Sample records for waiting-for-reward operant task

  1. Abuse Pattern of Toluene Exposure Alters Mouse Behavior in a Waiting-for-Reward Operant Task

    PubMed Central

    Bowen, Scott E.; McDonald, Phillip

    2009-01-01

    Inhaling solvents for recreational purposes continues to be a world-wide public health concern. Toluene, a volatile solvent in many abused products, adversely affects the central nervous system. However, the long-term neurobehavioral effects of exposure to high-concentration, binge patterns typical of toluene abuse remain understudied. We studied the behavioral effects of repeated toluene exposure on cognitive function following binge toluene exposure on behavioral impulse control in Swiss Webster mice using a “wait-for-reward” operant task. Mice were trained on a fixed-ratio (FR) schedule using sweetened milk as a reward. Upon achieving FR15, a wait component was added which delivered free rewards in the absence of responses at increasing time intervals (2 sec, 4 sec, 6 sec, etc…). Mice continued to receive free rewards until they pressed a lever that reinstated the FR component (FR Reset). Once proficient in the FR-Wait task, mice were exposed to either 1,000 ppm, 3,600 ppm or 6,000 ppm toluene, or 0 ppm (air controls) for 30 min per day for 40 days. To avoid acute effects of toluene exposure, behavior was assessed 23 hours later. Repeated toluene exposure decreased response rates, the number of FR resets, and increased mean wait time, resulting in a higher response-to-reinforcer ratio than exhibited by controls. Mice receiving the higher exposure level (6,000 ppm) showed a dramatic decrease in the number of rewards received, which was reversed when toluene exposure ceased. Mice receiving the lower exposure level (1,000 ppm) showed little change in the number of rewards. These results indicate that repeated binge exposures to high concentrations of toluene can significantly interfere with performance as measured by a waiting-for-reward task, suggesting a significant impact on cognitive and/or psychomotor function. PMID:18832024

  2. Reward Sensitivity and Waiting Impulsivity: Shift towards Reward Valuation away from Action Control

    PubMed Central

    Mechelmans, Daisy J; Strelchuk, Daniela; Doñamayor, Nuria; Banca, Paula; Robbins, Trevor W; Baek, Kwangyeol

    2017-01-01

    Abstract Background Impulsivity and reward expectancy are commonly interrelated. Waiting impulsivity, measured using the rodent 5-Choice Serial Reaction Time task, predicts compulsive cocaine seeking and sign (or cue) tracking. Here, we assess human waiting impulsivity using a novel translational task, the 4-Choice Serial Reaction Time task, and the relationship with reward cues. Methods Healthy volunteers (n=29) performed the monetary incentive delay task as a functional MRI study where subjects observe a cue predicting reward (cue) and wait to respond for high (£5), low (£1), or no reward. Waiting impulsivity was tested with the 4-Choice Serial Reaction Time task. Results For high reward prospects (£5, no reward), greater waiting impulsivity on the 4-CSRT correlated with greater medial orbitofrontal cortex and lower supplementary motor area activity to cues. In response to high reward cues, greater waiting impulsivity was associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula, but decreased connectivity with regions implicated in action selection and preparation. Conclusion These findings highlight a shift towards regions implicated in reward valuation and a shift towards compulsivity away from higher level motor preparation and action selection and response. We highlight the role of reward sensitivity and impulsivity, mechanisms potentially linking human waiting impulsivity with incentive approach and compulsivity, theories highly relevant to disorders of addiction. PMID:29020291

  3. Two facets of patience in young children: Waiting with and without an explicit reward.

    PubMed

    Barragan-Jason, Gladys; Atance, Cristina; Kopp, Leia; Hopfensitz, Astrid

    2018-07-01

    Patience, or the ability to tolerate delay, is typically studied using delay of gratification (DoG) tasks. However, among other factors (e.g., type of reward), the use of a reward to test patience is affected by an individual's motivation to obtain the reward (e.g., degree of preference for the small vs. large reward). In addition, DoG tasks do not assess the extent to which an individual can wait in the absence of an explicit reward-or what we term "patience as a virtue." Accordingly, the current study used a new measure of patience-the "pure waiting paradigm"-in which 3- to 5-year-old children waited 3 min with nothing to do and with no explicit reward. We then examined the relation between performance on this task (as assessed by children's spontaneous patient behaviors) and performance on two DoG tasks (candy and video rewards). Significant correlations were found between DoG performance and patient behaviors in the pure waiting paradigm, especially when controlling for motivation. These results and methodology show for the first time a direct link between patience as a virtue and DoG performance and also provide new insights about the study of patience in children. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Deficient neural activity subserving decision-making during reward waiting time in intertemporal choice in adult attention-deficit hyperactivity disorder.

    PubMed

    Todokoro, Ayako; Tanaka, Saori C; Kawakubo, Yuki; Yahata, Noriaki; Ishii-Takahashi, Ayaka; Nishimura, Yukika; Kano, Yukiko; Ohtake, Fumio; Kasai, Kiyoto

    2018-04-24

    Impulsivity, which significantly affects social adaptation, is an important target behavioral characteristic in interventions for attention-deficit hyperactivity disorder (ADHD). Typically, people are willing to wait longer to acquire greater rewards. Impulsivity in ADHD may be associated with brain dysfunction in decision-making involving waiting behavior under such situations. We tested the hypothesis that brain circuitry during a period of waiting (i.e., prior to the acquisition of reward) is altered in adults with ADHD. The participants included 14 medication-free adults with ADHD and 16 healthy controls matched for age, sex, IQ, and handedness. The behavioral task had participants choose between a delayed, larger monetary reward and an immediate, smaller monetary reward, where the reward waiting time actually occurred during functional magnetic resonance imaging measurement. We tested for group differences in the contrast values of blood-oxygen-level dependent signals associated with the length of waiting time, calculated using the parametric modulation method. While the two groups did not differ in the time discounting rate, the delay-sensitive contrast values were significantly lower in the caudate and visual cortex in individuals with ADHD. The higher impulsivity scores were significantly associated with lower delay-sensitive contrast values in the caudate and visual cortex. These results suggest that deficient neural activity affects decision-making involving reward waiting time during intertemporal choice tasks, and provide an explanation for the basis of impulsivity in adult ADHD. © 2018 The Author. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  5. A novel operant task to assess social reward and motivation in rodents.

    PubMed

    Borland, Johnathan M; Frantz, Kyle J; Aiani, Lauren M; Grantham, Kymberly N; Song, Zhimin; Albers, H Elliott

    2017-08-01

    Social reward plays a critical role in the development of beneficial social relationships, and disorders of the mechanisms controlling social reward are involved in the etiology of many psychiatric diseases. We present a novel operant social preference task to quantify social reward in rodents using an apparatus with three chambers separated by one-way vertical-swing doors. The experimental animal is placed in the larger chamber while the two smaller chambers either remain empty or contain a stimulus animal or other potential reward stimulus. Adding weights to the door can alter effort required for rewards. Hamsters (Mesocricetus auratus) entered the chamber containing a stimulus hamster significantly more frequently than an empty chamber. When the reinforcing effects of social interactions were compared to food reward under progressive cost requirements, the reinforcing effects of social interaction and sunflower seeds were similar. Progressively increasing the door weight decreased number of entries, but increased time spent attempting to open the doors. The quantification of the rewarding properties of social interactions has almost exclusively used the conditioned place preference (CPP) paradigm. Although robust and reliable, CPP includes a memory component, because it relies on the association of place with the social interaction while the operant task presented here does not. This task allows for detailed and direct assessment of social and non-social rewards that may serve as effective behavioral reinforcers in this operant conditioning model, and it can be used to investigate the neural mechanisms regulating motivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Excitotoxic lesions of the medial striatum delay extinction of a reinforcement color discrimination operant task in domestic chicks; a functional role of reward anticipation.

    PubMed

    Ichikawa, Yoko; Izawa, Ei-Ichi; Matsushima, Toshiya

    2004-12-01

    To reveal the functional roles of the striatum, we examined the effects of excitotoxic lesions to the bilateral medial striatum (mSt) and nucleus accumbens (Ac) in a food reinforcement color discrimination operant task. With a food reward as reinforcement, 1-week-old domestic chicks were trained to peck selectively at red and yellow beads (S+) and not to peck at a blue bead (S-). Those chicks then received either lesions or sham operations and were tested in extinction training sessions, during which yellow turned out to be nonrewarding (S-), whereas red and blue remained unchanged. To further examine the effects on postoperant noninstrumental aspects of behavior, we also measured the "waiting time", during which chicks stayed at the empty feeder after pecking at yellow. Although the lesioned chicks showed significantly higher error rates in the nonrewarding yellow trials, their postoperant waiting time gradually decreased similarly to the sham controls. Furthermore, the lesioned chicks waited significantly longer than the controls, even from the first extinction block. In the blue trials, both lesioned and sham chicks consistently refrained from pecking, indicating that the delayed extinction was not due to a general disinhibition of pecking. Similarly, no effects were found in the novel training sessions, suggesting that the lesions had selective effects on the extinction of a learned operant. These results suggest that a neural representation of memory-based reward anticipation in the mSt/Ac could contribute to the anticipation error required for extinction.

  7. Strategic attention deployment for delay of gratification in working and waiting situations.

    PubMed

    Peake, Philip K; Mischel, Walter; Hebl, Michelle

    2002-03-01

    Two studies examined whether the detrimental effects of attention to rewards on delay of gratification in waiting situations holds-or reverses-in working situations. In Study 1, preschoolers waited or worked for desired delayed rewards. Delay times increased when children worked in the presence of rewards but, as predicted, this increase was due to the distraction provided by the work itself. not because attention to rewards motivated children to sustain work. Analysis of spontaneous attention deployment showed that attending to rewards reduces delay time regardless of the working or waiting nature of the task. Fixing attention on rewards was a particularly detrimental strategy regardless of the type of task. Study 2 showed that when the work is not engaging, however, attention to rewards can motivate instrumental work and facilitate delay of gratification as long as attention deployment does not become fixed on the rewards.

  8. Working and waiting for better rewards: self-control in two monkey species (Cebus apella and Macaca mulatta).

    PubMed

    Evans, Theodore A; Perdue, Bonnie M; Parrish, Audrey E; Beran, Michael J

    2014-03-01

    Self-control is typically defined as choosing a greater, delayed reward over a lesser, more immediate reward. However, in nature, there are other costs besides delay associated with obtaining the greatest outcome including increased effort, potential punishment, and low probability of reward. Effort is an interesting case because it sometimes impairs self-control, by acting as an additional cost, and at other times facilitates self-control, by distracting one from impulsive options. Additionally, different species may perform differently in effortful self-control tasks, based on their natural ecology. To gain insight into these aspects of self-control behavior, we examined capuchin monkeys' and rhesus monkeys' self-control in separate working and waiting choice tasks. We hypothesized that capuchins would show greater self-control in the working task, given their naturally higher activity level, whereas rhesus would perform similarly in both tasks. Rhesus performed as predicted, whereas contrary to our hypothesis, capuchins exhibited lesser performance in the working task. Nonetheless, these results may still stem from inherent species differences interacting with details of the methodology. Capuchins, being highly energetic and social monkeys, may have divided their energy and attention between the working task and other elements of the test environment such as visible group mates or manipulanda. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards.

    PubMed

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-10-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward

  10. Willing to Wait: Elevated Reward-Processing EEG Activity Associated with a Greater Preference for Larger-But-Delayed Rewards

    PubMed Central

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-01-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these

  11. Promising high monetary rewards for future task performance increases intermediate task performance.

    PubMed

    Zedelius, Claire M; Veling, Harm; Bijleveld, Erik; Aarts, Henk

    2012-01-01

    In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  12. Promising High Monetary Rewards for Future Task Performance Increases Intermediate Task Performance

    PubMed Central

    Zedelius, Claire M.; Veling, Harm; Bijleveld, Erik; Aarts, Henk

    2012-01-01

    In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner. PMID:22905145

  13. Strategic Attention Deployment for Delay of Gratification in Working and Waiting Situations.

    ERIC Educational Resources Information Center

    Peake, Philip K.; Hebl, Michelle; Mischel, Walter

    2002-01-01

    Two studies examined whether effects of attention to rewards during a delay of gratification task in waiting situations affects preschoolers' ability to delay gratification in working situations. Findings show that when work provides distraction, attention on rewards reduces delay time whether working or waiting; when work is not engaging,…

  14. Spontaneous activity in the waiting brain: a marker of impulsive choice in attention-deficit/hyperactivity disorder?

    PubMed

    Hsu, Chia-Fen; Benikos, Nicholas; Sonuga-Barke, Edmund J S

    2015-04-01

    Spontaneous very low frequency oscillations (VLFO), seen in the resting brain, are attenuated when individuals are working on attention demanding tasks or waiting for rewards (Hsu et al., 2013). Individuals with attention-deficit/hyperactivity disorder (ADHD) display excess VLFO when working on attention tasks. They also have difficulty waiting for rewards. Here we examined the waiting brain signature in ADHD and its association with impulsive choice. DC-EEG from 21 children with ADHD and 21 controls (9-15 years) were collected under four conditions: (i) resting; (ii) choosing to wait; (iii) being "forced" to wait; and (iv) working on a reaction time task. A questionnaire measured two components of impulsive choice. Significant VLFO reductions were observed in controls within anterior brain regions in both working and waiting conditions. Individuals with ADHD showed VLFO attenuation while working but to a reduced level and none at all when waiting. A closer inspection revealed an increase of VLFO activity in temporal regions during waiting. Excess VLFO activity during waiting was associated with parents' ratings of temporal discounting and delay aversion. The results highlight the potential role for waiting-related spontaneous neural activity in the pathophysiology of impulsive decision-making of ADHD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    PubMed

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    PubMed

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but

  17. Reward Contingencies and the Recalibration of Task Monitoring and Reward Systems: A high-density electrical mapping study

    PubMed Central

    Morie, Kristen P.; De Sanctis, Pierfilippo; Foxe, John J.

    2014-01-01

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density EEG recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task preparatory and task monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task monitoring processes are clearly dissociable, but interact across very fast

  18. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.

    PubMed

    Schevernels, Hanne; Bombeke, Klaas; Van der Borght, Liesbet; Hopf, Jens-Max; Krebs, Ruth M; Boehler, C Nicolas

    2015-11-01

    Reward availability is known to facilitate various cognitive operations, which is usually studied in cue-based paradigms that allow for enhanced preparation in reward-related trials. However, recent research using tasks that signal reward availability via task-relevant stimuli suggests that reward can also rapidly promote performance independent of global strategic preparation. Notably, this effect was also observed in a reward-related stop-signal task, in which behavioral measures of inhibition speed were found to be shorter in trials signaling reward. Corresponding fMRI results implied that this effect relies on boosted reactive control as indicated by increased activity in the 'inhibition-related network' in the reward-related condition. Here, we used EEG to better characterize transient modulations of attentional processes likely preceding this ultimate implementation of response inhibition. Importantly, such modulations would probably reflect enhanced proactive control in the form of more top-down attention to reward-related features. Counter to the notion that behavioral benefits would rely purely on reactive control, we found increased stop-evoked attentional processing (larger N1 component) on reward-related trials. This effect was accompanied by enhanced frontal P3 amplitudes reflecting successful stopping, and earlier and larger ERP differences between successful and failed stop trials in the reward-related condition. Finally, more global proactive control processes in the form of a reward context modulation of reward-unrelated trials did not have an effect on stopping performance but did influence attentional processing of go stimuli. Together, these results suggest that proactive and reactive processes can interact to bring about stimulus-specific reward benefits when the task precludes differential global preparation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. High monetary reward rates and caloric rewards decrease temporal persistence

    PubMed Central

    Bode, Stefan; Murawski, Carsten

    2017-01-01

    Temporal persistence refers to an individual's capacity to wait for future rewards, while forgoing possible alternatives. This requires a trade-off between the potential value of delayed rewards and opportunity costs, and is relevant to many real-world decisions, such as dieting. Theoretical models have previously suggested that high monetary reward rates, or positive energy balance, may result in decreased temporal persistence. In our study, 50 fasted participants engaged in a temporal persistence task, incentivised with monetary rewards. In alternating blocks of this task, rewards were delivered at delays drawn randomly from distributions with either a lower or higher maximum reward rate. During some blocks participants received either a caloric drink or water. We used survival analysis to estimate participants' probability of quitting conditional on the delay distribution and the consumed liquid. Participants had a higher probability of quitting in blocks with the higher reward rate. Furthermore, participants who consumed the caloric drink had a higher probability of quitting than those who consumed water. Our results support the predictions from the theoretical models, and importantly, suggest that both higher monetary reward rates and physiologically relevant rewards can decrease temporal persistence, which is a crucial determinant for survival in many species. PMID:28228517

  20. High monetary reward rates and caloric rewards decrease temporal persistence.

    PubMed

    Fung, Bowen J; Bode, Stefan; Murawski, Carsten

    2017-02-22

    Temporal persistence refers to an individual's capacity to wait for future rewards, while forgoing possible alternatives. This requires a trade-off between the potential value of delayed rewards and opportunity costs, and is relevant to many real-world decisions, such as dieting. Theoretical models have previously suggested that high monetary reward rates, or positive energy balance, may result in decreased temporal persistence. In our study, 50 fasted participants engaged in a temporal persistence task, incentivised with monetary rewards. In alternating blocks of this task, rewards were delivered at delays drawn randomly from distributions with either a lower or higher maximum reward rate. During some blocks participants received either a caloric drink or water. We used survival analysis to estimate participants' probability of quitting conditional on the delay distribution and the consumed liquid. Participants had a higher probability of quitting in blocks with the higher reward rate. Furthermore, participants who consumed the caloric drink had a higher probability of quitting than those who consumed water. Our results support the predictions from the theoretical models, and importantly, suggest that both higher monetary reward rates and physiologically relevant rewards can decrease temporal persistence, which is a crucial determinant for survival in many species. © 2017 The Authors.

  1. Reward Motivation Enhances Task Coding in Frontoparietal Cortex.

    PubMed

    Etzel, Joset A; Cole, Michael W; Zacks, Jeffrey M; Kay, Kendrick N; Braver, Todd S

    2016-04-01

    Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. What happened to the no-wait hospital? A case study of implementation of operational plans for reduced waits.

    PubMed

    Hansson, Johan; Tolf, Sara; Øvretveit, John; Carlsson, Jan; Brommels, Mats

    2012-01-01

    Both research and practice show that waiting lists are hard to reduce. Implementing complex interventions for reduced waits is an intricate and challenging process that requires special attention for surrounding factors helping and hindering the implementation. This article reports a case study of a hospital implementation of operational plans for reduced waits, with an emphasis on the process of change. A case study research design, theoretically informed by the Pettigrew and Whipp model of strategic change, was applied. Data were gathered from individual and focus group interviews with informants from different organizational levels at different times and from documents and plans. The findings revealed arrangements both helping and hindering the implementation work. Helping factors were the hospital's contemporary savings requirements and experiences from similar change initiatives. Those hindering the actions to plan and agree the changes were unclear support functions and unclear task prioritization. One contribution of this study is to demonstrate the advantages, disadvantages, and challenges of a contextualized case study for increased understanding of factors influencing organizational change implementation. One lesson for current policy is to regard context factors that are critical for successful implementation.

  3. Reward Motivation Enhances Task Coding in Frontoparietal Cortex

    PubMed Central

    Etzel, Joset A.; Cole, Michael W.; Zacks, Jeffrey M.; Kay, Kendrick N.; Braver, Todd S.

    2016-01-01

    Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. PMID:25601237

  4. Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward: A Pilot Study of a Child-Friendly fMRI Task.

    PubMed

    van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah

    2015-01-01

    Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the task to create a version appropriate for use with children. We investigated whether this child-friendly version could elicit ventral striatal activation during reward anticipation in typically developing children and young adolescents (aged 9.5-14.5). In addition, we tested whether our performance-based measure of reward sensitivity was associated with anticipatory activity in ventral striatum. Reward anticipation was related to activity in bilateral ventral striatum. Moreover, we found an association between individual reward sensitivity and activity in ventral striatum. We conclude that this task assesses ventral striatal activity in a child-friendly paradigm. The combination with a performance-based measure of reward sensitivity potentially makes the task a powerful tool for developmental imaging studies of reward processing.

  5. Chronic blockade or constitutive deletion of the serotonin transporter reduces operant responding for food reward.

    PubMed

    Sanders, Amy Cecilia; Hussain, Ali J; Hen, René; Zhuang, Xiaoxi

    2007-11-01

    The therapeutic effects of chronic selective serotonin reuptake inhibitors (SSRIs) are well documented, yet the elementary behavioral processes that are affected by such treatment have not been fully investigated. We report here the effects of chronic fluoxetine treatment and genetic deletion of the serotonin transporter (SERT) on food reinforced behavior in three paradigms: the progressive ratio operant task, the concurrent choice operant task, and the Pavlovian-to-Instrumental transfer task. We consistently find that chronic pharmacological blockade or genetic deletion of SERT result in similar behavioral consequences: reduced operant responding for natural reward. This is in line with previous studies reporting declines in operant responding for drugs and intracranial self-stimulation with fluoxetine treatment, suggesting that the effect of SERT blockade can be generalized to different reward types. Detailed analyses of behavioral parameters indicate that this reduction in operant responding affect both goal-directed and non-goal-directed behaviors without affecting the Pavlovian cue-triggered excessive operant responding. In addition, both pharmacological and genetic manipulations reduce locomotor activity in the open field novel environment. Our data contrast with the effect of dopamine in increasing operant responding for natural reward specifically in goal-directed behaviors and in increasing Pavlovian cue-triggered excessive operant responding. Serotonin and dopamine have been proposed to serve opposing functions in motivational processes. Our data suggest that their interactions do not result in simple opponency. The fact that pharmacological blockade and genetic deletion of SERT have similar behavioral consequences reinforces the utility of the SERT null mice for investigation of the mechanisms underlying chronic SSRIs treatment.

  6. Task preparation processes related to reward prediction precede those related to task-difficulty expectation

    PubMed Central

    Schevernels, Hanne; Krebs, Ruth M.; Santens, Patrick; Woldorff, Marty G.; Boehler, C. Nico

    2013-01-01

    Recently, attempts have been made to disentangle the neural underpinnings of preparatory processes related to reward and attention. Functional magnetic resonance imaging (fMRI) research showed that neural activity related to the anticipation of reward and to attentional demands invokes neural activity patterns featuring large-scale overlap, along with some differences and interactions. Due to the limited temporal resolution of fMRI, however, the temporal dynamics of these processes remain unclear. Here, we report an event-related potentials (ERP) study in which cued attentional demands and reward prospect were combined in a factorial design. Results showed that reward prediction dominated early cue processing, as well as the early and later parts of the contingent negative variation (CNV) slow-wave ERP component that has been associated with task-preparation processes. Moreover these reward-related electrophysiological effects correlated across participants with response-time speeding on reward-prospect trials. In contrast, cued attentional demands affected only the later part of the CNV, with the highest amplitudes following cues predicting high-difficulty potential-reward targets, thus suggesting maximal task preparation when the task requires it and entails reward prospect. Consequently, we suggest that task-preparation processes triggered by reward can arise earlier, and potentially more directly, than strategic top-down aspects of preparation based on attentional demands. PMID:24064071

  7. Delay of Gratification by Chimpanzees (Pan troglodytes) in Working and Waiting Situations

    PubMed Central

    Beran, Michael J.; Evans, Theodore A.

    2009-01-01

    We tested four chimpanzees in a self-control task in which food rewards accumulated as long as they were not eaten. In one condition, the chimpanzees had to perform a computer task that directly led to the delivery of the food rewards. In another condition, working on the computerized task was not required and any such work was not linked to the delivery of rewards. The third condition offered no computerized task (chimpanzees simply waited for food rewards to be delivered). Three of four chimpanzees showed no effect of the work scenario on delay of gratification. The one chimpanzee that showed an influence of work scenario on self-control was the overall poorest performing animal. This animal delayed gratification the longest, however, when work was required and reward delivery was directly linked to that work. Therefore, although there is little evidence linking delay of gratification to work requirements in chimpanzees, chimpanzees with lower overall self-control might benefit from having some work available if reward accumulation is contingent on performing that work. PMID:19084581

  8. Task relevance regulates the interaction between reward expectation and emotion.

    PubMed

    Wei, Ping; Kang, Guanlan

    2014-06-01

    In the present study, we investigated the impact of reward expectation on the processing of emotional facial expression using a cue-target paradigm. A cue indicating the reward condition of each trial (incentive vs. non-incentive) was followed by the presentation of a picture of an emotional face, the target. Participants were asked to discriminate the emotional expression of the target face in Experiment 1, to discriminate the gender of the target face in Experiment 2, and to judge a number superimposed on the center of the target face as even or odd in Experiment 3, rendering the emotional expression of the target face as task relevant in Experiment 1 but task irrelevant in Experiments 2 and 3. Faster reaction times (RTs) were observed in the monetary incentive condition than in the non-incentive condition, demonstrating the effect of reward on facilitating task concentration. Moreover, the reward effect (i.e., RTs in non-incentive conditions versus incentive conditions) was larger for emotional faces than for neutral faces when emotional expression was task relevant but not when it was task irrelevant. The findings suggest that top-down incentive motivation biased attentional processing toward task-relevant stimuli, and that task relevance played an important role in regulating the influence of reward expectation on the processing of emotional stimuli.

  9. Waiting times for hospital admissions: the impact of GP fundholding.

    PubMed

    Propper, Carol; Croxson, Bronwyn; Shearer, Arran

    2002-03-01

    Waiting times for hospital care are a significant issue in the UK National Health Service (NHS). The reforms of the health service in 1990 gave a subset of family doctors (GP fundholders) both the ability to choose the hospital where their patients were treated and the means to pay for some services. One of the key factors influencing family doctors' choice of hospital was patient waiting time. However, without cash inducements, hospitals would get no direct reward from giving shorter waiting times to a subset of patients. Using a unique dataset, we investigate whether GP fundholders were able to secure shorter waiting times for their patients, whether they were able to do so in cases where they had no financial rewards to offer hospitals, and whether the impact of fundholding spilled over into shorter waiting times for all patients.

  10. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity.

    PubMed

    Korte, S Mechiel; Prins, Jolanda; Van den Bergh, Filip S; Oosting, Ronald S; Dupree, Rudy; Korte-Bouws, Gerdien A H; Westphal, Koen G C; Olivier, Berend; Denys, Damiaan A; Garland, Alexis; Güntürkün, Onur

    2017-01-05

    The 5-HT 1A/1B -receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT 1A/1B -receptor activation decreases impulsive choice, but increases impulsive action. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rats prefer mutual rewards in a prosocial choice task.

    PubMed

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Marx, Christine; Srejic, Milan; Kalenscher, Tobias

    2014-01-01

    Pro-sociality, i.e., the preference for outcomes that produce benefits for other individuals, is ubiquitous in humans. Recently, cross-species comparisons of social behavior have offered important new insights into the evolution of pro-sociality. Here, we present a rodent analog of the Pro-social Choice Task that controls strategic components, de-confounds other-regarding choice motives from the animals' natural tendencies to maximize own food access and directly tests the effect of social context on choice allocation. We trained pairs of rats-an actor and a partner rat-in a double T-maze task where actors decided between two alternatives only differing in the reward delivered to the partner. The "own reward" choice yielded a reward only accessible to the actor whereas the "both reward" choice produced an additional reward for a partner (partner condition) or an inanimate toy (toy Condition), located in an adjacent compartment. We found that actors chose "both reward" at levels above chance and more often in the partner than in the toy condition. Moreover, we show that this choice pattern adapts to the current social context and that the observed behavior is stable over time.

