped isotope thermometry to natural samples is now evaluating terrestrial archives with respect to both types of alteration: 'open-system' alteration and 'closed-system' bond reordering. In this talk we will review our experimental efforts to constrain the kinetics of clumped isotope reordering, with relevance to low-temperature carbonates like fossil shells and early diagenetic minerals, and present new laboratory data that further inform our theoretical framework for the mechanism(s) of 13C-18O bond reordering. Together with traditional analytical and petrographic screening for recrystallization, empirical and laboratory studies of carbonate clumped isotope reordering represent the next steps in evaluating isotopic records of paleoclimate, paleobiology, and paleoelevation

  15. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Haberthür, David; Kuhs, Werner F.

    2015-06-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enhance the density contrast between gas hydrate and the fluid phases involved. The nucleation sites can be easily identified and the various growth patterns are clearly established. In sediments under-saturated with juvenile water, nucleation starts at the water-gas interface resulting in an initially several micrometer thick gas hydrate film; further growth proceeds to form isometric single crystals of 10-20 µm size. The growth of gas hydrate from gas-enriched water follows a different pattern, via the nucleation in the bulk of liquid producing polyhedral single crystals. A striking feature in both cases is the systematic appearance of a fluid phase film of up to several micron thickness between gas hydrates and the surface of the quartz grains. These microstructural findings are relevant for future efforts of quantitative rock physics modeling of gas hydrates in sedimentary matrices and explain the anomalous attenuation of seismic/sonic waves.

  16. Biostratigraphy of Cretaceous-Paleogene marine succession, foraminiferal changes across the K/T boundary, sequence stratigraphy and response to sedimentary cyclicity in the Haymana Basin (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    The aim of this study is to establish the planktonic foraminiferal biozonation, to construct the sequence stratigraphical framework and to determine the foraminiferal response to sedimentary cyclicity in the sedimentary sequence spanning Upper Cretaceous-Paleocene in the Haymana basin (Central Anatolia, Turkey). In order to achieve this study, the stratigraphic section was measured from sedimentary sequence of the Haymana, Beyobası and Yeşilyurt formations. The sedimentary sequence is mainly characterized by flyschoidal sequence that is composed of alternating of siliciclastic and carbonate units. On the account of the detailed taxonomic study of planktonic foraminifers, the biostratigraphic framework was established for the Maastrichtian-Paleocene interval. The biozonation includes 7 zones; Pseudoguembelina hariaensis, Pα, P1, P2, P3, P4 and P5 zones. The Cretaceous-Paleogene (K/P) boundary was delineated between the samples HEA-105 and 106. In order to construct the sequence-stratigraphical framework, the A, B, C and D-type meter-scale cycles were identified. Based on the stacking patterns of them, six depositional sequences, six third and two second order cycles were determined. Third order cycles coincide with the Global Sea Level Change Curve. On the account of the conducted petrographic analysis sandstone, mudstone, marl, limestone and muddy-limestone lithofacies were recorded in the studied samples. In order to demonstrate the response of foraminifers to cyclicity, quantitative analysis has been carried out by counting the individuals of planktonic, benthonic foraminifers and ostracods. The best response to sedimentary cyclicity was revealed from planktonic foraminifers. The average abundance of planktonic foraminifers increases in the transgressive systems tract and decreases in the highstand systems tract. Foraminifera are the most abundant marine protozoa in the benthic, epipelagic and pelagic realm. Because of the complexity and diversity of habitats

  17. Structural peculiarities of the sedimentary cover of the MAR crest depressions (5°-8°N) in the Equatorial Atlantics

    NASA Astrophysics Data System (ADS)

    Skolotnev, S. G.; Tsukanov, N. V.; Turko, N. N.; Peyve, A. A.

    2003-04-01

    The analysis of the bottom relief structure investigated with multibeam SIMRAD 12S and sedimentary cover of depressions investigeted with PARASAUND in the MAR crest zone near Sierra-Leone Fault (22 Cruise of the RV "Akademik Nikolay Strachov", and 10 Cruise of the RV "Akademik Ioffe") point on the complicated character of the tectonic activity distribution in this region. The left-lateral displacements of the rift velley and the absence of transform faults are typical for this region. Two extremely deep rift depressions (up to 5000 m) are located in the rift valley: one on 5°54'N latitude (Markov depression) and the other on 5°46'N latitude. About 40 m sediments cover their bottom. On contary, in the depression located parallel to the rift valley directly to the west from the two mentioned rift depressions the sedimentary cover is absent and bottom has very dissected, apparently volcanic, relief. In the MAR crest zone in 20 miles to the south-west from the Markov and 5°46'N depressions one can see a system of depressions oriented both parallel and oblique to the rift valley. There are filled by the sediments of different thickness. The sedimentary cover of these depressions often is tired and deformed by diapir and horst uplifts. Dredging data show, that basalts, which represent, according to their petro-geo-chemical characteristics the enriched MORB basalts and alkaline basalts compose these uplifts. Irregular distribution and character of composition of the sediments in the depressions of crest zone of the MAR segment under consideration along with high volcanic activity outside the axial spreding zone show that tectonic and volcanic activity in this area are distributed all over the crest zone. The complicated character of this activity is obviosly caused by two reasons. From one hand it may be a deep mantle plum, as inferred from basalt composition and from the other hand it may be the lithosphere blocks displacements along the left-lateral strike slips.

  18. QEMSCAN+LAICPMS: a new tool for petrochronology and sedimentary provenance analysis

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter; Rittner, Martin; Omma, Jenny

    2017-04-01

    Only a relatively small number of rock-forming minerals contain sufficiently high concentrations of naturally occurring radioactive parent isotopes and sufficiently low background concentrations of the corresponding daughter isotopes to be suitable for geochronology. The first step in most geochronological studies is to extract these datable minerals from the host rock using a combination of magnetic and density separation techniques, a process that is tedious and time consuming. We here present a new method to avoid mineral separation by coupling a QEMSCAN electron microscope to an LA-ICP-MS instrument. Given a polished hand specimen, a petrographic thin section, or a grain mount, the QEMSCAN+LAICPMS method produces chemical and mineralogical maps from which the X-Y coordinates of the datable mineral are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic and, hence, geochronological analysis. QEMSCAN+LAICPMS can be applied to a wide range of problems in igneous, metamorphic and sedimentary geology, as is illustrated with three case studies. In the first case study, a 3 × 4 cm slab of polished granite from the L'Erée pluton in Guernsey is scanned for zircon. This yields 23 U-Pb ages resulting in a concordia age of 615 ± 2 Ma. The second case study re-investigates a paragneiss from an ultra-high pressure terrane in the Qaidam Basin (Qinghai, China) that was previously analysed by conventional petrography, electron microscopy and SIMS zircon U-Pb analysis. In this example, the QEMSCAN revealed 107 small (20 μm) metamorphic zircons that were analysed by LA-ICP-MS to constrain the 430 Ma age of peak metamorphism. The third and final case study investigates the mineralogy and geochronology of sedimentary rocks of the Ordovician Sarah Formation (Saudi Arabia). We analysed 44 outcrop samples and a further 35 subsurface samples, resulting in a dataset comprising 10,000 detrital zircon U-Pb ages and 79 heavy mineral

  19. Thermal history determined by fission-track dating for three sedimentary basins in California and Wyoming

    USGS Publications Warehouse

    Naeser, Nancy D.

    1984-01-01

    The use of fission-tracks is demonstrated in studies of time-temperature relationships in three sedimentary basins in the western United States; in the Tejon Oil Field area of the southern San Joaquin Valley, California; in the northeastern Green River basin, Wyoming, and in drill holes in the southern Powder River Basin, Wyoming.

  20. A 2.7 Myr record of sedimentary processes on a high-latitude continental slope: 3D seismic evidence from the mid-Norwegian margin

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2017-12-01

    An extensive three-dimensional seismic dataset is used to investigate the sedimentary processes and morphological evolution of the mid-Norwegian continental slope through the Quaternary. These data reveal hundreds of buried landforms, including channels and debris flows of variable morphology, as well as gullies, iceberg ploughmarks, slide scars and sediment waves. Slide scars, turbidity currents and debris flows comprise slope systems controlled by local slope morphology, showing the spatial variability of high-latitude sedimentation. Channels dominate the Early Pleistocene ( 2.7-0.8 Ma) morphological record of the mid-Norwegian slope. During Early Plesitocene, glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Glacigenic debris-flows appear within the Middle-Late Pleistocene ( 0.8-0 Ma) succession. Their abundance increases on Late Pleistocene palaeo-surfaces, marking a paleo-environmental change characterised by decreasing role for channelized turbidity currents and dense water flows. This transition coincides with the gradual shift to full-glacial ice-sheet conditions marked by the appearance of the first erosive fast-flowing ice streams and an associated increase in sediment flux to the shelf edge, emphasizing first-order climate control on the temporal variability of high-latitude sedimentary slope records.

  1. Genetic data from algae sedimentary DNA reflect the influence of environment over geography

    PubMed Central

    Stoof-Leichsenring, Kathleen R.; Herzschuh, Ulrike; Pestryakova, Luidmila A.; Klemm, Juliane; Epp, Laura S.; Tiedemann, Ralph

    2015-01-01

    Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern. PMID:26261899

  2. Benthic iron cycling in a high-oxygen environment: Implications for interpreting the Archean sedimentary iron isotope record.

    PubMed

    McCoy, V E; Asael, D; Planavsky, N

    2017-09-01

    The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.

  3. Miocene Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core

    NASA Astrophysics Data System (ADS)

    Cornamusini, Gianluca; Talarico, Franco M.

    2016-11-01

    A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.

  4. Fjordic Environments of Scotland: A National Inventory of Sedimentary Blue Carbon.

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William; Davies, Althea; Baltzer, Agnes; Howe, John

    2016-04-01

    Coastal sediments potentially hold a significant store of carbon; yet there has been no comprehensive attempt to quantitatively determine the quantity of carbon in these stores. Using Scottish sea lochs (fjords) we have established a Holocene record of the quantity and type of carbon held within the sediment store of a typical Scottish sea loch. Through the use of both seismic geophysics and geochemical measurements we have developed a methodology to make first-order estimations of the carbon held with the sediment of sea lochs. This methodology was applied to four sea lochs with differing geographical locations, catchments, freshwater inputs to produce the first sedimentary Blue Carbon estimates. The resulting carbon inventories show clearly that these sea lochs hold a significant store of sedimentary carbon; for example, Loch Sunart in Argyll stores an estimated 26.88 ± 0.52 Mt C. A direct comparison of the organic carbon content per unit area suggest sea lochs have a greater OC storage potential between than Scottish peatlands on long, Holocene timescales (Loch Sunart = 0.234 Mt OC km-2; Peatland = 0.093 Mt OC km-2 (Chapman et al. 2009). The carbon values calculated for these sea lochs have been used to estimate the total carbon held within Scotland's 110 sea lochs and these up-scaled estimations are for the first time, reviewed in the context of Scotland's known terrestrial stores. Chapman, S. J., Bell, J., Donnelly, D. and Lilly, A.: Carbon stocks in Scottish peatlands, Soil Use Manag., 25(2), 105-112, doi:10.1111/j.1475-2743.2009.00219.x, 2009.

  5. Mars sedimentary rock erosion rates constrained using crater counts, with applications to organic-matter preservation and to the global dust cycle

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Mayer, David P.

    2017-04-01

    Small-crater counts on Mars light-toned sedimentary rock are often inconsistent with any isochron; these data are usually plotted then ignored. We show (using an 18-HiRISE-image, > 104-crater dataset) that these non-isochron crater counts are often well-fit by a model where crater production is balanced by crater obliteration via steady exhumation. For these regions, we fit erosion rates. We infer that Mars light-toned sedimentary rocks typically erode at ∼102 nm/yr, when averaged over 10 km2 scales and 107-108 yr timescales. Crater-based erosion-rate determination is consistent with independent techniques, but can be applied to nearly all light-toned sedimentary rocks on Mars. Erosion is swift enough that radiolysis cannot destroy complex organic matter at some locations (e.g. paleolake deposits at SW Melas), but radiolysis is a severe problem at other locations (e.g. Oxia Planum). The data suggest that the relief of the Valles Marineris mounds is currently being reduced by wind erosion, and that dust production on Mars < 3 Gya greatly exceeds the modern reservoir of mobile dust.

  6. Elemental Characteristics of Australian Sedimentary Opals and their Implications for Opal Formation and Gemstone Fingerprinting

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, A.; Landgrebe, T. C.; Rey, P. F.

    2011-12-01

    Opal consists of amorphous SiO2.nH2O comprising a network of silica spheres, which in precious opal are of similar size and form an ordered network allowing light to diffract into an array of colors. Common opal, which is often associated with precious opal, lacks this play of color as it is composed of silica spheres of variable sizes. Australia supplies over 95% of the world's precious opal. The opal is almost exclusively located within Cretaceous sedimentary rocks of the Great Artesian Basin, which experienced a major phase of uplift in the Late Cretaceous with subsequent erosion removing a package of sedimentary rock up to 3 km in thickness. Intense weathering resulted in extensive silicification at relatively shallow levels within the Tertiary regolith. However, despite a billion dollar industry and a well-constrained geological history of the basin, the formation of sedimentary opal and its uniqueness to the Australian continent are still very poorly understood. In this study we have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on precious and common opal from key opal mining areas in order to constrain the possible sources of silica fluids involved in opal genesis and to assess whether any major or trace elements could be used to determine the provenance of opal with respect to a particular mining area. A total of 123 spots, each comprising 59 elements, including rare earth elements were analyzed. Globally, volcanic and sedimentary opals can be distinguished on the basis of Ba and Ca concentrations. Although the opals from the Great Artesian Basin are all sedimentary, some show Ba concentrations consistent with volcanic opals suggesting that silica fluids from which they formed were derived from a volcanic province. The most likely source is the Cretaceous volcanic-plutonic province of central Queensland, which supplied vast amounts of volcanogenic material into the Great Artesian Basin. The weathering of feldspars from the

  7. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling

    DOE PAGES

    Pelletier, Jon D.; Broxton, Patrick D.; Hazenberg, Pieter; ...

    2016-01-22

    Earth’s terrestrial near-subsurface environment can be divided into relatively porous layers of soil, intact regolith, and sedimentary deposits above unweathered bedrock. Variations in the thicknesses of these layers control the hydrologic and biogeochemical responses of landscapes. Currently, Earth System Models approximate the thickness of these relatively permeable layers above bedrock as uniform globally, despite the fact that their thicknesses vary systematically with topography, climate, and geology. To meet the need for more realistic input data for models, we developed a high-resolution gridded global data set of the average thicknesses of soil, intact regolith, and sedimentary deposits within each 30 arcsecmore » (~ 1 km) pixel using the best available data for topography, climate, and geology as input. Our data set partitions the global land surface into upland hillslope, upland valley bottom, and lowland landscape components and uses models optimized for each landform type to estimate the thicknesses of each subsurface layer. On hillslopes, the data set is calibrated and validated using independent data sets of measured soil thicknesses from the U.S. and Europe and on lowlands using depth to bedrock observations from groundwater wells in the U.S. As a result, we anticipate that the data set will prove useful as an input to regional and global hydrological and ecosystems models.« less

  8. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Broxton, Patrick D.; Hazenberg, Pieter; Zeng, Xubin; Troch, Peter A.; Niu, Guo-Yue; Williams, Zachary; Brunke, Michael A.; Gochis, David

    2016-03-01

    Earth's terrestrial near-subsurface environment can be divided into relatively porous layers of soil, intact regolith, and sedimentary deposits above unweathered bedrock. Variations in the thicknesses of these layers control the hydrologic and biogeochemical responses of landscapes. Currently, Earth System Models approximate the thickness of these relatively permeable layers above bedrock as uniform globally, despite the fact that their thicknesses vary systematically with topography, climate, and geology. To meet the need for more realistic input data for models, we developed a high-resolution gridded global data set of the average thicknesses of soil, intact regolith, and sedimentary deposits within each 30 arcsec (˜1 km) pixel using the best available data for topography, climate, and geology as input. Our data set partitions the global land surface into upland hillslope, upland valley bottom, and lowland landscape components and uses models optimized for each landform type to estimate the thicknesses of each subsurface layer. On hillslopes, the data set is calibrated and validated using independent data sets of measured soil thicknesses from the U.S. and Europe and on lowlands using depth to bedrock observations from groundwater wells in the U.S. We anticipate that the data set will prove useful as an input to regional and global hydrological and ecosystems models. This article was corrected on 2 FEB 2016. See the end of the full text for details.

  9. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previousmore » and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe 3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.« less

  10. Austrian phase on the northern African margin inferred from sequence stratigraphy and sedimentary records in southern Tunisia (Chotts and Djeffara areas)

    NASA Astrophysics Data System (ADS)

    Lazzez, Marzouk; Zouaghi, Taher; Ben Youssef, Mohamed

    2008-08-01

    A multidisciplinary study concerning Aptian and Albian deposits is reported from petroleum wells and the exposed section. The biostratigraphic and sedimentological analysis defined four sedimentary units. Well-logging signals' analysis allows us to refine the record resolution on Aptian series and reveals, in the Djeffara field, a transgressive system tract (TST) and a highstand system tract (HST). Exceptionally, the first sequence (S1) in the Mareth 1 well and the fifth sequence in the two wells Mareth 1 and Gourine 1 reveal the lower-stand system tract (LST). The unconformities characterized by the absence of Upper Aptian (Clansayesian) and Lower to Middle Albian deposits signed by a significant gamma-ray reduction. The Middle and Upper Albian is represented by only one deposit sequence (S6) in Mareth 1. Towards the south, in the Gourine well, two deposit sequences were identified (S6 and S7); to specify the Aptian and Albian evolution of the deposit sequences, a tentative correlation has been established between the Chotts and Djeffara areas. This correlation allows us to characterize the sedimentary unconformities related to the tectonics and eustatic events. The Chotts and the Djeffara deposition areas were developed, characterized by an irregular subsidence and separated by the Tebaga Medenine high area. The Aptian-Albian subsidence platform of southern Tunisia may be considered as a block diagram of environmental deposit with regressive and transgressive trends, showing the impact of tectonic deformations on the palaeogeographic evolution of southeastern Tunisia during the Austrian phase. This study also must be replaced within regional structural patterns that may explain both the sequential and sedimentological evolution of the area. Deformations regionally identified are integrated in the more general context of both Tethyan and Atlantic areas related to the drift of the African platform.

  11. Sedimentary Records of the Paleohurricane Activity in the Bahamas

    NASA Astrophysics Data System (ADS)

    Wallace, E. J.; Donnelly, J. P.; Wiman, C.; Cashman, M.

    2015-12-01

    Hurricanes pose a threat to human lives and can cause significant destruction of coastal areas. This threat has become more pronounced with recent rises in sea level and coastal populations. Currently, there is a large degree of uncertainty surrounding future changes in tropical cyclone activity. This is due to the limitations of climate models as well as the scarcity and unreliability of the current observational record. With so much uncertainty surrounding the current projections of hurricane activity, it is crucial to establish a longer and more accurate historical record. This study uses sediment cores extracted from blueholes in the Bahamas to develop a record of intense hurricane landfalls in the region dating back more than a millennia. The collected cores were sectioned, split, and scanned on an X-ray fluorescence scanner to obtain a high resolution core profile of the sediments' elemental composition and to identify potential sedimentary structures. Age control of the samples was determined using radiocarbon dating, coarse fraction was measured every centimeter, and hurricane event bed frequency was established for each core. We assess the statistical significance of the patterns observed in the sedimentary record using a coupled ocean-atmosphere hurricane model to simulate storms representative of modern climatology. Cores extracted from two blue holes near South Andros Island provide approximately a 1600 year and a 600 year record respectively, with sedimentation rates exceeding 1 cm/year. Both records contain coarse grained event deposits that correlate with known historical intense hurricane strikes in the Bahamas within age uncertainties. The 1600 year record confirms previous hurricane reconstructions from the Caribbean indicating higher tropical cyclone activity from 500 to 1400 CE. In addition, these new high-resolution records indicate elevated intense hurricane activity in the 17th and 18th centuries CE, when activity is also elevated in lower

  12. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    USGS Publications Warehouse

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  13. Late Cenozoic tectonic activity of the Altyn Tagh range: Constraints from sedimentary records from the Western Qaidam Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fang, Xiaomin; Wang, Yadong; Song, Chunhui; Zhang, Weilin; Yan, Maodu; Han, Wenxia; Zhang, Dawen

    2018-07-01

    The Altyn Tagh range (ATR) is the northern geological boundary of the Tibetan Plateau and plays a key role in accommodating its Cenozoic lithospheric deformation. However, knowledge of the structural style and age of uplift of the ATR is limited and controversial. The Qaidam Basin, in the southeast side of the ATR, provides an outstanding field laboratory for understanding the history and mechanisms of ATR growth. This study presents a detailed sedimentological analysis of a 1040-m-thick late Cenozoic ( 17-5.0 Ma) sedimentary sequence from the western Qaidam Basin, together with the analysis of sedimentological data from nearby boreholes and sections. Our aims were to determine the spatiotemporal evolution of the sedimentary sequences in the study area and to explore their response to late Cenozoic tectonic activity in the ATR. The results show three major intervals of the sedimentary characteristics in the study area: >17-16 Ma, 10 Ma and <5 Ma, which are closely related to the development of unconformities and growth strata recorded by high-resolution seismic reflection profiles. Combining the results with a comprehensive provenance analysis and with published records of regional climate change and tectonic activity, we discuss the possible factors responsible for the variations in the sedimentary characteristics of the studied sections. We conclude that significant tectonic responses in the western Qaidam Basin during the late Cenozoic were caused by three stages of tectonic activity of the ATR, at >17-16 Ma, 16-10 Ma and 10 Ma, during which the ATR respectively experienced tectonic uplift, fast strike-slip motion and intense uplift.

  14. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Xiangquan; Fairweather, Luke; Wu, Shiguo; Ren, Jianye; Zhang, Hongjie; Quan, Xiayun; Jiang, Tao; Zhang, Cheng; Su, Ming; He, Yunlong; Wang, Dawei

    2013-01-01

    The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon's sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon's origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon's sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon's unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon's axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and

  15. The tectono-sedimentary evolution of the Sivas ophiolite: Implications for pre to post-obduction processes in Anatolia

    NASA Astrophysics Data System (ADS)

    Legeay, Etienne; Mohn, Geoffroy; Callot, Jean-Paul; Ringenbach, Jean-Claude; Müntener, Othmar; Kavak, Kaan

    2016-04-01

    The Eastern Mediterranean in general and Turkey in particular preserve the remnants of several Neo-Tethysian oceanic basins consumed by north-dipping subductions during the Late Cretaceous prior to collision in the Paleogene. The Sivas basin, belonging to the Late Mesozoic to Cenozoic Central Anatolian basins, is located in a key position at the junction between 1) To the North, the Izmir-Ankara-Erzincan suture zone (IAESZ), 2) To the West, the Kırsehir block, 3) To the South, the Inner-Tauride suture zone (ITSZ). The obduction of ophiolite thrust sheets occurred during Campanian along the IAESZ, and ITSZ. We focus our study on the southern boundary of the Sivas basin, where an ophiolite sequence is capped by Late Cretaceous to Paleocene post-obduction sediments. We present new field observations, new U-Pb zircon dating on magmatic rocks and geochemistry analyses to unravel the pre-obduction nature and origin of the ophiolitic basement and to describe the post-obduction tectono-sedimentary evolution. The pre-obduction evolution show that: (i) the Southern Sivas ophiolite is characterized by highly serpentinized peridotites, with minor magmatic intrusions, (ii) the top of the ophiolite is marked by detachment faulting with ophicalcites, (iii) the U-Pb zircon ages of the magmatic intrusions are constrained at ˜90 Ma, (iv) geochemical data suggest a 'subduction signature' for the magmatic rocks. The, post-obduction evolution is characterized by the emplacement of Maastrichtian and Paleocene sediments carbonate platforms located on ophiolitic highs, associated to volcanoclastics turbidites in the trench northward in the Sivas Basin. These results show that the southern Sivas ophiolite represents magma starved system sharing similarities with present-day (ultra-)slow-spreading systems. This ophiolite belongs to the ITSZ, in contrast to ophiolites located 40km northward from the IAESZ. To resolve the complex paleogeographic framework of East-Anatolia during the

  16. USING THE SEDIMENT QUALITY TRIAD (SQT) APPROACH TO ASSESS SEDIMENTARY CONTAMINATION IN THE ANACOSTIA RIVER, WASHINGTON

    EPA Science Inventory

    Using the Sediment Quality Triad (SQT) Approach to Assess Sedimentary Contamination in the Anacostia River, Washington, D.C. Velinsky, DJ*1, Ashley, JTF1,2, Pinkney, F.3, McGee, BL3 and Norberg-King, TJ.4 1Academy of Natural Sciences-PCER, Philadelphia, PA. 2Philadelphia Universi...

  17. Sedimentary and Vegetative Impacts of Hurricane Irma to Coastal Wetland Ecosystems across Southwest Florida

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Khan, N.; Radabaugh, K.; Engelhart, S. E.; Smoak, J. M.; Horton, B.; Rosenheim, B. E.; Kemp, A.; Chappel, A. R.; Schafer, C.; Jacobs, J. A.; Dontis, E. E.; Lynch, J.; Joyse, K.; Walker, J. S.; Halavik, B. T.; Bownik, M.

    2017-12-01

    Since 2014, our collaborative group has been working in coastal marshes and mangroves across Southwest Florida, including Tampa Bay, Charlotte Harbor, Ten Thousand Islands, Biscayne Bay, and the lower Florida Keys. All existing field sites were located within 50 km of Hurricane Irma's eye path, with a few sites in the Lower Florida Keys and Naples/Ten Thousand Islands region suffering direct eyewall hits. As a result, we have been conducting storm-impact and damage assessments at these locations with the primary goal of understanding how major hurricanes contribute to and/or modify the sedimentary record of mangroves and salt marshes. We have also assessed changes to the vegetative structure of the mangrove forests at each site. Preliminary findings indicate a reduction in mangrove canopy cover from 70-90% pre-storm, to 30-50% post-Irma, and a reduction in tree height of approximately 1.2 m. Sedimentary deposits consisting of fine carbonate mud up to 12 cm thick were imported into the mangroves of the lower Florida Keys, Biscayne Bay, and the Ten Thousand Islands. Import of siliciclastic mud up to 5 cm thick was observed in Charlotte Harbor. In addition to fine mud, all sites had imported tidal wrack consisting of a mixed seagrass and mangrove leaf litter, with some deposits as thick as 6 cm. In areas with newly opened canopy, a microbial layer was coating the surface of the imported wrack layer. Overwash and shoreline erosion were also documented at two sites in the lower Keys and Biscayne Bay, and will be monitored for change and recovery over the next few years. Because active research was being conducted, a wealth of pre-storm data exists, thus these locations are uniquely positioned to quantify hurricane impacts to the sedimentary record and standing biomass across a wide geographic area. Due to changes in intensity along the storm path, direct comparisons of damage metrics can be made to environmental setting, wind speed, storm surge, and distance to eyewall.

  18. Modern sedimentary environments on the Rhode Island inner shelf, off the eastern United States

    USGS Publications Warehouse

    Knebel, H.J.; Needell, S. W.; O'Hara, C. J.

    1982-01-01

    Analyses of side-scan sonar records along with previously published bathymetric, textural and subbottom data reveal the sedimentary environments on the inner Continental Shelf south of Narragansett Bay, Rhode Island. The bottom topography in this area is characterized by a broad central depression bordered by shallow, irregular sea floor on the north and east and by a discontinuous, curvilinear ridge on the south and west. Four distinct environments were identified: 1. (1) Pre-Mesozoic coastal rocks are exposed on the sea floor at isolated locations near the shore (waterdepths <32 m). These exposures have pronounced, irregular topographic relief and produce blotchy patterns on side-scan sonographs. 2. (2) Glacial moraine deposits form the discontinuous offshore ridge. These deposits have hummocky sea-floor relief, are covered by lag gravel and boudlers, and appear as predominantly black (strongly reflective) patterns on the side-scan records. 3. (3) Over most of the shallow, irregular bottom in the northeast, on the flanks of the morainal ridge, and atop bathymetric highs, the sea floor is characterized as a mosaic of light and dark patches and lineations. The dark (more reflective) zones are areas of coarse sands and megaripples (wavelengths = 0.8-1.2 m that either have no detectable relief or are slightly depressed relative to surrounding (light) areas of finer-grained sands. 4. (4) Smooth beds that produce nearly featureless patterns on the sonographs occupy the broad central bathymetric depression as well as smaller depressions north and east of Block Island. Within the broad depression, sonographs having practically no shading indicate a central zone of modern sandy silt, whereas records having moderate tonality define a peripheral belt of silty sand. The sedimentary environments that are outlined range from erosional or non-depositional (bedrock, glacial moraine) to depositional (featureless beds), and include areas that may reflect a combination of erosional

  19. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil).

    PubMed

    Gross, Martin; Piller, Werner E; Ramos, Maria Ines; Douglas da Silva Paz, Jackson

    2011-08-01

    In Miocene times a vast wetland existed in Western Amazonia. Whereas the general development of this amazing ecosystem is well established, many questions remain open on sedimentary environments, stratigraphical correlations as well as its palaeogeographical configuration. Several outcrops located in a barely studied region around Eirunepé (SW Amazonas state, Brazil) were investigated to obtain basic sedimentological data. The observed deposits belong to the upper part of the Solimões Formation and are biostratigraphically dated to the Late Miocene. Vertically as well as laterally highly variable fine-grained clastic successions were recorded. Based on the lithofacies assemblages, these sediments represent fluvial deposits, possibly of an anastomosing river system. Sand bodies formed within active channels and dominant overbank fines are described (levees, crevasse splays/channels/deltas, abandoned channels, backswamps, floodplain paleosols). Lacustrine environments are restricted to local floodplain ponds/lakes. The mollusc and ostracod content as well as very light δ 18 O and δ 13 C values, measured on ostracod valves, refer to exclusively freshwater conditions. Based on palaeontological and geological results the existence of a long-lived lake ("Lake Pebas") or any influx of marine waters can be excluded for that region during the Late Miocene.

  20. Nature and origin of the sedimentary pile subducting in the Nankai Through

    NASA Astrophysics Data System (ADS)

    Chauvel, C.; Garcon, M.; Yobregat, E.; Chipoulet, C.; Labanieh, S.

    2013-12-01

    Nd-Hf isotopes and trace and major element concentrations were measured on bulk sediments recovered at Site C0012 during IODP Expedition 322 and 333 in the Shikoku basin. We analyzed the composition of different lithologies such as clay, claystone, sand, sandstone, and ash layers, all through the sedimentary pile, from the surface to the sediment-basalt interface, in order to identify compositional trends and source variations with depth. Major and trace element contents of the background sediments (hemipelagic mudstone) are very homogenous and span a relatively small range of values throughout the entire sedimentary pile. Their composition resembles that of the average upper continental crust of Rudnick and Gao (2003, Treatise on Geochemistry, Vol.3, p. 1-64). Nd and Hf isotopes are more variable, relatively unradiogenic (-8 < ɛNd < -3 ; -4 < ɛHf < +5) but display no systematic variations with depth (Fig. 1). Such isotopic compositions indicate that the background sedimentation of the Shikoku basin may consist of volcaniclastic material from the Izu-Bonin and/or Ryukyu arcs, detrital material eroded from SW Japan and relatively high amount of an evolved continental-derived component, probably Chinese loess as already suggested by Mahomet (2005, Sediment. Geol., 182, p.183-199). Compared to the background sedimentation, volcanic ash layers and volcaniclastic sandstones have very different trace element patterns and more radiogenic Nd-Hf isotopic signature (Fig. 1). Our results allow us to distinguish at least two different volcanic sources for these deposits. At the bottom of the sedimentary pile, siliciclastic sandstones with a mid-Miocene age are present; they have remarkably low ɛNd and ɛHf values (i.e. ɛNd < -8 and ɛHf < -5). Such isotopic compositions clearly demonstrate that their source cannot be the Japanese mainland, as suggested by previous studies (e.g. Underwood et al, 2009, Exp.322 PR ; Fergusson, 2003, Proc. ODP, Sci. Results 190/196). These

  1. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Marsaglia, K.; Simila, G.; Pedone, V.; Yule, D.

    2003-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels (individual and team) to research in the geosciences (such as data analysis for earthquake hazards for 1994 Northridge event, paleoseismology of San Andreas fault, Waipaoa, New Zealand sedimentary system and provenance studies, and the Barstow formation geochronology and geochemistry), and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning (think-pair share), and research on geological data sets. Students of all experience levels then become members of research teams and conduct four mini-projects and associated poster presentations, which deepens academic and research skills as well as peer-mentor relationships. This initial research experience has been very beneficial for the student's degree requirements of a senior research project and oral presentation. Evaluation strategies include the student research course presentations, summer field projects, and external review of student experiences. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. A component of peer-tutoring has been implemented for promoting additional student success. The program has been highly successful in its two year development. To date, undergraduates and graduate students have

  2. Reconstructed Oceanic Sedimentary Sequence in the Cape Three Points Area, Southern Axim-Konongo (Ashanti) Greenstone Belt in the Paleoproterozoic Birimian of Ghana.

    NASA Astrophysics Data System (ADS)

    Kiyokawa, S.; Ito, T.; Frank, N. K.; George, T. M.

    2014-12-01

    The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. The Birimian greenstone belt in both the Birimian rock (partly Sefwi Group) and Ashanti belts are separated from the Tarkwaian Group which is a paleoplacer deposit (Perrouty et al., 2012). The Birimian rock was identified as volcanic rich greenstone belt; Kumasi Group is foreland basin with shale and sandstone, quartzite and turbidite derived from 2.1 Ga granite in the Birimian; Tarkwaian Group is composed of coarse detrital sedimentary rocks deposited along a strike-slip fault in the Birimian. In the eastern part of the Cape Three Point area, over 4km long of volcanic-sedimentary sequence outcrops and is affected by greenschist facies metamorphism. Four demarcated zones along the coast as Kutike, Atwepo, Kwtakor and Akodaa zones. The boundaries of each zone were not observed, but each zone displays a well preserved and continuous sedimentary sequence. Structurally, this region is west vergent structure and younging direction to the East. Kutike zone exhibits synform structure with S0 younging direction. Provisional stratigraphic columns in all the zones total about 500m thick. Kutike, Atwepo zones (> 200m thick) have coarsening upward characteristics from black shale to bedded volcanic sandstone. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of

  3. Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming)

    NASA Astrophysics Data System (ADS)

    Törő, Balázs; Pratt, Brian R.

    2016-10-01

    Outcrops and cores from the top of the lacustrine Tipton Member and the base of the Wilkins Peak Member ( 51.5 Ma) of the Eocene Green River Formation, Bridger Basin in southwestern Wyoming yield a wide variety of sedimentary deformation features many of which are laterally extensive for more than 50 km. They include various types of folds, load structures, pinch-and-swell structures, microfaults, breccias and sedimentary dikes. In most cases deformation is represented by hybrid brittle-ductile structures exhibiting lateral variation in deformation style. These occur in low-energy, profundal organic-rich carbonate mudstones (oil shales), trona beds, tuffs, and profundal to sublittoral silty carbonate deposited in paleolake Gosiute. The deformation is not specific to the depositional environment because sedimentary units stratigraphically higher with similar facies show no deformation. The studied interval lacks any evidence for possible trigger mechanisms intrinsic to the depositional environment, such as strong wave action, rapid sediment loading, evaporite dissolution and collapse, or desiccation, so 'endogenic' causes are ruled out. Thus, the deformation features are interpreted as seismites, and change in deformation style and inferred increase in intensity towards the south suggest that the earthquakes were sourced from the nearby Uinta Fault System. The 22 levels exhibiting seismites recognized in cores indicate earthquakes with minimum magnitudes between 6 and 7, minimum epicentral intensity (MCS) of 9, and varying recurrence intervals in the seismic history of the Uinta Fault System, with a mean apparent recurrence period of 8.1 k.y. using average sedimentation rates and dated tuffs; in detail, however, there are two noticeably active periods followed by relative quiescence. The stratigraphic position of these deformed intervals also marks the transition between two distinct stages in lake evolution, from the balanced-filled Tipton Member to the overlying

  4. Characterizing subaqueous co-seismic scarps using coeval specific sedimentary events; a case study in Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Beck, C.; Reyss, J.; Feuillet, N.; Leclerc, F.; Moreno, E.

    2012-12-01

    Improvements of active fault surveying have shown that creep, or alternating creep and co-seismic displacements, are not rare. Nevertheless, either on land (trenching), or in subaqueous setting (seismic imaging and coring), active fault offsets, investigated for paleoseismic purpose, are sometimes assumed as co-seismic without direct evidences. At the opposite, within adequate sedimentary archives, some gravity reworking events may be attributed to earthquake triggering, but often do not permit to locate the responsible fault and the co-seismic rupture. In the here-discussed example, both types of observations could be associated: faulting offsets and specific sedimentary events "sealing" them. Several very high resolution (VHR) seismic profiles obtained during The GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) evidenced frequent "ponding" of reworked sediments in the deepest areas. These bodies are acoustically transparent (few ms t.w.t. thick) and often deposited on the hanging walls of dominantly normal faults, at the base of scarps, as previously observed along the North Anatolian Fault (Beck et al., 2007, doi:10.1016/j.sedgeo.2005.12.031). Their thicknesses appear sufficient to compensate (i.e. bury) successive offsets, resulting in a flat and horizontal sea floor through time. Offshore Montserrat and Nevis islands, piston coring (4 to 7 m long) was dedicated to characterize the most recent of these particular layers. An up to 2m-thick "homogenite" appears capping the RedOx water/sediment interface. 210Pb and 137Cs activities lack in the homogenite, while a normal unsupported 210Pb decrease profile and a 137Cs peak, corresponding to the Atmospheric Nuclear Experiments (1962), are present below (Beck et al. 2012, doi:10.5194/nhess-12-1-2012). This sedimentary event and the coeval scarp are post-1970 AD, and attributed either to the March 16th 1985 earthquake or to the October 8th 1974 one (respectively Mw6.3 and Mw7.4). Based on the

  5. The Role of the Sedimentary Regime in Shaping the Distribution of Subtidal Sandbank Environments and the Associated Meiofaunal Nematode Communities: An Example from the Southern North Sea

    PubMed Central

    Schratzberger, Michaela; Larcombe, Piers

    2014-01-01

    We combined sediment and faunal data to explore the role of the sedimentary regime in shaping the distribution of subtidal sandbank environments and the associated meiofaunal nematode communities at Broken Bank and Swarte Bank, in the southern North Sea. A variety of sediment transport processes occur in the area, differing in the frequency and magnitude of sediment mobility, and the continuum between erosion, translation and sediment accumulation. The seabed contained a variety of bedforms, including longitudinal furrows, and small to very large sandwaves. The bed sediments were dominated by fine and medium sands, with admixtures of silt and gravel. Based on sedimentary bedforms and grain size analysis, a total of 11 sedimentary facies were delineated, of which 8 were analysed in detail for their relationships with the meiofauna. The sedimentary facies fell clearly into groups of facies, respectively representing high, high-moderate and moderate, and episodic sediment mobility. For those sedimentary facies where daily movement of sediments and bedforms occurred (‘high’ sediment mobility), the resulting spatially homogeneous environments were dominated by an impoverished nematode community comprising small deposit feeders and large predators. Resistance to sediment movement and the ability to exploit alternative food sources were prominent functional features of the successful colonisers. Those facies characterised by relatively infrequent sediment mobility (‘episodic’ and ‘high-moderate and moderate’ sediment mobility) comprised a heterogeneous suite of benthic habitats, containing taxonomically and functionally diverse assemblages of nematodes of various sizes, feeding types and reproductive potential. Faunal distribution patterns here indicated trade-offs between the resistance to sediment movement, environmental tolerance and competitive abilities. Our focus on diverse assemblages of organisms with high turnover times, inhabiting highly dynamic

  6. A rapid method for concentrating sedimentary organic matter for vitrinite reflectance analysis.

    USGS Publications Warehouse

    Barker, C.E.