  12. Reward Activates Stimulus-Specific and Task-Dependent Representations in Visual Association Cortices

    PubMed Central

    Muller, Timothy; Yeung, Nick; Waszak, Florian

    2014-01-01

    Humans reliably learn which actions lead to rewards. One prominent question is how credit is assigned to environmental stimuli that are acted upon. Recent functional magnetic resonance imaging (fMRI) studies have provided evidence that representations of rewarded stimuli are activated upon reward delivery, providing possible eligibility traces for credit assignment. Our study sought evidence of postreward activation in sensory cortices satisfying two conditions of instrumental learning: postreward activity should reflect the stimulus category that preceded reward (stimulus specificity), and should occur only if the stimulus was acted on to obtain reward (task dependency). Our experiment implemented two tasks in the fMRI scanner. The first was a perceptual decision-making task on degraded face and house stimuli. Stimulus specificity was evident as rewards activated the sensory cortices associated with face versus house perception more strongly after face versus house decisions, respectively, particularly in the fusiform face area. Stimulus specificity was further evident in a psychophysiological interaction analysis wherein face-sensitive areas correlated with nucleus accumbens activity after face-decision rewards, whereas house-sensitive areas correlated with nucleus accumbens activity after house-decision rewards. The second task required participants to make an instructed response. The criterion of task dependency was fulfilled as rewards after face versus house responses activated the respective association cortices to a larger degree when faces and houses were relevant to the performed task. Our study is the first to show that postreward sensory cortex activity meets these two key criteria of credit assignment, and does so independently from bottom-up perceptual processing. PMID:25411489

  13. Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts.

    PubMed

    Morie, Kristen P; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J

    2016-03-01

    We investigated anticipatory and consummatory reward processing in cocaine addiction. In addition, we set out to assess whether task-monitoring systems were appropriately recalibrated in light of variable reward schedules. We also examined neural measures of task-monitoring and reward processing as a function of hedonic tone, since anhedonia is a vulnerability marker for addiction that is obviously germane in the context of reward processing. High-density event-related potentials were recorded while participants performed a speeded response task that systematically varied anticipated probabilities of reward receipt. The paradigm dissociated feedback regarding task success (or failure) from feedback regarding the value of reward (or loss), so that task-monitoring and reward processing could be examined in partial isolation. Twenty-three active cocaine abusers and 23 age-matched healthy controls participated. Cocaine abusers showed amplified anticipatory responses to reward predictive cues, but crucially, these responses were not as strongly modulated by reward probability as in controls. Cocaine users also showed blunted responses to feedback about task success or failure and did not use this information to update predictions about reward. In turn, they showed clearly blunted responses to reward feedback. In controls and users, measures of anhedonia were associated with reward motivation. In cocaine users, anhedonia was also associated with diminished monitoring and reward feedback responses. Findings imply that reward anticipation and monitoring deficiencies in addiction are associated with increased responsiveness to reward cues but impaired ability to predict reward in light of task contingencies, compounded by deficits in responding to actual reward outcomes.

  14. Towards decision support for waiting lists: an operations management view.

    PubMed

    Vissers, J M; Van Der Bij, J D; Kusters, R J

    2001-06-01

    This paper considers the phenomenon of waiting lists in a healthcare setting, which is characterised by limitations on the national expenditure, to explore the potentials of an operations management perspective. A reference framework for waiting list management is described, distinguishing different levels of planning in healthcare--national, regional, hospital and process--that each contributes to the existence of waiting lists through managerial decision making. In addition, different underlying mechanisms in demand and supply are distinguished, which together explain the development of waiting lists. It is our contention that within this framework a series of situation specific models should be designed to support communication and decision making. This is illustrated by the modelling of the demand for cataract treatment in a regional setting in the south-eastern part of the Netherlands. An input-output model was developed to support decisions regarding waiting lists. The model projects the demand for treatment at a regional level and makes it possible to evaluate waiting list impacts for different scenarios to meet this demand.

  15. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  16. Elevated outcome-anticipation and outcome-evaluation ERPs associated with a greater preference for larger-but-delayed rewards.

    PubMed

    Pornpattananangkul, Narun; Nadig, Ajay; Heidinger, Storm; Walden, Keegan; Nusslock, Robin

    2017-06-01

    Although waiting for a reward reduces or discounts its value, some people have a stronger tendency to wait for larger rewards and forgo smaller-but-immediate rewards. This ability to delay gratification is captured by individual differences in so-called intertemporal choices in which individuals are asked to choose between larger-but-delayed versus smaller-but-immediate rewards. The current study used event-related potentials (ERPs) to examine whether enhancement in two neurocognitive processes, outcome anticipation and outcome evaluation, modulate individual variability in intertemporal responses. After completing a behavioral intertemporal choice task, 34 participants performed an ERP gambling task. From this ERP task, we separately examined individual differences in outcome anticipation (stimulus-preceding negativity; SPN), early outcome valuation (feedback-related negativity; FRN), and late outcome evaluation (P3). We observed that both elevated outcome-anticipation (SPN) and late outcome-evaluation (P3) neural processes predicted a stronger preference toward larger-but-delayed rewards. No relationship was observed between intertemporal responses and early outcome evaluation (FRN), indicating that the relationship between outcome evaluation and intertemporal responses was specific to the late outcome-evaluation processing stream. Moreover, multiple regression analyses indicated that the SPN and P3 independently modulate individual differences in intertemporal responses, suggesting separate mechanisms underlie the relationship between these two neurocognitive processes and intertemporal responses. Accordingly, we identify two potential neurocognitive modulators of individual variability in intertemporal responses. We discuss the mechanisms underlying these modulators in terms of anticipation-related processing (SPN) and a saliency bias toward gain (compared to loss) outcomes (P3).

  17. The impact of reward and punishment on skill learning depends on task demands.

    PubMed

    Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I

    2016-10-27

    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.

  18. The impact of reward and punishment on skill learning depends on task demands

    PubMed Central

    Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.

    2016-01-01

    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302

  19. Relative reward effects on operant behavior: Incentive contrast, induction and variety effects

    PubMed Central

    Webber, E.S.; Chambers, N. E.; Kostek, J.A.; Mankin, D.E; Cromwell, H.C.

    2015-01-01

    Comparing different rewards automatically produces dynamic relative outcome effects on behavior. Each new outcome exposure is to an updated version evaluated relative to alternatives. Relative reward effects include incentive contrast, positive induction and variety effects. The present study utilized a novel behavioral design to examine relative reward effects on a chain of operant behavior using auditory cues. Incentive contrast is the most often examined effect and focuses on increases or decreases in behavioral performance after value upshifts (positive) or downshifts (negative) relative to another outcome. We examined the impact of comparing two reward outcomes in a repeated measures design with three sessions: a single outcome and a mixed outcome and a final single outcome session. Relative reward effects should be apparent when comparing trials for the identical outcome between the single and mixed session types. An auditory cue triggered a series of operant responses (nosepoke-leverpress-food retrieval), and we measured possible contrast effects for different reward magnitude combinations. We found positive contrast for trials with the greatest magnitude differential but positive induction or variety effects in other combinations. This behavioral task could be useful for analyzing environmental or neurobiological factors involved in reward comparisons, decision-making and choice during instrumental, goal-directed action. PMID:25979604

  20. Pay attention to your manipulation checks! Reward impact on cardiac reactivity is moderated by task context.

    PubMed

    Richter, Michael

    2010-05-01

    Two experiments assessed the moderating impact of task context on the relationship between reward and cardiovascular response. Randomly assigned to the cells of a 2 (task context: reward vs. demand) x 2 (reward value: low vs. high) between-persons design, participants performed either a memory task with an unclear performance standard (Experiment 1) or a visual scanning task with an unfixed performance standard (Experiment 2). Before performing the task--where participants could earn either a low or a high reward--participants responded to questions about either task reward or task demand. In accordance with the theoretical predictions derived from Wright's (1996) integrative model, reactivity of pre-ejection period increased with reward value if participants had rated aspects of task reward before performing the task. If they had rated task demand, pre-ejection period did not differ as a function of reward. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Elevated Outcome-Anticipation and Outcome-Evaluation ERPs Associated with a Greater Preference for Larger-But-Delayed Rewards

    PubMed Central

    Pornpattananangkul, Narun; Nadig, Ajay; Heidinger, Storm; Walden, Keegan; Nusslock, Robin

    2017-01-01

    Although waiting for a reward reduces or discounts its value, some people have a stronger tendency to wait for larger rewards and forgo smaller-but-immediate rewards. This ability to delay gratification is captured by individual differences in so-called inter-temporal choices in which individuals are asked to choose between larger-but-delayed versus smaller-but-immediate rewards. The current study used event-related potentials (ERPs) to examine whether enhancement in two neuro-cognitive processes, outcome-anticipation and outcome-evaluation, modulate individual variability in inter-temporal responses. After completing a behavioral inter-temporal choice task, 34 participants performed an ERP gambling task. From this ERP task, we separately examined individual differences in outcome-anticipation (Stimulus-Preceding Negativity, SPN), early outcome-evaluation (Feedback-Related Negativity; FRN) and late outcome-evaluation (P3). We observed that both elevated outcome-anticipation (SPN) and late outcome-evaluation (P3) neural processes predicted a stronger preference toward larger-but-delayed rewards. No relationship was observed between inter-temporal responses and early outcome-evaluation (FRN), indicating that the relationship between outcome-evaluation and inter-temporal responses was specific to the late outcome-evaluation processing stream. Moreover, multiple regression analyses indicated that the SPN and P3 independently modulate individual differences in inter-temporal responses, suggesting separate mechanisms underlie the relationship between these two neuro-cognitive processes and inter-temporal responses. Accordingly, we identify two potential neural-cognitive modulators of individual variability in inter-temporal responses. We discuss the mechanisms underlying these modulators in terms of anticipation-related processing (SPN) and a saliency-bias toward gain (compared to loss) outcomes (P3). PMID:28224457

  2. Mental Imagery Training Increases Wanting of Rewards and Reward Sensitivity and Reduces Depressive Symptoms.

    PubMed

    Linke, Julia; Wessa, Michèle

    2017-09-01

    High reward sensitivity and wanting of rewarding stimuli help to identify and motivate repetition of pleasant activities. This behavioral activation is thought to increase positive emotions. Therefore, both mechanisms are highly relevant for resilience against depressive symptoms. Yet, these mechanisms have not been targeted by psychotherapeutic interventions. In the present study, we tested a mental imagery training comprising eight 10-minute sessions every second day and delivered via the Internet to healthy volunteers (N = 30, 21 female, mean age of 23.8 years, Caucasian) who were preselected for low reward sensitivity. Participants were paired according to age, sex, reward sensitivity, and mental imagery ability. Then, members of each pair were randomly assigned to either the intervention or wait condition. Ratings of wanting and response bias toward probabilistic reward cues (Probabilistic Reward Task) served as primary outcomes. We further tested whether training effects extended to approach behavior (Approach Avoidance Task) and depressive symptoms (Beck Depression Inventory). The intervention led to an increase in wanting (p < .001, η 2 p = .45) and reward sensitivity (p = .004, η 2 p = .27). Further, the training group displayed faster approach toward positive edibles and activities (p = .025, η 2 p = .18) and reductions in depressive symptoms (p = .028, η 2 p = .16). Results extend existing literature by showing that mental imagery training can increase wanting of rewarding stimuli and reward sensitivity. Further, the training appears to reduce depressive symptoms and thus may foster the successful implementation of exsiting treatments for depression such as behavioral activation and could also increase resilience against depressive symptoms. Copyright © 2017. Published by Elsevier Ltd.

  3. Reward abundance interferes with error-based learning in a visuomotor adaptation task

    PubMed Central

    Oostwoud Wijdenes, Leonie; Rigterink, Tessa; Overvliet, Krista E.; Smeets, Joeren B. J.

    2018-01-01

    The brain rapidly adapts reaching movements to changing circumstances by using visual feedback about errors. Providing reward in addition to error feedback facilitates the adaptation but the underlying mechanism is unknown. Here, we investigate whether the proportion of trials rewarded (the ‘reward abundance’) influences how much participants adapt to their errors. We used a 3D multi-target pointing task in which reward alone is insufficient for motor adaptation. Participants (N = 423) performed the pointing task with feedback based on a shifted hand-position. On a proportion of trials we gave them rewarding feedback that their hand hit the target. Half of the participants only received this reward feedback. The other half also received feedback about endpoint errors. In different groups, we varied the proportion of trials that was rewarded. As expected, participants who received feedback about their errors did adapt, but participants who only received reward-feedback did not. Critically, participants who received abundant rewards adapted less to their errors than participants who received less reward. Thus, reward abundance negatively influences how much participants learn from their errors. Probably participants used a mechanism that relied more on the reward feedback when the reward was abundant. Because participants could not adapt to the reward, this interfered with adaptation to errors. PMID:29513681

  4. Striatal dopamine transmission in healthy humans during a passive monetary reward task.

    PubMed

    Hakyemez, Hélène S; Dagher, Alain; Smith, Stephen D; Zald, David H

    2008-02-15

    Research on dopamine (DA) transmission has emphasized the importance of increased phasic DA cell firing in the presence of unpredictable rewards. Using [(11)C]raclopride PET, we previously reported that DA transmission was both suppressed and enhanced in different regions of the striatum during an unpredictable reward task [Zald, D.H., Boileau, I., El Dearedy, W., Gunn, R., McGlone, F., Dichter, G.S. et al. (2004). Dopamine transmission in the human striatum during monetary reward tasks. J. Neurosci. 24, 4105-4112]. However, it was unclear if reductions in DA release during this task reflected a response to the high proportion of nonrewarding trials, and whether the behavioral demands of the task influenced the observed response. To test these issues, we presented 10 healthy subjects with an automated (passive) roulette wheel game in which the amount of reward and its timing were unpredictable and the rewarding trials greatly outnumbered the nonrewarding ones. As in the previous study, DA transmission in the putamen was significantly suppressed relative to a predictable control condition. A similar suppression occurred when subjects were presented with temporally unpredictable novel pictures and sounds. At present, models of DA functioning during reward do not account for this suppression, but given that it has been observed in two different studies using different reward paradigms, this phenomenon warrants attention. Neither the unpredictable reward nor the novelty conditions produced consistent increases in striatal DA transmission. These data suggest that active behavioral engagement may be necessary to observe robust statewise increases in DA release in the striatum.

  5. Reward expectation regulates brain responses to task-relevant and task-irrelevant emotional words: ERP evidence.

    PubMed

    Wei, Ping; Wang, Di; Ji, Liyan

    2016-02-01

    We investigated the effect of reward expectation on the processing of emotional words in two experiments using event-related potentials (ERPs). A cue indicating the reward condition of each trial (incentive vs non-incentive) was followed by the presentation of a negative or neutral word, the target. Participants were asked to discriminate the emotional content of the target word in Experiment 1 and to discriminate the color of the target word in Experiment 2, rendering the emotionality of the target word task-relevant in Experiment 1, but task-irrelevant in Experiment 2. The negative bias effect, in terms of the amplitude difference between ERPs for negative and neutral targets, was modulated by the task-set. In Experiment 1, P31 and early posterior negativity revealed a larger negative bias effect in the incentive condition than that in the non-incentive condition. However, in Experiment 2, P31 revealed a diminished negative bias effect in the incentive condition compared with that in the non-incentive condition. These results indicate that reward expectation improves top-down attentional concentration to task-relevant information, with enhanced sensitivity to the emotional content of target words when emotionality is task-relevant, but with reduced differential brain responses to emotional words when their content is task-irrelevant. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. The Influence of Reward Associations on Conflict Processing in the Stroop Task

    ERIC Educational Resources Information Center

    Krebs, Ruth M.; Boehler, Carsten N.; Woldorff, Marty G.

    2010-01-01

    Performance in a behavioral task can be facilitated by associating stimulus properties with reward. In contrast, conflicting information is known to impede task performance. Here we investigated how reward associations influence the within-trial processing of conflicting information using a color-naming Stroop task in which a subset of ink colors…

  7. Does general motivation energize financial reward-seeking behavior? Evidence from an effort task.

    PubMed

    Chumbley, Justin; Fehr, Ernst

    2014-01-01

    We aimed to predict how hard subjects work for financial rewards from their general trait and state reward-motivation. We specifically asked 1) whether individuals high in general trait "reward responsiveness" work harder 2) whether task-irrelevant cues can make people work harder, by increasing general motivation. Each trial of our task contained a 1 second earning interval in which male subjects earned money for each button press. This was preceded by one of three predictive cues: an erotic picture of a woman, a man, or a geometric figure. We found that individuals high in trait "reward responsiveness" worked harder and earned more, irrespective of the predictive cue. Because female predictive cues are more rewarding, we expected them to increase general motivation in our male subjects and invigorate work, but found a more complex pattern.

  8. Waiting for what comes later: capuchin monkeys show self-control even for nonvisible delayed rewards.

    PubMed

    Perdue, Bonnie M; Bramlett, Jessica L; Evans, Theodore A; Beran, Michael J

    2015-09-01

    Self-control tasks used with nonhuman animals typically involve the choice between an immediate option and a delayed, but more preferred option. However, in many self-control scenarios, not only does the more impulsive option come sooner in time, it is often more concrete than the delayed option. For example, studies have presented children with the option of eating a visible marshmallow immediately, or foregoing it for a better reward that can only be seen later. Thus, the immediately available option is visible and concrete, whereas the delayed option is not visible and more abstract. We tested eight capuchin monkeys to better understand this potential effect by manipulating the visibility of the response options and the visibility of the baiting itself. Monkeys observed two food items (20 or 5 g pieces of banana) each being placed either on top of or inside of one of the two opaque containers attached to a revolving tray apparatus, either in full view of monkeys or occluded by a barrier. Trials ended when monkeys removed a reward from the rotating tray. To demonstrate self-control, monkeys should have allowed the smaller piece of food to pass if the larger piece was forthcoming. Overall, monkeys were successful on the task, allowing a smaller, visible piece of banana to pass from reach in order to access the larger, nonvisible banana piece. This was true even when the entire baiting process took place out of sight of the monkeys. This finding suggests that capuchin monkeys succeed on self-control tasks even when the delayed option is also more abstract than the immediate one-a situation likely faced by primates in everyday life.

  9. Housing conditions affect rat responses to two types of ambiguity in a reward–reward discrimination cognitive bias task

    PubMed Central

    Parker, Richard M.A.; Paul, Elizabeth S.; Burman, Oliver H.P.; Browne, William J.; Mendl, Michael

    2014-01-01

    Decision-making under ambiguity in cognitive bias tasks is a promising new indicator of affective valence in animals. Rat studies support the hypothesis that animals in a negative affective state evaluate ambiguous cues negatively. Prior automated operant go/go judgement bias tasks have involved training rats that an auditory cue of one frequency predicts a Reward and a cue of a different frequency predicts a Punisher (RP task), and then measuring whether ambiguous cues of intermediate frequency are judged as predicting reward (‘optimism’) or punishment (‘pessimism’). We investigated whether an automated Reward–Reward (RR) task yielded similar results to, and was faster to train than, RP tasks. We also introduced a new ambiguity test (simultaneous presentation of the two training cues) alongside the standard single ambiguous cue test. Half of the rats experienced an unpredictable housing treatment (UHT) designed to induce a negative state. Control rats were relatively ‘pessimistic’, whilst UHT rats were quicker, but no less accurate, in their responses in the RR test, and showed less anxiety-like behaviour in independent tests. A possible reason for these findings is that rats adapted to and were stimulated by UHT, whilst control rats in a predictable environment were more sensitive to novelty and change. Responses in the new ambiguity test correlated positively with those in single ambiguous cue tests, and may provide a measure of attention bias. The RR task was quicker to train than previous automated RP tasks. Together, they could be used to disentangle how reward and punishment processes underpin affect-induced cognitive biases. PMID:25106739

  10. The role of uncertainty and reward on eye movements in a virtual driving task

    PubMed Central

    Sullivan, Brian T.; Johnson, Leif; Rothkopf, Constantin A.; Ballard, Dana; Hayhoe, Mary

    2012-01-01

    Eye movements during natural tasks are well coordinated with ongoing task demands and many variables could influence gaze strategies. Sprague and Ballard (2003) proposed a gaze-scheduling model that uses a utility-weighted uncertainty metric to prioritize fixations on task-relevant objects and predicted that human gaze should be influenced by both reward structure and task-relevant uncertainties. To test this conjecture, we tracked the eye movements of participants in a simulated driving task where uncertainty and implicit reward (via task priority) were varied. Participants were instructed to simultaneously perform a Follow Task where they followed a lead car at a specific distance and a Speed Task where they drove at an exact speed. We varied implicit reward by instructing the participants to emphasize one task over the other and varied uncertainty in the Speed Task with the presence or absence of uniform noise added to the car's velocity. Subjects' gaze data were classified for the image content near fixation and segmented into looks. Gaze measures, including look proportion, duration and interlook interval, showed that drivers more closely monitor the speedometer if it had a high level of uncertainty, but only if it was also associated with high task priority or implicit reward. The interaction observed appears to be an example of a simple mechanism whereby the reduction of visual uncertainty is gated by behavioral relevance. This lends qualitative support for the primary variables controlling gaze allocation proposed in the Sprague and Ballard model. PMID:23262151

  11. The effects of monetary and social rewards on task performance in children and adolescents: liking is not enough.

    PubMed

    Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund

    2012-12-01

    The current study compared the effects of reward anticipation on task performance in children and adolescents (8-16 years old) using monetary and various social rewards. Eighty-five typically developing children undertook the Monetary Incentive Delay (MID) task. Of these 44 also undertook the Social Incentive Delay (SID-basic) task where social reward was operationalized as a smiling face and spoken compliments. Forty-one children participated in the SID-plus where points were added to a pictogram with written compliments. In a preparatory validation study participants were asked howmuch they liked the SID-basic rewards.Results showed that there was an effect of reward size on accuracy and RT in both the MID task and SID-plus, but not SID-basic. Subjective value of the SID-basic rewards was rated higher with hypothesized increasing reward intensity. In conclusion, although the social rewards in SID-basic were liked by children andadolescents in the validation study, they had no effect on the behaviour. Only when points were added (SID-plus), anticipated social reward affected task performance. Thus our results highlight (i) the difference between likeability andreinforcing quality and (ii) the need for a quantifiable element to rewards for themto be reinforcing for children. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Rats prefer mutual rewards in a prosocial choice task

    PubMed Central

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Marx, Christine; Srejic, Milan; Kalenscher, Tobias

    2015-01-01

    Pro-sociality, i.e., the preference for outcomes that produce benefits for other individuals, is ubiquitous in humans. Recently, cross-species comparisons of social behavior have offered important new insights into the evolution of pro-sociality. Here, we present a rodent analog of the Pro-social Choice Task that controls strategic components, de-confounds other-regarding choice motives from the animals' natural tendencies to maximize own food access and directly tests the effect of social context on choice allocation. We trained pairs of rats—an actor and a partner rat—in a double T-maze task where actors decided between two alternatives only differing in the reward delivered to the partner. The “own reward” choice yielded a reward only accessible to the actor whereas the “both reward” choice produced an additional reward for a partner (partner condition) or an inanimate toy (toy Condition), located in an adjacent compartment. We found that actors chose “both reward” at levels above chance and more often in the partner than in the toy condition. Moreover, we show that this choice pattern adapts to the current social context and that the observed behavior is stable over time. PMID:25642162

  13. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task

    PubMed Central

    2017-01-01

    Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245

  14. Adolescent neural response to reward is related to participant sex and task motivation

    PubMed Central

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J.

    2017-01-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. PMID:27816780

  15. Basolateral amygdala lesions abolish mutual reward preferences in rats.

    PubMed

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias

    2016-01-01

    In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Reward-based training of recurrent neural networks for cognitive and value-based tasks

    PubMed Central

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2017-01-01

    Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task. DOI: http://dx.doi.org/10.7554/eLife.21492.001 PMID:28084991

  17. Methylphenidate and brain activity in a reward/conflict paradigm: role of the insula in task performance.

    PubMed

    Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Fan, Jin; Friston, Karl; London, Edythe D; Schwartz, Jeffrey; Newcorn, Jeffrey H

    2014-06-01

    Psychostimulants, such as methylphenidate, are thought to improve information processing in motivation-reward and attention-activation networks by enhancing the effects of more relevant signals and suppressing those of less relevant ones; however the nature of such reciprocal influences remains poorly understood. To explore this question, we tested the effect of methylphenidate on performance and associated brain activity in the Anticipation, Conflict, Reward (ACR) task. Sixteen healthy adult volunteers, ages 21-45, were scanned twice using functional magnetic resonance imaging (fMRI) as they performed the ACR task under placebo and methylphenidate conditions. A three-way repeated measures analysis of variance, with cue (reward vs. non-reward), target (congruent vs. incongruent) and medication condition (methylphenidate vs. placebo) as the factors, was used to analyze behaviors on the task. Blood oxygen level dependent (BOLD) signals, reflecting task-related neural activity, were evaluated using linear contrasts. Participants exhibited significantly greater accuracy in the methylphenidate condition than the placebo condition. Compared with placebo, the methylphenidate condition also was associated with lesser task-related activity in components of attention-activation systems irrespective of the reward cue, and less task-related activity in components of the reward-motivation system, particularly the insula, during reward trials irrespective of target difficulty. These results suggest that methylphenidate enhances task performance by improving efficiency of information processing in both reward-motivation and in attention-activation systems. Published by Elsevier B.V.

  18. Adolescent neural response to reward is related to participant sex and task motivation.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J

    2017-02-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A Systematic Review of fMRI Reward Paradigms in Adolescents versus Adults: The Impact of Task Design and Implications for Understanding Neurodevelopment

    PubMed Central

    Richards, Jessica M.; Plate, Rista C.; Ernst, Monique

    2013-01-01

    The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. PMID:23518270

  20. Reward, Task Motivation, Creativity and Teaching: Towards a Cross-Cultural Examination

    ERIC Educational Resources Information Center

    Hennessey, Beth A.

    2015-01-01

    Background: Extrinsic incentives and constraints to learning, such as the promise of a reward or the expectation of an evaluation, have long been used by educators to motivate students. Previous research has consistently found that expected reward consistently undermines intrinsic task motivation and creativity of products and performance in…

  1. Anticipatory reward processing in addicted populations: a focus on the monetary incentive delay task.

    PubMed

    Balodis, Iris M; Potenza, Marc N

    2015-03-01

    Advances in brain imaging techniques have allowed neurobiological research to temporally analyze signals coding for the anticipation of reward. In addicted populations, both hyporesponsiveness and hyperresponsiveness of brain regions (e.g., ventral striatum) implicated in drug effects and reward system processing have been reported during anticipation of generalized reward. We discuss the current state of knowledge of reward processing in addictive disorders from a widely used and validated task: the monetary incentive delay task. Only studies applying the monetary incentive delay task in addicted and at-risk adult populations are reviewed, with a focus on anticipatory processing and striatal regions activated during task performance as well as the relationship of these regions with individual difference (e.g., impulsivity) and treatment outcome variables. We further review drug influences in challenge studies as a means to examine acute influences on reward processing in abstinent, recreationally using, and addicted populations. Generalized reward processing in addicted and at-risk populations is often characterized by divergent anticipatory signaling in the ventral striatum. Although methodologic and task variations may underlie some discrepant findings, anticipatory signaling in the ventral striatum may also be influenced by smoking status, drug metabolites, and treatment status in addicted populations. Divergent results across abstinent, recreationally using, and addicted populations demonstrate complexities in interpreting findings. Future studies would benefit from focusing on characterizing how impulsivity and other addiction-related features relate to anticipatory striatal signaling over time. Additionally, identifying how anticipatory signals recover or adjust after protracted abstinence will be important in understanding recovery processes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Temporal and probabilistic discounting of rewards in children and adolescents: effects of age and ADHD symptoms.

    PubMed

    Scheres, Anouk; Dijkstra, Marianne; Ainslie, Eleanor; Balkan, Jaclyn; Reynolds, Brady; Sonuga-Barke, Edmund; Castellanos, F Xavier

    2006-01-01

    This study investigated whether age and ADHD symptoms affected choice preferences in children and adolescents when they chose between (1) small immediate rewards and larger delayed rewards and (2) small certain rewards and larger probabilistic uncertain rewards. A temporal discounting (TD) task and a probabilistic discounting (PD) task were used to measure the degree to which the subjective value of a large reward decreased as one had to wait longer for it (TD), and as the probability of obtaining it decreased (PD). Rewards used were small amounts of money. In the TD task, the large reward (10 cents) was delayed by between 0 and 30s, and the immediate reward varied in magnitude (0-10 cents). In the PD task, receipt of the large reward (10 cents) varied in likelihood, with probabilities of 0, 0.25, 0.5, 0.75, and 1.0 used, and the certain reward varied in magnitude (0-10 cents). Age and diagnostic group did not affect the degree of PD of rewards: All participants made choices so that total gains were maximized. As predicted, young children, aged 6-11 years (n = 25) demonstrated steeper TD of rewards than adolescents, aged 12-17 years (n = 21). This effect remained significant even when choosing the immediate reward did not shorten overall task duration. This, together with the lack of interaction between TD task version and age, suggests that steeper discounting in young children is driven by reward immediacy and not by delay aversion. Contrary to our predictions, participants with ADHD (n = 22) did not demonstrate steeper TD of rewards than controls (n = 24). These results raise the possibility that strong preferences for small immediate rewards in ADHD, as found in previous research, depend on factors such as total maximum gain and the use of fixed versus varied delay durations. The decrease in TD as observed in adolescents compared to children may be related to developmental changes in the (dorsolateral) prefrontal cortex. Future research needs to investigate

  3. The Watch-and-Wait Task: On the Reliability and Validity of a New Method of Assessing Self-Control in Preschool Children

    ERIC Educational Resources Information Center

    Neubauer, Anna; Gawrilow, Caterina; Hasselhorn, Marcus

    2012-01-01

    A preschooler's ability to delay gratification in the waiting task is predictive of several developmental outcomes, despite this task's relatively low reliability level. Success in this task depends on the use of distraction strategies. The new Watch-and-Wait Task (WWT) has been developed to enhance reliability and to investigate whether the…

  4. Anticipatory Reward Processing in Addicted Populations: A Focus on the Monetary Incentive Delay Task

    PubMed Central

    Balodis, Iris M.; Potenza, Marc N.

    2014-01-01

    Advances in brain imaging techniques have allowed neurobiological research to temporally analyze signals coding for the anticipation of rewards. In addicted populations, both hypo- and hyper-responsiveness of brain regions (e.g., ventral striatum) implicated in drug effects and reward system processing have been reported during anticipation of generalized reward. Here, we discuss the current state of knowledge of reward processing in addictive disorders from a widely used and validated task: the Monetary Incentive Delay Task (MIDT). The current paper constrains review to those studies applying the MIDT in addicted and at-risk adult populations, with a focus on anticipatory processing and striatal regions activated during task performance, as well as the relationship of these regions with individual difference (e.g., impulsivity) and treatment outcome variables. We further review drug influences in challenge studies as a means to examine acute influences on reward processing in abstinent, recreationally using and addicted populations. Here, we discuss that generalized reward processing in addicted and at-risk populations is often characterized by divergent anticipatory signaling in the ventral striatum. Although methodological/task variations may underlie some discrepant findings, anticipatory signaling in the ventral striatum may also be influenced by smoking status, drug metabolites and treatment status in addicted populations. Divergent results across abstinent, recreationally using and addicted populations demonstrate complexities in interpreting findings. Future studies will benefit from focusing on characterizing how impulsivity and other addiction-related features relate to anticipatory striatal signaling over time. Additionally, identifying how anticipatory signals recover/adjust following protracted abstinence will be important in understanding recovery processes. PMID:25481621

  5. Waiting for cataract surgery--effects of a maximum waiting-time guarantee.

    PubMed

    Hanning, Marianne; Lundström, Mats

    2007-01-01

    To evaluate the effects of the Maximum Waiting-time Guarantee (MWG) policy for cataract surgery on volume, indications, waiting times and priority setting in Sweden. Comparison between 1993 and 1994, when the guarantee had been in force for one year, and 1998 and 1999, when the policy had been terminated for one year. Data from the National Cataract Registry covering 156,657 cataract operations for the years studied. The number of operations increased by 43% between the two study periods. Of this increase, 61% were patients with a visual acuity above 0.5 in the better eye, i.e. low-priority patients. Waiting times were longer for all patient categories in the later period and differences in waiting times between patients with differing priority diminished. Variations among the units in priority setting and waiting times were substantial, and increased after the Guarantee was terminated. The Guarantee with its explicit indications was an effective policy instrument to limit waiting times and improve access for patients with the greatest need. It is unlikely that the Guarantee caused any 'crowding out' of other patient groups. When the Guarantee was not in force, indications for surgery widened. This, however, resulted in longer waiting times for all patient groups. After the Guarantee was terminated, the already substantial differences in access and indications among ophthalmic units became even greater.

  6. The role of rewarding and novel events in facilitating memory persistence in a separate spatial memory task.

    PubMed

    Salvetti, Beatrice; Morris, Richard G M; Wang, Szu-Han

    2014-01-15

    Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory encoding. This study aims to understand whether other types of rewarding or novel tasks, such as rewarded learning in a T-maze and novel object recognition, can also be effective memory-modulating events. Rats were trained in a delayed matching-to-place task to encode and retrieve food locations in an event arena. Weak encoding with only one food pellet at the sample location induced memory encoding but forgetting over 24 h. When this same weak encoding was followed by a rewarded task in a T-maze, the memory persisted for 24 h. Moreover, the same persistence of memory over 24 h could be achieved by exploration in a novel box or by a rewarded T-maze task after a "non-rewarded" weak encoding. When the one-pellet weak encoding was followed by novel object exploration, the memory did not persist at 24 h. Together, the results confirm that place encoding is possible without explicit reward, and that rewarded learning in a separate task lacking novelty can be an effective memory-modulating event. The behavioral and neurobiological implications are discussed.

  7. Neural dissociation of food- and money-related reward processing using an abstract incentive delay task.

    PubMed

    Simon, Joe J; Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2015-08-01

    Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. No Evidence for Inhibitory Deficits or Altered Reward Processing in ADHD: Data From a New Integrated Monetary Incentive Delay Go/No-Go Task.

    PubMed

    Demurie, Ellen; Roeyers, Herbert; Wiersema, Jan R; Sonuga-Barke, Edmund

    2016-04-01

    Cognitive and motivational factors differentially affect individuals with mental health problems such as ADHD. Here we introduce a new task to disentangle the relative contribution of inhibitory control and reward anticipation on task performance in children with ADHD and/or autism spectrum disorders (ASD). Typically developing children, children with ADHD,  ASD, or both disorders worked during separate sessions for monetary or social rewards in go/no-go tasks with varying inhibitory load levels. Participants also completed a monetary temporal discounting (TD) task. As predicted, task performance was sensitive to both the effects of anticipated reward amount and inhibitory load. Reward amount had different effects depending on inhibitory load level. TD correlated with inhibitory control in the ADHD group. The integration of the monetary incentive delay and go/no-go paradigms was successful. Surprisingly, there was no evidence of inhibitory control deficits or altered reward anticipation in the clinical groups. © The Author(s) 2013.

  9. Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching.

    PubMed

    Capa, Rémi L; Bouquet, Cédric A; Dreher, Jean-Claude; Dufour, André

    2013-01-01

    Motivation is often thought to interact consciously with executive control, although recent studies have indicated that motivation can also be unconscious. To date, however, the effects of unconscious motivation on high-order executive control functions have not been explored. Only a few studies using subliminal stimuli (i.e., those not related to motivation, such as an arrow to prime a response) have reported short-lived effects on high-order executive control functions. Here, building on research on unconscious motivation, in which a behavior of perseverance is induced to attain a goal, we hypothesized that subliminal motivation can have long-lasting effects on executive control processes. We investigated the impact of unconscious/conscious monetary reward incentives on evoked potentials and neural activity dynamics during cued task-switching performance. Participants performed long runs of task-switching. At the beginning of each run, a reward (50 cents or 1 cent) was displayed, either subliminally or supraliminally. Participants earned the reward contingent upon their correct responses to each trial of the run. A higher percentage of runs was achieved with higher (conscious and unconscious) than lower rewards, indicating that unconscious high rewards have long-lasting behavioral effects. Event-related potential (ERP) results indicated that unconscious and conscious rewards influenced preparatory effort in task preparation, as suggested by a greater fronto-central contingent negative variation (CNV) starting at cue-onset. However, a greater parietal P3 associated with better reaction times (RTs) was observed only under conditions of conscious high reward, suggesting a larger amount of working memory invested during task performance. Together, these results indicate that unconscious and conscious motivations are similar at early stages of task-switching preparation but differ during task performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Explorative Function in Williams Syndrome Analyzed through a Large-Scale Task with Multiple Rewards

    ERIC Educational Resources Information Center

    Foti, F.; Petrosini, L.; Cutuli, D.; Menghini, D.; Chiarotti, F.; Vicari, S.; Mandolesi, L.

    2011-01-01

    This study aimed to evaluate spatial function in subjects with Williams syndrome (WS) by using a large-scale task with multiple rewards and comparing the spatial abilities of WS subjects with those of mental age-matched control children. In the present spatial task, WS participants had to explore an open space to search nine rewards placed in…

  11. Reward type and behavioural patterns predict dogs’ success in a delay of gratification paradigm

    PubMed Central

    Brucks, Désirée; Soliani, Matteo; Range, Friederike; Marshall-Pescini, Sarah

    2017-01-01

    Inhibiting an immediate behaviour in favour of an alternative but more advantageous behaviour has been linked to individual success in life, especially in humans. Dogs, which have been living in the human environment for thousands of years, are exposed to daily situations that require inhibition different in context from other non-domesticated species. One task regularly used to study inhibitory control is the delay of gratification task, which requires individuals to choose between an immediate option of lower value and a delayed option of higher value. We tested sixteen dogs in a non-social delay of gratification task, conducting two different conditions: a quality and a quantity condition. While the majority of dogs failed to wait for more than 10 s, some dogs tolerated delays of up to 140 s, while one dog waited for 15 minutes. Moreover, dogs had more difficulties to wait if the reward increased in terms of quantity than quality. Interestingly, dogs were able to anticipate the delay duration and some dogs developed behavioural patterns that predicted waiting, which seems similar in some respects to ‘coping-strategies’ found in children, chimpanzees and parrots. Our results indicate that strategies to cope with impulsivity seem to be consistent and present across animal taxa. PMID:28272409

  12. Robust changes in reward circuitry during reward loss in current and former cocaine users during performance of a monetary incentive delay task.

    PubMed

    Patel, Krishna T; Stevens, Michael C; Meda, Shashwath A; Muska, Christine; Thomas, Andre D; Potenza, Marc N; Pearlson, Godfrey D

    2013-10-01

    Abnormal function in reward circuitry in cocaine addiction could predate drug use as a risk factor, follow drug use as a consequence of substance-induced alterations, or both. We used a functional magnetic resonance imaging monetary incentive delay task (MIDT) to investigate reward-loss neural response differences among 42 current cocaine users, 35 former cocaine users, and 47 healthy subjects who also completed psychological measures and tasks related to impulsivity and reward. We found various reward processing-related group differences in several MIDT phases. Across task phases we found a control > current user > former user activation pattern, except for loss outcome, where former compared with current cocaine users activated ventral tegmental area more robustly. We also found regional prefrontal activation differences during loss anticipation between cocaine-using groups. Both groups of cocaine users scored higher than control subjects on impulsivity, compulsivity and reward-punishment sensitivity factors. In addition, impulsivity-related factors correlated positively with activation in amygdala and negatively with anterior cingulate activation during loss anticipation. Compared with healthy subjects, both former and current users displayed abnormal brain activation patterns during MIDT performance. Both cocaine groups differed similarly from healthy subjects, but differences between former and current users were localized to the ventral tegmental area during loss outcome and to prefrontal regions during loss anticipation, suggesting that long-term cocaine abstinence does not normalize most reward circuit abnormalities. Elevated impulsivity-related factors that relate to loss processing in current and former users suggest that these tendencies and relationships may pre-exist cocaine addiction. © 2013 Society of Biological Psychiatry.

  13. Serotonin Depletion Induces ‘Waiting Impulsivity' on the Human Four-Choice Serial Reaction Time Task: Cross-Species Translational Significance

    PubMed Central

    Worbe, Yulia; Savulich, George; Voon, Valerie; Fernandez-Egea, Emilio; Robbins, Trevor W

    2014-01-01

    Convergent results from animal and human studies suggest that reducing serotonin neurotransmission promotes impulsive behavior. Here, serotonin depletion was induced by the dietary tryptophan depletion procedure (TD) in healthy volunteers to examine the role of serotonin in impulsive action and impulsive choice. We used a novel translational analog of a rodent 5-choice serial reaction time task (5-CSRTT)— the human 4-CSRTT—and a reward delay-discounting questionnaire to measure effects on these different forms of ‘waiting impulsivity'. There was no effect of TD on impulsive choice as indexed by the reward delay-discounting questionnaire. However, TD significantly increased 4-CSRTT premature responses (or impulsive action), which is remarkably similar to the previous findings of effect of serotonin depletion on rodent 5-CSRTT performance. Moreover, the increased premature responding in TD correlated significantly with individual differences on the motor impulsivity subscale of the Barratt Impulsivity Scale. TD also improved the accuracy of performance and speeded responding, possibly indicating enhanced attention and reward processing. The results suggest: (i) the 4-CSRTT will be a valuable addition to the tests already available to measure impulsivity in humans in a direct translational analog of a test extensively used in rodents; (ii) TD in humans produces a qualitatively similar profile of effects to those in rodents (ie, enhancing premature responding), hence supporting the conclusion that TD in humans exerts at least some of its effects on central serotonin; and (iii) this manipulation of serotonin produces dissociable effects on different measures of impulsivity, suggesting considerable specificity in its modulatory role. PMID:24385133

  14. The effect of REM sleep deprivation on motivation for food reward.

    PubMed

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  15. Neural correlates of pathological gamblers preference for immediate rewards during the iowa gambling task: an fMRI study.

    PubMed

    Power, Yuri; Goodyear, Bradley; Crockford, David

    2012-12-01

    The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.

  16. Introducing uninteresting tasks to children: a comparison of the effects of rewards and autonomy support.

    PubMed

    Joussemet, Mireille; Koestner, Richard; Lekes, Natasha; Houlfort, Nathalie

    2004-02-01

    Two experiments compared rewards and autonomy support as methods to promote children's self-regulation for an uninteresting vigilance task. Dependent measures were ratings of positive affect, perception of the task's value, and free-choice engagement. ANOVA results revealed some positive effects associated with autonomy support, whereas no effect for rewards was found in either study. The outcomes of most interest were correlations between free-choice behavior and self-reported measures of affect and value, reflecting the level of integration in self-regulation. As predicted by self-determination theory (Deci & Ryan, 1985, 1991, 2000), rewards were associated with behaviors incongruent from affect and value, whereas autonomy support led to integrated self-regulation. This finding was first detected in Study 1 and later replicated in Study 2. Together, these results point to autonomy support as a beneficial alternative to the common use of rewards.

  17. Collaborate and share: an experimental study of the effects of task and reward interdependencies in online games.

    PubMed

    Choi, Boreum; Lee, Inseong; Choi, Dongseong; Kim, Jinwoo

    2007-08-01

    Today millions of players interact with one another in online games, especially massively multiplayer online role-playing games (MMORPGs). These games promote interaction among players by offering interdependency features, but to date few studies have asked what interdependency design factors of MMORPGs make them fun for players, produce experiences of flow, or enhance player performance. In this study, we focused on two game design features: task and reward interdependency. We conducted a controlled experiment that compared the interaction effects of low and high task-interdependency conditions and low and high reward-interdependency conditions on three dependent variables: fun, flow, and performance. We found that in a low task-interdependency condition, players had more fun, experienced higher levels of flow, and perceived better performance when a low reward-interdependency condition also obtained. In contrast, in a high task-interdependency condition, all of these measures were higher when a high reward-interdependency condition also obtained.

  18. Chimpanzees can point to smaller amounts of food to accumulate larger amounts but they still fail the reverse-reward contingency task.

    PubMed

    Beran, Michael J; James, Brielle T; Whitham, Will; Parrish, Audrey E

    2016-10-01

    The reverse-reward contingency task presents 2 food sets to an animal, and they are required to choose the smaller of the 2 sets in order to receive the larger food set. Intriguingly, the majority of species tested on the reverse-reward task fail to learn this contingency in the absence of large trial counts, correction trials, and punishment techniques. The unique difficulty of this seemingly simple task likely reflects a failure of inhibitory control which is required to point toward a smaller and less desirable reward rather than a larger and more desirable reward. This failure by chimpanzees and other primates to pass the reverse-reward task is striking given the self-control they exhibit in a variety of other paradigms. For example, chimpanzees have consistently demonstrated a high capacity for delay of gratification in order to maximize accumulating food rewards in which foods are added item-by-item to a growing set until the subject consumes the rewards. To study the mechanisms underlying success in the accumulation task and failure in the reverse-reward task, we presented chimpanzees with several combinations of these 2 tasks to determine when chimpanzees might succeed in pointing to smaller food sets over larger food sets and how the nature of the task might determine the animals' success or failure. Across experiments, 3 chimpanzees repeatedly failed to solve the reverse-reward task, whereas they accumulated nearly all food items across all instances of the accumulation self-control task, even when they had to point to small amounts of food to accumulate larger amounts. These data indicate that constraints of these 2 related but still different tasks of behavioral inhibition are dependent upon the animals' perceptions of the choice set, their sense of control over the contents of choice sets, and the nature of the task constraints. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: the impact of task design and implications for understanding neurodevelopment.

    PubMed

    Richards, Jessica M; Plate, Rista C; Ernst, Monique

    2013-06-01

    The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. Published by Elsevier Ltd.

  20. Flexible attention allocation to visual and auditory working memory tasks: manipulating reward induces a trade-off.

    PubMed

    Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N

    2011-02-01

    Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.

  1. The influence of trial order on learning from reward vs. punishment in a probabilistic categorization task: experimental and computational analyses.

    PubMed

    Moustafa, Ahmed A; Gluck, Mark A; Herzallah, Mohammad M; Myers, Catherine E

    2015-01-01

    Previous research has shown that trial ordering affects cognitive performance, but this has not been tested using category-learning tasks that differentiate learning from reward and punishment. Here, we tested two groups of healthy young adults using a probabilistic category learning task of reward and punishment in which there are two types of trials (reward, punishment) and three possible outcomes: (1) positive feedback for correct responses in reward trials; (2) negative feedback for incorrect responses in punishment trials; and (3) no feedback for incorrect answers in reward trials and correct answers in punishment trials. Hence, trials without feedback are ambiguous, and may represent either successful avoidance of punishment or failure to obtain reward. In Experiment 1, the first group of subjects received an intermixed task in which reward and punishment trials were presented in the same block, as a standard baseline task. In Experiment 2, a second group completed the separated task, in which reward and punishment trials were presented in separate blocks. Additionally, in order to understand the mechanisms underlying performance in the experimental conditions, we fit individual data using a Q-learning model. Results from Experiment 1 show that subjects who completed the intermixed task paradoxically valued the no-feedback outcome as a reinforcer when it occurred on reinforcement-based trials, and as a punisher when it occurred on punishment-based trials. This is supported by patterns of empirical responding, where subjects showed more win-stay behavior following an explicit reward than following an omission of punishment, and more lose-shift behavior following an explicit punisher than following an omission of reward. In Experiment 2, results showed similar performance whether subjects received reward-based or punishment-based trials first. However, when the Q-learning model was applied to these data, there were differences between subjects in the reward

  2. The influence of trial order on learning from reward vs. punishment in a probabilistic categorization task: experimental and computational analyses

    PubMed Central

    Moustafa, Ahmed A.; Gluck, Mark A.; Herzallah, Mohammad M.; Myers, Catherine E.

    2015-01-01

    Previous research has shown that trial ordering affects cognitive performance, but this has not been tested using category-learning tasks that differentiate learning from reward and punishment. Here, we tested two groups of healthy young adults using a probabilistic category learning task of reward and punishment in which there are two types of trials (reward, punishment) and three possible outcomes: (1) positive feedback for correct responses in reward trials; (2) negative feedback for incorrect responses in punishment trials; and (3) no feedback for incorrect answers in reward trials and correct answers in punishment trials. Hence, trials without feedback are ambiguous, and may represent either successful avoidance of punishment or failure to obtain reward. In Experiment 1, the first group of subjects received an intermixed task in which reward and punishment trials were presented in the same block, as a standard baseline task. In Experiment 2, a second group completed the separated task, in which reward and punishment trials were presented in separate blocks. Additionally, in order to understand the mechanisms underlying performance in the experimental conditions, we fit individual data using a Q-learning model. Results from Experiment 1 show that subjects who completed the intermixed task paradoxically valued the no-feedback outcome as a reinforcer when it occurred on reinforcement-based trials, and as a punisher when it occurred on punishment-based trials. This is supported by patterns of empirical responding, where subjects showed more win-stay behavior following an explicit reward than following an omission of punishment, and more lose-shift behavior following an explicit punisher than following an omission of reward. In Experiment 2, results showed similar performance whether subjects received reward-based or punishment-based trials first. However, when the Q-learning model was applied to these data, there were differences between subjects in the reward

  3. A potential role of reward and punishment in the facilitation of the emotion-cognition dichotomy in the Iowa Gambling Task.

    PubMed

    Singh, Varsha

    2013-01-01

    The Iowa Gambling Task (IGT) is based on the assumption that a decision maker is equally motivated to seek reward and avoid punishment, and that decision making is governed solely by the intertemporal attribute (i.e., preference for an option that produces an immediate outcome instead of one that yields a delayed outcome is believed to reflect risky decision making and is considered a deficit). It was assumed in the present study that the emotion- and cognition-based processing dichotomy manifests in the IGT as reward and punishment frequency and the intertemporal attribute. It was further proposed that the delineation of emotion- and cognition-based processing is contingent upon reward and punishment as manifested in the frame of the task (variant type) and task motivation (instruction type). The effects of IGT variant type (reward vs. punishment) and instruction type (task motivation induced by instruction types: reward, punishment, reward and punishment, or no hint) on the intertemporal and frequency attributes of IGT decision-making were analyzed. Decision making in the reward variant was equally governed by both attributes, and significantly affected by instruction type, while decision making in the punishment variant was differentially affected by the two attributes and not significantly impacted by instruction type. These results suggest that reward and punishment manifested via task frame as well as the task motivation may facilitate the differentiation of emotion- and cognition-based processing in the IGT.

  4. A potential role of reward and punishment in the facilitation of the emotion-cognition dichotomy in the Iowa Gambling Task

    PubMed Central

    Singh, Varsha

    2013-01-01

    The Iowa Gambling Task (IGT) is based on the assumption that a decision maker is equally motivated to seek reward and avoid punishment, and that decision making is governed solely by the intertemporal attribute (i.e., preference for an option that produces an immediate outcome instead of one that yields a delayed outcome is believed to reflect risky decision making and is considered a deficit). It was assumed in the present study that the emotion- and cognition-based processing dichotomy manifests in the IGT as reward and punishment frequency and the intertemporal attribute. It was further proposed that the delineation of emotion- and cognition-based processing is contingent upon reward and punishment as manifested in the frame of the task (variant type) and task motivation (instruction type). The effects of IGT variant type (reward vs. punishment) and instruction type (task motivation induced by instruction types: reward, punishment, reward and punishment, or no hint) on the intertemporal and frequency attributes of IGT decision-making were analyzed. Decision making in the reward variant was equally governed by both attributes, and significantly affected by instruction type, while decision making in the punishment variant was differentially affected by the two attributes and not significantly impacted by instruction type. These results suggest that reward and punishment manifested via task frame as well as the task motivation may facilitate the differentiation of emotion- and cognition-based processing in the IGT. PMID:24381567

  5. Good things come to those who wait: attenuated discounting of delayed rewards in aged Fischer 344 rats

    PubMed Central

    Simon, Nicholas W.; LaSarge, Candi L.; Montgomery, Karienn S.; Williams, Matthew T.; Mendez, Ian A.; Setlow, Barry; Bizon, Jennifer

    2010-01-01

    The ability to make advantageous choices among outcomes that differ in magnitude, probability, and delay until their arrival is critical for optimal survival and well-being across the lifespan. Aged individuals are often characterized as less impulsive in their choices than their young adult counterparts, demonstrating an increased ability to forgo immediate in favor of delayed (and often more beneficial) rewards. Such “wisdom” is usually characterized as a consequence of learning and life experience. However, aging is also associated with prefrontal cortical dysfunction and concomitant impairments in advantageous choice behavior. Animal models afford the opportunity to isolate the effects of biological aging on decision making from experiential factors. To model one critical component of decision making, young adult and aged Fischer 344 rats were trained on a two-choice delay discounting task in which one choice provided immediate delivery of a small reward and the other provided a large reward delivered after a variable delay period. Whereas young adult rats showed a characteristic pattern of choice behavior (choosing the large reward at short delays and shifting preference to the small reward as delays increased), aged rats maintained a preference for the large reward at all delays (i.e. – attenuated “discounting” of delayed rewards). This increased preference for the large reward in aged rats was not due to perceptual, motor, or motivational factors. The data strongly suggest that, independent of life experience, there are underlying neurobiological factors that contribute to age-related changes in decision making, and particularly the ability to delay gratification. PMID:18657883

  6. Chimpanzees (Pan troglodytes) Transfer Tokens Repeatedly with a Partner to Accumulate Rewards in a Self-Control Task

    PubMed Central

    Parrish, Audrey E.; Perdue, Bonnie M.; Evans, Theodore A.; Beran, Michael J.