    1982-01-01

    The tecnique discussed in this paper utilizes crushing, high-speed blending, and ultrasonic treatment to mechanically disaggregate rock and release the sedimentary organic matter (OM) in a suitable heavy liquid. This new method can provide freeze-dried concentrated OM in approximately 8 to 24 hours (longer time is necessary for removing carbonate). Under optimal conditions, it is possible to concentrate the OM and prepare a hardened epoxy microscope slide in about 24 hours. Subsequent grinding, polishing, and drying allows microscopic examination of the organic concentrate the next day.-from Author

  7. SedMob: A mobile application for creating sedimentary logs in the field

    NASA Astrophysics Data System (ADS)

    Wolniewicz, Pawel

    2014-05-01

    SedMob is an open-source, mobile software package for creating sedimentary logs, targeted for use in tablets and smartphones. The user can create an unlimited number of logs, save data from each bed in the log as well as export and synchronize the data with a remote server. SedMob is designed as a mobile interface to SedLog: a free multiplatform package for drawing graphic logs that runs on PC computers. Data entered into SedMob are saved in the CSV file format, fully compatible with SedLog.

  8. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata

    NASA Astrophysics Data System (ADS)

    Present, Theodore M.; Paris, Guillaume; Burke, Andrea; Fischer, Woodward W.; Adkins, Jess F.

    2015-12-01

    Carbonate Associated Sulfate (CAS) is trace sulfate incorporated into carbonate minerals during their precipitation. Its sulfur isotopic composition is often assumed to track that of seawater sulfate and inform global carbon and oxygen budgets through Earth's history. However, many CAS sulfur isotope records based on bulk-rock samples are noisy. To determine the source of bulk-rock CAS variability, we extracted CAS from different internal sedimentary components micro-drilled from well-preserved Late Ordovician and early Silurian-age limestones from Anticosti Island, Quebec, Canada. Mixtures of these components, whose sulfur isotopic compositions vary by nearly 25‰, can explain the bulk-rock CAS range. Large isotopic variability of sedimentary micrite CAS (34S-depleted from seawater by up to 15‰) is consistent with pore fluid sulfide oxidation during early diagenesis. Specimens recrystallized during burial diagenesis have CAS 34S-enriched by up to 9‰ from Hirnantian seawater, consistent with microbial sulfate reduction in a confined aquifer. In contrast to the other variable components, brachiopods with well-preserved secondary-layer fibrous calcite-a phase independently known to be the best-preserved sedimentary component in these strata-have a more homogeneous isotopic composition. These specimens indicate that seawater sulfate remained close to about 25‰ (V-CDT) through Hirnantian (end-Ordovician) events, including glaciation, mass extinction, carbon isotope excursion, and pyrite-sulfur isotope excursion. The textural relationships between our samples and their CAS isotope ratios highlight the role of diagenetic biogeochemical processes in setting the isotopic composition of CAS.

  9. Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Shchepetkina, Alina; Gingras, Murray K.; Zonneveld, John-Paul; Pemberton, S. George

    2016-03-01

    The study provides a detailed description of mud-dominated sedimentary fabrics and their application for the rock record within the inner estuary to the fluvial zone of the Petitcodiac River estuary, New Brunswick, Canada. Sedimentological characteristics and facies distributions of the clay- and silt-rich deposits are reported. The inner estuary is characterized by thick accumulations of interbedded silt and silty clay on intertidal banks that flank the tidally influenced channel. The most common sedimentary structures observed are parallel and wavy lamination, small-scale soft-sediment deformation with microfaults, and clay and silt current ripples. The tidal channel contains sandy silt and clayey silt with planar lamination, massive and convolute bedding. The fluvio-tidal transition zone is represented by interbedded trough cross-stratified sand and gravel beds with planar laminated to massive silty mud. The riverine, non-tidal reach of the estuary is characterized by massive, planar tabular and trough cross-stratified gravel-bed deposits. The absence of bioturbation within the inner estuary to the fluvio-tidal transition zone can be explained by the following factors: low water salinities (0-5 ppt), amplified tide and current speeds, and high concentrations of flocculated material in the water body. Notably, downstream in the middle and outer estuary, bioturbation is seasonally pervasive: in those locales the sedimentary conditions are similar, but salinity is higher. In this study, the sedimentological (i.e., grain size, bedding characters, sedimentary structures) differences between the tidal estuary and the fluvial setting are substantial, and those changes occur over only a few hundred meters. This suggests that the widely used concept of an extensive fluvio-tidal transition zone and its depositional character may not be a geographically significant component of fluvial or estuary deposits, which can go unnoticed in the study of the ancient rocks.

  10. Tectono-sedimentary evolution of the Neuquén basin (Argentina) between 39°S and 41°S during the Neogene

    NASA Astrophysics Data System (ADS)

    Huyghe, D.; Bonnel, C.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.

    2012-04-01

    are observed from the outer part of the foreland to the intra-mountainous basins. Tertiary sedimentation begins at the end of the Oligocene until the end of the middle Miocene in the Picun Leufu basin. During the paroxysm of the Quechua tectonic phase, (middle Miocene to Pliocene) the Picun Leufu basin is characterised by a sedimentary hiatus of ~10 Ma that illustrates the closure of the Collon Cura basin and a migration to the internal zone of the range of the depocentres. The filling of the Collon Cura basin is characterised by a continental fining upward sequence of a thickness of several hundred meters. This sedimentation begins with lacustrine and alluvial plain paleoenvironments with some syn-eruptive events (ignimbrites) and ends with continental conglomerates and paleosoils. A first reconnexion with the foreland basin occurs at the beginning of the Pliocene, with the deposition of an alluvial fan. Since the end of the Pliocene another anticline grew in the Picun Leufu basin and controlled the deposition of more recent alluvial fans with the arrival of coarse conglomerates (Pampa Curaco and Bayo Messa Formations). The modern drainage network is established during the Pleistocene in the Collon Cura and Picun Leufu basins, which are since only characterised by the construction of erosional surfaces (terraces) and the apparition of the Rio Limay system on the Miocene and Cretaceous deposits.

  11. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites.

    PubMed

    Noffke, Nora

    2015-02-01

    Sandstone beds of the <3.7 Ga Gillespie Lake Member on Mars have been interpreted as evidence of an ancient playa lake environment. On Earth, such environments have been sites of colonization by microbial mats from the early Archean to the present time. Terrestrial microbial mats in playa lake environments form microbialites known as microbially induced sedimentary structures (MISS). On Mars, three lithofacies of the Gillespie Lake Member sandstone display centimeter- to meter-scale structures similar in macroscopic morphology to terrestrial MISS that include "erosional remnants and pockets," "mat chips," "roll-ups," "desiccation cracks," and "gas domes." The microbially induced sedimentary-like structures identified in Curiosity rover mission images do not have a random distribution. Rather, they were found to be arranged in spatial associations and temporal successions that indicate they changed over time. On Earth, if such MISS occurred with this type of spatial association and temporal succession, they would be interpreted as having recorded the growth of a microbially dominated ecosystem that thrived in pools that later dried completely: erosional pockets, mat chips, and roll-ups resulted from water eroding an ancient microbial mat-covered sedimentary surface; during the course of subsequent water recess, channels would have cut deep into the microbial mats, leaving erosional remnants behind; desiccation cracks and gas domes would have occurred during a final period of subaerial exposure of the microbial mats. In this paper, the similarities of the macroscopic morphologies, spatial associations, and temporal succession of sedimentary structures on Mars to MISS preserved on Earth has led to the following hypothesis: The sedimentary structures in the <3.7 Ga Gillespie Lake Member on Mars are ancient MISS produced by interactions between microbial mats and their environment. Proposed here is a strategy for detecting, identifying, confirming, and differentiating

  12. Cenozoic sedimentary dynamics of the Ouarzazate foreland basin (Central High Atlas Mountains, Morocco)

    NASA Astrophysics Data System (ADS)

    El Harfi, A.; Lang, J.; Salomon, J.; Chellai, E. H.

    2001-06-01

    Cenozoic continental sedimentary deposits of the Southern Atlas named "Imerhane Group" crop out (a) in the Ouarzazate foreland basin between the Precambrian basement of the Anti Atlas and the uplifted limestone dominated High Atlas, and (b) in the Aït Kandoula and Aït Seddrat nappes where Jurassic strata detached from the basement have been thrust southwards over the Ouarzazate Basin. New biostratigraphic and geochronological data constraining the final Eocene marine regression, the characterization of the new "Aït Ouglif Detrital Formation" presumed to be of Oligocene age, and the new stratigraphic division proposed for the Continental Imerhane Group clarify the major tectonogenetic alpidic movements of the Central High Atlas Range. Four continental formations are identified at regional scale. Their emplacement was governed principally by tectonic but also by eustatic controls. The Hadida and Aït Arbi formations (Upper Eocene) record the major Paleogene regression. They are composed of margino-littoral facies (coastal sabkhas and fluviatile systems) and reflect incipient erosion of the underlying strata and renewed fluvial drainage. The Aït Ouglif Formation (presumed Oligocene) had not been characterized before. It frequently overlies all earlier formations with an angular unconformity. It includes siliciclastic alluvial deposits and is composed predominantly of numerous thin fining-upward cycles. The Aït Kandoula Formation (Miocene-Pliocene) is discordant, extensive, and represents a thick coarsening-upward megasequence. It is composed of palustro-lacustrine deposits in a context of alluvial plain with localized sabkhas, giving way to alluvial fans and fluviatile environments. The Upper Conglomeratic Formation (Quaternary) is the trace of a vast conglomeratic pediment, forming an alluvial plain and terraces. The second and third formations correspond to two megasequences engendered by the uplift of the Central High Atlas in two major compressive phases

  13. Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia

    NASA Astrophysics Data System (ADS)

    Tananaev, Nikita I.

    2016-01-01

    Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.

  14. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  15. A 2D numerical approach to predict sedimentary deposits of submarine gravity flows based on a Saint-Venant model with density variation effects. Example of Annot Basin (SE, France)

    NASA Astrophysics Data System (ADS)

    Le Solleuz, A.; Golfier, F.; Verdon, N.

    2010-12-01

    Submarine gravity flows, so called hyperpycnal currents, are very fast and can be induced by a major river flood or submarine slope instability. Sedimentary deposits, due to the stacking of these events (2 or 3 per year) during millions years can constitute a very good reservoir. However, predicting the evolution of such a sedimentary filling over geological time scales is a tremendous task. Especially, the ability to predict the starting of avalanches and the knowledge of mechanisms which drive erosion and sedimentary deposits are very poor. We focus in this study on the Annot sandstones system in the Alps (SE of France) which developed a very large tertiary deep sea fan well exposed and well studied in a sedimentary point of view (tectonics, sources, facies distribution, duration, etc.). We propose here to simulate the spatial distribution of these high-concentrated submarine gravity flows taking into account density variations of the sediment-water mixture. The main difficulty of our approach consists in simulating thousands events in a reasonable computational time. The ultimate goal is to apply this numerical model to the configuration of Annot Basin and to compare our results to the different existing deposits. To understand the physical processes that drive these hyperpycnal flows (high concentrated turbidites), many researchers focused on an accurate description of the phenomenon, for example by solving the 3D Navier-Stokes equations coupled with a mass transport equation. But, if such approaches are well-suited for the description of a single event, they are too computationally expensive to predict the sedimentary deposit over millions of years, i.e. over millions of events. We propose here an adapted version of the multilayer Saint-Venant model. It allows obtaining results with a low computational time (i.e. well-suited for millions of flows). Given the difference of sediment concentration between the head and the tail of a turbidite, we have derived a

  16. Using Crater Counts to Constrain Erosion Rates on Mars: Implications for the Global Dust Cycle, Sedimentary Rock Erosion and Organic Matter Preservation

    NASA Astrophysics Data System (ADS)

    Mayer, D. P.; Kite, E. S.

    2016-12-01

    Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.

  17. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  18. Relationships Between Magnetic Susceptibility and Sedimentary Facies Along AL Qahmah, Southern Red Sea Coast

    NASA Astrophysics Data System (ADS)

    Nabhan, A. I.; Yang, W.

    2016-12-01

    Facies and magnetic parameters of an arid siliciclastic coast were investigated in Al Qahmah, Saudi Arabia. The purpose of the survey was to map and understand the distribution of magnetic minerals in the different sedimentary facies in a 20-km2 area. Four NW-SE profiles parallel to shoreline and thirty-nine roughly perpendicular NE-SW profiles were measured. Petrographic study of sediment composition and texture of 152 samples was conducted. The coast sediments contain six lithofacies: beach, washover fan, tidal channel, eolian dune, sabkha, and wadi. The high concentration of heavy minerals in beach and dune facies causes high magnetic of susceptibility. Mineral composition of the total fraction in these facies confirms the presence of magnetite and ilmenite. The high values of susceptibility in beach and dune facies are attributed to strong winnowing and wave processes that control the pattern of transport, sorting of magnetic minerals in the beach facies. These minerals are picked up and moved by wind at low tide to form extensive low dune fields near the beach. The results showed that magnetic measurements are a sensitive and fast method, which can be used for studying the distribution of magnetic minerals in the sedimentary facies and help interpret various controlling processes.

  19. Sedimentary organic molecules: Origins and information content

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.

    1991-01-01

    To progress in the study of organic geochemistry, we must dissect the processes controlling the composition of sedimentary organic matter. Structurally, this has proven difficult. Individual biomarkers can often be recognized, but their contribution to total organic materials is small, and their presence does not imply that their biochemical cell mates have survived. We are finding, however, that a combination of structural and isotopic lines of evidence provides new information. A starting point is provided by the isotopic compositions of primary products (degradation products of chlorophylls, alkenones derived from coccoliths). We find strong evidence that the isotopic difference between primary carbonate and algal organic material can be interpreted in terms of the concentration of dissolved CO2. Moreover, the isotopic difference between primary and total organic carbon can be interpreted in terms of characteristic isotopic shifts imposed by secondary processes (responsive, for example, to O2 levels in the depositional environment. In favorable cases, isotopic compositions of a variety of secondary products can be interpreted in terms of flows of carbon, and, therefore, in terms of specific processes and environmental conditions within the depositional environment.

  20. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  1. Cosmogenic Nuclides 10Be-21Ne Burial Dating of Middle Miocene Sedimentary Formation of the Hongliu Valley in Southern Ningxia Basin: A Case of Isotopic Geochronology Study for the Cenozoic Sedimentary Strata

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, H.; Wang, W.; Wu, Y.; Pang, J.; Zheng, D.; Li, D.

    2015-12-01

    Chronology studies for the Cenozoic sedimentary strata based on the magnetostratigraphy cannot afford the unique chronological sequences in the absence of absolute ages from biostratigraphy or volcanic ash chronology. In situ-produced cosmogenic nuclides provide a powerful tool for the sediment dating based on the time-dependent concentration ratio of two nuclides, which are produced in the same mineral but with different half-lives. Thereinto, 10Be-26Al is the most widely used nuclide pairs, of which the available dating range spans the Plio-Pleistocene. But the coupling of 10Be with the stable nuclide 21Ne would significantly improve the burial dating range up to the middle Miocene, which is promising in revolutionizing the chronology study for the Late Cenozoic terrestrial sedimentary sequences. We have applied 10Be-21Ne pair for dating the middle Miocene sediments of the Hongliu Valley in southern Ningxia basin. Two major features of the sediments are involved in our study: (1) sediments originated from the steady erosion of the source area, and (2) the burial depth of our sample after deposition is time dependent due to the gradual accumulation of sediments into basin. The post-burial nuclide production is estimated to be less than 3%, including the contribution by muon interactions, of the total nuclide concentrations measured in our sample. Our 10Be-21Ne analysis demonstrates the age of the burial sample is 12.4(+0.6/-0.4) Ma, and the erosion rate at the source area is 0.26±0.01 cm ka-1. The sample's burial age is consistent with the age constraint set by the Hongliugou Formation (16.7-5.4 Ma) which we collected the sample in. Vertebrate fossils of Platybelodon tongxinensis with an age between 12 and 15 Ma exhumated along with our sample further verifies the reliability of our dating results for the middle Miocene sediments.This study has shown the improved age range of cosmogenic-nuclide burial dating method by incorporating the stable nuclide 21Ne, and

  2. Geochemical Analysis for Sedimentary Emerald Mineralization in Western Emerald belt, Colombia

    NASA Astrophysics Data System (ADS)

    Nino Vasquez, Gabriel Felipe; Song, Sheng-Rong

    2017-04-01

    1Gabriel Felipe Nino Vasquez and 1Sheng-Rong Song 1Department of Geosciences, National Taiwan University Colombia hosts a large quantity of mineral resources due to its complex tectonic arrangement, and emerald deposits are one of the most representatives for the country. Emeralds in Colombia occur mainly in black shale, and are located in eastern Andes Cordillera with two parallel belts separated by approximately 130 Km: the Western belt (WB) and the Eastern belt (EB). The geological, mineralogical and tectonic features from these belts are quite similar (Buenaventura 2002). Previous researchers concluded that emeralds in Colombia came from hydrothermal sedimentary processes without any magmatic influence, and suggested that the source of Cr, V and Be (which are important components of the beryl) was the host rock. According to their results, the process which allowed the shale to release these cations was the metasomatism (albitization and carbonization), which was resulted from the interaction between the rocks and the alkaline brines. Fractures and fault planes originated by these tectonic movements were fulfilled by enriched fluids, which they allowed emeralds and the other minerals precipitation with decreasing alkalinity and pressure (Giuliani et al. 1994). However, there were several pitfalls of conclusions drawn from previous researches. Firstly, Cr and V were widely distributed and come from mafic and ultramafic rocks, and Be was mostly found in pegmatites, finding these elements in sedimentary rocks suggest that probably the ultramafic rocks occurred not far from the deposits. Secondly, there was an inconsistency in the estimated temperatures of emeralds formation, i.e. temperature of hydrothermal sedimentary deposits was only 200° C, while laboratory analysis showed that the formation of emeralds was higher than 300° C. Therefore, there might still be an allocthonus influence on emerald formation that significantly increases the temperature. This

  3. Sedimentary reservoir oxidation during geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine

    2015-04-01

    Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ∼100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and

  4. Mass transport-related stratal disruption and sedimentary products

    NASA Astrophysics Data System (ADS)

    Ogata, Kei; Mutti, Emiliano; Tinterri, Roberto

    2010-05-01

    is quite common in the sedimentary record though still poorly reported and understood. Mutti and Carminatti (oral presentation from Mutti et al., 2006) have suggested to call these deposits "blocky-flow deposits", i.e. the deposit of a complex flow that is similar to a debris flow, or hyper-concentrated flow, except that it carries also out-size coherent and internally deformed blocks (meters to hundreds of meters across) usually arranged in isolated slump folds. The origin of blocky flows is difficult to understand on presently available data, particularly because it involves the contemporary origin of coherent slide blocks and a plastic flow that carries them as floating elements over considerable run-out distances. The recognition of the above-mentioned characteristics should be a powerful tool to discriminate sedimentary and tectonic "chaotic" units within accretionary systems, and to distinguish submarine landslide deposits transported as catastrophic blocky flows (and therefore part of the broad family of sediment gravity flows) from those in which transport took place primarily along shear planes (i.e. slumps, coherent slides), also highlighting a possible continuum from slides to turbidity currents. The discussed examples fall into a broad category of submarine slide deposits ranging from laterally extensive carbonate megabreccias (lower-middle Eocene "megaturbidites" of the south-central Pyrenees), to mass transport deposits with a very complex internal geometry developed in a highly tectonically mobile basin (upper Eocene - lower Oligocene Ranzano Sandstone, northern Apennines). References: Mutti, E., Carminatti, M., Moreira, J.L.P. & Grassi, A.A. (2006) - Chaotic Deposits: examples from the Brazilian offshore and from outcrop studies in the Spanish Pyrenees and Northern Apennines, Italy. - A.A.P.G. Annual Meeting, April 9-12, Houston, Texas.