    2013-01-01

    There has been extensive research investigating self-control in humans and nonhuman animals, yet we know surprisingly little about how one’s social environment influences self-control. The present study examined the self-control of chimpanzees in a task that required active engagement with conspecifics. The task consisted of transferring a token back and forth with a partner animal in order to accumulate food rewards, one item per token transfer. Self-control was required because at any point in the trial, either chimpanzee could obtain their accumulated rewards, but doing so discontinued the food accumulation and ended the trial for both individuals. Chimpanzees readily engaged the task and accumulated the majority of available rewards before ending each trial, and they did so across a number of conditions that varied the identity of the partner, the presence/absence of the experimenter, and the means by which they could obtain rewards. A second experiment examined chimpanzees’ self-control when given the choice between immediately available food items and a potentially larger amount of rewards that could be obtained by engaging the token transfer task with a partner. Chimpanzees were flexible in their decision-making in this test, typically choosing the option representing the largest amount of food, even if it involved delayed accumulation of the rewards via the token transfer task. These results demonstrate that chimpanzees can exhibit self-control in situations involving social interactions, and they encourage further research into this important aspect of the self-control scenario. PMID:23381691

  7. Rational snacking: young children's decision-making on the marshmallow task is moderated by beliefs about environmental reliability.

    PubMed

    Kidd, Celeste; Palmeri, Holly; Aslin, Richard N

    2013-01-01

    Children are notoriously bad at delaying gratification to achieve later, greater rewards (e.g., Piaget, 1970)-and some are worse at waiting than others. Individual differences in the ability-to-wait have been attributed to self-control, in part because of evidence that long-delayers are more successful in later life (e.g., Shoda, Mischel, & Peake, 1990). Here we provide evidence that, in addition to self-control, children's wait-times are modulated by an implicit, rational decision-making process that considers environmental reliability. We tested children (M=4;6, N=28) using a classic paradigm-the marshmallow task (Mischel, 1974)-in an environment demonstrated to be either unreliable or reliable. Children in the reliable condition waited significantly longer than those in the unreliable condition (p<0.0005), suggesting that children's wait-times reflected reasoned beliefs about whether waiting would ultimately pay off. Thus, wait-times on sustained delay-of-gratification tasks (e.g., the marshmallow task) may not only reflect differences in self-control abilities, but also beliefs about the stability of the world. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Learning stochastic reward distributions in a speeded pointing task.

    PubMed

    Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C

    2008-04-23

    Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.

  9. Incorporating Target Priorities in the Sensor Tasking Reward Function

    NASA Astrophysics Data System (ADS)

    Gehly, S.; Bennett, J.

    2016-09-01

    Orbital debris tracking poses many challenges, most fundamentally the need to track a large number of objects from a limited number of sensors. The use of information theoretic sensor allocation provides a means to efficiently collect data on the multitarget system. An additional need of the community is the ability to specify target priorities, driven both by user needs and environmental factors such as collision warnings. This research develops a method to incorporate target priorities in the sensor tasking reward function, allowing for several applications in different tasking modes such as catalog maintenance, calibration, and collision monitoring. A set of numerical studies is included to demonstrate the functionality of the method.

  10. Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial.

    PubMed

    Lasselin, Julie; Treadway, Michael T; Lacourt, Tamara E; Soop, Anne; Olsson, Mats J; Karshikoff, Bianka; Paues-Göranson, Sofie; Axelsson, John; Dantzer, Robert; Lekander, Mats

    2017-03-01

    Inflammation-induced sickness is associated with a large set of behavioral alterations; however, its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in 21 healthy human subjects in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials vs low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials; however, this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness. Thus, despite its association with energy-saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile.

  11. Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial

    PubMed Central

    Lasselin, Julie; Treadway, Michael T; Lacourt, Tamara E; Soop, Anne; Olsson, Mats J; Karshikoff, Bianka; Paues-Göranson, Sofie; Axelsson, John; Dantzer, Robert; Lekander, Mats

    2017-01-01

    Inflammation-induced sickness is associated with a large set of behavioral alterations; however, its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in 21 healthy human subjects in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials vs low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials; however, this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness. Thus, despite its association with energy-saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile. PMID:27620550

  12. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    PubMed

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-21

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2 h in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Relationships between Reward Sensitivity, Risk-Taking and Family History of Alcoholism during an Interactive Competitive fMRI Task

    PubMed Central

    Yarosh, Haley L.; Hyatt, Christopher J.; Meda, Shashwath A.; Jiantonio-Kelly, Rachel; Potenza, Marc N.; Assaf, Michal; D.Pearlson, Godfrey

    2014-01-01

    Background Individuals with a positive family history for alcoholism (FHP) have shown differences from family-history-negative (FHN) individuals in the neural correlates of reward processing. FHP, compared to FHN individuals, demonstrate relatively diminished ventral striatal activation during anticipation of monetary rewards, and the degree of ventral striatal activation shows an inverse correlation with specific impulsivity measures in alcohol-dependent individuals. Rewards in socially interactive contexts relate importantly to addictive propensities, yet have not been examined with respect to how their neural underpinnings relate to impulsivity-related measures. Here we describe impulsivity measures in FHN and FHP individuals as they relate to a socially interactive functional magnetic resonance imaging (fMRI) task. Methods Forty FHP and 29 FHN subjects without histories of Axis-I disorders completed a socially interactive Domino task during functional magnetic resonance imaging and completed self-report and behavioral impulsivity-related assessments. Results FHP compared to FHN individuals showed higher scores (p = .004) on one impulsivity-related factor relating to both compulsivity (Padua Inventory) and reward/punishment sensitivity (Sensitivity to Punishment/Sensitivity to Reward Questionnaire). Multiple regression analysis within a reward-related network revealed a correlation between risk-taking (involving another impulsivity-related factor, the Balloon Analog Risk Task (BART)) and right ventral striatum activation under reward >punishment contrast (p<0.05 FWE corrected) in the social task. Conclusions Behavioral risk-taking scores may be more closely associated with neural correlates of reward responsiveness in socially interactive contexts than are FH status or impulsivity-related self-report measures. These findings suggest that risk-taking assessments be examined further in socially interactive settings relevant to addictive behaviors. PMID

  14. Effects of reward and punishment on task performance, mood and autonomic nervous function, and the interaction with personality.

    PubMed

    Sakuragi, Sokichi; Sugiyama, Yoshiki

    2009-06-01

    The effects of reward and punishment are different, and there are individual differences in sensitivity to reward and punishment. The purpose of this study was to investigate the effects of reward and punishment on task performance, mood, and autonomic nervous function, along with the interaction with personality. Twenty-one healthy female subjects volunteered for the experiment. The task performance was evaluated by required time and total errors while performing a Wisconsin Card Sorting Test. We assessed their personalities using the Minnesota Multiphasic Personality Inventory (MMPI) questionnaire, and mood states by a profile of mood states. Autonomic nervous function was estimated by a spectral analysis of heart rate variability, baroreflex sensitivity, and blood pressure. Repeated measures analysis of variance (ANOVA) revealed significant interaction of condition x time course on mood and autonomic nervous activity, which would indicate a less stressed state under the rewarding condition, but revealed no significant interaction of condition x time course on the task performance. The interactions with personality were further analyzed by repeated measures ANOVA applying the clinical scales of MMPI as independent variables, and significant interactions of condition x time course x Pt (psychasthenia) on task performance, mood, and blood pressure, were revealed. That is, the high Pt group, whose members tend to be sensitive and prone to worry, showed gradual improvement of task performance under the punishing situation with slight increase in systolic blood pressure, while showed no improvement under the rewarding situation with fatigue sense attenuation. In contrast, the low Pt group, whose members tend to be adaptive and self-confident, showed gradual improvement under the rewarding situation. Therefore, we should carefully choose the strategy of reward or punishment, considering the interaction with personality as well as the context in which it is given.

  15. Chronic Motivational State Interacts with Task Reward Structure in Dynamic Decision-Making

    PubMed Central

    Cooper, Jessica A.; Worthy, Darrell A.; Maddox, W. Todd

    2015-01-01

    Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual’s chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. PMID:26520256

  16. Chronic motivational state interacts with task reward structure in dynamic decision-making.

    PubMed

    Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd

    2015-12-01

    Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Childhood ADHD and Delayed Reinforcement: A Direct Comparison of Performance on Hypothetical and Real-Time Delay Tasks.

    PubMed

    Yu, Xue; Sonuga-Barke, Edmund

    2016-07-28

    Individuals with ADHD have been shown to prefer smaller sooner over larger later rewards. This has been explained in terms of abnormally steeper discounting of the value of delayed reinforcers. Evidence for this comes from different experimental paradigms. In some, participants experience delay in the laboratory (real-time delay tasks; R-TD), in others they imagine the delay to reinforcers (hypothetical delay tasks; HD). We directly contrasted the performance of 7- to 12-year-old children with ADHD (n = 23) and matched controls (n = 23) on R-TD and HD tasks with monetary rewards. Children with ADHD displayed steeper temporal discounting on the R-TD, but not the HD tasks. These findings suggest that the experience of waiting prior to the delivery of rewards is an important determinant of heightened temporal discounting in ADHD-a finding consistent with models that emphasize the aversive nature of delay for children. © The Author(s) 2016.

  18. Myopia for the future or hypersensitivity to reward? Age-related changes in decision making on the Iowa Gambling Task.

    PubMed

    Bauer, A S; Timpe, J; Edmonds, E C; Bechara, A; Tranel, D; Denburg, N L

    2013-02-01

    It has been shown that older adults perform less well than younger adults on the Iowa Gambling Task (IGT), a real-world type decision-making task that factors together reward, punishment, and uncertainty. To explore the reasons behind this age-related decrement, we administered to an adult life span sample of 265 healthy participants (Mdn age = 62.00 +/- 16.17 years; range [23-88]) 2 versions of the IGT, which have different contingencies for successful performance: A'B'C'D' requires choosing lower immediate reward (paired with lower delayed punishment); E'F'G'H' requires choosing higher immediate punishment (paired with higher delayed reward). There was a significant negative correlation between age and performance on the A'B'C'D' version of the IGT (r = -.16, p = .01), while there was essentially no correlation between age and performance on the E'F'G'H' version (r = -.07, p = .24). In addition, the rate of impaired performance in older participants was significantly higher for the A'B'C'D' version (23%) compared with the E'F'G'H' version (13%). A parsimonious account of these findings is an age-related increase in hypersensitivity to reward, whereby the decisions of older adults are disproportionately influenced by prospects of receiving reward, irrespective of the presence or degree of punishment. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. When unconscious rewards boost cognitive task performance inefficiently: the role of consciousness in integrating value and attainability information

    PubMed Central

    Zedelius, Claire M.; Veling, Harm; Aarts, Henk

    2012-01-01

    Research has shown that high vs. low value rewards improve cognitive task performance independent of whether they are perceived consciously or unconsciously. However, efficient performance in response to high value rewards also depends on whether or not rewards are attainable. This raises the question of whether unconscious reward processing enables people to take into account such attainability information. Building on a theoretical framework according to which conscious reward processing is required to enable higher level cognitive processing, the present research tested the hypothesis that conscious but not unconscious reward processing enables integration of reward value with attainability information. In two behavioral experiments, participants were exposed to mask high and low value coins serving as rewards on a working memory (WM) task. The likelihood for conscious processing was manipulated by presenting the coins relatively briefly (17 ms) or long and clearly visible (300 ms). Crucially, rewards were expected to be attainable or unattainable. Requirements to integrate reward value with attainability information varied across experiments. Results showed that when integration of value and attainability was required (Experiment 1), long reward presentation led to efficient performance, i.e., selectively improved performance for high value attainable rewards. In contrast, in the short presentation condition, performance was increased for high value rewards even when these were unattainable. This difference between the effects of long and short presentation time disappeared when integration of value and attainability information was not required (Experiment 2). Together these findings suggest that unconsciously processed reward information is not integrated with attainability expectancies, causing inefficient effort investment. These findings are discussed in terms of a unique role of consciousness in efficient allocation of effort to cognitive control

  20. Performance tasks for operator-skills research.

    DOT National Transportation Integrated Search

    1966-06-01

    The selection, development, and operation of several tasks for use in skilled-operator-performance research are described. The tasks are intended, collectively, to sample a broad spectrum of abilities required by complex operator systems; individuall...

  1. Incremental effects of reward on creativity.

    PubMed

    Eisenberger, R; Rhoades, L

    2001-10-01

    The authors examined 2 ways reward might increase creativity. First, reward contingent on creativity might increase extrinsic motivation. Studies 1 and 2 found that repeatedly giving preadolescent students reward for creative performance in 1 task increased their creativity in subsequent tasks. Study 3 reported that reward promised for creativity increased college students' creative task performance. Second, expected reward for high performance might increase creativity by enhancing perceived self-determination and, therefore, intrinsic task interest. Study 4 found that employees' intrinsic job interest mediated a positive relationship between expected reward for high performance and creative suggestions offered at work. Study 5 found that employees' perceived self-determination mediated a positive relationship between expected reward for high performance and the creativity of anonymous suggestions for helping the organization.

  2. Neural correlates of RDoC reward constructs in adolescents with diverse psychiatric symptoms: A Reward Flanker Task pilot study.

    PubMed

    Bradley, Kailyn A L; Case, Julia A C; Freed, Rachel D; Stern, Emily R; Gabbay, Vilma

    2017-07-01

    There has been growing interest under the Research Domain Criteria initiative to investigate behavioral constructs and their underlying neural circuitry. Abnormalities in reward processes are salient across psychiatric conditions and may precede future psychopathology in youth. However, the neural circuitry underlying such deficits has not been well defined. Therefore, in this pilot, we studied youth with diverse psychiatric symptoms and examined the neural underpinnings of reward anticipation, attainment, and positive prediction error (PPE, unexpected reward gain). Clinically, we focused on anhedonia, known to reflect deficits in reward function. Twenty-two psychotropic medication-free youth, 16 with psychiatric symptoms, exhibiting a full range of anhedonia, were scanned during the Reward Flanker Task. Anhedonia severity was quantified using the Snaith-Hamilton Pleasure Scale. Functional magnetic resonance imaging analyses were false discovery rate corrected for multiple comparisons. Anticipation activated a broad network, including the medial frontal cortex and ventral striatum, while attainment activated memory and emotion-related regions such as the hippocampus and parahippocampal gyrus, but not the ventral striatum. PPE activated a right-dominant fronto-temporo-parietal network. Anhedonia was only correlated with activation of the right angular gyrus during anticipation and the left precuneus during PPE at an uncorrected threshold. Findings are preliminary due to the small sample size. This pilot characterized the neural circuitry underlying different aspects of reward processing in youth with diverse psychiatric symptoms. These results highlight the complexity of the neural circuitry underlying reward anticipation, attainment, and PPE. Furthermore, this study underscores the importance of RDoC research in youth. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Framing Reinforcement Learning from Human Reward: Reward Positivity, Temporal Discounting, Episodicity, and Performance

    DTIC Science & Technology

    2014-09-29

    Framing Reinforcement Learning from Human Reward: Reward Positivity, Temporal Discounting, Episodicity , and Performance W. Bradley Knox...positive a trainer’s reward values are; temporal discounting, the extent to which future reward is discounted in value; episodicity , whether task...learning occurs in discrete learning episodes instead of one continuing session; and task performance, the agent’s performance on the task the trainer

  4. Measuring and modeling the interaction among reward size, delay to reward, and satiation level on motivation in monkeys.

    PubMed

    Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J

    2009-01-01

    Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject.

  5. The Brain's Reward Response Occurs Even Without Actual Reward!

    PubMed

    Fielding, A; Fu, Y; Franz, E A

    2018-06-01

    What if the brain's response to reward occurs even when there is no reward? Wouldn't that be a further concern for people prone to problem gambling and other forms of addiction, like those related to eating? Electroencephalography was employed to investigate this possibility using probabilistic feedback manipulations and measures of known event-related potentials (ERPs) related to reward processing. We tested the hypothesis-that reward-based ERPs would occur even in the absence of a tangible reward and when manipulations on expectation are implicit. The well-known P300 response potential was a key focus, and was assessed in non-gambling volunteer undergraduates on a task involving experimentally-manipulated probabilities of positive or negative feedback comprising three trial types-80, 50, or 20% positive feedback. A feedback stimulus (F1) followed a guess response between two possible outcomes (implicit win/loss), and then a second feedback stimulus (F2) was presented to confirm an alleged 'win' or 'loss' (explicit win/loss). Results revealed that amplitude of the P300 in F1-locked data (implicit manipulation) was larger (more positive) on average for feedback outcomes that were manipulated to be less likely than expected. The effect is pronounced after increased time on task (later trials), even though the majority of participants were not explicitly aware of our probability manipulations. For the explicit effects in F2-locked data, no meaningful or significant effects were observed. These findings point to the existence of proposed success-response mechanisms that operate not only explicitly but also with implicit manipulations that do not involve any direct indication of a win or loss, and are not associated with tangible rewards. Thus, there seems to be a non-explicit form of perception (we call 'implicit') associated with an internal experience of wins/losses (in the absence of actual rewards or losses) that can be measured in associated brain processes. The

  6. Decision making in healthy participants on the Iowa Gambling Task: new insights from an operant approach.

    PubMed

    Bull, Peter N; Tippett, Lynette J; Addis, Donna Rose

    2015-01-01

    The Iowa Gambling Task (IGT) has contributed greatly to the study of affective decision making. However, researchers have observed high inter-study and inter-individual variability in IGT performance in healthy participants, and many are classified as impaired using standard criteria. Additionally, while decision-making deficits are often attributed to atypical sensitivity to reward and/or punishment, the IGT lacks an integrated sensitivity measure. Adopting an operant perspective, two experiments were conducted to explore these issues. In Experiment 1, 50 healthy participants completed a 200-trial version of the IGT which otherwise closely emulated Bechara et al.'s (1999) original computer task. Group data for Trials 1-100 closely replicated Bechara et al.'s original findings of high net scores and preferences for advantageous decks, suggesting that implementations that depart significantly from Bechara's standard IGT contribute to inter-study variability. During Trials 101-200, mean net scores improved significantly and the percentage of participants meeting the "impaired" criterion was halved. An operant-style stability criterion applied to individual data revealed this was likely related to individual differences in learning rate. Experiment 2 used a novel operant card task-the Auckland Card Task (ACT)-to derive quantitative estimates of sensitivity using the generalized matching law. Relative to individuals who mastered the IGT, persistent poor performers on the IGT exhibited significantly lower sensitivity to magnitudes (but not frequencies) of rewards and punishers on the ACT. Overall, our findings demonstrate the utility of operant-style analysis of IGT data and the potential of applying operant concurrent-schedule procedures to the study of human decision making.

  7. Paradoxical Decrease in Striatal Activation on an fMRI Reward Task Following Treatment in Youth with Co-morbid Cannabis Dependence/Major Depression.

    PubMed

    Cornelius, Jack R; Aizenstein, Howard J; Chung, Tammy A; Douaihy, Antoine; Hayes, Jeanine; Daley, Dennis; Salloum, Ihsan M

    Reward behavior, including reward behavior involving drugs, has been shown to be mediated by the ventral striatum and related structures of the reward system. The aim of this study was to assess reward-related activity as shown by fMRI before and after treatment among youth with comorbid cannabis dependence and major depression. We hypothesized that the reward task (Delgado et al., 2003) would elicit activation in the reward system, and that the level of activation in response to reward would increase from the beginning to the end of the 12-week treatment study as levels of depressive symptoms and cannabis use decreased. Six subjects were recruited from a larger treatment study in which all received Cognitive Behavioral Therapy/Motivational Enhancement Therapy (CBT/MET), and also were randomized to receive either fluoxetine or placebo. Each of the six subjects completed an fMRI card- guessing/reward task both before and after the 12-week treatment study. As hypothesized, the expected activation was noted for the reward task in the insula, prefrontal, and striatal areas, both before and after treatment. However, the participants showed lower reward-related activation after treatment relative to pre-treatment, which is opposite of what would be expected in depressed subjects who did not demonstrate a comorbid substance use disorder. These paradoxical findings suggest that the expected increase in activity for reward associated with treatment for depression was overshadowed by a decrease in reward-related activation associated with treatment of pathological cannabis use in these comorbid youth. These findings emphasize the importance of comorbid disorders in fMRI studies.

  8. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation, and reward delivery.

    PubMed

    Bjork, James M; Smith, Ashley R; Chen, Gang; Hommer, Daniel W

    2012-09-01

    Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: (1) cues to respond for monetary rewards, (2) post-response anticipation of rewards, or (3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction.

  9. Abstinent adult daily smokers show reduced anticipatory but elevated saccade-related brain responses during a rewarded antisaccade task.

    PubMed

    Geier, Charles F; Sweitzer, Maggie M; Denlinger, Rachel; Sparacino, Gina; Donny, Eric C

    2014-08-30

    Chronic smoking may result in reduced sensitivity to non-drug rewards (e.g., money), a phenomenon particularly salient during abstinence. During a quit attempt, this effect may contribute to biased decision-making (smoking>alternative reinforcers) and relapse. Although relevant for quitting, characterization of reduced reward function in abstinent smokers remains limited. Moreover, how attenuated reward function affects other brain systems supporting decision-making has not been established. Here, we use a rewarded antisaccade (rAS) task to characterize non-drug reward processing and its influence on inhibitory control, key elements underlying decision-making, in abstinent smokers vs. non-smokers. Abstinent (12-hours) adult daily smokers (N=23) and non-smokers (N=11) underwent fMRI while performing the rAS. Behavioral performances improved on reward vs. neutral trials. Smokers showed attenuated activation in ventral striatum during the reward cue and in superior precentral sulcus and posterior parietal cortex during response preparation, but greater responses during the saccade response in posterior cingulate and parietal cortices. Smokers' attenuated anticipatory responses suggest reduced motivation from monetary reward, while heightened activation during the saccade response suggests that additional circuitry may be engaged later to enhance inhibitory task performance. Overall, this preliminary study highlights group differences in decision-making components and the utility of the rAS to characterize these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Beyond Rewards

    ERIC Educational Resources Information Center

    Hall, Philip S.

    2009-01-01

    Using rewards to impact students' behavior has long been common practice. However, using reward systems to enhance student learning conveniently masks the larger and admittedly more difficult task of finding and implementing the structure and techniques that children with special needs require to learn. More important, rewarding the child for good…

  11. Measuring and Modeling the Interaction Among Reward Size, Delay to Reward, and Satiation Level on Motivation in Monkeys

    PubMed Central

    Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J.

    2009-01-01

    Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject. PMID:18987119

  12. Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    1998-10-01

    Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.

  13. Differential reward coding in the subdivisions of the primate caudate during an oculomotor task.

    PubMed

    Nakamura, Kae; Santos, Gustavo S; Matsuzaki, Ryuichi; Nakahara, Hiroyuki

    2012-11-07

    The basal ganglia play a pivotal role in reward-oriented behavior. The striatum, an input channel of the basal ganglia, is composed of subdivisions that are topographically connected with different cortical and subcortical areas. To test whether reward information is differentially processed in the different parts of the striatum, we compared reward-related neuronal activity along the dorsolateral-ventromedial axis in the caudate nucleus of monkeys performing an asymmetrically rewarded oculomotor task. In a given block, a target in one position was associated with a large reward, whereas the other target was associated with a small reward. The target position-reward value contingency was switched between blocks. We found the following: (1) activity that reflected the block-wise reward contingency emerged before the appearance of a visual target, and it was more prevalent in the dorsal, rather than central and ventral, caudate; (2) activity that was positively related to the reward size of the current trial was evident, especially after reward delivery, and it was more prevalent in the ventral and central, rather than dorsal, caudate; and (3) activity that was modulated by the memory of the outcomes of the previous trials was evident in the dorsal and central caudate. This multiple reward information, together with the target-direction information, was represented primarily by individual caudate neurons, and the different reward information was represented in caudate subpopulations with distinct electrophysiological properties, e.g., baseline firing and spike width. These results suggest parallel processing of different reward information by the basal ganglia subdivisions defined by extrinsic connections and intrinsic properties.

  14. Cognitive strategies regulate fictive, but not reward prediction error signals in a sequential investment task.

    PubMed

    Gu, Xiaosi; Kirk, Ulrich; Lohrenz, Terry M; Montague, P Read

    2014-08-01

    Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes. Copyright © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation and reward delivery

    PubMed Central

    Bjork, James M.; Smith, Ashley R.; Chen, Gang; Hommer, Daniel W.

    2011-01-01

    Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: 1) cues to respond for monetary rewards, 2) post-response anticipation of rewards, or 3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction. PMID:22281932

  16. High temporal discounters overvalue immediate rewards rather than undervalue future rewards: an event-related brain potential study.

    PubMed

    Cherniawsky, Avital S; Holroyd, Clay B

    2013-03-01

    Impulsivity is characterized in part by heightened sensitivity to immediate relative to future rewards. Although previous research has suggested that "high discounters" in intertemporal choice tasks tend to prefer immediate over future rewards because they devalue the latter, it remains possible that they instead overvalue immediate rewards. To investigate this question, we recorded the reward positivity, a component of the event-related brain potential (ERP) associated with reward processing, with participants engaged in a task in which they received both immediate and future rewards and nonrewards. The participants also completed a temporal discounting task without ERP recording. We found that immediate but not future rewards elicited the reward positivity. High discounters also produced larger reward positivities to immediate rewards than did low discounters, indicating that high discounters relatively overvalued immediate rewards. These findings suggest that high discounters may be more motivated than low discounters to work for monetary rewards, irrespective of the time of arrival of the incentives.

  17. When performance and risk taking are related: Working for rewards is related to risk taking when the value of rewards is presented briefly.

    PubMed

    Veling, Harm; Bijleveld, Erik

    2015-12-01

    Valuable monetary rewards can boost human performance on various effortful tasks even when the value of the rewards is presented too briefly to allow for strategic decision making. However, the mechanism by which briefly-presented reward information influences performance has remained unclear. One possibility is that performance after briefly-presented reward information is primarily boosted via activation of the dopamine reward system, whereas performance after very visible reward information is driven more by strategic processes. To examine this hypothesis, we first presented participants with a task in which they could earn rewards of relatively low (1 cent) or high (10 cents) value, and the value information was presented either briefly (17 ms) or for an extended duration (300 ms). Furthermore, responsiveness of the dopamine system was indirectly estimated with a measure of risk taking, the Balloon Analogue Risk Task (BART). Results showed that performance after high- compared to low-value rewards was indeed related to the BART scores only when reward information was presented briefly. These results are suggestive of the possibility that brief presentation of reward information boosts performance directly via activating the dopamine system, whereas extended presentation of reward information leads to more strategic reward-driven behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  19. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  20. Functional requirements for reward-modulated spike-timing-dependent plasticity.

    PubMed

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2010-10-06

    Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

  1. Condition interference in rats performing a choice task with switched variable- and fixed-reward conditions.

    PubMed

    Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu

    2015-01-01

    Because humans and animals encounter various situations, the ability to adaptively decide upon responses to any situation is essential. To date, however, decision processes and the underlying neural substrates have been investigated under specific conditions; thus, little is known about how various conditions influence one another in these processes. In this study, we designed a binary choice task with variable- and fixed-reward conditions and investigated neural activities of the prelimbic cortex and dorsomedial striatum in rats. Variable- and fixed-reward conditions induced flexible and inflexible behaviors, respectively; one of the two conditions was randomly assigned in each trial for testing the possibility of condition interference. Rats were successfully conditioned such that they could find the better reward holes of variable-reward-condition and fixed-reward-condition trials. A learning interference model, which updated expected rewards (i.e., values) used in variable-reward-condition trials on the basis of combined experiences of both conditions, better fit choice behaviors than conventional models which updated values in each condition independently. Thus, although rats distinguished the trial condition, they updated values in a condition-interference manner. Our electrophysiological study suggests that this interfering value-updating is mediated by the prelimbic cortex and dorsomedial striatum. First, some prelimbic cortical and striatal neurons represented the action-reward associations irrespective of trial conditions. Second, the striatal neurons kept tracking the values of variable-reward condition even in fixed-reward-condition trials, such that values were possibly interferingly updated even in the fixed-reward condition.

  2. In the queue for total joint replacement: patients' perspectives on waiting times. Ontario Hip and Knee Replacement Project Team.

    PubMed

    Llewellyn-Thomas, H A; Arshinoff, R; Bell, M; Williams, J I; Naylor, C D

    1998-02-01

    We assessed patients on the waiting lists of a purposive sample of orthopaedic surgeons in Ontario, Canada, to determine patients' attitudes towards time waiting for hip or knee replacement. We focused on 148 patients who did not have a definite operative date, obtaining complete information on 124 (84%). Symptom severity was assessed with the Western Ontario/McMaster Osteoarthritis Index and a disease-specific standard gamble was used to elicit patients' overall utility for their arthritic state. Next, in a trade-off task, patients considered a hypothetical choice between a 1-month wait for a surgeon who could provide a 2% risk of post-operative mortality, or a 6-month wait for joint replacement with a 1% risk of post-operative mortality. Waiting times were then shifted systematically until the patient abandoned his/her initial choice, generating a conditional maximal acceptable wait time. Patients were divided in their attitudes, with 57% initially choosing a 6-month wait with a 1% mortality risk. The overall distribution of conditional maximum acceptable wait time scores ranged from 1 to 26 months, with a median of 7 months. Utility values were independently but weakly associated with patients' tolerance of waiting times (adjusted R-square = 0.059, P = 0.004). After splitting the sample along the median into subgroups with a relatively 'low' and 'high' tolerance for waiting, the subgroup with the apparently lower tolerance for waiting reported lower utility scores (z = 2.951; P = 0.004) and shorter times since their surgeon first advised them of the need for surgery (z = 3.014; P = 0.003). These results suggest that, in the establishment and monitoring of a queue management system for quality-of-life-enhancing surgery, patients' own perceptions of their overall symptomatic burden and ability to tolerate delayed relief should be considered along with information derived from clinical judgements and pre-weighted health status instruments.

  3. [Gender and age differences in waiting time on hospital waiting list.].

    PubMed

    Thornórðardóttir, Steinunn; Halldórsson, Matthías; Guðmundsson, Sigurður

    2002-09-01

    The size of waiting lists has traditionally been viewed as a fairly good measure of the quality of health care services. No statistical analysis exists in Iceland of the length of waiting times and the potential variation between groups of patients. This study was conducted within the office of the Directorate of Health in Iceland. This location was convenient since standardized information on waiting lists is collected by the office three times a year. Variations in waiting times were studied based on gender on the one hand and on age on the other. Data from the largest waiting lists, those amounting to 400 or more patients, were included in the study. The most frequently awaited operations were identified and the groups of people waiting for them analyzed. The departments and prospective operations included in the study were: Dept. of General Surgery at the University Hospital (UH) (laparoscopic gastro-oesophageal antireflux operation), Opthalmology at UH (phakoemulsification with implantation of artificial lens in posterior chamber), Orthopedic Surgery at UH (primary total prosthetic replacement of hip joint using sement), The Rehabilitation Center at Reykjalundur (rehabilitation, not specified), Ear, Nose and Throat (ENT) at UH (tonsillectomy), and Reconstructive Surgery at UH (reduction mammoplasty with transposition of areola). The lists were sorted by gender and age, with the latter consisting of two categories, older and younger patients. Every attempt was made as to ensure similar sample sizes for both age groups within each department. Finally, the median waiting time was determined and a Mann-Whitney test conducted in order to test for significance. The median waiting time for males at the General Surgery Dept. was 73 weeks as compared to 60 weeks for females. This was the only department where the median waiting time was significantly longer for males than for females (p<0.05). At three of the departments the older group had a longer median waiting time

  4. Neural signature of reward-modulated unconscious inhibitory control.

    PubMed

    Diao, Liuting; Qi, Senqing; Xu, Mengsi; Li, Zhiai; Ding, Cody; Chen, Antao; Zheng, Yan; Yang, Dong

    2016-09-01

    Consciously initiated cognitive control is generally determined by motivational incentives (e.g., monetary reward). Recent studies have revealed that human cognitive control processes can nevertheless operate without awareness. However, whether monetary reward can impinge on unconscious cognitive control remains unclear. To clarify this issue, a task consisting of several runs was designed to combine a modified version of the reward-priming paradigm with an unconscious version of the Go/No-Go task. At the beginning of each run, participants were exposed to a high- or low-value coin, followed by the modified Go/No-Go task. Participants could earn the coin only if they responded correctly to each trial of the run. Event-related potential (ERP) results indicated that high-value rewards (vs. low-value rewards) induced a greater centro-parietal P3 component associated with conscious and unconscious inhibitory control. Moreover, the P3 amplitude correlated positively with the magnitude of reaction time slowing reflecting the intensity of activation of unconscious inhibitory control in the brain. These findings suggest that high-value reward may facilitate human higher-order inhibitory processes that are independent of conscious awareness, which provides insights into the brain processes that underpin motivational modulation of cognitive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mouse psychosocial stress reduces motivation and cognitive function in operant reward tests: A model for reward pathology with effects of agomelatine.

    PubMed

    Bergamini, Giorgio; Cathomas, Flurin; Auer, Sandra; Sigrist, Hannes; Seifritz, Erich; Patterson, Michael; Gabriel, Cecilia; Pryce, Christopher R

    2016-09-01

    A major domain of depression is decreased motivation for reward. Translational automated tests can be applied in humans and animals to study operant reward behaviour, aetio-pathophysiology underlying deficits therein, and effects of antidepressant treatment. Three inter-related experiments were conducted to investigate depression-relevant effects of chronic psychosocial stress on operant behaviour in mice. (A) Non-manipulated mice were trained on a complex reversal learning (CRL) test with sucrose reinforcement; relative to vehicle (VEH), acute antidepressant agomelatine (AGO, 25mg/kg p.o.) increased reversals. (B) Mice underwent chronic social defeat (CSD) or control handling (CON) on days 1-15, and were administered AGO or VEH on days 10-22. In a progressive ratio schedule motivation test for sucrose on day 15, CSD mice made fewer responses; AGO tended to reverse this effect. In a CRL test on day 22, CSD mice completed fewer reversals; AGO tended to increase reversals in CSD mice associated with an adaptive increase in perseveration. (C) Mice with continuous operant access to water and saccharin solution in the home cage were exposed to CSD or CON; CSD mice made fewer responses for saccharin and water and drank less saccharin in the active period, and drank more water in the inactive period. In a separate CSD cohort, repeated AGO was without effect on these home cage operant and consummatory changes. Overall, this study demonstrates that psychosocial stress in mice leads to depression-relevant decreases in motivation and cognition in operant reward tests; partial reversal of these deficits by AGO provides evidence for predictive validity. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  6. A test of the reward-value hypothesis.

    PubMed

    Smith, Alexandra E; Dalecki, Stefan J; Crystal, Jonathon D

    2017-03-01

    Rats retain source memory (memory for the origin of information) over a retention interval of at least 1 week, whereas their spatial working memory (radial maze locations) decays within approximately 1 day. We have argued that different forgetting functions dissociate memory systems. However, the two tasks, in our previous work, used different reward values. The source memory task used multiple pellets of a preferred food flavor (chocolate), whereas the spatial working memory task provided access to a single pellet of standard chow-flavored food at each location. Thus, according to the reward-value hypothesis, enhanced performance in the source memory task stems from enhanced encoding/memory of a preferred reward. We tested the reward-value hypothesis by using a standard 8-arm radial maze task to compare spatial working memory accuracy of rats rewarded with either multiple chocolate or chow pellets at each location using a between-subjects design. The reward-value hypothesis predicts superior accuracy for high-valued rewards. We documented equivalent spatial memory accuracy for high- and low-value rewards. Importantly, a 24-h retention interval produced equivalent spatial working memory accuracy for both flavors. These data are inconsistent with the reward-value hypothesis and suggest that reward value does not explain our earlier findings that source memory survives unusually long retention intervals.

  7. Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations

    PubMed Central

    Epstein, Jeffery N.; Langberg, Joshua M.; Rosen, Paul J.; Graham, Amanda; Narad, Megan E.; Antonini, Tanya N.; Brinkman, William B.; Froehlich, Tanya; Simon, John O.; Altaye, Mekibib

    2012-01-01

    Objective The purpose of the research study was to examine the manifestation of variability in reaction times (RT) in children with Attention Deficit Hyperactivity Disorder (ADHD) and to examine whether RT variability presented differently across a variety of neuropsychological tasks, was present across the two most common ADHD subtypes, and whether it was affected by reward and event rate (ER) manipulations. Method Children with ADHD-Combined Type (n=51), ADHD-Predominantly Inattentive Type (n=53) and 47 controls completed five neuropsychological tasks (Choice Discrimination Task, Child Attentional Network Task, Go/No-Go task, Stop Signal Task, and N-back task), each allowing trial-by-trial assessment of reaction times. Multiple indicators of RT variability including RT standard deviation, coefficient of variation and ex-Gaussian tau were used. Results Children with ADHD demonstrated greater RT variability than controls across all five tasks as measured by the ex-Gaussian indicator tau. There were minimal differences in RT variability across the ADHD subtypes. Children with ADHD also had poorer task accuracy than controls across all tasks except the Choice Discrimination task. Although ER and reward manipulations did affect children’s RT variability and task accuracy, these manipulations largely did not differentially affect children with ADHD compared to controls. RT variability and task accuracy were highly correlated across tasks. Removing variance attributable to RT variability from task accuracy did not appreciably affect between-group differences in task accuracy. Conclusions High RT variability is a ubiquitous and robust phenomenon in children with ADHD. PMID:21463041

  8. Pavlovian reward learning underlies value driven attentional capture.

    PubMed

    Bucker, Berno; Theeuwes, Jan

    2017-02-01

    Recent evidence shows that distractors that signal high compared to low reward availability elicit stronger attentional capture, even when this is detrimental for task-performance. This suggests that simply correlating stimuli with reward administration, rather than their instrumental relationship with obtaining reward, produces value-driven attentional capture. However, in previous studies, reward delivery was never response independent, as only correct responses were rewarded, nor was it completely task-irrelevant, as the distractor signaled the magnitude of reward that could be earned on that trial. In two experiments, we ensured that associative reward learning was completely response independent by letting participants perform a task at fixation, while high and low rewards were automatically administered following the presentation of task-irrelevant colored stimuli in the periphery (Experiment 1) or at fixation (Experiment 2). In a following non-reward test phase, using the additional singleton paradigm, the previously reward signaling stimuli were presented as distractors to assess truly task-irrelevant value driven attentional capture. The results showed that high compared to low reward-value associated distractors impaired performance, and thus captured attention more strongly. This suggests that genuine Pavlovian conditioning of stimulus-reward contingencies is sufficient to obtain value-driven attentional capture. Furthermore, value-driven attentional capture can occur following associative reward learning of temporally and spatially task-irrelevant distractors that signal the magnitude of available reward (Experiment 1), and is independent of training spatial shifts of attention towards the reward signaling stimuli (Experiment 2). This confirms and strengthens the idea that Pavlovian reward learning underlies value driven attentional capture.

  9. Developmental changes in autonomic responses are associated with future reward/punishment expectations: A study of sympathetic skin responses in the Markov decision task.

    PubMed

    Hosaka, Hiromi; Aoyagi, Kakuro; Kaga, Yoshimi; Kanemura, Hideaki; Sugita, Kanji; Aihara, Masao

    2017-08-01

    Autonomic nervous system activity is recognized as a major component of emotional responses. Future reward/punishment expectations depend upon the process of decision making in the frontal lobe, which is considered to play an important role in executive function. The aim of this study was to investigate the relationship between autonomic responses and decision making during reinforcement tasks using sympathetic skin responses (SSR). Nine adult and 9 juvenile (mean age, 10.2years) volunteers were enrolled in this study. SSRs were measured during the Markov decision task (MDT), which is a reinforcement task. In this task, subjects must endure a small immediate loss to ultimately get a large reward. The subjects had to undergo three sets of tests and their scores in these tests were assessed and evaluated. All adults showed gradually increasing scores for the MDT from the first to third set. As the trial progressed from the first to second set in adults, SSR appearance ratios remarkably increased for both punishment and reward expectations. In comparison with adults, children showed decreasing scores from the first to second set. There were no significant inter-target differences in the SSR appearance ratio in the first and second set in children. In the third set, the SSR appearance ratio for reward expectations was higher than that in the neutral condition. In reinforcement tasks, such as MDT, autonomic responses play an important role in decision making. We assume that SSRs are elicited during efficient decision making tasks associated with future reward/punishment expectations, which demonstrates the importance of autonomic function. In contrast, in children around the age of 10years, the autonomic system does not react as an organized response specific to reward/punishment expectations. This suggests the immaturity of the future reward/punishment expectations process in children. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B

  10. Reward-based Decision Making and Electrodermal Responding by Young Children with Autism Spectrum Disorders During a Gambling Task

    PubMed Central

    Faja, Susan; Murias, Michael; Beauchaine, Theodore P.; Dawson, Geraldine

    2014-01-01

    In this study, we explore reward-based decision making and electrodermal responding (EDR) among children with autism spectrum disorder (ASD) during a children’s gambling task. In addition, we examine whether individual behavioral and EDR responses predict social communication, repetitive symptoms, parent reports of executive function, and behavioral challenges. The ability to form advantageous strategies for long-term gain is of interest for children with ASDs, who exhibit both difficulty with executive function and atypical responses to reward. Twenty-one children ages 6–7 years with ASD and no intellectual disability and 21 age- and IQ-matched typically developing children participated. Both groups exhibited a similar pattern of gambling selections, but children with ASD showed less knowledge of the reward contingencies of the decks after playing. In addition, although EDR was similar between groups in anticipation of selections, children with ASD exhibited greater EDR during feedback about rewards as the task progressed. Children with ASD who exhibited the greatest increases in EDR were more likely to exhibit repetitive symptoms, particularly rituals and the need for sameness, as well as internalizing behaviors and reduced executive function in other settings. PMID:23893954

  11. Feedback-related potentials in a gambling task with randomised reward.

    PubMed

    Mushtaq, Faisal; Guillen, Pablo Puente; Wilkie, Richard M; Mon-Williams, Mark A; Schaefer, Alexandre

    2016-03-01

    Event-related potentials (ERPs) time-locked to decision outcomes are reported. Participants engaged in a gambling task (see [1] for details) in which they decided between a risky and a safe option (presented as different coloured shapes) on each trial (416 in total). Each decision was associated with (fully randomised) feedback about the reward outcome (Win/Loss) and its magnitude (varying as a function of decision response; 5-9 points for Risky decisions and 1-4 points for Safe decisions). Here, we show data demonstrating: (a) the influence of Win feedback in the preceding outcome (Outcome t-1) on activity related to the current outcome (Outcome t ); (b) difference wave analysis for outcome expectancy- separating Expected Outcomes (consecutive Loss trials subtracted from consecutive reward) from Unexpected Outcomes (subtracting Loss t-1Win t trials from Win t-1Loss t trials); (c) difference waves separating Switch and Stay responses for Outcome Expectancy; (d) the effect of magnitude induced by decisions (Risk t vs. Safe t ) on Outcome Expectancy; and finally, (e) expectations reflected by response switch direction (Risk to Safe responses vs. Safe to Risk t ) on the FRN at Outcome t .

  12. The hybrid delay task: Can capuchin monkeys (Cebus apella) sustain a delay after an initial choice to do so?

    PubMed Central

    Paglieri, Fabio; Focaroli, Valentina; Bramlett, Jessica; Tierno, Valeria; McIntyre, Joseph M.; Addessi, Elsa; Evans, Theodore A.; Beran, Michael J.

    2013-01-01

    Choosing to wait for a better outcome (delay choice) and sustaining the delay prior to that outcome (delay maintenance) are both prerequisites for successful self control in intertemporal choices. However, most existing experimental methods test these skills in isolation from each other, and no significant correlation has been observed in performance across these tasks. In this study we introduce a new paradigm, the hybrid delay task, which combines an initial delay choice with a subsequent delay maintenance stage. This allows testing how often choosing to wait is paired with the actual ability to do so. We tested 18 capuchin monkeys (Cebus apella) from two laboratories in various conditions, and we found that subjects frequently chose the delayed reward but then failed to wait for it, due to poor delay maintenance. However, performance improved with experience and different behavioral responses for error correction were evident. These findings have far reaching implications: if such a high error rate was observed also in other species (possibly including Homo sapiens), this may indicate that delay choice tasks that make use of salient, prepotent stimuli do not reliably assess generalized self control, insofar as choosing to wait does not entail always being able to do so. PMID:23274585

  13. Decision making in healthy participants on the Iowa Gambling Task: new insights from an operant approach

    PubMed Central

    Bull, Peter N.; Tippett, Lynette J.; Addis, Donna Rose

    2015-01-01

    The Iowa Gambling Task (IGT) has contributed greatly to the study of affective decision making. However, researchers have observed high inter-study and inter-individual variability in IGT performance in healthy participants, and many are classified as impaired using standard criteria. Additionally, while decision-making deficits are often attributed to atypical sensitivity to reward and/or punishment, the IGT lacks an integrated sensitivity measure. Adopting an operant perspective, two experiments were conducted to explore these issues. In Experiment 1, 50 healthy participants completed a 200-trial version of the IGT which otherwise closely emulated Bechara et al.'s (1999) original computer task. Group data for Trials 1–100 closely replicated Bechara et al.'s original findings of high net scores and preferences for advantageous decks, suggesting that implementations that depart significantly from Bechara's standard IGT contribute to inter-study variability. During Trials 101–200, mean net scores improved significantly and the percentage of participants meeting the “impaired” criterion was halved. An operant-style stability criterion applied to individual data revealed this was likely related to individual differences in learning rate. Experiment 2 used a novel operant card task—the Auckland Card Task (ACT)—to derive quantitative estimates of sensitivity using the generalized matching law. Relative to individuals who mastered the IGT, persistent poor performers on the IGT exhibited significantly lower sensitivity to magnitudes (but not frequencies) of rewards and punishers on the ACT. Overall, our findings demonstrate the utility of operant-style analysis of IGT data and the potential of applying operant concurrent-schedule procedures to the study of human decision making. PMID:25904884

  14. Reward loss and the basolateral amygdala: A function in reward comparisons.

    PubMed

    Kawasaki, Katsuyoshi; Annicchiarico, Iván; Glueck, Amanda C; Morón, Ignacio; Papini, Mauricio R

    2017-07-28

    The neural circuitry underlying behavior in reward loss situations is poorly understood. We considered two such situations: reward devaluation (from large to small rewards) and reward omission (from large rewards to no rewards). There is evidence that the central nucleus of the amygdala (CeA) plays a role in the negative emotion accompanying reward loss. However, little is known about the function of the basolateral nucleus (BLA) in reward loss. Two hypotheses of BLA function in reward loss, negative emotion and reward comparisons, were tested in an experiment involving pretraining excitotoxic BLA lesions followed by training in four tasks: consummatory successive negative contrast (cSNC), autoshaping (AS) acquisition and extinction, anticipatory negative contrast (ANC), and open field testing (OF). Cell counts in the BLA (but not in the CeA) were significantly lower in animals with lesions vs. shams. BLA lesions eliminated cSNC and ANC, and accelerated extinction of lever pressing in AS. BLA lesions had no effect on OF testing: higher activity in the periphery than in the central area. This pattern of results provides support for the hypothesis that BLA neurons are important for reward comparison. The three affected tasks (cSNC, ANC, and AS extinction) involve reward comparisons. However, ANC does not seem to involve negative emotions and it was affected, whereas OF activity is known to involve negative emotion, but it was not affected. It is hypothesized that a circuit involving the thalamus, insular cortex, and BLA is critically involved in the mechanism comparing current and expected rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pontine and Thalamic Influences on Fluid Rewards: I. Operant Responding for Sucrose and Corn Oil

    PubMed Central

    Liang, Nu-Chu; Freet, Christopher S.; Grigson, Patricia S; Norgren, Ralph

    2011-01-01

    The reward strength of orosensory sucrose and corn oil was measured using fixed and progressive ratio operant schedules. Because the orosensory effects of the stimuli were of interest, Experiment 1 compared operant responses for sucrose in sham and real feeding rats. The results demonstrated that rats would work for sucrose solutions without the accompanying postingestive effects. Furthermore, the break points for high concentrations of sucrose (1.0 M or 2.0 M) were significantly higher in sham feeding rats than in real feeding controls. Experiment 2 investigated the role of the parabrachial nucleus (PBN) and of the thalamic orosensory area (TOA) in sucrose and corn oil reward. During free access, rats with PBN lesions (PBNx) licked significantly less sucrose solution than their controls, but both groups ingested a similar volume of corn oil emulsion. When an operant was imposed, these same PBNx rats failed to respond for sucrose and continued only modestly for corn oil. In contrast, the TOA lesioned rats (TOAx) showed no impairment in responding for sucrose or corn oil during either the free access or operant sessions. Furthermore, rats with TOA lesions demonstrated significantly higher break points for sucrose than did their controls. Together, the data imply that the PBN but not the TOA is critical for the perception of, or responding to the reward value of sucrose and corn oil. PMID:21703290

  16. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators.

    PubMed

    Kirk, Ulrich; Brown, Kirk Warren; Downar, Jonathan

    2015-05-01

    Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processing-both during reward anticipation and receipt of reward-responded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Cigarette smoking modulates medication-associated deficits in a monetary reward task in patients with schizophrenia.

    PubMed

    Lernbass, Birgit; Grön, Georg; Wolf, Nadine D; Abler, Birgit

    2013-09-01

    Imaging studies of reward processing have demonstrated a mesolimbic-mesocortical dopaminergic dysfunction in schizophrenia. Such studies on reward processing in patients and also in healthy controls showed that differential activations of dopaminergic brain areas are associated with adaptive changes in response speed related to different reward values. Given this relationship, we investigated reward processing on the behavioural level in a larger sample of 49 medicated patients with a diagnosis of schizophrenia (ICD-10 F20) and 49 healthy controls. Subjects were instructed to react by button press upon two different stimuli in order to retain a 60 % chance winning a previously announced high (1$) or low (20¢) amount of money paid to participants after the experiment. Concordant with previous reports on deficits in reward processing, acceleration of reaction times in patients upon low rewards differed significantly (p < 0.05) from healthy controls in our present behavioural study. This effect was pronounced in the non-smoking subgroup of patients (n = 24). In this subgroup, we also observed a significant (p < 0.05) positive correlation with medication type (relatively high vs. low D2 receptor affinity) and with the PANSS score, the latter with a trend to significance (p = 0.08). Our study demonstrates that reaction time measures in a monetary reward task might constitute a feasible behavioural proxy for dopaminergic dysfunction and its different dimensions regarding psychopathology but also medication in patients with schizophrenia. In line with clinical observations, our findings support the notion that smoking modulates medication-associated side effects on reward processing in patients with schizophrenia.

  18. Overlapping neural systems represent cognitive effort and reward anticipation.

    PubMed

    Vassena, Eliana; Silvetti, Massimo; Boehler, Carsten N; Achten, Eric; Fias, Wim; Verguts, Tom

    2014-01-01

    Anticipating a potential benefit and how difficult it will be to obtain it are valuable skills in a constantly changing environment. In the human brain, the anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and Striatum. Naturally, potential rewards have an incentive quality, resulting in a motivational effect improving performance. Recently it has been proposed that an upcoming task requiring effort induces a similar anticipation mechanism as reward, relying on the same cortico-limbic network. However, this overlapping anticipatory activity for reward and effort has only been investigated in a perceptual task. Whether this generalizes to high-level cognitive tasks remains to be investigated. To this end, an fMRI experiment was designed to investigate anticipation of reward and effort in cognitive tasks. A mental arithmetic task was implemented, manipulating effort (difficulty), reward, and delay in reward delivery to control for temporal confounds. The goal was to test for the motivational effect induced by the expectation of bigger reward and higher effort. The results showed that the activation elicited by an upcoming difficult task overlapped with higher reward prospect in the ACC and in the striatum, thus highlighting a pivotal role of this circuit in sustaining motivated behavior.

  19. Investigating the Relationship between Customer Wait Time and Operational Availability through Simulation Modeling

    DTIC Science & Technology

    2012-12-01

    STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Customer Wait Time ( CWT ...inventory level, thereby increasing the material readiness of the operating forces. Intuitively, decreasing CWT increases operational availability (Ao...and CWT has led to arbitrary stock policies that do not account for the cost and benefit they provide. This project centers on monetizing the

  20. Paying for performance: Performance incentives increase desire for the reward object.

    PubMed

    Hur, Julia D; Nordgren, Loran F

    2016-09-01

    The current research examines how exposure to performance incentives affects one's desire for the reward object. We hypothesized that the flexible nature of performance incentives creates an attentional fixation on the reward object (e.g., money), which leads people to become more desirous of the rewards. Results from 5 laboratory experiments and 1 large-scale field study provide support for this prediction. When performance was incentivized with monetary rewards, participants reported being more desirous of money (Study 1), put in more effort to earn additional money in an ensuing task (Study 2), and were less willing to donate money to charity (Study 4). We replicated the result with nonmonetary rewards (Study 5). We also found that performance incentives increased attention to the reward object during the task, which in part explains the observed effects (Study 6). A large-scale field study replicated these findings in a real-world setting (Study 7). One laboratory experiment failed to replicate (Study 3). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.

    PubMed

    McMurray, Matthew S; Conway, Sineadh M; Roitman, Jamie D

    2017-01-01

    Animal models of decision-making rely on an animal's motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice.

  2. Towards a cognitive robotics methodology for reward-based decision-making: dynamical systems modelling of the Iowa Gambling Task

    NASA Astrophysics Data System (ADS)

    Lowe, Robert; Ziemke, Tom

    2010-09-01

    The somatic marker hypothesis (SMH) posits that the role of emotions and mental states in decision-making manifests through bodily responses to stimuli of import to the organism's welfare. The Iowa Gambling Task (IGT), proposed by Bechara and Damasio in the mid-1990s, has provided the major source of empirical validation to the role of somatic markers in the service of flexible and cost-effective decision-making in humans. In recent years the IGT has been the subject of much criticism concerning: (1) whether measures of somatic markers reveal that they are important for decision-making as opposed to behaviour preparation; (2) the underlying neural substrate posited as critical to decision-making of the type relevant to the task; and (3) aspects of the methodological approach used, particularly on the canonical version of the task. In this paper, a cognitive robotics methodology is proposed to explore a dynamical systems approach as it applies to the neural computation of reward-based learning and issues concerning embodiment. This approach is particularly relevant in light of a strongly emerging alternative hypothesis to the SMH, the reversal learning hypothesis, which links, behaviourally and neurocomputationally, a number of more or less complex reward-based decision-making tasks, including the 'A-not-B' task - already subject to dynamical systems investigations with a focus on neural activation dynamics. It is also suggested that the cognitive robotics methodology may be used to extend systematically the IGT benchmark to more naturalised, but nevertheless controlled, settings that might better explore the extent to which the SMH, and somatic states per se, impact on complex decision-making.