  5. Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (northern Africa)

    NASA Astrophysics Data System (ADS)

    Hzami, Abderraouf; Amrouni, Oula; Romanescu, Gheorghe; Constantin Stoleriu, Cristian; Mihu-Pintilie, Alin; Saâdi, Abdeljaouad

    2018-04-01

    The aim of this study consists in testing the effectiveness of satellite data in order to monitoring shoreline and sedimentary features changes, especially the rapidly changing of Gulf of Tunis coast. The study area is located in the Gulf of Tunis western bay (Southern Mediterranean Sea) which is characterized by sandy beaches of Ghar Melah and Raoued (Medjerda Delta area). The aerial photographs and satellite imageries were used for mapping the evolution of shoreline. Diachronic data (satellite imagery, aerial photography and topographic maps) were used to monitor and to quantify, the evolution of the coastal areas. These thematic data were digitally overlaid and vectorised for highlighting the shoreline changes between 1936 and 2016, in order to map the rate of erosion and accretion along the shoreline. Results show that the accretion and degradation are related to the Medjerda: change of outlet in 1973 and impoundment of the Sidi Salem dam in 1982. We found that the general trend of the coastal geomorphic processes can be monitored with satellite imageries (such as Sentinel A2, Spots 4 and 5), due to its repetitive coverage along the time and their high quality concerning the spectral contrast between land and sea areas. Improved satellite imageries with high resolution should be a valuable tool for complementing traditional methods for mapping and assessing the sedimentary structures (such as shoreline, delta, marine bars), and monitoring especially the lowlands coastal areas (slightly eroded).

  6. Geochemical markers of sedimentary organic matter in Todos os Santos Bay, Bahia - Brazil. Indicators of sources and preservation.

    PubMed

    de Souza, José Roberto Bispo; do Rosário Zucchi, Maria; Costa, Alexandre Barreto; de Azevedo, Antonio Expedito Gomes; Spano, Saulo

    2017-06-30

    Natural stable isotopes, such as carbon (C) and nitrogen (N), are modern tools to assess geochemical processes. C and N in organic matter can carry fingerprints of their hydrologic flows and sedimentary processes, including any anthropogenic modification on the natural system. This study focuses on the determination of aliphatic and polycyclic aromatic hydrocarbons and isotopic ratio in the sediment of Todos os Santos Bay (TSB). The isotopic results of the total organic matter indicate varied contribution marine and terrigenous. Typical rates of PAHs mainly indicate a pyrogenic source and mixture between pyrogenic and petrogenic sources. Typical ratios for the n-alkanes indicate the presence of petroleum hydrocarbons. The isotopic composition of n-alkanes suggests a mixture of sources, with the possible contribution of petrogenic. Copyright © 2017. Published by Elsevier Ltd.

  7. Origin of New Faculty in Sedimentary Petrology at Ph.D.-Granting Universities in the United States and Canada.

    ERIC Educational Resources Information Center

    Thornton, Scott E.

    1981-01-01

    To aid prospective graduate students in sedimentary petrology who wish to teach at colleges or universities, 121 doctoral graduates in this field are traced to their present appointments in higher education. Only 31 percent of these graduates attained this career goal. (Author/WB)

  8. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas

    USGS Publications Warehouse

    McKenna, T.E.; Sharp, J.M.

    1998-01-01

    Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we

  9. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  10. Metal accumulation in soils derived from volcano-sedimentary rocks, Rio Itapicuru Greenstone Belt, northeastern Brazil.

    PubMed

    Dos Santos, Laíse Milena Ribeiro; Gloaguen, Thomas Vincent; Fadigas, Francisco de Souza; Chaves, Joselisa Maria; Martins, Tamires Moraes Oliveira

    2017-12-01

    Many countries and some Brazilian regions have defined the guideline values for metals in soils. However, the local geological features may be so heterogeneous that global or even regional guideline values cannot be applied. The Greenstone Belts are worldwide geological formations of vast extension, containing mineralization of various metals (e.g., Au, Cr, Ni, and Ag). Natural concentrations of soils must be known to correctly assess the impact of mining. We studied the soils of the Rio Itapicuru Greenstone Belt (RIGB), of Paleoproterozoic age, sampling at 24 sites (0-0.20m) in the areas not or minimally human impacted, equally distributed in the three units of the RIGB: Volcanic Mafic Unit (VMU), Volcanic Felsic Unit (VFU), and Volcano-clastic Sedimentary Unit (SU). The natural pseudo-total concentrations of Cr, Ni, Cu, Zn, Pb, Fe, and Mn were obtained by acid digestion (EPA3050b) both in the soil and the particle-size fractions (sand and clay+silt). The concentrations of metals in RIGB soils, especially Cr and Ni, are generally higher than those reported for other regions of Brazil or other countries. Even the sedimentary soils have relatively high metal values, naturally contaminated by the VMU of the RIGB; a potential impact on Mesozoic and Cenozoic sedimentary rocks located near the study region is highly expected. Metals are concentrated (80%) in the fine particle-size fraction, implying an easy availability through surface transport (wind and runoff). We introduced a new index, called the Fe-independent accumulation factor - AF -Fe , which reveals that 90-98% of the dynamics of the trace metals is associated with the iron geochemical cycle. We primarily conclude that determining the guideline values for different soil classes in variable geological/geochemical environment and under semiarid climate is meaningless: the concentration of metals in soils is clearly more related to the source material than to the pedogenesis processes. Copyright © 2017 Elsevier

  11. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.

    2017-12-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby

  12. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  13. Three depositional states and sedimentary processes of the western Taiwan foreland basin system

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Jung; Wu, Pei-Jen; Yu, Ho-Shing

    2010-05-01

    The western Taiwan foreland basin formed during the Early Pliocene as the flexural response to the loading of Taiwan orogen on the Eurasian plate. What makes Taiwan interesting is the oblique collision, which allows the foreland basin to be seen at different stages in its evolution at the present day. Due to oblique arc-continent collision from north to south, the western Taiwan foreland basin has evolved into three distinct subbasins: an over-filled basin proximal to the Taiwan orogen, mainly distributed in the Western Foothills and Coastal Plain provinces, a filled basin occupying the shallow Taiwan Strait continental shelf west of the Taiwan orogen and an under-filled basin distal to the Taiwan orogen in the deep marine Kaoping Slope offshore southwest Taiwan, respectively. The over-filled depositional phase is dominated by fluvial environments across the structurally controlled piggy-back basins. The filled depositional state in the Taiwan Strait is characterized by shallow marine environments and is filled by Pliocene-Quaternary sediments up to 4,000 m thick derived from the Taiwan orogen with an asymmetrical and wedge-shaped cross section. The under-filled depositional state is characteristic of deep marine environments in the wedge-top basins accompanied by active structures of thrust faults and mud diapers. Sediments derived from the Taiwan orogen have progressively filled the western Taiwan foreland basin across and along the orogen. Sediment dispersal model suggests that orogenic sediments derived from oblique dischronous collisional highlands are transported in two different ways. Transport of fluvial and shallow marine sediments is perpendicular to hill-slope and across-strike in the fluvial and shallow marine environments proximal to the orogen. Fine-grained sediments mainly longitudinally transported into the deep marine environments distal to the orogen. The present sedimentary processes in the over-filled basin on land are dominated by fluvial

  14. The Paleozoic - Mesozoic Mekele Sedimentary Basin in Ethiopia: An example of an exhumed IntraCONtinental Sag (ICONS) basin

    NASA Astrophysics Data System (ADS)

    Alemu, Tadesse; Abdelsalam, Mohamed G.; Dawit, Enkurie L.; Atnafu, Balemwal; Mickus, Kevin L.

    2018-07-01

    We investigated the evolution of the Mekele Sedimentary Basin (MSB) in northern Ethiopia using geologic field and gravity data. The depth to Moho and lithospheric structure beneath the basin was imaged using two-dimensional (2D) radially-averaged power spectral analysis, Lithoflex three-dimensional (3D) forward and inverse modeling, and 2D forward modeling of the Bouguer gravity anomalies. Previous studies proposed that the basin was formed as part of a multi-branched rift system related to the breakup of Gondwana. Our results show that the MSB: (1) is circular to elliptical in map view and saucer shaped in cross sectional view, (2) is filled with terrestrial and shallow marine sedimentary rocks, (3) does not significantly structurally control the sedimentation and the major faults are post-depositional, (4) is characterized by a concentric gravity minima, (5) is underlain by an unstretched crust (∼40 km thick) and thicker lithosphere (∼120 km thick). These features compare positively with a group of basins known as IntraCONtinental Sags (ICONS), especially those ICONS formed over accretionary orogenic terranes. Since the MSB is located above the Neoproterozoic accretionary orogenic terranes of the Arabian-Nubian Shield (ANS), we propose that the formation of the MSB to be related to cooling and thickening of a juvenile sub-continental lithospheric mantle beneath the ANS, which most probably provided negative buoyancy, and hence subsidence in the MSB, leading to its formation as an ICONS. The MSB could be used as an outcrop analog for information about the internal facies architecture of ICONS because it is completely exhumed due to tectonic uplift on the western flank of the Afar Depression.

  15. Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins

    NASA Astrophysics Data System (ADS)

    Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.

    2016-12-01

    Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which

  16. Tertiary sedimentary history and structure of the Valencia trough (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Maillard, A.; Mauffret, A.; Watts, A. B.; Torné, M.; Pascal, G.; Buhl, P.; Pinet, B.

    1992-03-01

    We present here main results of the Common Depth Point (CDP) data acquired during the Valsis 2 Cruise in 1988 in the Valencia trough. The profiles are tied in with industrial well data and this correlation allows the sedimentary and structural history of the region to be deduced. The Valsis Cruise seismic profiles have been supplemented by a very dense grid of industrial seismic lines and these data permit us to establish an accurate depth to basement map. The formation of the initial grabens, coeval with those of the Gulf of Lions, is related to the Early Miocene opening of the northwestern Mediterranean basin and the Barcelona graben is filled by the same sedimentary layers, including evaporites, as that of the Provençal region. Nevertheless, the Valencia-Catalan grabens have been reactivated by young extensional tectonics which could be a consequence of the convergence of Africa relative to Europe. The Valencia trough is segmented by transfer faults which trend NW-SE. These faults, which have a more accentuated structural expression than the Valencia and Catalonia grabens, may act as transform faults separating the individual Balearic Islands. The transfer faults are in strike with volcanic ridges which have been sampled during the DSDP Leg 13. The dense seismic grid allows us to delineate several widespread volcanic features in the Valencia trough which have been active from the Early Miocene to the Pleistocene. However, we note that the volcanic features are mainly Miocene in age whereas the recent volcanism is restricted to a narrow zone (Columbretes Islands). The compressional tectonics which deformed the Balearic Islands does not appear to extend far towards the North. We delineate the compressional front north of Ibiza, but we failed to determine any thrust or fold north of Mallorca, whereas an extensional tectonics is evident.

  17. The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions

    USGS Publications Warehouse

    Rice, C.A.; Tuttle, M.L.; Reynolds, R.L.

    1993-01-01

    Assumptions commonly made during analysis of the amount of monosulfides [acid-volatile sulfides (AVS)] and disulfides in modern sediments, may not be valid for ancient sedimentary rocks. It is known that ferric iron can oxidize H2S during AVS analysis unless a reducing agent such as stannous chloride is added to the treatment. In addition, some monosulfides such as greigite and pyrrhotite require heat during the AVS analysis in order to dissolve completely. However, the use of heat and/or stannous chloride in the AVS treatment may partially dissolve disulfides and it is generally recommended that stannous chloride not be used in the AVS treatment for modern sediments. Most of the monosulfides are assumed to be recovered as AVS without the addition of stannous chloride. This study investigates the recovery of monosulfides during sulfur speciation analysis with application to ancient sedimentary rocks. Sulfur in samples containing naturally occurring greigite and mackinawite or pyrite was measured using variations of a common sulfur-speciation scheme. The sulfur-speciation scheme analyzes for monosulfide sulfur, disulfide sulfur, elemental sulfur, inorganic sulfate and organically bound sulfur. The effects of heat, stannous chloride and ferric iron on the amounts of acid-volatile sulfide and disulfide recovered during treatment for AVS were investigated. Isotopic compositions of the recovered sulfur species along with yields from an extended sulfur-speciation scheme were used to quantify the effects. Hot 6 N HCl AVS treatment recovers > 60% of the monosulfides as AVS in samples containing pure greigite and mackinawite. The remaining monosulfide sulfur is recovered in a subsequent elemental sulfur extraction. Hot 6 N HCl plus stannous chloride recovers 100% of the monosulfides as AVS. The addition of ferric iron to pure greigite and mackinawite samples during AVS treatment without stannous chloride decreased the amount of monosulfides recovered as AVS and, if present

  18. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  19. Sedimentary facies analysis of the Mesozoic clastic rocks in Southern Peru (Tacna, 18°S): Towards a paleoenvironmental Redefinition and stratigraphic Reorganization

    NASA Astrophysics Data System (ADS)

    Alván, Aldo; Jacay, Javier; Caracciolo, Luca; Sánchez, Elvis; Trinidad, Inés

    2018-07-01

    The Mesozoic rocks of southern Peru comprise a Middle Jurassic to Early Cretaceous sedimentary sequence deposited during a time interval of approximately 34 Myr. In Tacna, these rocks are detrital and constitute the Yura Group (Callovian to Tithonian) and the Hualhuani Formation (Berriasian). Basing on robust interpretation of facies and petrographic analysis, we reconstruct the depositional settings of such units and provide a refined stratigraphic framework. Accordingly, nine types of sedimentary facies and six architectural elements are defined. They preserve the record of a progradational fluvial system, in which two styless regulated the dispersion of sediments: (i) a high-to moderate-sinuosity meandering setting (Yura Group), and a later (ii) incipient braided setting (Hualhuani Formation). The Yura Group (Callovian-Tithonian) represents the onset of floodplain deposits and lateral accretion of point-bar deposits sited on a semi-flat topography. Nonetheless, the progradational sequence was affected by at least two rapid marine ingressions occurred during Middle Callovian and Tithonian times. Such marine ingressions reveal the proximity of a shallow marine setting and incipient carbonate deposition. In response to increase in topographic gradient, the Hualhuani Formation (Berriasian) deposited as extensive multistory sandy channels. The mineralogy of the Mesozoic sediments suggests sediment supplies and intense recycling from a craton interior (i.e. Amazon Craton and/or plutonic sources) located eastward of the study area.

  20. Multidecadal oscillations in past Baltic Sea hypoxia: the role of sedimentary iron-phosphorus feedbacks

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Gustafsson, Bo G.; Veldhuijzen, Simon; Reed, Daniel C.; van Helmond, Niels A. G. M.; Slomp, Caroline P.

    2017-04-01

    The Baltic Sea currently experiences widespread deep-water hypoxia, a consequence of both anthropogenic nutrient loading and the natural susceptibility of its stratified water column to oxygen depletion. Sediment core records show that hypoxia was also prevalent in the Baltic during the Holocene Thermal Maximum (HTM) and Medieval Climate Anomaly (MCA). Sedimentary iron (Fe) and phosphorus (P) dynamics are known to play a key role in determining the intensity of Baltic Sea hypoxia through time. Rapid intensification of hypoxia at the onset of past centennial-scale hypoxic events during the HTM and MCA has been explained by release of P from sedimentary Fe oxides, leading to enhanced primary productivity and deep water oxygen consumption (Jilbert and Slomp, 2013). Similarly, rapid relief from hypoxia at the termination of these events reflects efficient trapping of P by Fe oxides as oxic conditions expand. Here we show that within past hypoxic events in the Baltic Sea, hypoxia intensity also varied continuously on multidecadal timescales. We observe persistent oscillations in new high-resolution records of sediment redox proxies derived from Laser Ablation (LA) ICP-MS analysis. In-phase multidecadal oscillations in molybdenum/aluminium (Mo/Al), bromine/phosphorus (Br/P) and Fe/Al indicate coupling between redox conditions, the flux of carbon to the seafloor, and mobilization of Fe in shelf areas, respectively. Using a simple box model, we show that instabilities in the response of sedimentary P release to changing oxygen concentrations and carbon flux were the likely cause of the observed oscillations. When prescribing a non-linear relationship between P release, oxygen concentration and carbon flux, and forcing the model with external P loadings typical of the HTM and MCA, the simulated time-series of deep-water oxygen show pronounced oscillations similar to those observed in the sediment records. However, when external P loads typical of the modern anthropogenic

  1. Middle to Upper Jurassic sedimentary sequences and marine biota of the early Indian Ocean (Southwest Madagascar): some biostratigraphic, palaeoecologic and palaeobiogeographic conclusions

    NASA Astrophysics Data System (ADS)

    Mette, Wolfgang

    2004-03-01

    As part of an intradisciplinary project which was concerned with the early rifting processes between Madagascar and East Africa, the Middle to Upper Jurassic sedimentary sequences of the Morondava Basin in Southwest Madagascar has been investigated with respect to biostratigraphy, sedimentary facies and palaeoecology. The transgressive sedimentary sections in the Bajocian and Callovian-Oxfordian yield rich macro- and microfossil assemblages which improved the biostratigraphic framework and gave some important information about the palaeoenvironments. Palaeogeographic distribution patterns of the Bajocian ostracod Paradoxorhyncha are suggestive of a migration along the southern shores of Gondwana between Madagascar, Australia and South America. The Callovian ostracods show strong affinities to the Indian faunas, indicating existence of a free migration route for shallow marine benthic organisms between Madagascar and India. Significant faunal differences between Madagascar and Tanzania suggest a physical or environmental migration barrier between Madagascar and East Africa during the Callovian to Kimmeridgian interval. The Upper Jurassic ostracods from the northern and eastern margin of Gondwana show a very high degree of endemism and they can be assigned to two faunal provinces in North Gondwana (Arabia, Near East, North Africa) and South Gondwana (India, Madagascar, East Africa).

  2. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil)

    PubMed Central

    Gross, Martin; Piller, Werner E.; Ramos, Maria Ines; Douglas da Silva Paz, Jackson

    2011-01-01

    In Miocene times a vast wetland existed in Western Amazonia. Whereas the general development of this amazing ecosystem is well established, many questions remain open on sedimentary environments, stratigraphical correlations as well as its palaeogeographical configuration. Several outcrops located in a barely studied region around Eirunepé (SW Amazonas state, Brazil) were investigated to obtain basic sedimentological data. The observed deposits belong to the upper part of the Solimões Formation and are biostratigraphically dated to the Late Miocene. Vertically as well as laterally highly variable fine-grained clastic successions were recorded. Based on the lithofacies assemblages, these sediments represent fluvial deposits, possibly of an anastomosing river system. Sand bodies formed within active channels and dominant overbank fines are described (levees, crevasse splays/channels/deltas, abandoned channels, backswamps, floodplain paleosols). Lacustrine environments are restricted to local floodplain ponds/lakes. The mollusc and ostracod content as well as very light δ18O and δ13C values, measured on ostracod valves, refer to exclusively freshwater conditions. Based on palaeontological and geological results the existence of a long-lived lake (“Lake Pebas”) or any influx of marine waters can be excluded for that region during the Late Miocene. PMID:26523089

  3. Sedimentary processes on the Mekong subaqueous delta: Clay mineral and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Xue, Zuo; Paul Liu, J.; DeMaster, Dave; Leithold, Elana L.; Wan, Shiming; Ge, Qian; Nguyen, Van Lap; Ta, Thi Kim Oanh

    2014-01-01

    Sedimentary processes on the inner Mekong Shelf were investigated by examining the characteristics of sediments sampled in gravity cores at 15 locations, including grain size, clay mineralogy, sediment accumulation rates, and the elemental and stable carbon isotopic composition of organic matter (atomic C/N ratios and δ13C). Deltaic deposits exhibit contrasting characteristics along different sides of the delta plain (South China Sea, SCS hereafter, to the east and Gulf of Thailand, GOT hereafter, to the west) as well as on and off the subaqueous deltaic system. On one hand, cores recovered from the subaqueous delta in the SCS/GOT are consisted of poorly/well sorted sediments with similar/different clay mineral assemblage with/from Mekong sediments. Excess 210Pb profiles, supported by 14C chronologies, indicate either "non-steady" (SCS side) or "rapid accumulation" (GOT side) processes on the subaqueous delta. The δ13C and C/N ratio indicate a mixture of terrestrial and marine-sourced organic matter in the deltaic sediment. On the other hand, cores recovered from areas with no deltaic deposits or seaward of the subaqueous delta show excess 210Pb profiles indicating "steady-state" accumulation with a greater proportion of marine-sourced organic matter. Core analysis's relevance with local depositional environment and previous acoustic profiling are discussed.