  3. Optogenetic activation of the central amygdala generates addiction-like preference for reward.

    PubMed

    Tom, Rebecca L; Ahuja, Aarit; Maniates, Hannah; Freeland, Charlotte M; Robinson, Mike J F

    2018-05-23

    Drug and behavioural addictions are characterized by an intense and focused pursuit of a single reward above all others. Pursuit of the addictive reward is often compulsively sought despite adverse consequences and better alternative outcomes. Here, we explored the ability of the central amygdala (CeA) to powerfully bias choice, causing specific rewards to be almost compulsively preferred. Rats were trained on an operant choice task in which they could choose to respond on either of the two levers to receive a sucrose reward, one of which was paired with optogenetic stimulation of the CeA using channelrhodopsin-2 (ChR2). Rats developed an almost exclusive preference for the laser-paired reward over the otherwise equal unpaired reward. We found that this preference for stimulation-paired reward persists even when a much larger sucrose reward is offered as an alternative (contingency management) or when this preferred reward is paired with adverse consequences such as progressively larger electric foot shock, time delays or effort requirements. We also report that when challenged with foot shock, a small proportion of these animals (≈20%) retained an exclusive laser-paired reward preference, whereas others began to seek the alternate reward when the shock reached high levels. Lastly, we confirmed that optogenetic CeA stimulation was not independently rewarding if delivered in the absence of a paired sucrose reward. These results suggest a role for the CeA in focusing motivation and desire to excessive levels, generating addiction-like behaviour that persists in the face of more rewarding alternatives and adverse consequences. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Monetary rewards influence retrieval orientations.

    PubMed

    Halsband, Teresa M; Ferdinand, Nicola K; Bridger, Emma K; Mecklinger, Axel

    2012-09-01

    Reward anticipation during learning is known to support memory formation, but its role in retrieval processes is so far unclear. Retrieval orientations, as a reflection of controlled retrieval processing, are one aspect of retrieval that might be modulated by reward. These processes can be measured using the event-related potentials (ERPs) elicited by retrieval cues from tasks with different retrieval requirements, such as via changes in the class of targeted memory information. To determine whether retrieval orientations of this kind are modulated by reward during learning, we investigated the effects of high and low reward expectancy on the ERP correlates of retrieval orientation in two separate experiments. The reward manipulation at study in Experiment 1 was associated with later memory performance, whereas in Experiment 2, reward was directly linked to accuracy in the study task. In both studies, the participants encoded mixed lists of pictures and words preceded by high- or low-reward cues. After 24 h, they performed a recognition memory exclusion task, with words as the test items. In addition to a previously reported material-specific effect of retrieval orientation, a frontally distributed, reward-associated retrieval orientation effect was found in both experiments. These findings suggest that reward motivation during learning leads to the adoption of a reward-associated retrieval orientation to support the retrieval of highly motivational information. Thus, ERP retrieval orientation effects not only reflect retrieval processes related to the sought-for materials, but also relate to the reward conditions with which items were combined during encoding.

  5. Measuring Social Motivation Using Signal Detection and Reward Responsiveness.

    PubMed

    Chevallier, Coralie; Tonge, Natasha; Safra, Lou; Kahn, David; Kohls, Gregor; Miller, Judith; Schultz, Robert T

    2016-01-01

    Recent trends in psychiatry have emphasized the need for a shift from categorical to dimensional approaches. Of critical importance to this transformation is the availability of tools to objectively quantify behaviors dimensionally. The present study focuses on social motivation, a dimension of behavior that is central to a range of psychiatric conditions but for which a particularly small number of assays currently exist. In Study 1 (N = 48), healthy adults completed a monetary reward task and a social reward task, followed by completion of the Chapman Physical and Social Anhedonia Scales. In Study 2 (N = 26), an independent sample was recruited to assess the robustness of Study 1's findings. The reward tasks were analyzed using signal detection theory to quantify how much reward cues bias participants' responses. In both Study 1 and Study 2, social anhedonia scores were negatively correlated with change in response bias in the social reward task but not in the monetary reward task. A median split on social anhedonia scores confirmed that participants with high social anhedonia showed less change in response bias in the social reward task compared to participants with low social anhedonia. This study confirms that social anhedonia selectively affects how much an individual changes their behavior based on the presence of socially rewarding cues and establishes a tool to quantify social reward responsiveness dimensionally.

  6. Social comparison modulates reward-driven attentional capture.

    PubMed

    Jiao, Jun; Du, Feng; He, Xiaosong; Zhang, Kan

    2015-10-01

    It is well established that attention can be captured by task irrelevant and non-salient objects associated with value through reward learning. However, it is unknown whether social comparison influences reward-driven attentional capture. The present study created four social contexts to examine whether different social comparisons modulate the reward-driven capture of attention. The results showed that reward-driven attentional capture varied with different social comparison conditions. Most prominently, reward-driven attentional capture is dramatically reduced in the disadvantageous social comparison context, in which an individual is informed that the other participant is earning more monetary reward for performing the same task. These findings suggest that social comparison can affect the reward-driven capture of attention.

  7. Mechanisms of impulsive choice: III. The role of reward processes

    PubMed Central

    Marshall, Andrew T.

    2015-01-01

    Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments. PMID:26506254

  8. Neural substrates of reward magnitude, probability, and risk during a wheel of fortune decision-making task.

    PubMed

    Smith, Bruce W; Mitchell, Derek G V; Hardin, Michael G; Jazbec, Sandra; Fridberg, Daniel; Blair, R James R; Ernst, Monique

    2009-01-15

    Economic decision-making involves the weighting of magnitude and probability of potential gains/losses. While previous work has examined the neural systems involved in decision-making, there is a need to understand how the parameters associated with decision-making (e.g., magnitude of expected reward, probability of expected reward and risk) modulate activation within these neural systems. In the current fMRI study, we modified the monetary wheel of fortune (WOF) task [Ernst, M., Nelson, E.E., McClure, E.B., Monk, C.S., Munson, S., Eshel, N., et al. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42(12), 1585-1597.] to examine in 25 healthy young adults the neural responses to selections of different reward magnitudes, probabilities, or risks. Selection of high, relative to low, reward magnitude increased activity in insula, amygdala, middle and posterior cingulate cortex, and basal ganglia. Selection of low-probability, as opposed to high-probability reward, increased activity in anterior cingulate cortex, as did selection of risky, relative to safe reward. In summary, decision-making that did not involve conflict, as in the magnitude contrast, recruited structures known to support the coding of reward values, and those that integrate motivational and perceptual information for behavioral responses. In contrast, decision-making under conflict, as in the probability and risk contrasts, engaged the dorsal anterior cingulate cortex whose role in conflict monitoring is well established. However, decision-making under conflict failed to activate the structures that track reward values per se. Thus, the presence of conflict in decision-making seemed to significantly alter the pattern of neural responses to simple rewards. In addition, this paradigm further clarifies the functional specialization of the cingulate cortex in processes of decision-making.

  9. Monetary rewards modulate inhibitory control

    PubMed Central

    Herrera, Paula M.; Speranza, Mario; Hampshire, Adam; Bekinschtein, Tristán A.

    2014-01-01

    The ability to override a dominant response, often referred to as behavioral inhibition, is considered a key element of executive cognition. Poor behavioral inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioral inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/NoGo and Stop Signal Tasks (SSTs). Several studies have reported a positive modulatory effect of reward on performance in pathological conditions such as substance abuse, pathological gambling, and Attention Deficit Hyperactive Disorder (ADHD). However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory tasks are scarce and little is known about the finer grained relationship between motivation and inhibitory control. Here we probed the effect of reward magnitude and context on behavioral inhibition with three modified versions of the widely used SST. The pilot study compared inhibition performance during six blocks alternating neutral feedback, low, medium, and high monetary rewards. Study One compared increasing vs. decreasing rewards, with low, high rewards, and neutral feedback; whilst Study Two compared low and high reward magnitudes alone also in an increasing and decreasing reward design. The reward magnitude effect was not demonstrated in the pilot study, probably due to a learning effect induced by practice in this lengthy task. The reward effect per se was weak but the context (order of reward) was clearly suggested in Study One, and was particularly strongly confirmed in study two. In addition, these findings revealed a “kick start effect” over global performance measures. Specifically, there was a long lasting improvement in performance throughout the task when participants received the highest reward magnitudes at the beginning of the

  10. POPCORN: a Supervisory Control Simulation for Workload and Performance Research

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Battiste, V.; Lester, P. T.

    1984-01-01

    A multi-task simulation of a semi-automatic supervisory control system was developed to provide an environment in which training, operator strategy development, failure detection and resolution, levels of automation, and operator workload can be investigated. The goal was to develop a well-defined, but realistically complex, task that would lend itself to model-based analysis. The name of the task (POPCORN) reflects the visual display that depicts different task elements milling around waiting to be released and pop out to be performed. The operator's task was to complete each of 100 task elements that ere represented by different symbols, by selecting a target task and entering the desired a command. The simulated automatic system then completed the selected function automatically. Highly significant differences in performance, strategy, and rated workload were found as a function of all experimental manipulations (except reward/penalty).

  11. Reward favours the prepared: incentive and task-informative cues interact to enhance attentional control

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2015-01-01

    The dual mechanisms of control account suggests that cognitive control may be implemented through relatively proactive mechanisms in anticipation of stimulus onset, or through reactive mechanisms, triggered in response to changing stimulus demands. Reward incentives and task-informative cues (signaling the presence/absence of upcoming cognitive demand) have both been found to influence cognitive control in a proactive or preparatory fashion; yet, it is currently unclear whether and how such cue effects interact. We investigated this in two experiments using an adapted flanker paradigm, where task-informative and reward incentive cues were orthogonally manipulated on a trial-by-trial basis. In Experiment 1, results indicated that incentives not only speed RTs, but specifically reduce both interference and facilitation effects when combined with task-informative cues, suggesting enhanced proactive attentional control. Experiment 2 manipulated the timing of incentive cue information, demonstrating that such proactive control effects were only replicated with sufficient time to process the incentive cue (Early Incentive); when incentive signals were presented close to target onset (Late Incentive) the primary effect was a speed-accuracy tradeoff. Together, results suggest that advance cueing may trigger differing control strategies, and that these strategies may critically depend on both the timing – and the motivational incentive – to use such cues. PMID:26322689

  12. Reward-based spatial crowdsourcing with differential privacy preservation

    NASA Astrophysics Data System (ADS)

    Xiong, Ping; Zhang, Lefeng; Zhu, Tianqing

    2017-11-01

    In recent years, the popularity of mobile devices has transformed spatial crowdsourcing (SC) into a novel mode for performing complicated projects. Workers can perform tasks at specified locations in return for rewards offered by employers. Existing methods ensure the efficiency of their systems by submitting the workers' exact locations to a centralised server for task assignment, which can lead to privacy violations. Thus, implementing crowsourcing applications while preserving the privacy of workers' location is a key issue that needs to be tackled. We propose a reward-based SC method that achieves acceptable utility as measured by task assignment success rates, while efficiently preserving privacy. A differential privacy model ensures rigorous privacy guarantee, and Laplace noise is introduced to protect workers' exact locations. We then present a reward allocation mechanism that adjusts each piece of the reward for a task using the distribution of the workers' locations. Through experimental results, we demonstrate that this optimised-reward method is efficient for SC applications.

  13. Encoding of Reward and Space During a Working Memory Task in the Orbitofrontal Cortex and Anterior Cingulate Sulcus

    PubMed Central

    Kennerley, Steven W.

    2009-01-01

    Several lines of research indicate that emotional and motivational information may be useful in guiding the allocation of attentional resources. Two areas of the frontal lobe that are particularly implicated in the encoding of motivational information are the orbital prefrontal cortex (PFo) and the dorsomedial region of prefrontal cortex, specifically the anterior cingulate sulcus (PFcs). However, it remains unclear whether these areas use this information to influence spatial attention. We used single-unit neurophysiology to examine whether, at the level of individual neurons, there was evidence for integration between reward information and spatial attention. We trained two subjects to perform a task that required them to attend to a spatial location across a delay under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. We found little evidence for encoding of the spatial location in either PFo or PFcs. In contrast, both areas encoded the expected reward. Furthermore, PFo consistently encoded reward more quickly than PFcs, although reward encoding was subsequently more prevalent and stronger in PFcs. These results suggest a differential contribution of PFo and PFcs to reward encoding, with PFo potentially more important for initially determining the value of rewards predicted by sensory stimuli. They also suggest that neither PFo nor PFcs play a direct role in the control of spatial attention. PMID:19776363

  14. Social Influences on Creativity: Interactive Effects of Reward and Choice.

    ERIC Educational Resources Information Center

    Amabile, Teresa M.

    In a test of intrinsic motivation hypothesis of creativity, 60 undergraduate women did an artistic creativity task with either the expectation of receiving a reward or no expectation of reward. Reward was crossed with choice in task engagement, such that half of the reward Ss contracted to do the task in order to receive reward, and half simply…

  15. Pressure to cooperate: is positive reward interdependence really needed in cooperative learning?

    PubMed

    Buchs, Céline; Gilles, Ingrid; Dutrévis, Marion; Butera, Fabrizio

    2011-03-01

    BACKGROUND. Despite extensive research on cooperative learning, the debate regarding whether or not its effectiveness depends on positive reward interdependence has not yet found clear evidence. AIMS. We tested the hypothesis that positive reward interdependence, as compared to reward independence, enhances cooperative learning only if learners work on a 'routine task'; if the learners work on a 'true group task', positive reward interdependence induces the same level of learning as reward independence. SAMPLE. The study involved 62 psychology students during regular workshops. METHOD. Students worked on two psychology texts in cooperative dyads for three sessions. The type of task was manipulated through resource interdependence: students worked on either identical (routine task) or complementary (true group task) information. Students expected to be assessed with a Multiple Choice Test (MCT) on the two texts. The MCT assessment type was introduced according to two reward interdependence conditions, either individual (reward independence) or common (positive reward interdependence). A follow-up individual test took place 4 weeks after the third session of dyadic work to examine individual learning. RESULTS. The predicted interaction between the two types of interdependence was significant, indicating that students learned more with positive reward interdependence than with reward independence when they worked on identical information (routine task), whereas students who worked on complementary information (group task) learned the same with or without reward interdependence. CONCLUSIONS. This experiment sheds light on the conditions under which positive reward interdependence enhances cooperative learning, and suggests that creating a real group task allows to avoid the need for positive reward interdependence. © 2010 The British Psychological Society.

  16. Measuring Motivation and Reward-Related Decision Making in the Rodent Operant Touchscreen System.

    PubMed

    Heath, Christopher J; Phillips, Benjamin U; Bussey, Timothy J; Saksida, Lisa M

    2016-01-04

    This unit is designed to facilitate implementation of the fixed and progressive ratio paradigms and the effort-related choice task in the rodent touchscreen apparatus to permit direct measurement of motivation and reward-related decision making in this equipment. These protocols have been optimized for use in the mouse and reliably yield stable performance levels that can be enhanced or suppressed by systemic pharmacological manipulation. Instructions are also provided for the adjustment of task parameters to permit use in mouse models of neurodegenerative disease. These tasks expand the utility of the rodent touchscreen apparatus beyond the currently available battery of cognitive assessment paradigms. Copyright © 2016 John Wiley & Sons, Inc.

  17. Methodology for Analysis, Modeling and Simulation of Airport Gate-waiting Delays

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng

    This dissertation presents methodologies to estimate gate-waiting delays from historical data, to identify gate-waiting-delay functional causes in major U.S. airports, and to evaluate the impact of gate operation disruptions and mitigation strategies on gate-waiting delay. Airport gates are a resource of congestion in the air transportation system. When an arriving flight cannot pull into its gate, the delay it experiences is called gate-waiting delay. Some possible reasons for gate-waiting delay are: the gate is occupied, gate staff or equipment is unavailable, the weather prevents the use of the gate (e.g. lightning), or the airline has a preferred gate assignment. Gate-waiting delays potentially stay with the aircraft throughout the day (unless they are absorbed), adding costs to passengers and the airlines. As the volume of flights increases, ensuring that airport gates do not become a choke point of the system is critical. The first part of the dissertation presents a methodology for estimating gate-waiting delays based on historical, publicly available sources. Analysis of gate-waiting delays at major U.S. airports in the summer of 2007 identifies the following. (i) Gate-waiting delay is not a significant problem on majority of days; however, the worst delay days (e.g. 4% of the days at LGA) are extreme outliers. (ii) The Atlanta International Airport (ATL), the John F. Kennedy International Airport (JFK), the Dallas/Fort Worth International Airport (DFW) and the Philadelphia International Airport (PHL) experience the highest gate-waiting delays among major U.S. airports. (iii) There is a significant gate-waiting-delay difference between airlines due to a disproportional gate allocation. (iv) Gate-waiting delay is sensitive to time of a day and schedule peaks. According to basic principles of queueing theory, gate-waiting delay can be attributed to over-scheduling, higher-than-scheduled arrival rate, longer-than-scheduled gate-occupancy time, and reduced gate

  18. Reward-dependent learning in neuronal networks for planning and decision making.

    PubMed

    Dehaene, S; Changeux, J P

    2000-01-01

    Neuronal network models have been proposed for the organization of evaluation and decision processes in prefrontal circuitry and their putative neuronal and molecular bases. The models all include an implementation and simulation of an elementary reward mechanism. Their central hypothesis is that tentative rules of behavior, which are coded by clusters of active neurons in prefrontal cortex, are selected or rejected based on an evaluation by this reward signal, which may be conveyed, for instance, by the mesencephalic dopaminergic neurons with which the prefrontal cortex is densely interconnected. At the molecular level, the reward signal is postulated to be a neurotransmitter such as dopamine, which exerts a global modulatory action on prefrontal synaptic efficacies, either via volume transmission or via targeted synaptic triads. Negative reinforcement has the effect of destabilizing the currently active rule-coding clusters; subsequently, spontaneous activity varies again from one cluster to another, giving the organism the chance to discover and learn a new rule. Thus, reward signals function as effective selection signals that either maintain or suppress currently active prefrontal representations as a function of their current adequacy. Simulations of this variation-selection have successfully accounted for the main features of several major tasks that depend on prefrontal cortex integrity, such as the delayed-response test, the Wisconsin card sorting test, the Tower of London test and the Stroop test. For the more complex tasks, we have found it necessary to supplement the external reward input with a second mechanism that supplies an internal reward; it consists of an auto-evaluation loop which short-circuits the reward input from the exterior. This allows for an internal evaluation of covert motor intentions without actualizing them as behaviors, by simply testing them covertly by comparison with memorized former experiences. This element of architecture

  19. Reward Improves Cancellation and Restraint Inhibition Across Childhood and Adolescence

    PubMed Central

    Sinopoli, Katia J.; Schachar, Russell; Dennis, Maureen

    2011-01-01

    Inhibitory control allows for the regulation of thought and action, and interacts with motivational variables, such as reward, to modify behavior adaptively as environments change. We examined the effects of reward on two distinct forms of inhibitory control, cancellation and restraint. Typically developing children and adolescents completed two versions of the stop signal task (cancellation and restraint) under three reward conditions (neutral, low reward, and high reward), where rewards were earned for successful inhibitory control. Rewards improved both cancellation and restraint inhibition, with similar effects of reward on each form of inhibitory control. Rewards did not alter the speed of response execution in either task, suggesting that rewards specifically altered inhibition processes without influencing processes related to response execution. Adolescents were faster and less variable than children when executing and inhibiting their responses. There were similar developmental effects of reward on the speed of inhibitory control, but group differences were found in terms of accuracy of inhibition in the restraint task. These results clarify how reward modulates two different forms of regulatory behavior in children and adolescents. PMID:21744952

  20. Waiting time for cataract surgery and its influence on patient attitudes.

    PubMed

    Chan, Frank Wan-kin; Fan, Alex Hoi; Wong, Fiona Yan-yan; Lam, Philip Tsze-ho; Yeoh, Eng-kiong; Yam, Carrie Ho-kwan; Griffiths, Sian; Lam, Dennis Shun-chiu; Congdon, Nathan

    2009-08-01

    To characterize willingness to pay for private operations and preferred waiting time among patients awaiting cataract surgery in Hong Kong. This was a cross-sectional survey. Subjects randomly selected from cataract surgical waiting lists in Hong Kong (n = 467) underwent a telephone interview based on a structured, validated questionnaire. Data were collected on private insurance coverage, preferred waiting time, amount willing to pay for surgery, and self-reported visual function and health status. Among 300 subjects completing the interview, 144 (48.2%) were 76 years of age or older, 177 (59%) were women, and mean time waiting for surgery was 17 +/- 15 months. Among 220 subjects (73.3%) willing to pay anything for surgery, the mean amount was US$552 +/- 443. With adjustment for age, education, and monthly household income, subjects willing to pay anything were less willing to wait 12 months for surgery (OR = 4.34; P = 0.002), more likely to know someone having had cataract surgery (OR = 2.20; P = 0.03), and more likely to use their own savings to pay for the surgery (OR = 2.21; P = 0.04). Subjects considering private cataract surgery, knowing people who have had cataract surgery, using nongovernment sources to pay for surgery, and having lower visual function were willing to pay more. Many patients wait significant periods for cataract surgery in Hong Kong, and are willing to pay substantial amounts for private operations. These results may have implications for other countries with cataract waiting lists.

  1. Altered reward system reactivity for personalized circumscribed interests in autism.

    PubMed

    Kohls, Gregor; Antezana, Ligia; Mosner, Maya G; Schultz, Robert T; Yerys, Benjamin E

    2018-01-01

    Neurobiological research in autism spectrum disorders (ASD) has paid little attention on brain mechanisms that cause and maintain restricted and repetitive behaviors and interests (RRBIs). Evidence indicates an imbalance in the brain's reward system responsiveness to social and non-social stimuli may contribute to both social deficits and RRBIs. Thus, this study's central aim was to compare brain responsiveness to individual RRBI (i.e., circumscribed interests), with social rewards (i.e., social approval), in youth with ASD relative to typically developing controls (TDCs). We conducted a 3T functional magnetic resonance imaging (fMRI) study to investigate the blood-oxygenation-level-dependent effect of personalized circumscribed interest rewards versus social rewards in 39 youth with ASD relative to 22 TDC. To probe the reward system, we employed short video clips as reinforcement in an instrumental incentive delay task. This optimization increased the task's ecological validity compared to still pictures that are often used in this line of research. Compared to TDCs, youth with ASD had stronger reward system responses for CIs mostly within the non-social realm (e.g., video games) than social rewards (e.g., approval). Additionally, this imbalance within the caudate nucleus' responsiveness was related to greater social impairment. The current data support the idea of reward system dysfunction that may contribute to enhanced motivation for RRBIs in ASD, accompanied by diminished motivation for social engagement. If a dysregulated reward system indeed supports the emergence and maintenance of social and non-social symptoms of ASD, then strategically targeting the reward system in future treatment endeavors may allow for more efficacious treatment practices that help improve outcomes for individuals with ASD and their families.

  2. Testosterone shifts the balance between sensitivity for punishment and reward in healthy young women.

    PubMed

    van Honk, Jack; Schutter, Dennis J L G; Hermans, Erno J; Putman, Peter; Tuiten, Adriaan; Koppeschaar, Hans

    2004-08-01

    Animal research has demonstrated reductions in punishment sensitivity and enhanced reward dependency after testosterone administration. In humans, elevated levels of testosterone have been associated with violent and antisocial behavior. Interestingly, extreme forms of violent and antisocial behavior can be observed in the psychopath. Moreover, it has been argued that reduced punishment sensitivity and heightened reward dependency are crucially involved in the etiology and maintenance of psychopathy. A task that has been proven to be capable of simulating punishment-reward contingencies is the IOWA gambling task. Decisions to choose from decks of cards become motivated by punishment and reward schedules inherent in the task. Importantly, clinical and subclinical psychopaths demonstrate a risky, disadvantageous pattern of decision-making in the task, indicating motivational imbalance (insensitivity for punishment and enhanced reward dependency). Here, in a double-blind placebo-controlled crossover design (n = 12), whether a single administration of testosterone would shift the motivational balance between the sensitivity for punishment and reward towards this tendency to choose disadvantageously was investigated. As hypothesized, subjects showed a more disadvantageous pattern of decision-making after testosterone compared to placebo administration. These findings not only provide the first direct evidence for the effects of testosterone on punishment-reward contingencies in humans, but they also give further insights into the hypothetical link between testosterone and psychopathy.

  3. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance.

    PubMed

    Schlund, Michael W; Cataldo, Michael F; Siegle, Greg J; Ladouceur, Cecile D; Silk, Jennifer S; Forbes, Erika E; McFarland, Ashley; Iyengar, Satish; Dahl, Ronald E; Ryan, Neal D

    2011-05-06

    Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N=120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks. The proposed approach contributes to the pediatric neuroimaging literature by

  4. Poster - 26: Electronic Waiting Room Management for a busy Cancer Centre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kildea, John; Hijal, Tarek

    We describe an electronic waiting room management system that we have developed and deployed in our cancer centre. Our system connects with our electronic medical records systems, gathers data for a machine learning algorithm to predict future patient waiting times, and is integrated with a mobile phone app. The system has been in operation for over nine months and has led to reduced lines, calmer waiting rooms and overwhelming patient and staff satisfaction.

  5. Reward positivity: Reward prediction error or salience prediction error?

    PubMed

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  6. Effect of socioeconomic deprivation on waiting time for cardiac surgery: retrospective cohort study

    PubMed Central

    Pell, Jill P; Pell, Alastair C H; Norrie, John; Ford, Ian; Cobbe, Stuart M

    2000-01-01

    Objective To determine whether the priority given to patients referred for cardiac surgery is associated with socioeconomic status. Design Retrospective study with multivariate logistic regression analysis of the association between deprivation and classification of urgency with allowance for age, sex, and type of operation. Multivariate linear regression analysis was used to determine association between deprivation and waiting time within each category of urgency, with allowance for age, sex, and type of operation. Setting NHS waiting lists in Scotland. Participants 26 642 patients waiting for cardiac surgery, 1 January 1986 to 31 December 1997. Main outcome measures Deprivation as measured by Carstairs deprivation category. Time spent on NHS waiting list. Results Patients who were most deprived tended to be younger and were more likely to be female. Patients in deprivation categories 6 and 7 (most deprived) waited about three weeks longer for surgery than those in category 1 (mean difference 24 days, 95% confidence interval 15 to 32). Deprived patients had an odds ratio of 0.5 (0.46 to 0.61) for having their operations classified as urgent compared with the least deprived, after allowance for age, sex, and type of operation. When urgent and routine cases were considered separately, there was no significant difference in waiting times between the most and least deprived categories. Conclusions Socioeconomically deprived patients are thought to be more likely to develop coronary heart disease but are less likely to be investigated and offered surgery once it has developed. Such patients may be further disadvantaged by having to wait longer for surgery because of being given lower priority. PMID:10617517

  7. What Are We Waiting For Customer Wait Time, Fill Rate, And Marine Corps Equipment Operational Availability

    DTIC Science & Technology

    2016-12-01

    managed by an RIP. SECREPs are typically critical repair assemblies that require consistently high fill- rates to satisfy maintenance customers ...fill-rate is potentially misreporting performance and areas where short customer wait times could potentially suffice for inventory management . A...supply. Inventory forecasting and management should focus on parts with CWTs that do not satisfy the maintenance customer and 100% fill-rates should

  8. Prosocial Reward Learning in Children and Adolescents

    PubMed Central

    Kwak, Youngbin; Huettel, Scott A.