  4. Accumulation of sedimentary photosynthetic pigments characterized by pyropheophorbide a and steryl chlorin esters (SCEs) in a shallow eutrophic coastal lake (Lake Hamana, Japan)

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuyasu; Tani, Yukinori; Soma, Yuko; Soma, Mitsuyuki

    2007-01-01

    We investigated the factors controlling the composition of sedimentary photosynthetic pigments in Lake Hamana (Japan), a shallow (12 m), brackish, holomictic lake, by analyzing photosynthetic pigments and the sterol composition of steryl esters of pyropheophorbide a (steryl chlorin esters, SCEs) in the water column and surface sediments. The mean annual composition of carotenoids in the water was quite different from that in the surface sediments. We evaluated the relative accumulation efficiency of individual pigments in the sediments by comparing ratios of individual pigment concentrations relative to total chlorophyll a (TChl- a) in sediment to those in the water column. The relative accumulation efficiencies decreased in the following order: lutein > diatoxanthin > β,β-carotene > zeaxanthin > β,ɛ-carotene > alloxanthin ≫ fucoxanthin. The ratio of total pyro-derivatives of chlorophyll a, formed through the grazing of algae by zooplankton, to TChl- a in the surface sediments was much higher (0.24-0.33) than that in the water column, which was less than 0.03 even in the deepest water (10 m). The summed concentration of pyropheophytin a and SCEs (TPyphe- a) showed positive and significant relationships ( r2 > 0.56, n = 7) with residual carotenoids in sediments. These results suggest that incorporation of algal pigments in fecal pellets through grazing by zooplankton enhances pigment preservation during early diagenesis at the sediment surface. Moreover, sedimentary carotenoid compositions were consistent with the sterol compositions of sedimentary SCE fractions. Selective grazing by zooplankton was thus a primary factor determining the composition of sedimentary carotenoids in this lake.

  5. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  6. Lower Cretaceous paleo-Vertisols and sedimentary interrelationships in stacked alluvial sequences, Utah, USA

    NASA Astrophysics Data System (ADS)

    Joeckel, R. M.; Ludvigson, G. A.; Kirkland, J. I.

    2017-11-01

    The Yellow Cat Member of the Cedar Mountain Formation in Poison Strip, Utah, USA, consists of stacked, erosionally bounded alluvial sequences dominated by massive mudstones (lithofacies Fm) with paleo-Vertisols. Sediment bodies within these sequences grade vertically and laterally into each other at pedogenic boundaries, across which color, texture, and structures (sedimentary vs. pedogenic) change. Slickensides, unfilled (sealed) cracks, carbonate-filled cracks, and deeper cracks filled with sandstone; the latter features suggest thorough desiccation during aridification. Thin sandstones (Sms) in some sequences, typically as well as laminated to massive mudstones (Flm) with which they are interbedded in some cases, are interpreted as avulsion deposits. The termini of many beds of these lithofacies curve upward, parallel to nearby pedogenic slickensides, as the features we call ;turnups.; Turnups are overlain or surrounded by paleosols, but strata sheltered underneath beds with turnups retain primary sedimentary fabrics. Turnups were produced by movement along slickensides during pedogenesis, by differential compaction alongside pre-existing gilgai microhighs, or by a combination of both. Palustrine carbonates (lithofacies C) appear only in the highest or next-highest alluvial sequences, along with a deep paleo-Vertisol that exhibits partially preserved microrelief at the base of the overlying Poison Strip Member. The attributes of the Yellow Cat Member suggest comparatively low accommodation, slow accumulation, long hiatuses in clastic sedimentation, and substantial time intervals of subaerial exposure and pedogenesis; it appears to be distinct among the members of the Cedar Mountain Formation in these respects.

  7. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices

    NASA Astrophysics Data System (ADS)

    Guo, Yulong; Yang, Shouye; Su, Ni; Li, Chao; Yin, Ping; Wang, Zhongbo

    2018-04-01

    Although the proxies based on elemental geochemistry of siliciclastic sediments have been well developed to indicate the intensity of chemical weathering in various catchments, their geological indications and limitations, and especially how the differentiation of minerals and sediment grain size influences the applications of these proxies needs more clarification. This paper investigates the interactive effects of weathering, hydraulic sorting and sedimentary recycling on river sediment chemistry, and further validates the application of various weathering indices by measuring mineralogical and geochemical compositions of bank sediments and suspended particulate matters (SPMs) from five rivers in East China bearing various sizes, geologic settings and climatic regimes. For a specific river, the silicate weathering intensity registered in the fine SPMs is systematically stronger than that in the coarse-grained bank sediments. Most of the weathering indices not only reflect the integrated weathering history of various catchments but also depend on hydraulic sorting effect during sediment transport and depositional processes. The correlation between CIA (chemical index of alteration) and WIP (weathering index of Parker) offers an approach to predict the weathering trends of the fine SPMs, coarse bank sediments and recycled sediments under the influence of quartz dilution. To minimize the effects of hydrodynamic sorting and sedimentary recycling, we suggest that the fine sediments (e.g. SPMs and <2 μm fraction of bank sediments) in rivers can better reflect the average of present-day weathering crust in catchments and the weathered terrigenous materials into marginal seas and oceans.

  8. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  9. In situ stress conditions at IODP Site C0002 reflecting the tectonic evolution of the sedimentary system near the seaward edge of the Kumano basin, offshore from SW Japan

    NASA Astrophysics Data System (ADS)

    Song, Insun; Chang, Chandong

    2017-05-01

    This paper presents a complete set of in situ stress calculations for depths of 200-1400 meters below seafloor at Integrated Ocean Drilling Program (IODP) Site C0002, near the seaward margin of the Kumano fore-arc basin, offshore from southwest Japan. The vertical stress component was obtained by integrating bulk density calculations from moisture and density logging data, and the two horizontal components were stochastically optimized by minimizing misfits between a probabilistic model and measured breakout widths for every 30 m vertical segment of the wellbore. Our stochastic optimization process reveals that the in situ stress regime is decoupled across an unconformity between an accretionary complex and the overlying Kumano fore-arc basin. The stress condition above the unconformity is close to the critical condition for normal faulting, while below the unconformity the geologic system is stable in a normal to strike-slip fault stress regime. The critical state of stress demonstrates that the tectonic evolution of the sedimentary system has been achieved mainly by the regionally continuous action of a major out-of-sequence thrust fault during sedimentation in the fore-arc basin. The stable stress condition in the accretionary prism is interpreted to have resulted from mechanical decoupling by the accommodation of large displacement along the megasplay fault.

  10. Preferential pathways in complex fracture systems and their influence on large scale transport

    NASA Astrophysics Data System (ADS)

    Willmann, M.; Mañé, R.; Tyukhova, A.

    2017-12-01

    Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.

  11. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Bitzer, Klaus

    1999-05-01

    Script format: BASINVIEW is used to display the distribution of parameters in the simulated cross-section of the basin for defined time steps. It is used in conjunction with the Ghostview software, which is freeware and available on most computer systems. AIBASIN provides PostScript output for Adobe Illustrator®, taking advantage of the layer-concept which facilitates further graphic manipulation. BASELINE is used to display parameter distribution at a defined well or to visualize the temporal evolution of individual elements located in the simulated sedimentary basin. The modular structure of the BASIN code allows additional processes to be included. A module to simulate reactive transport and diagenetic reactions is planned for future versions. The program has been applied to existing sedimentary basins, and it has also shown a high potential for classroom instruction, giving the possibility to create hypothetical basins and to interpret basin evolution in terms of sequence stratigraphy or petroleum potential.

  12. A priming effect of benthic gastropod mucus on sedimentary organic matter remineralization

    NASA Astrophysics Data System (ADS)

    Hannides, A. K.; Aller, R. C.

    2016-02-01

    Mucous gels are produced by benthic animals rapidly and in copious amounts, and have previously been shown to significantly affect diffusion rates of redox-sensitive ions and organic compounds in sediment pore waters. They are also a highly likely priming substrate whose addition in modest amounts affects sedimentary organic matter remineralization. We tested the priming effect of benthic infaunal mucus using secretions of the common gastropod Neverita duplicata as model substrate. Their composition is typical of marine molluscan mucus, consisting primarily of water (>96% by weight), which is in relative equilibrium with seawater. Salt-free dry weight constitutes 0.7% and 0.6% of total pedal and hypobranchial mucus, respectively. The C:N ratios of pedal and hypobranchial mucus indicate that the organic component consists of a mucopolysaccharide-glycoprotein complex that varies depending on its function, while low C:S ratios of the insoluble component and positive staining with Alcian Blue dye are indicative of S-ester and alkyl-SO42- groups bridging mucopolysaccharide and glycoprotein components. Anoxic incubations of pedal mucus of N. duplicata, sediment, and mucus-sediment mixture, resulted in the anaerobic generation of ΣCO2 and NH4+ at ratios lower than initial C:N ratios, indicating the preferential decomposition of N-rich moieties. Production rates of SCO2 and NH4+ in mucus-sediment incubations are higher, by 9±16% and 29±11%, respectively, than those predicted from linear addition of mucus-only and sediment-only rates. The statistically significant accelerated remineralization rate of N in the presence of modest mucus contribution (0.2% of total N), suggests that benthic mucus addition affects sedimentary organic matter remineralization processes through a "priming" effect.

  13. Aquatic environmental changes and anthropogenic activities reflected by the sedimentary records of the Shima River, Southern China.

    PubMed

    Gao, Lei; Wang, Zhuowei; Shan, Jiju; Chen, Jianyao; Tang, Changyuan; Yi, Ming

    2017-05-01

    Reconstructing historical sedimentary records is essential for better understanding the effects of anthropogenic activities on river environments. We used lead-210 to date riverine sediment core from the Shima River in China. We obtained a sedimentary history of 34 years (1982-2015) for core S2, which had a length of 34 cm. The sedimentation rate of 0.304-2.04 cm y -1 was controlled by both flood events and anthropogenic activities. The conservative element content depth profiles remained relatively constant, suggestive of a relatively stable sediment provenance; therefore, the increase in the sedimentation rate over time was mainly the result of domestic and industrial wastewater effluent and the construction of a rubber dam at the middle and lower reach of the Shima River. From 1982 to 2015, the nutrient and trace metal depth profiles could be divided in three periods based on their trends. From 1982 to 1993, the vertical profiles of nutrients (organic carbon, total phosphorus, and total nitrogen) and three trace metals (nickel, zinc, and manganese) were relatively stable; however, the gradual decrease in copper and cadmium was likely associated with a reduction in agricultural chemical application. From 1993 to 2003, a population explosion and rapid industrialization were responsible for an increase in the input of pollutants into the Shima River, which was partly attenuated by water from the Dong River, leading to a gradual increase in nutrient and trace metal contents. Finally, from 2003 to 2015, the Shima River stopped being used as a source of water due to its deteriorating water quality. The relatively lower velocity of the water flow after the recovery of its flow direction and the reconstruction of the rubber dam in 2009 provided advantageous sedimentary conditions, promoting nutrient accumulation and significant trace metal enrichment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Regionalization of local geomorphometric derivations for geological mapping in the sedimentary domain of central Amazônia

    NASA Astrophysics Data System (ADS)

    Valeriano, Márcio de Morisson; Rossetti, Dilce de Fátima

    2017-03-01

    This paper reports procedures to prepare locally derived geomorphometric data for geological mapping at regional scale in central Amazônia. The size of the study area, approximately 1.5 million km2, and the prevailing flat topography of the targeted environment were the constraints motivating the aims, at spatial and numerical synthesis of the detailed geomorphometric information derived from SRTM DEM. The developed approach consisted in assigning single (average) values to terrain patches, to represent the regional distribution of pixel-based geomorphometric information (slope, profile curvature and relative relief). In analogy to the nature of sedimentary packs, patches were established as contiguous elevation strata, constructed through a procedure combining segmentation, filterings and range compressions. For slope only, pre-processing of locally derived data with median filtering effectively avoided the typical flattening of the regionalized results due to input distribution characteristics. Profile curvature was transformed into absolute values and thus a different meaning from the original (pixel) variable was considered in the interpretation, also avoiding the compensation of original values (positive and negative) tending to zero value when averaged through a regionally flat extension. Examinations near major river valleys showed patched elevation to depict alluvial terraces. In the interfluves and floodplains, contrasting patterns in the averaged variables among patches of similar elevations allowed the recognition of important relief features. In addition to the reduction of the distribution ranges, the correlation between regionalized geomorphometric variables was higher than observed in the originally local data, due to the thematic synthesis following regionalization. Depth of dissection, claimed to be related to the relative age of sedimentary units, was the main factor to explain the overall variations of the geomorphometric results. The developed

  15. Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America

    USGS Publications Warehouse

    Peters, R.; Jaffe, B.; Gelfenbaum, G.

    2007-01-01

    Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300-1000??years with an average of 500-600??years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas. ?? 2007.

  16. Bibliography on the Distribution, Properties, and Uses of Zeolites from Sedimentary Deposits, 1998-2002

    USGS Publications Warehouse

    Sheppard, Richard A.

    2003-01-01

    This bibliography is an alphabetical listing by author of about 1,500 publications and formal releases, including patents and selected abstracts, from the world literature on the distribution, properties, and uses of zeolites from sedimentary deposits for the period 1998-2002. The bibliography is available on a 3.5-inch floppy diskette, which was prepared on a MacintoshTM computer using EndNoteTM software. Computer searches of the bibliography can be made by author, year, title, journal, publisher, and keywords.

  17. Radioecological assessment and radiometric dating of sediment cores from dynamic sedimentary systems of Pra and Volta estuaries (Ghana) along the Equatorial Atlantic.

    PubMed

    Klubi, E; Abril, J M; Nyarko, E; Laissaoui, A; Benmansour, M

    2017-11-01

    The Volta and Pra estuaries (Ghana, West Africa) are dynamical sedimentary systems whose natural equilibrium is being affected by anthropogenic activities. This paper reports depth-distributions of 210 Pb, 226 Ra, 234 Th, 40 K, 228 Ra and 137 Cs for two sediment cores from these estuaries. Bulk densities were not steady-state and well correlated with 40 K (p < 0.00005). Unsupported 210 Pb profiles were incomplete, non-monotonic and showed large fluctuations. The assumptions involved in the common 210 Pb-based dating models were not meet in these dynamical scenarios, and the use of 137 Cs as a time-marker is difficult in Equatorial and South-Hemisphere countries due to its low fallout rates. Chronologies have been solved with the new 210 Pb-based TERESA model, which operates with varying but statistically correlated fluxes and sediment accumulation rates (SAR). The core from the Volta reflects the conditions prevailing after the construction of the Akosombo Dam, with a mean SAR of 1.05 ± 0.03 g cm -2 ·y -1 , while a higher value of 2.73 ± 0.06 g cm -2 ·y -1 was found in the Pra, affected by intense gold mining activities along its course. Radiological and radioecological assessments have been conducted by applying the UNSCEAR protocols and the ERICA model, respectively. The measured radionuclide concentrations do not pose any significant risk for the environment and human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A method to generate small-scale, high-resolution sedimentary bedform architecture models representing realistic geologic facies

    DOE PAGES

    Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.

    2017-08-23

    Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less

  19. A method to generate small-scale, high-resolution sedimentary bedform architecture models representing realistic geologic facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.

    Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less

  20. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  1. Geochemical Modeling of Zinc Silicate Ore Formation from Sedimentary Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Appold, M. S.

    2008-12-01

    Sediment-hosted zinc deposits dominated by willemite (Zn2SiO4) instead of sphalerite (ZnS) are known from several prominent occurrences worldwide, including Vazante, Brazil, the Aroona Trend, Australia, Kabwe, Zambia, Berg Aukas, Namibia, and Abu Samar, Sudan. Although willemite-dominant zinc deposits appear to be much less common and are on average smaller than sphalerite-dominant zinc deposits, they nonetheless represent major enrichments of zinc in the Earth's crust, reaching sizes on the order of 1's to 10's of millions of tons and grades commonly between 20 and 40%. Sediment-hosted willemite- and sphalerite-dominant deposits share many similarities including their predominantly carbonate host rocks, gangue mineralogy, presumed derivation from sedimentary basinal brines, and spatial proximity. However, the conditions and processes that led to one style of mineralization versus the other have only recently begun to be investigated. The current study presents solubility, reaction path, and reactive transport modeling results that attempt to define more clearly the conditions that favor willemite ore formation in sedimentary basins, with a focus on the Vazante deposit. Solubility calculations for willemite and sphalerite as a function of temperature, pH, salinity, and oxidation potential were carried out using a simple 3 molal NaCl solution saturated with respect to quartz. The results show that (1) willemite solubility is relatively insensitive to changes in temperature and oxidation potential whereas sphalerite solubility decreases sharply with decreasing temperature and oxidation potential, (2) willemite solubility decreases more strongly than sphalerite with increasing pH, (3) willemite and sphalerite have a similar strong decrease in solubility with decreasing salinity. The results support a previously proposed genetic model for a willemite-dominant, sphalerite-subordinate ore body like Vazante in which a hot, acidic, metal-rich ore fluid mixed with a cooler

  2. Sedimentary rhythms in coastal dunes as a record of intra-annual changes in wind climate (Łeba, Poland)

    NASA Astrophysics Data System (ADS)

    Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S. E.; Borówka, R. K.

    2017-08-01

    It is shown that coastal dunes bear a so far unread archive of annual wind intensity. Active dunes at the Polish coast near Łeba consist of two genetic units: primary dunes with up to 18 m high eastward-dipping foresets, temporarily superimposed by smaller secondary dunes. Ground-penetrating radar (GPR) data reveal that the foresets of the primary dunes are bundled into alternating packages imaged as either low- or high-amplitude reflections. High-amplitude packages are composed of quartz sand with intercalated heavy-minerals layers. Low-amplitude packages lack these heavy-mineral concentrations. Dune net-progradation is towards the east, reflecting the prevalence of westerly winds. Winds blowing parallel to the dune crest winnow the lee slope, leaving layers enriched in heavy minerals. Sediment transport to the slip face of the dunes is enhanced during the winter months, whereas winnowing predominantly takes place during the spring to autumn months, when the wind field is bi-directional. As a consequence of this seasonal shift, the sedimentary record of one year comprises one low- and one high-amplitude GPR reflection interval. This sedimentary pattern is a persistent feature of the Łeba dunes and recognized to resemble a sedimentary "bar code". To overcome hiatuses in the bar code of individual dunes and dune-to-dune variations in bar-code quality, dendrochronological methods were adopted to compile a composite bar code from several dunes. The resulting data series shows annual variations in west-wind intensity at the southern Baltic coast for the time period 1987 to 2012. Proxy-based wind data are validated against instrumental based weather observations.

  3. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    USGS Publications Warehouse

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  4. Seasonal sedimentary processes of the macrotidal flat in Gomso Bay, west coast of Korea

    NASA Astrophysics Data System (ADS)

    Woo, H.; Kang, J.; Choi, J.