    2016-01-01

    Adolescence is a period of increased sensitivity to social contexts. To evaluate how social context sensitivity changes over development—and influences reward learning—we investigated how children and adolescents perceive and integrate rewards for oneself and others during a dynamic risky decision-making task. Children and adolescents (N = 75, 8–16 years) performed the Social Gambling Task (SGT, Kwak et al., 2014) and completed a set of questionnaires measuring other-regarding behavior. In the SGT, participants choose amongst four card decks that have different payout structures for oneself and for a charity. We examined patterns of choices, overall decision strategies, and how reward outcomes led to trial-by-trial adjustments in behavior, as estimated using a reinforcement-learning model. Performance of children and adolescents was compared to data from a previously collected sample of adults (N = 102) performing the identical task. We found that that children/adolescents were not only more sensitive to rewards directed to the charity than self but also showed greater prosocial tendencies on independent measures of other-regarding behavior. Children and adolescents also showed less use of a strategy that prioritizes rewards for self at the expense of rewards for others. These results support the conclusion that, compared to adults, children and adolescents show greater sensitivity to outcomes for others when making decisions and learning about potential rewards. PMID:27761125

  9. Sensitivity to reward and punishment in Parkinson's disease: an analysis of behavioral patterns using a modified version of the Iowa gambling task.

    PubMed

    Kobayakawa, Mutsutaka; Tsuruya, Natsuko; Kawamura, Mitsuru

    2010-08-01

    Studies using the Iowa gambling task (IGT) have shown that patients with Parkinson's disease (PD) make disadvantageous choices characterized by immediate large rewards and delayed larger punishments. These results can be interpreted in two ways: either PD patients are hypersensitive to immediate outcomes and/or insensitive to delayed consequences or PD patients are hypersensitive to rewards and/or insensitive to punishments. In this study, we used a modified IGT in which selection of cards from the disadvantageous decks leads to immediate, small punishments and delayed, smaller rewards and selection of cards from the advantageous decks leads to immediate, large punishments and delayed larger rewards. We then compared the results obtained using this modified IGT with those obtained using the original IGT. If the PD patients were hypersensitive to the immediate outcomes of decisions, they would make disadvantageous choices in both the original and the modified IGTs. Differences between the results of the original and modified tasks would indicate impairments in balancing reward and punishment. In our analysis, PD patients selected advantageous decks and gained as much as normal subjects during the modified IGT, but they selected disadvantageous decks during the original IGT. These results indicate that the decision-making difficulties of PD patients are caused by their inability to balance reward and punishment and their hypersensitivity to reward and/or insensitivity to punishment.

  10. Valuation of opportunity costs by rats working for rewarding electrical brain stimulation.

    PubMed

    Solomon, Rebecca Brana; Conover, Kent; Shizgal, Peter

    2017-01-01

    Pursuit of one goal typically precludes simultaneous pursuit of another. Thus, each exclusive activity entails an "opportunity cost:" the forgone benefits from the next-best activity eschewed. The present experiment estimates, in laboratory rats, the function that maps objective opportunity costs into subjective ones. In an operant chamber, rewarding electrical brain stimulation was delivered when the cumulative time a lever had been depressed reached a criterion duration. The value of the activities forgone during this duration is the opportunity cost of the electrical reward. We determined which of four functions best describes how objective opportunity costs, expressed as the required duration of lever depression, are translated into their subjective equivalents. The simplest account is the identity function, which equates subjective and objective opportunity costs. A variant of this function called the "sigmoidal-slope function," converges on the identity function at longer durations but deviates from it at shorter durations. The sigmoidal-slope function has the form of a hockey stick. The flat "blade" denotes a range over which opportunity costs are subjectively equivalent; these durations are too short to allow substitution of more beneficial activities. The blade extends into an upward-curving portion over which costs become discriminable and finally into the straight "handle," over which objective and subjective costs match. The two remaining functions are based on hyperbolic and exponential temporal discounting, respectively. The results are best described by the sigmoidal-slope function. That this is so suggests that different principles of intertemporal choice are involved in the evaluation of time spent working for a reward or waiting for its delivery. The subjective opportunity-cost function plays a key role in the evaluation and selection of goals. An accurate description of its form and parameters is essential to successful modeling and prediction of

  11. Effects of monetary reward and punishment on information checking behaviour.

    PubMed

    Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann

    2016-03-01

    Two experiments were conducted to examine whether checking one's own work can be motivated by monetary reward and punishment. Participants were randomly assigned to one of three conditions: a flat-rate payment for completing the task (Control); payment increased for error-free performance (Reward); payment decreased for error performance (Punishment). Experiment 1 (N = 90) was conducted with liberal arts students, using a general data-entry task. Experiment 2 (N = 90) replicated Experiment 1 with clinical students and a safety-critical 'cover story' for the task. In both studies, Reward and Punishment resulted in significantly fewer errors, more frequent and longer checking, than Control. No such differences were obtained between the Reward and Punishment conditions. It is concluded that error consequences in terms of monetary reward and punishment can result in more accurate task performance and more rigorous checking behaviour than errors without consequences. However, whether punishment is more effective than reward, or vice versa, remains inconclusive. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance

    PubMed Central

    2011-01-01

    Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The proposed approach

  13. Rewards modulate saccade latency but not exogenous spatial attention.

    PubMed

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  14. Pervasive negative effects of rewards on intrinsic motivation: The myth continues.

    PubMed

    Cameron, J; Banko, K M; Pierce, W D

    2001-01-01

    A major concern in psychology and education is that rewards decrease intrinsic motivation to perform activities. Over the past 30 years, more than 100 experimental studies have been conducted on this topic. In 1994, Cameron and Pierce conducted a meta-analysis of this literature and concluded that negative effects of reward were limited and could be easily prevented in applied settings. A more recent meta-analysis of the literature by Deci, Koestner, and Ryan (1999) shows pervasive negative effects of reward. The purpose of the present article is to resolve differences in previous meta-analytic findings and to provide a meta-analysis of rewards and intrinsic motivation that permits tests of competing theoretical explanations. Our results suggest that in general, rewards are not harmful to motivation to perform a task. Rewards given for low-interest tasks enhance free-choice intrinsic motivation. On high-interest tasks, verbal rewards produce positive effects on free-choice motivation and self-reported task interest. Negative effects are found on high-interest tasks when the rewards are tangible, expected (offered beforehand), and loosely tied to level of performance. When rewards are linked to level of performance, measures of intrinsic motivation increase or do not differ from a nonrewarded control group. Overall, the pattern of results indicates that reward contingencies do not have pervasive negative effects on intrinsic motivation. Theoretical and practical implications of the findings are addressed.

  15. A developmental study of risky decisions on the cake gambling task: age and gender analyses of probability estimation and reward evaluation.

    PubMed

    Van Leijenhorst, Linda; Westenberg, P Michiel; Crone, Eveline A

    2008-01-01

    Decision making, or the process of choosing between competing courses of actions, is highly sensitive to age-related change, showing development throughout adolescence. In this study, we tested whether the development of decision making under risk is related to changes in risk-estimation abilities. Participants (N = 93) between ages 8-30 performed a child friendly gambling task, the Cake Gambling task, which was inspired by the Cambridge Gambling Task (Rogers et al., 1999), which has previously been shown to be sensitive to orbitofrontal cortex (OFC) damage. The task allowed comparisons of the contributions to risk perception of (1) the ability to estimate probabilities and (2) evaluate rewards. Adult performance patterns were highly similar to those found in previous reports, showing increased risk taking with increases in the probability of winning and the magnitude of potential reward. Behavioral patterns in children and adolescents did not differ from adult patterns, showing a similar ability for probability estimation and reward evaluation. These data suggest that participants 8 years and older perform like adults in a gambling task, previously shown to depend on the OFC in which all the information needed to make an advantageous decision is given on each trial and no information needs to be inferred from previous behavior. Interestingly, at all ages, females were more risk-averse than males. These results suggest that the increase in real-life risky behavior that is seen in adolescence is not a consequence of changes in risk perception abilities. The findings are discussed in relation to theories about the protracted development of the prefrontal cortex.

  16. Coexistence of Reward and Unsupervised Learning During the Operant Conditioning of Neural Firing Rates

    PubMed Central

    Kerr, Robert R.; Grayden, David B.; Thomas, Doreen A.; Gilson, Matthieu; Burkitt, Anthony N.

    2014-01-01

    A fundamental goal of neuroscience is to understand how cognitive processes, such as operant conditioning, are performed by the brain. Typical and well studied examples of operant conditioning, in which the firing rates of individual cortical neurons in monkeys are increased using rewards, provide an opportunity for insight into this. Studies of reward-modulated spike-timing-dependent plasticity (RSTDP), and of other models such as R-max, have reproduced this learning behavior, but they have assumed that no unsupervised learning is present (i.e., no learning occurs without, or independent of, rewards). We show that these models cannot elicit firing rate reinforcement while exhibiting both reward learning and ongoing, stable unsupervised learning. To fix this issue, we propose a new RSTDP model of synaptic plasticity based upon the observed effects that dopamine has on long-term potentiation and depression (LTP and LTD). We show, both analytically and through simulations, that our new model can exhibit unsupervised learning and lead to firing rate reinforcement. This requires that the strengthening of LTP by the reward signal is greater than the strengthening of LTD and that the reinforced neuron exhibits irregular firing. We show the robustness of our findings to spike-timing correlations, to the synaptic weight dependence that is assumed, and to changes in the mean reward. We also consider our model in the differential reinforcement of two nearby neurons. Our model aligns more strongly with experimental studies than previous models and makes testable predictions for future experiments. PMID:24475240

  17. Neural activation to monetary reward is associated with amphetamine reward sensitivity.

    PubMed

    Crane, Natania A; Gorka, Stephanie M; Weafer, Jessica; Langenecker, Scott A; de Wit, Harriet; Phan, K Luan

    2018-03-14

    One known risk factor for drug use and abuse is sensitivity to rewarding effects of drugs. It is not known whether this risk factor extends to sensitivity to non-drug rewards. In this study with healthy young adults, we examined the association between sensitivity to the subjective rewarding effects of amphetamine and a neural indicator of anticipation of monetary reward. We hypothesized that greater euphorigenic response to amphetamine would be associated with greater neural activation to anticipation of monetary reward (Win > Loss). Healthy participants (N = 61) completed four laboratory sessions in which they received d-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation at regular intervals. At a separate visit 1-3 weeks later, participants completed the guessing reward task (GRT) during fMRI in a drug-free state. Participants reporting greater euphoria after amphetamine also exhibited greater neural activation during monetary reward anticipation in mesolimbic reward regions, including the bilateral caudate and putamen. This is the first study to show a relationship between neural correlates of monetary reward and sensitivity to the subjective rewarding effects of amphetamine in humans. These findings support growing evidence that sensitivity to reward in general is a risk factor for drug use and abuse, and suggest that sensitivity of drug-induced euphoria may reflect a general sensitivity to rewards. This may be an index of vulnerability for drug use or abuse.

  18. Rewards.

    PubMed

    Gunderman, Richard B; Kamer, Aaron P

    2011-05-01

    For much of the 20th century, psychologists and economists operated on the assumption that work is devoid of intrinsic rewards, and the only way to get people to work harder is through the use of rewards and punishments. This so-called carrot-and-stick model of workplace motivation, when applied to medical practice, emphasizes the use of financial incentives and disincentives to manipulate behavior. More recently, however, it has become apparent that, particularly when applied to certain kinds of work, such approaches can be ineffective or even frankly counterproductive. Instead of focusing on extrinsic rewards such as compensation, organizations and their leaders need to devote more attention to the intrinsic rewards of work itself. This article reviews this new understanding of rewards and traces out its practical implications for radiology today. Copyright © 2011. Published by Elsevier Inc.

  19. Reward inference by primate prefrontal and striatal neurons.

    PubMed

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi

    2014-01-22

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus-reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning.

  20. Reward Inference by Primate Prefrontal and Striatal Neurons

    PubMed Central

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru

    2014-01-01

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus–reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning. PMID:24453328

  1. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum.

    PubMed

    Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2015-11-01

    To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. Copyright © 2015 the American Physiological Society.

  2. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum

    PubMed Central

    Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N.; Iijima, Toshio

    2015-01-01

    To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. PMID:26378201

  3. An experimental examination of the effort-reward imbalance model of occupational stress: Increased financial reward is related to reduced stress physiology.

    PubMed

    Landolt, Kathleen; O'Donnell, Emma; Hazi, Agnes; Dragano, Nico; Wright, Bradley J

    2017-04-01

    Effort-reward imbalance in the workplace is linked to a variety of negative health and organisational outcomes, but it has rarely been assessed experimentally. We manipulated reward (while keeping effort constant) in a within-subjects design with female participants (N=60) who were randomly assigned to high and standard reward conditions within a simulated office environment. Self-report, behavioural (task performance), and physiological (heart rate variability, salivary alpha amylase) measures assessed the impact of increased financial reward. Participants reported increased perceptions of reward, performed moderately better on the task, and were less physiologically reactive in the high reward versus the standard condition. These findings highlight the importance of assessing both subjective self-reports of stress together with objective physiological measures of stress, and suggest that increasing monetary rewards has the potential to decrease stress physiological reactivity, and in turn, reduce the risk of ill-health in employees, and may also positively influence task efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The British Columbia Nephrologists' Access Study (BCNAS) - a prospective, health services interventional study to develop waiting time benchmarks and reduce wait times for out-patient nephrology consultations.

    PubMed

    Schachter, Michael E; Romann, Alexandra; Djurdev, Ognjenka; Levin, Adeera; Beaulieu, Monica

    2013-08-29

    Early referral and management of high-risk chronic kidney disease may prevent or delay the need for dialysis. Automatic eGFR reporting has increased demand for out-patient nephrology consultations and in some cases, prolonged queues. In Canada, a national task force suggested the development of waiting time targets, which has not been done for nephrology. We sought to describe waiting time for outpatient nephrology consultations in British Columbia (BC). Data collection occurred in 2 phases: 1) Baseline Description (Jan 18-28, 2010) and 2) Post Waiting Time Benchmark-Introduction (Jan 16-27, 2012). Waiting time was defined as the interval from receipt of referral letters to assessment. Using a modified Delphi process, Nephrologists and Family Physicians (FP) developed waiting time targets for commonly referred conditions through meetings and surveys. Rules were developed to weigh-in nephrologists', FPs', and patients' perspectives in order to generate waiting time benchmarks. Targets consider comorbidities, eGFR, BP and albuminuria. Referred conditions were assigned a priority score between 1-4. BC nephrologists were encouraged to centrally triage referrals to see the first available nephrologist. Waiting time benchmarks were simultaneously introduced to guide patient scheduling. A post-intervention waiting time evaluation was then repeated. In 2010 and 2012, 43/52 (83%) and 46/57 (81%) of BC nephrologists participated. Waiting time decreased from 98(IQR44,157) to 64(IQR21,120) days from 2010 to 2012 (p = <.001), despite no change in referral eGFR, demographics, nor number of office hrs/wk. Waiting time improved most for high priority patients. An integrated, Provincial initiative to measure wait times, develop waiting benchmarks, and engage physicians in active waiting time management associated with improved access to nephrologists in BC. Improvements in waiting time was most marked for the highest priority patients, which suggests that benchmarks had an

  5. The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task.

    PubMed

    Oldham, Stuart; Murawski, Carsten; Fornito, Alex; Youssef, George; Yücel, Murat; Lorenzetti, Valentina

    2018-04-25

    The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta-analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  6. Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments

    PubMed Central

    Chakraborty, Subhojit; Kolling, Nils; Walton, Mark E; Mitchell, Anna S

    2016-01-01

    Adaptive decision-making uses information gained when exploring alternative options to decide whether to update the current choice strategy. Magnocellular mediodorsal thalamus (MDmc) supports adaptive decision-making, but its causal contribution is not well understood. Monkeys with excitotoxic MDmc damage were tested on probabilistic three-choice decision-making tasks. They could learn and track the changing values in object-reward associations, but they were severely impaired at updating choices after reversals in reward contingencies or when there were multiple options associated with reward. These deficits were not caused by perseveration or insensitivity to negative feedback though. Instead, monkeys with MDmc lesions exhibited an inability to use reward to promote choice repetition after switching to an alternative option due to a diminished influence of recent past choices and the last outcome to guide future behavior. Together, these data suggest MDmc allows for the rapid discovery and persistence with rewarding options, particularly in uncertain or changing environments. DOI: http://dx.doi.org/10.7554/eLife.13588.001 PMID:27136677

  7. Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.

    PubMed

    Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas

    2016-12-01

    Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Reward processing in neurodegenerative disease

    PubMed Central

    Perry, David C.; Kramer, Joel H.

    2015-01-01

    Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses. PMID:24417286

  9. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults

    PubMed Central

    Nusslock, Robin; Almeida, Jorge RC; Forbes, Erika E; Versace, Amelia; Frank, Ellen; LaBarbara, Edmund J; Klein, Crystal R; Phillips, Mary L

    2012-01-01

    Objective Bipolar disorder may be characterized by a hypersensitivity to reward-relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward-processing and approach-related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods Twenty-one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card-guessing paradigm designed to examine reward-related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results Region-of-interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right-sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward, relative to healthy controls (p < 0.05, corrected). Wholebrain analyses indicated that bipolar disorder, relative to healthy, participants also displayed elevated left-lateral OFC activity (BA 47) activity during reward anticipation (p < 0.05, corrected). Conclusions Elevated ventral striatal and OFC activity during reward anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward-relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward-related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness. PMID:22548898

  10. A comparison of the electrocortical response to monetary and social reward

    PubMed Central

    Distefano, Amanda; Jackson, Felicia; Levinson, Amanda R; Infantolino, Zachary P; Jarcho, Johanna M; Nelson, Brady D

    2018-01-01

    Abstract Affective science research on reward processing has primarily focused on monetary rewards. There has been a growing interest in evaluating the neural basis of social decision-making and reward processing. The present study employed a within-subject design and compared the reward positivity (RewP), an event-related potential component that is present following favorable feedback and absent or reduced following unfavorable feedback, during monetary and social reward tasks. Specifically, 114 participants (75 females) completed a monetary reward task and a novel social reward task that were matched on trial structure, timing, and feedback stimuli in a counterbalanced order. Results indicated that the monetary and social RewP were of similar magnitude, positively correlated and demonstrated comparable psychometric properties, including reliability and dependability. Across both the monetary and social tasks, women demonstrated a greater RewP compared with men. This study provides a novel methodological approach toward examining the electrocortical response to social reward that is comparable to monetary reward. PMID:29373743

  11. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    PubMed

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  12. Pervasive negative effects of rewards on intrinsic motivation: The myth continues

    PubMed Central

    Cameron, Judy; Banko, Katherine M.; Pierce, W. David

    2001-01-01

    A major concern in psychology and education is that rewards decrease intrinsic motivation to perform activities. Over the past 30 years, more than 100 experimental studies have been conducted on this topic. In 1994, Cameron and Pierce conducted a meta-analysis of this literature and concluded that negative effects of reward were limited and could be easily prevented in applied settings. A more recent meta-analysis of the literature by Deci, Koestner, and Ryan (1999) shows pervasive negative effects of reward. The purpose of the present article is to resolve differences in previous meta-analytic findings and to provide a meta-analysis of rewards and intrinsic motivation that permits tests of competing theoretical explanations. Our results suggest that in general, rewards are not harmful to motivation to perform a task. Rewards given for low-interest tasks enhance free-choice intrinsic motivation. On high-interest tasks, verbal rewards produce positive effects on free-choice motivation and self-reported task interest. Negative effects are found on high-interest tasks when the rewards are tangible, expected (offered beforehand), and loosely tied to level of performance. When rewards are linked to level of performance, measures of intrinsic motivation increase or do not differ from a nonrewarded control group. Overall, the pattern of results indicates that reward contingencies do not have pervasive negative effects on intrinsic motivation. Theoretical and practical implications of the findings are addressed. PMID:22478353

  13. Operant conditioning of rat navigation using electrical stimulation for directional cues and rewards.

    PubMed

    Lee, Maan-Gee; Jun, Gayoung; Choi, Hyo-Soon; Jang, Hwan Soo; Bae, Yong Chul; Suk, Kyoungho; Jang, Il-Sung; Choi, Byung-Ju

    2010-07-01

    Operant conditioning is often used to train a desired behavior in an animal. The contingency between a specific behavior and a reward is required for successful training. Here, we compared the effectiveness of two different mazes for training turning behaviors in response to directional cues in Sprague-Dawley rats. Forty-three rats were implanted with electrodes into the medial forebrain bundle and the left and right somatosensory cortices for reward and cues. Among them, thirteen rats discriminated between the left and right somatosensory stimulations to obtain rewards. They were trained to learn ipsilateral turning response to the stimulation of the left or right somatosensory cortex in either the T-maze (Group T) or the E| maze (Group W). Performance was measured by the navigation speed in the mazes. Performances of rats in Group T were enhanced faster than those in Group W. A significant correlation between performances during training and performance in final testing was observed in Group T starting with the fifth training session while such a correlation was not observed in Group W until the tenth training session. The training mazes did not however affect the performances in the final test. These results suggest that a simple maze is better than a complicated maze for training animals to learn directions and direct cortical stimulation can be used as a cue for direction training. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders.

    PubMed

    Der-Avakian, Andre; Barnes, Samuel A; Markou, Athina; Pizzagalli, Diego A

    Deficits in reward and motivation are common symptoms characterizing several psychiatric and neurological disorders. Such deficits may include anhedonia, defined as loss of pleasure, as well as impairments in anticipatory pleasure, reward valuation, motivation/effort, and reward learning. This chapter describes recent advances in the development of behavioral tasks used to assess different aspects of reward processing in both humans and non-human animals. While earlier tasks were generally developed independently with limited cross-species correspondence, a newer generation of translational tasks has emerged that are theoretically and procedurally analogous across species and allow parallel testing, data analyses, and interpretation between human and rodent behaviors. Such enhanced conformity between cross-species tasks will facilitate investigation of the neurobiological mechanisms underlying discrete reward and motivated behaviors and is expected to improve our understanding and treatment of neuropsychiatric disorders characterized by reward and motivation deficits.

  15. Reward modulates perception in binocular rivalry.

    PubMed

    Marx, Svenja; Einhäuser, Wolfgang

    2015-01-14

    Our perception does not provide us with an exact imprint of the outside world, but is continuously adapted to our internal expectations, task sets, and behavioral goals. Although effects of reward-or value in general-on perception therefore seem likely, how valuation modulates perception and how such modulation relates to attention is largely unknown. We probed effects of reward on perception by using a binocular-rivalry paradigm. Distinct gratings drifting in opposite directions were presented to each observer's eyes. To objectify their subjective perceptual experience, the optokinetic nystagmus was used as measure of current perceptual dominance. In a first experiment, one of the percepts was either rewarded or attended. We found that reward and attention similarly biased perception. In a second experiment, observers performed an attentionally demanding task either on the rewarded stimulus, the other stimulus, or both. We found that-on top of an attentional effect on perception-at each level of attentional load, reward still modulated perception by increasing the dominance of the rewarded percept. Similarly, penalizing one percept increased dominance of the other at each level of attentional load. In turn, rewarding-and similarly nonpunishing-a percept yielded performance benefits that are typically associated with selective attention. In conclusion, our data show that value modulates perception in a similar way as the volitional deployment of attention, even though the relative effect of value is largely unaffected by an attention task. © 2015 ARVO.

  16. The British Columbia Nephrologists’ Access Study (BCNAS) – a prospective, health services interventional study to develop waiting time benchmarks and reduce wait times for out-patient nephrology consultations

    PubMed Central

    2013-01-01

    Background Early referral and management of high-risk chronic kidney disease may prevent or delay the need for dialysis. Automatic eGFR reporting has increased demand for out-patient nephrology consultations and in some cases, prolonged queues. In Canada, a national task force suggested the development of waiting time targets, which has not been done for nephrology. Methods We sought to describe waiting time for outpatient nephrology consultations in British Columbia (BC). Data collection occurred in 2 phases: 1) Baseline Description (Jan 18-28, 2010) and 2) Post Waiting Time Benchmark-Introduction (Jan 16-27, 2012). Waiting time was defined as the interval from receipt of referral letters to assessment. Using a modified Delphi process, Nephrologists and Family Physicians (FP) developed waiting time targets for commonly referred conditions through meetings and surveys. Rules were developed to weigh-in nephrologists’, FPs’, and patients’ perspectives in order to generate waiting time benchmarks. Targets consider comorbidities, eGFR, BP and albuminuria. Referred conditions were assigned a priority score between 1-4. BC nephrologists were encouraged to centrally triage referrals to see the first available nephrologist. Waiting time benchmarks were simultaneously introduced to guide patient scheduling. A post-intervention waiting time evaluation was then repeated. Results In 2010 and 2012, 43/52 (83%) and 46/57 (81%) of BC nephrologists participated. Waiting time decreased from 98(IQR44,157) to 64(IQR21,120) days from 2010 to 2012 (p = <.001), despite no change in referral eGFR, demographics, nor number of office hrs/wk. Waiting time improved most for high priority patients. Conclusions An integrated, Provincial initiative to measure wait times, develop waiting benchmarks, and engage physicians in active waiting time management associated with improved access to nephrologists in BC. Improvements in waiting time was most marked for the highest priority

  17. Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task

    ERIC Educational Resources Information Center

    Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2010-01-01

    Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…

  18. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement.

    PubMed

    Kim, Kyung Man; Baratta, Michael V; Yang, Aimei; Lee, Doheon; Boyden, Edward S; Fiorillo, Christopher D

    2012-01-01

    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.

  19. Reward-seeking and discrimination deficits displayed by hypodopaminergic mice are prevented in mice lacking dopamine D4 receptors.

    PubMed

    Nemirovsky, Sergio I; Avale, M Elena; Brunner, Daniela; Rubinstein, Marcelo

    2009-11-01

    The dopamine D4 receptor (D4R) is predominantly expressed in the prefrontal cortex, a brain area that integrates motor, rewarding, and cognitive information. Because participation of D4Rs in executive learning is largely unknown, we challenged D4R knockout mice (Drd4(-/-)) and their wild-type (WT) littermates, neonatally treated with 6-hydroxydopamine (6-OHDA; icv) or vehicle in two operant learning paradigms. A continuous reinforcement task, in which one food-pellet was delivered after every lever press, showed that 6-OHDA-treated mice (hypodopaminergic) WT mice pressed the reinforcing lever at much lower rates than normodopaminergic WT mice. In contrast, Drd4(-/-) mice displayed increased lever pressing rates, regardless of their dopamine content. In another study, mice were trained to solve an operant two-choice task in which a first showing lever was coupled to the delivery of one food pellet only after a second lever emerged. Interval between presentation of both levers was initially 12 s and progressively shortened to 6, 2, and finally 0.5 s. Normodopaminergic WT mice obtained a pellet reward in more than 75% of the trials at 12, 6, and 2 s, whereas hypodopaminergic WT mice were severely impaired to select the reward-paired lever. Absence of D4Rs was not detrimental in this task. Moreover, hypodopaminergic Drd4(-/-) mice were as efficient as their normodopaminergic Drd4(-/-) siblings in selecting the reward-paired lever. In summary, hypodopaminergic mice exhibit severe impairments to retrieve rewards in two operant positive reinforcement tasks, but these deleterious effects are totally prevented in the absence of functional D4Rs.

  20. Decision making in the reward and punishment variants of the iowa gambling task: evidence of "foresight" or "framing"?

    PubMed

    Singh, Varsha; Khan, Azizuddin

    2012-01-01

    Surface-level differences in the reward and punishment variants, specifically greater long-term decision making in the punishment variant of the Iowa Gambling Task (IGT) observed in previous studies led to the present comparison of long-term decision making in the two IGT variants (n = 320, male = 160). It was contended that risk aversion triggered by a positive frame of the reward variant and risk seeking triggered by a negative frame of the punishment variant appears as long-term decision making in the two IGT variants. Apart from the frame of the variant as a within-subjects factor (variant type: reward and punishment), the order in which the frame was triggered (order type: reward-punishment or punishment-reward), and the four types of instructions that delineated motivation toward reward from that of punishment (reward, punishment, reward and punishment, and no-hint) were hypothesized to have an effect on foresighted decision making in the IGT. As expected, long-term decision making differed across the two IGT variants suggesting that the frame of the variant has an effect on long-term decision making in the IGT (p < 0.001). The order in which a variant was presented, and the type of the instructions that were used both had an effect on long-term decision making in the two IGT variants (p < 0.05). A post hoc test suggested that the instructions that differentiated between reward and punishment resulted in greater foresight than the commonly used IGT instructions that fail to distinguish between reward and punishment. As observed in previous studies, there were more number of participants (60%) who showed greater foresight in the punishment variant than in the reward variant (p < 0.001). The results suggest that foresight in IGT decision making is sensitive to reward and punishment frame in an asymmetric manner, an observation that is aligned with the behavioral decision making framework. Benefits of integrating findings from behavioral

  1. Interference and Shaping in Sensorimotor Adaptations with Rewards

    PubMed Central

    Darshan, Ran; Leblois, Arthur; Hansel, David

    2014-01-01

    When a perturbation is applied in a sensorimotor transformation task, subjects can adapt and maintain performance by either relying on sensory feedback, or, in the absence of such feedback, on information provided by rewards. For example, in a classical rotation task where movement endpoints must be rotated to reach a fixed target, human subjects can successfully adapt their reaching movements solely on the basis of binary rewards, although this proves much more difficult than with visual feedback. Here, we investigate such a reward-driven sensorimotor adaptation process in a minimal computational model of the task. The key assumption of the model is that synaptic plasticity is gated by the reward. We study how the learning dynamics depend on the target size, the movement variability, the rotation angle and the number of targets. We show that when the movement is perturbed for multiple targets, the adaptation process for the different targets can interfere destructively or constructively depending on the similarities between the sensory stimuli (the targets) and the overlap in their neuronal representations. Destructive interferences can result in a drastic slowdown of the adaptation. As a result of interference, the time to adapt varies non-linearly with the number of targets. Our analysis shows that these interferences are weaker if the reward varies smoothly with the subject's performance instead of being binary. We demonstrate how shaping the reward or shaping the task can accelerate the adaptation dramatically by reducing the destructive interferences. We argue that experimentally investigating the dynamics of reward-driven sensorimotor adaptation for more than one sensory stimulus can shed light on the underlying learning rules. PMID:24415925

  2. Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders

    PubMed Central

    Der-Avakian, Andre; Barnes, Samuel A.

    2016-01-01

    Deficits in reward and motivation are common symptoms characterizing several psychiatric and neurological disorders. Such deficits may include anhedonia, defined as loss of pleasure, as well as impairments in anticipatory pleasure, reward valuation, motivation/effort, and reward learning. This chapter describes recent advances in the development of behavioral tasks used to assess different aspects of reward processing in both humans and non-human animals. While earlier tasks were generally developed independently with limited cross-species correspondence, a newer generation of translational tasks has emerged that are theoretically and procedurally analogous across species and allow parallel testing, data analyses, and interpretation between human and rodent behaviors. Such enhanced conformity between cross-species tasks will facilitate investigation of the neurobiological mechanisms underlying discrete reward and motivated behaviors and is expected to improve our understanding and treatment of neuropsychiatric disorders characterized by reward and motivation deficits. PMID:26873017

  3. Reward-Guided Learning with and without Causal Attribution

    PubMed Central

    Jocham, Gerhard; Brodersen, Kay H.; Constantinescu, Alexandra O.; Kahn, Martin C.; Ianni, Angela M.; Walton, Mark E.; Rushworth, Matthew F.S.; Behrens, Timothy E.J.

    2016-01-01

    Summary When an organism receives a reward, it is crucial to know which of many candidate actions caused this reward. However, recent work suggests that learning is possible even when this most fundamental assumption is not met. We used novel reward-guided learning paradigms in two fMRI studies to show that humans deploy separable learning mechanisms that operate in parallel. While behavior was dominated by precise contingent learning, it also revealed hallmarks of noncontingent learning strategies. These learning mechanisms were separable behaviorally and neurally. Lateral orbitofrontal cortex supported contingent learning and reflected contingencies between outcomes and their causal choices. Amygdala responses around reward times related to statistical patterns of learning. Time-based heuristic mechanisms were related to activity in sensorimotor corticostriatal circuitry. Our data point to the existence of several learning mechanisms in the human brain, of which only one relies on applying known rules about the causal structure of the task. PMID:26971947

  4. Ventromedial Frontal Cortex Is Critical for Guiding Attention to Reward-Predictive Visual Features in Humans.

    PubMed

    Vaidya, Avinash R; Fellows, Lesley K

    2015-09-16

    Adaptively interacting with our environment requires extracting information that will allow us to successfully predict reward. This can be a challenge, particularly when there are many candidate cues, and when rewards are probabilistic. Recent work has demonstrated that visual attention is allocated to stimulus features that have been associated with reward on previous trials. The ventromedial frontal lobe (VMF) has been implicated in learning in dynamic environments of this kind, but the mechanism by which this region influences this process is not clear. Here, we hypothesized that the VMF plays a critical role in guiding attention to reward-predictive stimulus features based on feedback. We tested the effects of VMF damage in human subjects on a visual search task in which subjects were primed to attend to task-irrelevant colors associated with different levels of reward, incidental to the search task. Consistent with previous work, we found that distractors had a greater influence on reaction time when they appeared in colors associated with high reward in the previous trial compared with colors associated with low reward in healthy control subjects and patients with prefrontal damage sparing the VMF. However, this reward modulation of attentional priming was absent in patients with VMF damage. Thus, an intact VMF is necessary for directing attention based on experience with cue-reward associations. We suggest that this region plays a role in selecting reward-predictive cues to facilitate future learning. There has been a swell of interest recently in the ventromedial frontal cortex (VMF), a brain region critical to associative learning. However, the underlying mechanism by which this region guides learning is not well understood. Here, we tested the effects of damage to this region in humans on a task in which rewards were linked incidentally to visual features, resulting in trial-by-trial attentional priming. Controls and subjects with prefrontal damage

  5. The Function of Verbal Rewards in the Science Classroom.

    ERIC Educational Resources Information Center

    Lawlor, Francis Xavier

    Contained is a review of the research done on the use of verbal rewards in the classroom. Some verbal rewards are tasks rewards, other rewards are more personal; and still other verbal rewards are impersonal. Verbal rewards, therefore, have both intellectual and emotional implications. Research literature indicates that "verbal reward"…

  6. Reward and attentional control in visual search.

    PubMed

    Yantis, Steven; Anderson, Brian A; Wampler, Emma K; Laurent, Patryk A

    2012-01-01

    It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction--even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity.

  7. Reward and Attentional Control in Visual Search

    PubMed Central

    Anderson, Brian A.; Wampler, Emma K.; Laurent, Patryk A.

    2015-01-01

    It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction—even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity. PMID:23437631

  8. Rewarded visual items capture attention only in heterogeneous contexts.

    PubMed

    Feldmann-Wüstefeld, Tobias; Brandhofer, Ruben; Schubö, Anna

    2016-07-01

    Reward is known to affect visual search performance. Rewarding targets can increase search performance, whereas rewarding distractors can decrease search performance. We used subcomponents of the N2pc in the event-related EEG, the NT (target negativity) and ND /PD (distractor negativity/positivity), in a visual search task to disentangle target and distractor processing related to reward. The visual search task comprised homogeneous and heterogeneous contexts in which a target and a colored distractor were embedded. After each correct trial, participants were given a monetary reward that depended on the color of the distractor. We found longer response times for displays with high-reward distractors compared to displays with low-reward distractors, indicating reward-induced interference, however, only for heterogeneous contexts. The NT component, indicative of attention deployment to the target, showed that target selection was impaired by high-reward distractors, regardless of the context homogeneity. Processing of distractors was not affected by reward in homogeneous contexts. In heterogeneous contexts, however, high-reward distractors were more likely to capture attention (ND ) and required more effort to be suppressed (PD ) than low-reward distractors. In sum the results showed that, despite the fact that target selection is impaired by high-reward distractors in both homogeneous and heterogeneous background contexts, high-reward distractors capture attention only in scenarios that foster attentional capture. © 2016 Society for Psychophysiological Research.

  9. Cerebellar granule cells encode the expectation of reward

    PubMed Central

    Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun

    2017-01-01

    The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129

  10. The differential effects of tangible rewards and praise on intrinsic motivation: A comparison of cognitive evaluation theory and operant theory.

    PubMed

    Carton, J S

    1996-01-01

    Substantial research indicates that tangible rewards, such as money, prizes, and tokens, decrease response rates by undermining intrinsic motivation. In contrast, praise appears to increase response rates by enhancing intrinsic motivation. Based on their interpretation of available evidence, many social-cognitive researchers warn not to use tangible rewards in applied settings and to use praise instead. Furthermore, they suggest that the differential effects of the two types of rewards on intrinsic motivation cannot be explained using principles of operant psychology. Cognitive evaluation theory provides one of the most recent and widely cited social-cognitive explanations for the different effects of the two types of rewards on intrinsic motivation (Deci & Ryan, 1985). However, a review of existing research found little support for the explanations based on this theory and revealed three potential confounding effects: (a) temporal contiguity, (b) the number of reward administrations, and (c) discriminative stimuli associated with reward availability. These three confounding factors provide explanations for the effects of tangible rewards and praise on intrinsic motivation that are consistent with principles of operant psychology.

  11. The differential effects of tangible rewards and praise on intrinsic motivation: A comparison of cognitive evaluation theory and operant theory

    PubMed Central

    Carton, John S.

    1996-01-01

    Substantial research indicates that tangible rewards, such as money, prizes, and tokens, decrease response rates by undermining intrinsic motivation. In contrast, praise appears to increase response rates by enhancing intrinsic motivation. Based on their interpretation of available evidence, many social-cognitive researchers warn not to use tangible rewards in applied settings and to use praise instead. Furthermore, they suggest that the differential effects of the two types of rewards on intrinsic motivation cannot be explained using principles of operant psychology. Cognitive evaluation theory provides one of the most recent and widely cited social-cognitive explanations for the different effects of the two types of rewards on intrinsic motivation (Deci & Ryan, 1985). However, a review of existing research found little support for the explanations based on this theory and revealed three potential confounding effects: (a) temporal contiguity, (b) the number of reward administrations, and (c) discriminative stimuli associated with reward availability. These three confounding factors provide explanations for the effects of tangible rewards and praise on intrinsic motivation that are consistent with principles of operant psychology. PMID:22478261

  12. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia

    PubMed Central

    Young, Jared W.; Markou, Athina

    2015-01-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients’ inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. PMID:26194891

  13. Inverted Social Reward: Associations between Psychopathic Traits and Self-Report and Experimental Measures of Social Reward

    PubMed Central

    Foulkes, Lucy; McCrory, Eamon J.; Neumann, Craig S.; Viding, Essi

    2014-01-01

    Individuals with high levels of psychopathic traits tend to undervalue long-term, affiliative relationships, but it remains unclear what motivates them to engage in social interactions at all. Their experience of social reward may provide an important clue. In Study 1 of this paper, a large sample of participants (N = 505) completed a measure of psychopathic traits (Self-Report Psychopathy Scale Short-Form) and a measure of social reward value (Social Reward Questionnaire) to explore what aspects of social reward are associated with psychopathic traits. In Study 2 (N = 110), the same measures were administered to a new group of participants along with two experimental tasks investigating monetary and social reward value. Psychopathic traits were found to be positively correlated with the enjoyment of callous treatment of others and negatively associated with the enjoyment of positive social interactions. This indicates a pattern of ‘inverted’ social reward in which being cruel is enjoyable and being kind is not. Interpersonal psychopathic traits were also positively associated with the difference between mean reaction times (RTs) in the monetary and social experimental reward tasks; individuals with high levels of these traits responded comparatively faster to social than monetary reward. We speculate that this may be because social approval/admiration has particular value for these individuals, who have a tendency to use and manipulate others. Together, these studies provide evidence that the self-serving and cruel social behaviour seen in psychopathy may in part be explained by what these individuals find rewarding. PMID:25162519

  14. Reward modulates attention independently of action value in posterior parietal cortex

    PubMed Central

    Peck, Christopher J.; Jangraw, David C.; Suzuki, Mototaka; Efem, Richard; Gottlieb, Jacqueline

    2009-01-01

    While numerous studies explored the mechanisms of reward-based decisions (the choice of action based on expected gain), few asked how reward influences attention (the selection of information relevant for a decision). Here we show that a powerful determinant of attentional priority is the association between a stimulus and an appetitive reward. A peripheral cue heralded the delivery of reward (RC+) or no reward (RC−); to experience the predicted outcome monkeys made a saccade to a target that appeared unpredictably at the same or opposite location relative to the cue. Although the RC had no operant associations (did not specify the required saccade) they automatically biased attention, such that the RC+ attracted attention and RC− repelled attention from their location. Neurons in the lateral intraparietal area (LIP) encoded these attentional biases, maintaining sustained excitation at the location of an RC+ and inhibition at the location of an RC−. Contrary to the hypothesis that LIP encodes action value, neurons did not encode the expected reward of the saccade. Moreover, the cue-evoked biases were maladaptive, interfering with the required saccade, and they biases increased rather than abating with training, strikingly at odds with an adaptive decision process. After prolonged training valence selectivity appeared at shorter latencies and automatically transferred to a novel task context, suggesting that training produced visual plasticity. The results suggest that reward predictors gain automatic attentional priority regardless of their operant associations, and this valence-specific priority is encoded in LIP independently of the expected reward of an action. PMID:19741125

  15. Nicotine Withdrawal Induces Neural Deficits in Reward Processing.

    PubMed

    Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J

    2017-06-01

    Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p < .001). Exploratory analyses indicated withdrawal increased time to initiate the next trial following unexpected punishment trials (p < .001) and response time on reward trials during withdrawal was positively related to nicotine dependence (p < .001). Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in

  16. Acute stress selectively reduces reward sensitivity

    PubMed Central

    Berghorst, Lisa H.; Bogdan, Ryan; Frank, Michael J.; Pizzagalli, Diego A.

    2013-01-01

    Stress may promote the onset of psychopathology by disrupting reward processing. However, the extent to which stress impairs reward processing, rather than incentive processing more generally, is unclear. To evaluate the specificity of stress-induced reward processing disruption, 100 psychiatrically healthy females were administered a probabilistic stimulus selection task (PSST) that enabled comparison of sensitivity to reward-driven (Go) and punishment-driven (NoGo) learning under either “no stress” or “stress” (threat-of-shock) conditions. Cortisol samples and self-report measures were collected. Contrary to hypotheses, the groups did not differ significantly in task performance or cortisol reactivity. However, further analyses focusing only on individuals under “stress” who were high responders with regard to both cortisol reactivity and self-reported negative affect revealed reduced reward sensitivity relative to individuals tested in the “no stress” condition; importantly, these deficits were reward-specific. Overall, findings provide preliminary evidence that stress-reactive individuals show diminished sensitivity to reward, but not punishment, under stress. While such results highlight the possibility that stress-induced anhedonia might be an important mechanism linking stress to affective disorders, future studies are necessary to confirm this conjecture. PMID:23596406

  17. Effort provides its own reward: endeavors reinforce subjective expectation and evaluation of task performance.

    PubMed

    Wang, Lei; Zheng, Jiehui; Meng, Liang

    2017-04-01

    Although many studies have investigated the relationship between the amount of effort invested in a certain task and one's attitude towards the subsequent reward, whether exerted effort would impact one's expectation and evaluation of performance feedback itself still remains to be examined. In the present study, two types of calculation tasks that varied in the required effort were adopted, and we resorted to electroencephalography to probe the temporal dynamics of how exerted effort would affect one's anticipation and evaluation of performance feedback. In the high-effort condition, a more salient stimulus-preceding negativity was detected during the anticipation stage, which was accompanied with a more salient FRN/P300 complex (a more positive P300 and a less negative feedback-related negativity) in response to positive outcomes in the evaluation stage. These results suggested that when more effort was invested, an enhanced anticipatory attention would be paid toward one's task performance feedback and that positive outcomes would be subjectively valued to a greater extent.

  18. How to report and monitor the performance of waiting list management.

    PubMed

    Torkki, Markus; Linna, Miika; Seitsalo, Seppo; Paavolainen, Pekka

    2002-01-01

    Potential problems concerning waiting list management are often monitored using mean waiting times based on empirical samples. However, the appropriateness of mean waiting time as an indicator of access can be questioned if a waiting list is not managed well, e.g., if the queue discipline is violated. This study was performed to find out about the queue discipline in waiting lists for elective surgery to reveal potential discrepancies in waiting list management. There were 1,774 waiting list patients for hallux valgus or varicose vein surgery or sterilization. The waiting time distributions of patients receiving surgery and of patients still waiting for an operation are presented in column charts. The charts are compared with two model charts. One model chart presents a high queue discipline (first in-first out) and another a poor queue discipline (random) queue. There were significant differences in waiting list management across hospitals and patient categories. Examples of a poor queue discipline were found in queues for hallux valgus and varicose vein operations. A routine waiting list reporting should be used to guarantee the quality of waiting list management and to pinpoint potential problems in access. It is important to monitor not only the number of patients in the waiting list but also the queue discipline and the balance between demand and supply of surgical services. The purpose for this type of reporting is to ensure that the priority setting made at health policy level also works in practise.

  19. Cerebral interactions of pain and reward and their relevance for chronic pain.

    PubMed

    Becker, Susanne; Gandhi, Wiebke; Schweinhardt, Petra

    2012-06-29

    Pain and reward are opponent, interacting processes. Such interactions are enabled by neuroanatomical and neurochemical overlaps of brain systems that process pain and reward. Cerebral processing of hedonic ('liking') and motivational ('wanting') aspects of reward can be separated: the orbitofrontal cortex and opioids play an important role for the hedonic experience, and the ventral striatum and dopamine predominantly process motivation for reward. Supported by neuroimaging studies, we present here the hypothesis that the orbitofrontal cortex and opioids are responsible for pain modulation by hedonic experience, while the ventral striatum and dopamine mediate motivational effects on pain. A rewarding stimulus that appears to be particularly important in the context of pain is pain relief. Further, reward, including pain relief, leads to operant learning, which can affect pain sensitivity. Indirect evidence points at brain mechanisms that might underlie pain relief as a reward and related operant learning but studies are scarce. Investigating the cerebral systems underlying pain-reward interactions as well as related operant learning holds the potential of better understanding mechanisms that contribute to the development and maintenance of chronic pain, as detailed in the last section of this review. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation.

    PubMed

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn.

  1. The impact of monetary reward on memory in schizophrenia spectrum disorder.

    PubMed

    Thornton, Allen E; Boudreau, Vanessa G; Griffiths, Stephanie Y; Woodward, Todd S; Fawkes-Kirby, Tanya; Honer, William G

    2007-09-01

    The impact of monetary reward on verbal working memory (vWM) and verbal long-term memory (vLTM) was evaluated in 50 patients with schizophrenia spectrum disorders and 52 matched healthy participants. This research was motivated by the observations that negative symptoms in schizophrenia are associated with reduced drive and that patients with these symptoms exhibit greater mnemonic impairments. Reward-related gains were evaluated across two levels of vWM load on the n-back task and across three aspects of vLTM derived from the California Verbal Learning Test-II (i.e., learning, total immediate recall, and retention). Although healthy individuals benefited from reward at a high vWM load level, schizophrenia patients exhibited no reward-related improvements in vWM. In contrast, improvement in vLTM retention was induced by reward for both patients and controls. Finally, symptomatic and pharmacology treatment factors were associated with reward-related gains in persons with schizophrenia. In conclusion, contingent monetary rewards delivered during vWM and vLTM enhanced specific aspects of memory. The influence was relatively small and dependent on the specific neurocognitive operation examined, the mental health status of the participants, and for patients, their particular symptoms and pharmacological treatments. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  2. An Efficient Wait-Free Vector

    DOE PAGES

    Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian

    2016-03-01

    The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less

  3. Parkinson's disease and dopaminergic therapy—differential effects on movement, reward and cognition

    PubMed Central

    Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.

    2008-01-01

    Cognitive deficits are very common in Parkinson's disease particularly for ‘executive functions’ associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex relationship between the specific cognitive problems faced by an individual patient, their stage of disease and dopaminergic treatment. We used a bimodality continuous performance task during fMRI to examine how patients with Parkinson's disease represent the prospect of reward and switch between competing task rules accordingly. The task-switch was not separately cued but was based on the implicit reward relevance of spatial and verbal dimensions of successive compound stimuli. Nineteen patients were studied in relative ‘on’ and ‘off’ states, induced by dopaminergic medication withdrawal (Hoehn and Yahr stages 1–4). Patients were able to successfully complete the task and establish a bias to one or other dimension in order to gain reward. However the lateral prefrontal cortex and caudate nucleus showed a non-linear U-shape relationship between motor disease severity and regional brain activation. Dopaminergic treatment led to a shift in this U-shape function, supporting the hypothesis of differential neurodegeneration in separate motor and cognitive cortico–striato–thalamo–cortical circuits. In addition, anterior cingulate activation associated with reward expectation declined with more severe disease, whereas activation following actual rewards increased with more severe disease. This may facilitate a change in goal-directed behaviours from deferred predicted rewards to immediate actual rewards, particularly when on dopaminergic treatment. We discuss the implications for investigation and optimal treatment of this common condition at different stages of disease. PMID:18577547

  4. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia.

    PubMed

    Young, Jared W; Markou, Athina

    2015-09-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients' inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Reward associations impact both iconic and visual working memory.

    PubMed

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Operant Conditioning of Primate Prefrontal Neurons

    PubMed Central

    Schultz, Wolfram; Sakagami, Masamichi

    2010-01-01

    An operant is a behavioral act that has an impact on the environment to produce an outcome, constituting an important component of voluntary behavior. Because the environment can be volatile, the same action may cause different consequences. Thus to obtain an optimal outcome, it is crucial to detect action–outcome relationships and adapt the behavior accordingly. Although prefrontal neurons are known to change activity depending on expected reward, it remains unknown whether prefrontal activity contributes to obtaining reward. We investigated this issue by setting variable relationships between levels of single-neuron activity and rewarding outcomes. Lateral prefrontal neurons changed their spiking activity according to the specific requirements for gaining reward, without the animals making a motor response. Thus spiking activity constituted an operant response. Data from a control task suggested that these changes were unlikely to reflect simple reward predictions. These data demonstrate a remarkable capacity of prefrontal neurons to adapt to specific operant requirements at the single-neuron level. PMID:20107129

  7. Impaired Learning of Social Compared to Monetary Rewards in Autism

    PubMed Central

    Lin, Alice; Rangel, Antonio; Adolphs, Ralph

    2012-01-01

    A leading hypothesis to explain the social dysfunction in people with autism spectrum disorders (ASD) is that they exhibit a deficit in reward processing and motivation specific to social stimuli. However, there have been few direct tests of this hypothesis to date. Here we used an instrumental reward learning task that contrasted learning with social rewards (pictures of positive and negative faces) against learning with monetary reward (winning and losing money). The two tasks were structurally identical except for the type of reward, permitting direct comparisons. We tested 10 high-functioning people with ASD (7M, 3F) and 10 healthy controls who were matched on gender, age, and education. We found no significant differences between the two groups in terms of overall ability behaviorally to discriminate positive from negative slot machines, reaction-times, and valence ratings, However, there was a specific impairment in the ASD group in learning to choose social rewards, compared to monetary rewards: they had a significantly lower cumulative number of choices of the most rewarding social slot machine, and had a significantly slower initial learning rate for the socially rewarding slot machine, compared to the controls. The findings show a deficit in reward learning in ASD that is greater for social rewards than for monetary rewards, and support the hypothesis of a disproportionate impairment in social reward processing in ASD. PMID:23060743

  8. Value and probability coding in a feedback-based learning task utilizing food rewards.

    PubMed

    Tricomi, Elizabeth; Lempert, Karolina M

    2015-01-01

    For the consequences of our actions to guide behavior, the brain must represent different types of outcome-related information. For example, an outcome can be construed as negative because an expected reward was not delivered or because an outcome of low value was delivered. Thus behavioral consequences can differ in terms of the information they provide about outcome probability and value. We investigated the role of the striatum in processing probability-based and value-based negative feedback by training participants to associate cues with food rewards and then employing a selective satiety procedure to devalue one food outcome. Using functional magnetic resonance imaging, we examined brain activity related to receipt of expected rewards, receipt of devalued outcomes, omission of expected rewards, omission of devalued outcomes, and expected omissions of an outcome. Nucleus accumbens activation was greater for rewarding outcomes than devalued outcomes, but activity in this region did not correlate with the probability of reward receipt. Activation of the right caudate and putamen, however, was largest in response to rewarding outcomes relative to expected omissions of reward. The dorsal striatum (caudate and putamen) at the time of feedback also showed a parametric increase correlating with the trialwise probability of reward receipt. Our results suggest that the ventral striatum is sensitive to the motivational relevance, or subjective value, of the outcome, while the dorsal striatum codes for a more complex signal that incorporates reward probability. Value and probability information may be integrated in the dorsal striatum, to facilitate action planning and allocation of effort. Copyright © 2015 the American Physiological Society.

  9. Social reward shapes attentional biases.

    PubMed

    Anderson, Brian A

    2016-01-01

    Paying attention to stimuli that predict a reward outcome is important for an organism to survive and thrive. When visual stimuli are associated with tangible, extrinsic rewards such as money or food, these stimuli acquire high attentional priority and come to automatically capture attention. In humans and other primates, however, many behaviors are not motivated directly by such extrinsic rewards, but rather by the social feedback that results from performing those behaviors. In the present study, I examine whether positive social feedback can similarly influence attentional bias. The results show that stimuli previously associated with a high probability of positive social feedback elicit value-driven attentional capture, much like stimuli associated with extrinsic rewards. Unlike with extrinsic rewards, however, such stimuli also influence task-specific motivation. My findings offer a potential mechanism by which social reward shapes the information that we prioritize when perceiving the world around us.

  10. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    PubMed

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.