    2012-12-01

    The tidal flats on the west coast of Korea have broad zones with gentle slopes and a macrotidal setting with 4 to 10 meters of tidal ranges. They are directly influenced by monsoons and heavily affected by waves in winter and tidal currents in summer. As a result, most western tidal flats show the seasonal changes of sedimentary features comprising sedimentation and/or erosion of sediments. Gomso bay in the mid-west of Korea is a funnel-shaped embayment with a wide entrance to the west. Tides are semidiurnal and macrotidal, with a mean tidal range of 433.8 cm. Digital elevation model (DEM) showed that the landward inner bay had mainly high elevations and the seaward outer bay had relatively low elevations. In particular, there are considerable gradients in the outer bay from area of high-water line to area of low-water line. The sedimentary analysis and monitoring short-term sedimentation rates were investigated to understand seasonal sedimentary processes of tidal flats in Gomso bay. The surface sediments in the bay were classified into five sedimentary facies in spring 2011. Generally, sandy sediments were dominated in the outer bay, whereas sandy mud sediments were distributed on the inner bay. The middle bay mainly consisted of muddy sand sediments. The percentages of sand decreased from outer to inner bay. The short-term sedimentation rates were obtained from three lines by burying a plate at sub-bottom depth and periodically measuring the changing sediment depth from February 2011 to February 2012. In the tidal flat at inner bay (KB- Line), the annual sedimentation rates were ranged -8.87 to 74.69 mm/year with the net deposition rate of 40.90 mm/year. The deposition occurred on KB-Line in spring, autumn and winter. The erosion was dominated on the tidal flats at middle (KH-Line) and outer bay (KM-Line) during autumn and winter with an annual erosion rate of -29.86 mm/year and -9.92 mm/year, respectively. The seasonal variations of sedimentation on these tidal

  5. Testing the survival of microfossils in an artificial martian sedimentary meteorite: the STONE 6 Experiment

    NASA Astrophysics Data System (ADS)

    Foucher, Frédéric; Westall, Frances; Brandstaetter, Franz; Demets, Rene; Parnell, John; Cockell, Charles; Edwards, Howell; Jean-Michel, B.; Brack, André; Kurat, Gero

    Conditions on early Mars during the Noachian (-4.5 to -3.5 Ga) were possibly suitable for the emergence of life [1,3] even though water bodies were probably not permanent and could have been destroyed by frequent impacts. Since Mars does not appear to have had plate tectonics, the remains of this hypothetic life could be found within Noachian sediments. In addition to proving the existence of extraterrestrial life, such a discovery would be very helpful for studies related to the origin and early evolution of life on Earth. Indeed, although life most likely appeared on Earth before 4 Ga ago, no suitable (i.e. well-preserved) rocks containing traces of life older than 3.5 billion years exist; older rocks are either too metamorphosed or have been destroyed by plate tectonics. Because of the harsh conditions on Noachian Mars compared to those of the early Earth, the martian organisms are likely to have remained in a very primitive state of evolution and will thus be very difficult to observe in situ. One way to investigate potential traces of life in martian rocks would be to study sedimentary meteorites from Mars. However, all the 54 martian meteorites found so far are volcanic rocks [4]. Is this because sedimentary rocks do not survive the original impact to escape Mars, or the stresses of entry into the Earth's atmosphere? In order to test the latter effects, a series of experiments were devised to test the survivability of different types of sediments during Earth atmosphere entry, the STONE experiments. In particular, the present experiment STONE 6 tested a Noachian sedimentary analogue that consisted of a 3.45 Ga-old silicified volcanic sand containing ancient traces of life [5]. The volcanic sand (chert) from the Pilbara, Australia, containing organic microfossils [6] was embedded in the heat shield of a FOTON space capsule that underwent atmospheric entry on the 26th September, 2007. After landing, the first observation was the white colour of the fusion crust

  6. Sedimentary architecture and depositional controls of a Pliocene river-dominated delta in the semi-isolated Dacian Basin, Black Sea

    NASA Astrophysics Data System (ADS)

    Jorissen, Elisabeth L.; de Leeuw, Arjan; van Baak, Christiaan G. C.; Mandic, Oleg; Stoica, Marius; Abels, Hemmo A.; Krijgsman, Wout

    2018-06-01

    Sedimentological facies models for (semi-)isolated basins are less well developed than those for marine environments, but are critical for our understanding of both present-day and ancient deltaic sediment records in restricted depositional environments. This study considers an 835 m thick sedimentary succession of mid-Pliocene age, which accumulated in the Dacian Basin, a former embayment of the Black Sea. Detailed sedimentological and palaeontological analyses reveal a regression from distal prodelta deposits with brackish water faunas to delta-top deposits with freshwater faunas. Sediments contain frequent hyperpycnal plumes and an enrichment in terrestrial organic material, ichnofossils and in situ brackish and freshwater faunas. Deltaic progradation created thin, sharply-based sand bodies formed by multiple terminal distributary channels, covering a wide depositional area. The system experienced frequent delta-lobe switching, resulting in numerous thin parasequences. Parasequences are overlain by erosive reddish oxidized sand beds, enriched in broken, abraded brackish and freshwater shells. These beds were formed after sediment starvation, on top of abandoned delta lobes during each flooding event. A robust magnetostratigraphic time frame allowed for comparison between the observed sedimentary cyclicity and the amplitude and frequency of astronomical forcing cycles. Our results indicate that parasequence frequencies are significantly higher than the number of time equivalent astronomical cycles. This suggests that delta-lobe switching was due to autogenic processes. We consider the observed facies architecture typical for a delta prograding on a low-gradient slope into a shallow, brackish, protected, semi-isolated basin. Furthermore, in the absence of significant wave and tidal influence, sediment progradation in such a protected depositional setting shaped a delta, strongly river-dominated.

  7. Sedimentary record of plutonium in the North Yellow Sea and the response to catchment environmental changes of inflow rivers.

    PubMed

    Xu, Yihong; Pan, Shaoming; Gao, Jianhua; Hou, Xiaolin; Ma, Yongfu; Hao, Yongpei

    2018-09-01

    Plutonium (Pu) isotopes were first determined in surface and core sediment samples collected from the northern North Yellow Sea (NYS) to elucidate their source terms and deposition process as well as the response to catchment environmental changes of inflow rivers. 240 Pu/ 239 Pu atom ratios in all sediments showed the typical global fallout value of ∼0.18 without any influences from the nuclear weapons tests conducted recently in the North Korea or early in the Pacific Proving Ground. The large variation of 239+240 Pu activities (0.022-0.515 mBq/g) observed in surface sediments should be mainly attributed to the re-suspension and transportation of fine sediments influenced by the Liaonan Costal Current. Based on the two 239+249 Pu depth profiles with easily observed onset fallout levels (1952) and global fallout peaks (1963), 239+240 Pu served as a valid time mark in the coastal sedimentary system. Riverine input Pu contributed only 15-27% to the total global fallout inventory (92.5-108.8 Bq/m 2 ) in the northern NYS, much lower than that in the Yangtze River estuary (77-80%), indicating a better soil conservation in the northeast China due to higher forest coverage compared to the Yangtze River's drainage basin. The increase of riverine input Pu after 1980s reflected the more intense soil erosion degree caused by the land use and cover change due to the increment of human activities in the northeast China at the same period. Our results demonstrated that plutonium is a good indicator for studying sedimentary process and its response to the environment in the coastal area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    NASA Astrophysics Data System (ADS)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  9. Tectono-sedimentary features in the Yap subduction zone, Western Pacific: constraints from latest integrated geophysical survey

    NASA Astrophysics Data System (ADS)

    Dong, D.; Zhang, G.; Bai, Y.; Fan, J.; Zhang, Z.

    2017-12-01

    The Yap subduction zone, western Pacific, is a typical structure related to the ridge subduction, but comparative shortage of the geophysical data makes the structural details unknown in this area. In this study, we present the latest and high-quality multi-beam swath bathymetry and multi-channel seismic data acquired synchronously in the year 2015 across the Yap subduction zone. Multichannel seismic and multi-beam data are mainly applied to investigate the topography of major tectonic units and stratigraphic structure in the Yap subduction zone and discuss the tectonic characteristics controlled by ridge subduction. It suggests that, Parece Vela Basin, as the regional sedimentary center, developed sedimentary layers nearly 800 meters thick. On the contrast, the horizontal sedimentary layers were not obviously identified in the Yap trench, where subduction erosion occurred. Caroline ridge changed the tectonic characteristics of subduction zone, and influenced magmatism of the Yap arc because of the special topography. The seismic profile clearly reveals landslide deposits at the upper slope break of the forearc, north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. Detailed topography and geological structure of horst and graben in the north of Yap are depicted, and topographic high of Caroline ridge is supposed to bring greater bending and tension and the subsequent horst and graben belt. Multichannel seismic evidence has been provided for interpreting the expansion of Sorol Trough and its inferred age. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: proto-Yap Arc rupture in the Oligocene, collision of the Caroline Ridge and the Yap Trench in the Late Oligocene or Middle Miocene, and onset of the Sorol Trough rifting in the Late Miocene. Acknowledge: This study was supported by the Strategic Priority Research Program of the Chinese Academy

  10. Palaeohydrological and palaeoecological studies on South Cameroonian alluvial sedimentary basins - New evidence on the palaeoenvironmental evolution of western Central Africa since the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Sangen, M.

    2009-04-01

    A new valuable and innovative contribution will be presented to ascertain the timing and extension of climatic and ecological changes in western equatorial Africa. Main focus is laid on the dynamics of climate, fluvial systems and the high sensitive tropical ecosystems (dense evergreen and semi-deciduous rain forest and savanna-rain forest margin) since the Late Pleistocene (~50 kyrs. BP). For this purpose extended fieldworks were carried out in South Cameroon (2004-2008) by the ReSaKo-Project (sub-project of DFG-Project 510) with abundant investigations on alluvial sedimentary basins of equatorial tropical fluvial systems. Suitable alluvial sediment-archives for palaeoenvironmental research were uncovered along selected braiding, meandering and anabranching/anastomosing reaches of major southwestern, into the Gulf of Guinea (Ntem, Nyong and Sanaga) and southeastern, into the Congo basin (Boumba, Dja and Ngoko) draining rivers (RUNGE et al. 2006, SANGEN 2008). Among geomorphological investigations and cross section discussions, 150 corings (Edelman, 20 cm layers) reaching maximum depths of 550 cm were carried out on river benches, levees, cut-off and periodical branches, islands and terraces as well as in seasonal inundated floodplains and backswamps. Corresponding sedimentary profiles and catenae recovered multilayered, sandy to clayey alluvia containing sedimentary form-units and palaeosurfaces which contribute to the reconstruction of palaeoenvironmental conditions in western equatorial Africa. Several (59) radiocarbon (AMS) dated samples (Erlangen and Lecce) from fossil organic layers and macro-rests embedded in these units yielded Late Pleistocene to recent ages (14C-ages around 48 to 0.2 kyrs. BP), spanning also the Last Glacial Maximum (LGM) and Holocene record. Abrupt grain-size modifications and alternating form-units (sandy and clayey layers, palaeosurfaces) in the stratigraphic records display fluctuations in the fluvial-morphological response of the

  11. The impact of sedimentary anisotropy on solute mixing in stacked scour-pool structures

    NASA Astrophysics Data System (ADS)

    Bennett, Jeremy P.; Haslauer, Claus P.; Cirpka, Olaf A.

    2017-04-01

    The spatial variability of hydraulic conductivity is known to have a strong impact on solute spreading and mixing. In most investigations, its local anisotropy has been neglected. Recent studies have shown that spatially varying orientation in sedimentary anisotropy can lead to twisting flow enhancing transverse mixing, but most of these studies used geologically implausible geometries. We use an object-based approach to generate stacked scour-pool structures with either isotropic or anisotropic filling which are typically reported in glacial outwash deposits. We analyze how spatially variable isotropic conductivity and variation of internal anisotropy in these features impacts transverse plume deformation and both longitudinal and transverse spreading and mixing. In five test cases, either the scalar values of conductivity or the spatial orientation of its anisotropy is varied between the scour-pool structures. Based on 100 random configurations, we compare the variability of velocity components, stretching and folding metrics, advective travel-time distributions, one and two-particle statistics in advective-dispersive transport, and the flux-related dilution indices for steady state advective-dispersive transport among the five test cases. Variation in the orientation of internal anisotropy causes strong variability in the lateral velocity components, which leads to deformation in transverse directions and enhances transverse mixing, whereas it hardly affects the variability of the longitudinal velocity component and thus longitudinal spreading and mixing. The latter is controlled by the spatial variability in the scalar values of hydraulic conductivity. Our results demonstrate that sedimentary anisotropy is important for transverse mixing, whereas it may be neglected when considering longitudinal spreading and mixing.

  12. Late Pleistocene drainage systems beneath Delaware Bay

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1988-01-01

    Analyses of an extensive grid of seismic-reflection profiles, along with previously published sedimentary data and geologic information from surrounding coastal areas, outline the ancestral drainage systems of the Delaware River beneath lower Delaware Bay. Major paleovalleys within these systems have southeast trends, relief of 10-35 m, widths of 1-8 km, and axial depths of 31-57 m below present sea level. The oldest drainage system was carved into Miocene sands, probably during the late Illinoian lowstand of sea level. It followed a course under the northern half of the bay, continued beneath the Cape May peninsula, and extended onto the present continental shelf. This system was buried by a transgressive sequence of fluvial, estuarine, and shallow-marine sediments during Sangamonian time. At the height of the Sangamonian sea-level transgression, littoral and nearshore processes built the Cape May peninsula southward over the northern drainage system and formed a contiguous submarine sedimentary ridge that extended partway across the present entrance to the bay. When sea level fell during late Wisconsinan time, a second drainage system was eroded beneath the southern half of the bay in response to the southerly shift of the bay mouth. This system, which continued across the shelf, was cut into Coastal Plain deposits of Miocene and younger age and included not only the trunk valley of the Delaware River but a large tributary valley formed by the convergence of secondary streams that drained the Delaware coastal area. During the Holocene rise of sea level, the southern drainage system was covered by a transgressive sequence of fluvial, estuarine, and paralic deposits that accumulated due to the passage of the estuarine circulation cell and to the landward and upward migration of coastal sedimentary environments. Some Holocene deposits have been scoured subsequently by strong tidal currents. The southward migration of the ancestral drainage systems beneath Delaware

  13. Tectonic implications of the Indian Run Formation; a newly recognized sedimentary melange in the northern Virginia Piedmont

    USGS Publications Warehouse

    Drake, Avery Ala

    1985-01-01

    Sedimentary melange in the northeastern part of Fairfax County, Virginia, contains both mesoscopic and mappable fragments of Accotink Schist, Lake Barcroft Metasandstone, metagabbro, and ultramafic rocks as well as smaller fragments of other rock types. This melange was originally mapped as the Sykesville Formation, a major precursory sedimentary melange in northern Virginia and Maryland. The fragments of Accotink Schist and Lake Barcroft Metasandstone within the Sykesville were considered to be rip-ups of these units over which the Sykesville slid when finally emplaced. More recent study has shown that fragments of Accotink and Lake Barcroft are restricted to a certain area of sedimentary melange originally defined as Sykesville, and this part of the melange is now considered to be a separate mappable unit, here named the Indian Run Formation. The Indian Run underlies the sequence Accotink Schist and Lake Barcroft Metasandstone which is here formally named the Annandale Group. The Indian Run is intruded by the Occoquan Granite of Cambrian age, so it is of Cambrian or Late Proterozoic age. The Sykesville Formation (restricted) is a much more extensive unit than the Indian Run Formation and is characterized by its contained olistoliths of the Peters Creek Schist, the unit that tectonically overlies it. The Sykesville and Peters Creek constitute a precursory melange-allochthon pair which is here termed a 'tectonic motif.' The Indian Run-Annandale pair then forms a tectonically lower motif, and the overlying pair, the Yorkshire Formation-Piney Branch Complex, forms a tectonically higher motif. The Chopawamsic Formation and underlying sedimentary melange in the area south of Fairfax County may form a tectonic motif beneath the Indian Run-Annandale tectonic motif. Thus, three and perhaps four repetitions of precursory melange-allochthon pairs occur in northern Virginia. Other percursory melanges and motifs may occur in the Maryland Piedmont to the north. The tectonic

  14. Description and hydrogeologic implications of cored sedimentary material from the 1975 drilling program at the radioactive waste management complex, Idaho

    USGS Publications Warehouse

    Rightmire, C.T.

    1984-01-01

    Samples of sedimentary material from interbeds between basalt flows and from fractures in the flows, taken from two drill cores at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory were analyzed for (1) particle-size dribution, (2) bulk mineralogy, (3) clay mineralogy, (4) cation-exchange capacity, and (5) carbonate content. Thin sections of selected sediment material were made for petrographic examination. Preliminary interpretations indicate that (1) it may be possible to distinguish the various sediment interbeds on the basis of their mineralogy, (2) the presence of carbonate horizons in sedimentary interbeds may be utilized to approximate the time of exposure and the climate while the surface was exposed (which affected the hydrogeologic character of the sediment), and the type and orientation of fracture-filling material may be utilized to determine the mechanism by which fractures were filled. (USGS)

  15. Upper Neoproterozoic-Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones

    NASA Astrophysics Data System (ADS)

    Valladares, M. I.; Barba, P.; Ugidos, J. M.; Colmenero, J. R.; Armenteros, I.

    The Upper Neoproterozoic-Lower Cambrian sedimentary succession in the central areas of the Central Iberian Zone has been subdivided into 12 mostly siliciclastic lithostratigraphic units, ranging in thickness between 1800 and 3900m. The lithology and facies of each unit are described and the facies associations are interpreted. The facies resulted mainly from turbidity currents and debris flows and, to a lesser extent, from submarine slides and traction flows. The facies associations suggest that sedimentation took place in slope and base-of-slope environments. Two depositional sequences are recognized, separated by a type-1 unconformity. The lower sequence is of Late Neoproterozoic age (units I-IV) and exhibits lowstand, transgressive, and highstand systems tracts. Most of the upper sequence is probably of Early Cambrian age (units V-XII). It begins at the base of unit V and possibly ends with the Tamames Limestone Formation. The upper sequence records a lowstand systems tract and minor-order sea-level oscillations. In the Cambrian units there are higher amounts of feldspar and smaller quantities of intrabasinal clasts than in the Neoproterozoic units. The modal data plot close to the Q-L and Qm-Lt sides of Q-F-L and Qm-F-Lt triangular diagrams, suggesting a provenance from a recycled orogen evolving into a provenance from a craton interior towards the top of the succession. The chemical results, based mainly on Al2O3, TiO2, Zr, and Nb abundances in shales from all the units, strongly suggest a gradual compositional change within this sedimentary succession. Together with the petrological data, the chemical results do not reveal any obvious coeval volcanic contribution to the sediments. On the basis of the chemical data, a comparison is made with other European zones containing detrital sediments composed of reworked crustal components.

  16. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2011-12-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on oxygen stratigraphy, radiocarbon dating and lithological constraints suggests that the piston core records paleoenvironmental changes of the last 155 kyr. TOC shows orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka before present (BP) indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 content tends to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose

  17. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    PubMed

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field

  18. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the

  19. [sup 40]Ar/[sup 39]Ar ages of Challis volcanic rocks and the initiation of Tertiary sedimentary basins in southwestern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M'Gonigle, J.W.; Dalrymple, G.B.

    1993-10-01

    [sup 40]Ar/[sup 39]Ar ages on single sanidine crystals from rhyolitic tuffs and ash flow tuffs within the uppermost and lowermost parts of the volcanic sequence of the Horse Prairie and Medicine Lodge topographic basins, southwestern Montana, show that these volcanic rocks were emplaced between about 48.8[+-]0.2 Ma and 45.9[+-]0.2 Ma, and are correlative with the Eocene Challis Volcanic Group of central Idaho. Sanidine ages on tuffs at the base of the Tertiary lacustrine, paludal, and fluvial sedimentary sequence, which unconformably overlies the volcanic sequence, suggest that sedimentation within an ancestral sedimentary basin that predated the development of the modern Horsemore » Prairie and Medicine Lodge basins began in the middle Eocene. 22 refs., 3 figs., 2 tabs.« less

  20. Sedimentary Environments Mapping in the Yellow Sea Using TanDEM-X and Optic Satellites

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Lee, Y. K.; Kim, S. W.

    2017-12-01

    Due to land reclamation and dredging, 57% of China's coastal wetlands have disappeared since the 1950s, and the total area of tidal flats in South Korea decreased from approximately 2,800km2 in 1990 to 2392km2 in 2005(Qiu, 2011 and MLTM, 2010). Intertidal DEM and sedimentary facies are useful for understanding intertidal functions and monitoring their response to natural and anthropogenic actions. Highly accurate intertidal DEMs with 5-m resolution were generated based on the TanDEM-X interferometric SAR (InSAR) technique because TanDEM-X allows the acquisition of the coherent InSAR pairs with no time lag or approximately 10-second temporal baseline between master and slave SAR image. We successfully generated intertidal zone DEMs with 5-7-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula and one site of chinese coastal region in the Yellow Sea. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures. The earlier studies have some limitation that the classification map is not considered to analysis various environmental conditions. Therefore, the purpose of this study was minutely to mapping the surface sedimentary facies by analyzing the tidal channel, topography with multi-sensor remotely sensed data and in-situ data.

  1. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  2. Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy

    2014-05-01

    Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for

  3. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  4. Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Erel, L.; Bellucci, L. G.; Polonia, A.; Gasperini, L.; Eriş, K. K.; Sancar, Ü.; Biltekin, D.; Uçarkuş, G.; Ülgen, U. B.; Damcı, E.

    2012-12-01

    Sedimentary earthquake records of the last 2400 a, including that of the devastating 17 August 1999 İzmit earthquake (Mw = 7.4), were studied in cores from the 210 m-deep central Karamürsel Basin of the İzmit Gulf in the eastern Sea of Marmara, using laser grain-size, physical properties, stable O and C isotopes and XRF Core Scanner analyses, and dated by radionuclide and radiocarbon methods. The earthquake records are represented by turbidite-homogenite mass-flow units (THU) that commonly contain a basal coarse layer, a middle laminated silt layer and an overlying homogeneous mud layer. The coarse basal part has a sharp and sometimes scoured lower boundary, and includes multiple coarse (sand/silt) layers or laminae showing normal size grading. Multiple coarse layers and occasional bi-directional cross-bedding suggest deposition from a bed-load during water column oscillations, or seiche effect. The grain-size characteristics of the overlaying laminated silt and the homogeneous mud units indicate deposition from weak oscillating currents and homogeneous suspension, respectively. High Mn value just below the base of THUs suggests diagenetic enrichment at oxic/anoxic redox boundary before the mass-flow event. Sharp decrease in Mn with very low values within the THUs suggests transient redox conditions following the mass-flow. Variable geochemical compositions of the basal coarse layers indicate different sediment sources for different THUs. Eight sedimentary earthquake records observed in the last 2400 a in the İzmit Gulf can be confidently correlated with the historical earthquakes of 1999, 1509 AD (Ms = 7.2), 1296 AD (I = VII), 865 AD (I = VIII), 740 AD (I = VIII), 268 AD (I = VIII), 358 AD (I = IX), and 427 BC. This gives an earthquake recurrence time of ca. 300 a, with the interval between consecutive events ranging from 90 to 695 a.

  5. Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States

    PubMed Central

    O’Shea, Beth; Stransky, Megan; Leitheiser, Sara; Brock, Patrick; Marvinney, Robert G.; Zheng, Yan

    2014-01-01

    Arsenic is enriched up to 28 times the average crustal abundance of 4.8 mg kg−1 for meta-sedimentary rocks of two adjacent formations in central Maine, USA where groundwater in the bedrock aquifer frequently contains elevated As levels. The Waterville Formation contains higher arsenic concentrations (mean As 32.9 mg kg−1, median 12.1 mg kg−1, n=36) than the neighboring Vassalboro Group (mean As 19.1 mg kg−1, median 6.0 mg kg−1, n=36). The Waterville Formation is a pelitic meta-sedimentary unit with abundant pyrite either visible or observed by scanning electron microprobe. Concentrations of As and S are strongly correlated (r=0.88, p<0.05) in the low grade phyllite rocks, and arsenic is detected up to 1,944 mg kg−1 in pyrite measured by electron microprobe. In contrast, statistically significant (p<0.05) correlations between concentrations of As and S are absent in the calcareous meta-sediments of the Vassalboro Group, consistent with the absence of arsenic-rich pyrite in the protolith. Metamorphism converts the arsenic-rich pyrite to arsenic-poor pyrrhotite (mean As 1 mg kg−1, n=15) during de-sulfidation reactions: the resulting metamorphic rocks contain arsenic but little or no sulfur indicating that the arsenic is now in new mineral hosts. Secondary weathering products such as iron oxides may host As, yet the geochemical methods employed (oxidative and reductive leaching) do not conclusively indicate that arsenic is associated only with these. Instead, silicate minerals such as biotite and garnet are present in metamorphic zones where arsenic is enriched (up to 130.8 mg kg−1 As) where S is 0%. Redistribution of already variable As in the protolith during metamorphism and contemporary water-rock interaction in the aquifers, all combine to contribute to a spatially heterogeneous groundwater arsenic distribution in bedrock aquifers. PMID:24861530

  6. Processing of thermal parameters for the assessment of geothermal potential of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Gola, G.; Verdoya, M.

    2009-04-01

    The growing interest on renewable energy sources is stimulating new efforts aimed at the assessment of geothermal potential in several countries, and new developments are expected in the near future. In this framework, a basic step forward is to focus geothermal investigations on geological environments which so far have been relatively neglected. Some intracontinental sedimentary basins could reveal important low enthalpy resources. The evaluation of the geothermal potential in such geological contexts involves the synergic use of geophysical and hydrogeological methodologies. In sedimentary basins a large amount of thermal and hydraulic data is generally available from petroleum wells. Unfortunately, borehole temperature data are often affected by a number of perturbations which make very difficult determination of the true geothermal gradient. In this paper we addressed the importance of the acquisition of thermal parameters (temperature, geothermal gradient, thermal properties of the rock) and the technical processing which is necessary to obtain reliable geothermal characterizations. In particular, techniques for corrections of bottom-hole temperature (BHT) data were reviewed. The objective was to create a working formula usable for computing the undisturbed formation temperature for specific sedimentary basins. As test areas, we analysed the sedimentary basins of northern Italy. Two classical techniques for processing temperature data from oil wells are customarily used: (i) the method by Horner, that requires two or more measurements of bottom-hole temperatures carried out at the same depth but at different shut-in times te and (ii) the technique by Cooper and Jones, in which several physical parameters of the mud and formation need to be known. We applied both methods to data from a number of petroleum explorative wells located in two areas of the Po Plain (Apenninic buried arc and South Piedmont Basin - Pedealpine homocline). From a set of about 40 wells

  7. The Geomechanics of CO 2 Storage in Deep Sedimentary Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny

    2012-01-12

    This study provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the Inmore » Salah CO 2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO 2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO 2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will

  8. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    USGS Publications Warehouse

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current

  9. Continuous seismic-reflection survey defining shallow sedimentary layers in the Charlotte Harbor and Venice areas, southwest Florida

    USGS Publications Warehouse

    Wolansky, R.M.; Haeni, F.P.; Sylvester, R.E.

    1983-01-01

    A continuous marine seismic-reflection survey system was used to define the configuration of shallow sedimentary layers underlying the Charlotte Harbor and Venice areas, southwest Florida. Seismic profiling was conducted over a distance of about 57 miles of Charlotte Harbor, the Peace and Myakka Rivers, and the Intracoastal Waterway near Venice using a high resolution energy source capable of penetrating 200 feet of sediments with a resolution of 1 to 3 feet. Five stratigraphic units defined from the seismic records includes sediments to Holocene to early Miocene age. All seismic-profile records are presented, along with geologic sections constructed from the records. Seismic reflection amplitude, frequency, continuity, configuration, external form, and areal association were utilized to interpret facies and depositional environments of the stratigraphic units. The despositional framework of the units ranges from shallow shelf to prograded slope. The stratigraphic units are correlated with the surficial aquifer and intermediate artesian aquifers, and permeable zones of the aquifers are related to the seismic records. (USGS)

  10. Predicted facies, sedimentary structures and potential resources of Jurassic petroleum complex in S-E sWestern Siberia (based on well logging data)

    NASA Astrophysics Data System (ADS)

    Prakojo, F.; Lobova, G.; Abramova, R.

    2015-11-01

    This paper is devoted to the current problem in petroleum geology and geophysics- prediction of facies sediments for further evaluation of productive layers. Applying the acoustic method and the characterizing sedimentary structure for each coastal-marine-delta type was determined. The summary of sedimentary structure characteristics and reservoir properties (porosity and permeability) of typical facies were described. Logging models SP, EL and GR (configuration, curve range) in interpreting geophysical data for each litho-facies were identified. According to geophysical characteristics these sediments can be classified as coastal-marine-delta. Prediction models for potential Jurassic oil-gas bearing complexes (horizon J11) in one S-E Western Siberian deposit were conducted. Comparing forecasting to actual testing data of layer J11 showed that the prediction is about 85%.

  11. Sedimentary processes on the Atlantic Continental Slope of the United States

    USGS Publications Warehouse

    Knebel, H.J.

    1984-01-01

    Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and

  12. Sedimentary masses and concepts about tectonic processes at underthrust ocean margins ( subduction).

    USGS Publications Warehouse

    Scholl, D. W.; von Huene, Roland E.; Vallier, T.L.; Howell, D.G.

    1980-01-01

    Tectonic processes associated with subduction of oceanic crust, but unrelated to the collision of thick crustal masses or microplates, are presumed by many geologists to significantly affect the formation and deformation of large sedimentary bodies at underthrust ocean margins. More geologists are familiar with the concept of subduction accretion than with other noncollision processes - for example, sediment subduction, subduction erosion, and subduction kneading. In our opinion, no single subduction-related tectonic process is the dominant or typical one that forges the geologic framework of modern underthrust ocean margins. It is likely, therefore, that the rock records of ancient underthrust margins are preserved in a multitude of structural and stratigraphic forms.-from Authors

  13. Dynamics of particulate organic matter composition in coastal systems: Forcing of spatio-temporal variability at multi-systems scale

    NASA Astrophysics Data System (ADS)

    Liénart, Camilla; Savoye, Nicolas; David, Valérie; Ramond, Pierre; Rodriguez Tress, Paco; Hanquiez, Vincent; Marieu, Vincent; Aubert, Fabien; Aubin, Sébastien; Bichon, Sabrina; Boinet, Christophe; Bourasseau, Line; Bozec, Yann; Bréret, Martine; Breton, Elsa; Caparros, Jocelyne; Cariou, Thierry; Claquin, Pascal; Conan, Pascal; Corre, Anne-Marie; Costes, Laurence; Crouvoisier, Muriel; Del Amo, Yolanda; Derriennic, Hervé; Dindinaud, François; Duran, Robert; Durozier, Maïa; Devesa, Jérémy; Ferreira, Sophie; Feunteun, Eric; Garcia, Nicole; Geslin, Sandrine; Grossteffan, Emilie; Gueux, Aurore; Guillaudeau, Julien; Guillou, Gaël; Jolly, Orianne; Lachaussée, Nicolas; Lafont, Michel; Lagadec, Véronique; Lamoureux, Jézabel; Lauga, Béatrice; Lebreton, Benoît; Lecuyer, Eric; Lehodey, Jean-Paul; Leroux, Cédric; L'Helguen, Stéphane; Macé, Eric; Maria, Eric; Mousseau, Laure; Nowaczyk, Antoine; Pineau, Philippe; Petit, Franck; Pujo-Pay, Mireille; Raimbault, Patrick; Rimmelin-Maury, Peggy; Rouaud, Vanessa; Sauriau, Pierre-Guy; Sultan, Emmanuelle; Susperregui, Nicolas

    2018-03-01

    In costal systems, particulate organic matter (POM) results from a multiplicity of sources having their respective dynamics in terms of production, decomposition, transport and burial. The POM pool experiences thus considerable spatial and temporal variability. In order to better understand this variability, the present study employs statistical multivariate analyses to investigate links between POM composition and environmental forcings for a panel of twelve coastal systems distributed along the three maritime regions of France and monitored weekly to monthly for 1 to 8 years. At multi-system scale, two main gradients of POC composition have been identified: a 'Continent-Ocean' gradient associated with hydrodynamics, sedimentary dynamics and depth of the water column, and a gradient of trophic status related to nutrient availability. At local scale, seasonality of POC composition appears to be station-specific but still related to part of the above-mentioned forcings. A typology of systems was established by coupling spatial and temporal variability of POC composition. Four groups were highlighted: (1) the estuarine stations where POC composition is dominated by terrestrial POM and driven by hydrodynamics and sedimentary processes, (2) the oligotrophic systems, characterized by the contribution of diazotrophs due to low nutrient availability, and the marine meso/eutroph systems whose POC composition is (3) either deeply dominated by phytoplankton or (4) dominated by phytoplankton but where the contribution of continental and benthic POC is not negligible and is driven by hydrodynamics, sedimentary processes and the height of the water column. Finally, the present study provides several insights into the different forcings to POM composition and dynamics in temperate coastal systems at local and multi-system scales. This work also presents a methodological approach that establishes statistical links between forcings and POM composition, helping to gain more

  14. Magnetic anomalies along the contact between sedimentary and igneous rocks:

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Speer, A. J.; Wasilewski, P. J.

    2002-05-01

    Intrusion of the Liberty Hill granite (South Carolina) into the surrounding shale causes a distinct aureole along the metamorphic contact. The aureole is divided by five isograds, which are the result of a sequence of continuous reactions. One consequence of the continuous reactions is production of contrasting proportion of magnetite and exsolved titanohematite. The continuous change in the relative amounts of these two minerals, controls the magnetic properties of the hornfelses. This causes magnetic anomaly changes associated with the aureole with inflexions occurring at the isograds. The maximum intensity of the magnetic anomaly coincides with the maximum abundance of titanohematite. The anomaly sharply drops when stable remanence of titanohematite is replaced by unstable remanence of magnetite. Magnetic properties of the aureole, which is the contact between igneous and sedimentary rocks, demonstrate an example of magnetic remanence acquisition in petrological environment that is likely to occur on planet Mars.

  15. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons

    NASA Astrophysics Data System (ADS)

    Li, Renwei; Li, Shuangying; Jin, Fuquan; Wan, Yusheng; Zhang, Shukun

    2004-04-01

    A suite of slightly metamorphosed Carboniferous sedimentary strata occurs in the northern margin of the Dabie Mountains, central China. It consists, in ascending order, of the upper Huayuanqiang Formation (C 1), the Yangshan Formation (C 1), the Daorenchong Formation (C 1-2), the most widely distributed Huyoufang Formation (C 2) and the Yangxiaozhuang Formation (C 2). The provenance of the Carboniferous sedimentary rocks is constrained by the integration of trace elements, detrital mineral chemistry and sensitive high resolution ion microprobe (SHRIMP) dating of detrital zircons, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling-Dabie Orogen. The trace element compositions indicate that the source terrain was probably a continental island arc. Detrital tourmalines were mainly derived from aluminous and Al-poor metapelites and metapsammites, and some are sourced from Li-poor granitoids, pegmatites and aplites. Detrital garnets, found only in the uppermost Huyoufang Formation, are almandine and Mn-almandine garnets, indicating probable sources mainly from garnetiferous schists, and partly from granitoid rocks. The detrital white K-micas are muscovitic in the Huayuanqiang, Daorenchong and Huyoufang Formations, and phengitic with Si contents (p.f.u.) from 3.20 up to max. 3.47-3.53 in the uppermost Huyoufang and the Yangxiaozhuang Formations, a meta-sedimentary source. Major components in the detrital zircon age structure for the Huyoufang Formation range from 506 to 363 Ma, centering on ˜400 and ˜480 Ma, which is characteristic of the Qinling and Erlangping Groups in the Qinling and Tongbai Mountains, central China. Evidently, the major source of the Carboniferous sedimentary rocks in the northern margin of Dabie Mountains was from the southern margin of the Sino-Korean Craton represented by the Qinling and Erlangping Groups. The source area was an island-arc system during the Early Paleozoic that

  16. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    NASA Astrophysics Data System (ADS)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  17. Sedimentation, bioturbation, and sedimentary fabric evolution on a modern mesotidal mudflat: A multi-tracer study of processes, rates, and scales

    NASA Astrophysics Data System (ADS)

    Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin

    2014-03-01

    A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer

  18. Sedimentary chronology reinterpreted from Changshou Lake of the Three Gorges Reservoir Area reveals natural and anthropogenic controls on sediment production.

    PubMed

    Anjum, Raheel; Tang, Qiang; Collins, Adrian L; Gao, Jinzhang; Long, Yi; Zhang, Xinbao; He, Xiubin; Shi, Zhonglin; Wen, Anbang; Wei, Jie

    2018-04-17

    Sedimentary archives preserved in geomorphic sinks provide records of historical sediment dynamics and its related natural and anthropogenic controls. This study reinterpreted sedimentary processes in Changshou Lake of the Three Gorges Reservoir Area in China by combining a rainfall erosivity index with multiple tracing proxies, and the impacts of natural and anthropogenic drivers on sediment production were also explored. Erosive rainfalls with low frequency and large magnitude in the rainy season contribute to a substantial proportion of annual total rainfall, which thus can be used to infer erosion and sediment yield events. The sedimentary chronology was determined by comparing rainfall erosivity index with depth distribution of 137 Cs and absolute particle size, which revealed annual sedimentation rates ranging from 1.1 to 2.3 cm a -1 . The multi-proxy dating index and variation of sedimentation rate divided the sediment profile into three major periods. The reference period (1956-1982) displays low variability of TOC, TN, trace metal concentrations, and mean sedimentation rate. In the stressed period (1982-1998), industrial and sewerage discharge led to input and deposition of TOC, TN, and trace metals (e.g., Cd, Co, Cu, Cr, and Ni). The highest annual sediment accumulation rate of 2.3 cm a -1 may be ascribed to the 1982 big flood event. In the present period (1998-2013), increased TOC, TN and decreased trace metals in the top layers of the sediment core indicated changes in lake ecology. Fish farming promoted algal growth and primary productivity which caused eutrophication until 2004-2005. The reduced mean sedimentation rate of 1.7 cm a -1 between 1998 and 2004, and thereafter, may be attributed to soil and water conservation and reforestation policies implemented in the Longxi catchment. Human activities such as deforestation, cultural and industrial revolution, and lake eutrophication associated with fish farming since 1989, therefore led to

  19. 2 - 4 million years of sedimentary processes in the Labrador Sea: implication for North Atlantic stratigraphy

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Saint-Ange, F.; Campbell, C.; Piper, D. J.

    2012-12-01

    Marine sedimentary records from the western North Atlantic show that a significant portion of sediment deposited since the Pliocene originated from the Canadian Shield. In the Labrador Sea, previous studies have shown that bottom currents .strongly influenced sedimentation during the Pliocene, while during the Quaternary, intensification of turbidity current flows related to meltwater events were a dominant factor in supplying sediment to the basin and in the development of the North Atlantic Mid-Ocean Channel (NAMOC). Despite understanding this general pattern of sediment flux, details regarding the transfer of sediment from the Labrador Shelf to deep water and from the Labrador Sea to the North Atlantic remain poorly understood. Our study focuses on sedimentary processes occurring along the Labrador margin since the Pliocene and their consequences on the margin architecture, connection to the NAMOC, and role in sediment flux from the Labrador basin to the Sohm Abyssal Plain. Piston core and high resolution seismic data reveal that during the Pliocene to mid Pleistocene, widespread slope failures led to mass transport deposition along the entire Labrador continental slope. After the mid Pleistocene, sedimentation along the margin was dominated by the combined effects of glaciation and active bottom currents. On the shelf, prograded sedimentary wedges filled troughs and agraded till sheets form intervening banks. On the slope, stacked glaciogenic fans developed seaward of transverse troughs between 400 and 2800 mbsl. On the lower slope, seismic data show thick sediment drifts capped by glacio-marine mud. This unit is draped by well stratified sediment and marks a switch from a contourite dominated regime to a turbidite dominated regime. This shift occurred around 0.5 - 0.8 ka and correlates to the intensification of glaciations. Late Pleistocene sediments on the upper slope consist of stratified sediments related to proglacial plume fall-out. Coarse grained

  20. Analyzing sources to sedimentary organic carbon in the Gulf of Urabá, southern Caribbean, using carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Rúa, Alex; Liebezeit, Gerd; Grajales, Heazel; Palacio, Jaime

    2017-10-01

    Carbon stable isotopes analysis serve reconstruction of the origin of organic matter (OM) deposited onto sediments. They also allow tracing vegetation change at different time scales. This study weighs the contribution of both marine and terrestrial sources to sedimentary organic carbon (OC) from a southwestern Caribbean Gulf partly surrounded by large Musa acuminata (banana) croplands. The δ13C values in three sediment cores from the gulf have slightly decreased over 1000 yrs BP, indicating enhanced terrestrial input of detrital carbon owing to river discharge. A two-end mixing model fed with these δ13C values showed that averaged terrestrial contribution of OC to sediment was 52.0% at prodelta, 76.4% at delta front, and 64.2% at Colombia Bay. This agrees well with sediment dynamics. The main source of sedimentary OC within the gulf was terrestrial instead of marine. In fact, a distorted trend in δ13C values for one of the coring sites could be the result of banana crop expansion through the 20th century.

  1. Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou Province, People's Republic of China

    USGS Publications Warehouse

    Ashley, R.P.; Cunningham, C.G.; Bostick, N.H.; Dean, W.E.; Chou, I.-Ming

    1991-01-01

    Five sedimentary-rock-hosted disseminated gold deposits have been discovered since 1980 in southwestern Guizhou Province (PRC). Submicron-sized gold is disseminated in silty carbonate and carbonaceous shale host rocks of Permian and Triassic age. Arsenic, antimony, mercury, and thallium accompany the gold. Associated hydrothermal alteration resulted in decarbonatization of limestone, silicification, and argillization, and depletion of base metals, barium, and many other elements. Organic material occurs in most host rocks and ores. It was apparently devolatilized during a regional heating event that preceded hydrothermal activity, and thus was not mobilized during mineralization, and did not affect gold deposition. The geologic setting of the Guizhou deposits includes many features that are similar to those of sedimentary-rock-hosted deposits of the Great Basin, western United States. The heavy-element suite that accompanies gold is the same, but base metals are even scarcer in the Guizhou deposits than they are in U.S. deposits. The Guizhou deposits discovered to date are smaller than most U.S. deposits and have no known spatially associated igneous rocks. ?? 1991.

  2. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-08-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a

  3. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico).

    PubMed

    Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam

    2015-03-01

    Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.

  4. Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)

    NASA Astrophysics Data System (ADS)

    Tábořík, P.; Lenart, J.; Blecha, V.; Vilhelm, J.; Turský, O.

    2017-01-01

    A multidisciplinary geophysical survey, consisting of electrical resistivity tomography (ERT), ground penetrating radar (GPR), shallow seismic refraction (SSR) and gravity survey (GS), was used to investigate the counter-slope scarps, one of the typical manifestations of the relaxed zones of rock massifs, and the possible initial stages of deep-seated landslides (DSLs). Two upper parts of the extensive DSLs within the Moravskoslezské Beskydy Mountains (Outer Western Carpathians - OWC) built by the sedimentary flysch rock were chosen as the testing sites. A combined geophysical survey on the flysch rocks was performed on both localities to enhance our present findings. The survey revealed that the ERT is able to reliably detect underground discontinuities, which are manifested at the ground surface by one of the typical landforms (tension cracks, trenches, pseudokarst sinkholes, double-crested ridges and counter-slope scarps). Previous studies suggested that bedrock discontinuities should be depicted by high-resistivity features within ERT surveying. According to SSR and GS, expected zones of weakened rock massif were not confirmed directly underneath the superficial landforms, but they were shifted. Based on the SSR and GS measurements, the depicted high-contrast transitions between high- and low-resistivity domains within the ERT profiles were newly identified as possible manifestation of bedrock discontinuities. The results of GPR measurements give only limited information on the sedimentary flysch rocks, due to shallow penetrating depth and locally strong signal attenuation. The combined results of multidisciplinary geophysical surveying confirmed an importance of employing more than one geophysical technique for integrated interpretations of measured data. Integrated interpretations of the measured geophysical data provided a new insight into massif disintegration and the geomorphic origin of the landforms related to the DSL.

  5. Sedimentary development and correlation of Late Quaternary terraces in the Kyrenia Range, northern Cyprus, using a combination of sedimentology and optical luminescence data

    NASA Astrophysics Data System (ADS)

    Palamakumbura, Romesh N.; Robertson, Alastair H. F.; Kinnaird, Tim C.; Sanderson, David C. W.

    2016-01-01

    This study focuses on the younger of a series of Quaternary terraces along the flanks of the Kyrenia Range in northern Cyprus, specifically the Kyrenia (Girne) and the Koupia terraces. The Kyrenia (Girne) terrace is tentatively correlated with oxygen isotope stage 5 (125 Ka), and the Koupia terrace with oxygen isotope stage 3 (<50 Ka). Along the northern flank of the range, the Kyrenia (Girne) terrace deposits (5-20 m above modern sea level) typically begin with a basal lag conglomerate and then pass upwards into shallow-marine calcarenites and then into variable aeolianites, paleosols and fluvial deposits (up to 20 m thick). In contrast, the Koupia terrace (<2 m above modern sea level) consists of aeolianites and shallow-marine calcarenites (up to 8 m thick). The equivalent deposits along the southern flank of the range are entirely non-marine fluvial mud, sands and conglomerates. The marine to continental terrace systems can be tentatively correlated based on mapping, height above modern sea level and sedimentary facies. However, variable preservation and patchy exposure require such correlations to be independently tested. To achieve this, a portable optically stimulated luminescence (OSL) reader was used to determine the luminescence characteristics of the two terrace systems. Luminescence profiles show major differences in luminescence characteristics between the two terrace depositional systems, which can be related to sedimentary processes, provenance and age. These features allow sections in different areas to be effectively correlated. Individual sections show luminescence properties that are generally consistent with an expected up-sequence decrease in age. However, the younger Koupia terrace deposits show higher luminescence intensities compared with the older Kyrenia (Girne) terrace deposits. This can be explained by multiple phases of reworking of the Kyrenia (Girne) terrace deposits, which changed the luminescence characteristics of the sediment. The

  6. Recent Sedimentary Processes Along the Western Continental Margin of the South Korea Plateau, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Um, I. K.; Bahk, J. J.; Chun, J. H.; Lee, G. S.; Soo, K. G.; Horozal, S.; Kim, S. P.

    2017-12-01

    The continental margins of the marginal seas is largely shaped by a complex interplay of sediment transport processes directed both downslope and along-slope. Factors influence the sediment transport from shelf to the deep basin include: (i) seabed morphology, (ii) climate, (iii) sea level changes, (iv) slope stability, (v) oceanographic regime, and (vi) sediment sources. In order to understand the recent sedimentary processes along the western margin of the South Korea Plateau in the East Sea, we collected multiple geophysical datasets including the subbottom profiler and multibeam echosounder as well as geological sampling. Twelve echo types have been defined and interpreted as deposits formed by shallow marine, hemipelagic sedimentation, bottom currents, combined- (mass-movement/hemipelagic and hemipelagic/turbidites) and mass-movement-processes. Hemipelagic sedimentation, which is reflected as undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. Two major slope-parallel channels appear to have acted as major conduits for turbidity currents from shallower shelf into the deep basins. Bottom current deposits, which is expressed as undulating seafloor morphology, are prevalent in the southern mid-slope at water depths between 250 to 450 m. Mass-transport deposits, consisting of chaotic seismic facies, occur in the upper and lower parts of the continental slope. Piston cores confirm the presence of MTDs that are characterized by mud clasts of variable size and shape. Multibeam bathymetry data show that these MTDs chiefly initiate on lower-slopes (400-600 m) where the gradient is up to 3°. In addition, subbottom profiles suggest the presence of numerous faults in close vicinity of headwall scarps; some are extending to the seafloor suggesting their recent activity. Earthquakes associated with tectonic activity are considered as the main triggering mechanism for these MTDs. Overall, the acoustic facies

  7. Sedimentary facies and gas accumulation model of Lower Shihezi Formation in Shenguhao area, northern Ordos basin, China

    NASA Astrophysics Data System (ADS)

    Lin, Weibing; Chen, Lin; Lu, Yongchao; Zhao, Shuai

    2017-04-01

    The Lower Shihezi formation of lower Permian series in Shenguhao develops the highest gas abundance of upper Paleozoic in China, which has already commercially produced on a large scale. The structural location of Shenguhao belongs to the transition zone of Yimeng uplift and Yishan slope of northern Ordos basin, China. Based on the data of core, well logging and seismic, the sedimentary facies and gas accumulation model have been studied in this paper. Sedimentary facies analysis shows that the braided delta is the major facies type developed in this area during the period of Lower Shihezi formation. The braided delta can be further divided into two microfacies, distributary channel and flood plain. The distributary channel sandbody develops the characteristics of scour surface, trough cross beddings and normal grading sequences. Its seismic reflection structure is with the shape of flat top and concave bottom. Its gamma-ray logging curve is mainly in a box or bell shape. The flood plain is mainly composed of thick mudstones. Its seismic reflection structure is with the shape of parallel or sub-parallel sheet. Its gamma-ray logging curve is mainly in a linear tooth shape. On the whole, the distribution of sandbody is characterized by large thickness, wide area and good continuity. Based on the analysis of the sea level change and the restoration of the ancient landform in the period of Lower Shihezi formation, the sea level relative change and morphology of ancient landform have been considered as the main controlling factors for the development and distribution of sedimentary facies. The topography was with big topographic relief, and the sea level was relatively low in the early stage of Low Shihezi formation. The sandbody distributed chiefly along the landform depressions. The sandbody mainly developed in the pattern of multiple vertical superpositions with thick layer. In the later stage, landform gradually converted to be flat, and strata tended to be gentle

  8. Middle Jurassic Topawa group, Baboquivari Mountains, south-central Arizona: Volcanic and sedimentary record of deep basins within the Jurassic magmatic arc

    USGS Publications Warehouse

    Haxel, G.B.; Wright, J.E.; Riggs, N.R.; Tosdal, R.M.; May, D.J.

    2005-01-01

    Among supracrustal sequences of the Jurassic magmatic arc of the southwestern Cordillera, the Middle Jurassic Topawa Group, Baboquivari Mountains, south-central Arizona, is remarkable for its lithologic diversity and substantial stratigraphic thickness, ???8 km. The Topawa Group comprises four units (in order of decreasing age): (1) Ali Molina Formation-largely pyroclastic rhyolite with interlayered eolian and fluvial arenite, and overlying conglomerate and sandstone; (2) Pitoikam Formation-conglomerate, sedimentary breccia, and sandstone overlain by interbedded silt- stone and sandstone; (3) Mulberry Wash Formation-rhyolite lava flows, flow breccias, and mass-flow breccias, with intercalated intraformational conglomerate, sedimentary breccia, and sandstone, plus sparse within-plate alkali basalt and comendite in the upper part; and (4) Tinaja Spring Porphyry-intrusive rhyolite. The Mulberry Wash alkali basalt and comendite are genetically unrelated to the dominant calcalkaline rhyolite. U-Pb isotopic analyses of zircon from volcanic and intrusive rocks indicate the Topawa Group, despite its considerable thickness, represents only several million years of Middle Jurassic time, between approximately 170 and 165 Ma. Sedimentary rocks of the Topawa Group record mixing of detritus from a minimum of three sources: a dominant local source of porphyritic silicic volcanic and subvolcanic rocks, identical or similar to those of the Topawa Group itself; Meso- proterozoic or Cambrian conglomerates in central or southeast Arizona, which contributed well-rounded, highly durable, polycyclic quartzite pebbles; and eolian sand fields, related to Middle Jurassic ergs that lay to the north of the magmatic arc and are now preserved on the Colorado Plateau. As the Topawa Group evidently represents only a relatively short interval of time, it does not record long-term evolution of the Jurassic magmatic arc, but rather represents a Middle Jurassic "stratigraphic snapshot" of the arc

  9. Multilayered aquifer modeling in the coastal sedimentary basin of Togo

    NASA Astrophysics Data System (ADS)

    Gnazou, M. D. T.; Sabi, B. E.; Lavalade, J. L.; Schwartz, J.; Akakpo, W.; Tozo, A.

    2017-01-01

    This work is a follow up to the hydrogeological synthesis done in 2012 on the coastal sedimentary basin of Togo. That synthesis notably emphasized the lack of piezometric monitoring in the last thirty years. This has kept us from learning about the dynamics and evolution of the resource in the context of rapidly increasing demand. We are therefore presenting a model for understanding flows, and its main objectives are to provide an initial management tool that should evolve with time as new data (piezometric monitoring, pumping tests, etc.) become available, and to determine what new information can be obtained that will help policy makers to manage the resource better. The results of steady state flow calibration have shown that the aquifer of the Continental Terminal overexploited in the West, can still be exploited in the East of the basin, the Maastrichtian on the whole basin. On the other hand, exploitation of Paleocene aquifers should be done with care.

  10. Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni M.; Ruffo, Paolo; Guadagnini, Alberto

    2017-03-01

    This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.

  11. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

    PubMed Central

    Kawai, Mikihiko; Futagami, Taiki; Toyoda, Atsushi; Takaki, Yoshihiro; Nishi, Shinro; Hori, Sayaka; Arai, Wataru; Tsubouchi, Taishi; Morono, Yuki; Uchiyama, Ikuo; Ito, Takehiko; Fujiyama, Asao; Inagaki, Fumio; Takami, Hideto

    2014-01-01

    Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5, and 107.0 mbsf) at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB), key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere. PMID:24624126

  12. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes.

    PubMed

    Kawai, Mikihiko; Futagami, Taiki; Toyoda, Atsushi; Takaki, Yoshihiro; Nishi, Shinro; Hori, Sayaka; Arai, Wataru; Tsubouchi, Taishi; Morono, Yuki; Uchiyama, Ikuo; Ito, Takehiko; Fujiyama, Asao; Inagaki, Fumio; Takami, Hideto

    2014-01-01

    Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5, and 107.0 mbsf) at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB), key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere.

  13. The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.

    2014-12-01

    The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip

  14. Sedimentary and pore water geochemistry linked to deglaciation and postglacial development of Lake Vättern, Sweden

    NASA Astrophysics Data System (ADS)

    Swärd, Henrik; O´Regan, Matt; Kylander, Malin; Greenwood, Sarah; Mörth, Magnus; Jakobsson, Martin

    2017-04-01

    Lake Vättern, in south central Sweden, underwent profound environmental changes during the Late Weichselian deglaciation of Fennoscandia. It evolved from (i) a sub/proglacial lake situated at the westernmost rim of the Baltic Ice Lake (BIL) into (ii) a brackish to marine phase where the Vättern basin was a part of the Yoldia Sea connecting the North and Baltic Seas, and finally to (iii) a freshwater basin as isostatic rebound following deglaciation led to its isolation. The sedimentary and pore water geochemical signatures associated with these dramatic environmental changes were investigated in a 74 m composite sediment core from southern Lake Vättern. This was accomplished using high-resolution X-ray fluorescence measurements of elemental data along with discrete measurements of total organic carbon (TOC), δ13C, mineralogical composition (XRD) and pore water chemistry. Proglacial sediments in Lake Vättern are devoid of organic matter, and show cyclic trends in elemental data, grain size and mineralogy. These are interpreted as varved sediments whose thickness decreases upcore from decimeters to millimeters. The coarse grained varves are enriched in Ca, Si, Zr and Sr and contain calcite while the fine grained varves are enriched in K, Rb, Ti and Fe and lack calcite. Overall, the presence of calcite is limited to the proglacial sediments and reflected in the elemental data by an abrupt decrease of Ca at the (i)/(ii) transition. This suggests a glacial/glaciofluvial origin for the calcite, likely eroded from local limestones that borders the lake basin in the northeast. The saline incursion at the beginning of phase (ii) is evident in pore water chemistry by a significant increase of the major sea water species (Cl, Na, Mg, K and Ca) but is not clearly seen in the sedimentary geochemistry. Increased biological production in and around the lake during stage (iii) is strongly reflected in sedimentary geochemistry showing decreasing detrital inputs, increasing TOC

  15. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous

  16. Controls and variability of solute and sedimentary fluxes in Antarctic and sub-Antarctic Environments

    NASA Astrophysics Data System (ADS)

    Zwolinski, Zbigniew

    2015-04-01

    The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). The book comprises five parts. One of them is part about sub-Antarctic and Antarctic Environments. This part "Sub-Antarctic and Antarctic Environments" describes two different environments, namely oceanic and continental ones. Each part contains results of research on environmental drivers and rates of contemporary solute and sedimentary fluxes in selected sites. Apart from describing the environmental conditions of the whole continent of Antarctica and sub-Antarctic islands (Zb.Zwolinski, M.Kejna, A.N.Lastochkin, A.Zhirov, S.Boltramovich) this part of the book characterizes terrestrial polar oases free from multi-year ice and snow covers (Zb.Zwolinski). The detailed results of geoecological and sedimentological research come from different parts of Antarctica. Antarctic continental shelf (E.Isla) is an example of sub-Antarctic oceanic environment. South Shetlands, especially King George Island (Zb.Zwolinski, M.Kejna, G.Rachlewicz, I.Sobota, J.Szpikowski), is an example of sub-Antarctic terrestrial environment. Antarctic Peninsula (G.Vieira, M.Francelino, J.C.Fernandes) and surroundings of McMurdo Dry Valleys (W.B.Lyons, K.A.Welch, J.Levy, A.Fountain, D.McKnight) are examples of Antarctic continental environments. The key goals of the Antarctic and sub-Antarctic book chapters are following: (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments

  17. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  18. Holocene depocenter migration and sediment accumulation in Delaware Bay: A submerging marginal marine sedimentary basin

    USGS Publications Warehouse

    Fletcher, C. H.; Knebel, H.J.; Kraft, J.C.

    1992-01-01

    The Holocene transgression of the Delaware Bay estuary and adjacent Atlantic coast results from the combined effect of regional crustal subsidence and eustasy. Together, the estuary and ocean coast constitute a small sedimentary basin whose principal depocenter has migrated with the transgression. A millenial time series of isopach and paleogeographic reconstructions for the migrating depocenter outlines the basin-wide pattern of sediment distribution and accumulation. Upland sediments entering the basin through the estuarine turbidity maximum accumulate in tidal wetland or open water sedimentary environments. Wind-wave activity at the edge of the tidal wetlands erodes the aggraded Holocene section and builds migrating washover barriers. Along the Atlantic and estuary coasts of Delaware, the area of the upland environment decreases from 2.0 billion m2 to 730 million m2 during the transgression. The area of the tidal wetland environment increases from 140 million to 270 million m2, and due to the widening of the estuary the area of open water increases from 190 million to 1.21 billion m2. Gross uncorrected rates of sediment accumulation for the tidal wetlands decrease from 0.64 mm/yr at 6 ka to 0.48 mm/yr at 1 ka. In the open water environments uncorrected rates decrease from 0.50 mm/yr to 0.04 mm/yr over the same period. We also present data on total sediment volumes within the tidal wetland and open water environments at specific intervals during the Holocene. 

  19. Sedimentary Facies and Stratigraphy of the Changjiang (Yangtze River) Delta

    NASA Astrophysics Data System (ADS)

    Dalrymple, R. W.; Zhang, X.; Lin, C. M.

    2017-12-01

    A disproportionate number of the world's largest deltas are tide-dominated or strongly tide-influenced, in part because the low gradient of these rivers allows the tide to penetrate far inland, generating strong tidal currents at the river mouth. These deltas also tend to be mud-dominated because a significant fraction of the bedload is trapped farther inland. Despite their great importance as sediment depo-centers, as analogues for ancient sedimentary successions, and as areas of intense human occupation, they are the most poorly understood coastal system. The Changjiang (Yangtze River), the 4th largest river in the world in terms of sediment discharge, is one such tide-dominated system, with a mean tidal range of 2.7 m and tidal-current speeds of 1 m/s at its mouth. It shows a fairly typical series of low-relief channels and bars in the mouth-bar area and passes seaward and down-drift into a coastal mud belt that extends 800 km to the south of the river mouth. The deposits from both the transgressive-phase and modern delta are all dominated by mud, except for the fluvial-channel deposits that are clean sand. Channel-floor deposits in areas with appreciable tidal influence contain abundant fluid-mud layers (1-3 cm thick), intercalated with relatively coarse sand; such mud layers show evidence of tidal cyclicity. The overlying tidal-bar deposits commonly become sandier upward because of the upward loss of fluid-mud layers. The tidal channels and bars that characterize the mouth-bar and delta-front area are dominated by randomly organized structureless mud layers, 5-30 cm thick, that are interpreted to be storm-generated fluid-mud deposits. These mud layers become less abundant upward, generating upward-sanding successions. These facies are very similar to those seen in the Amazon and Fly River deltas, suggesting that this is a common motif, and indicating the importance of fluid mud in the dynamics of such systems. Facies proximality can be determined by careful

  20. Seismic valve as the main mechanism for sedimentary fluid entrapment within extensional basin: example of the Lodève Permian Basin (Hérault, South of France).

    NASA Astrophysics Data System (ADS)

    Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.

    2014-12-01

    During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized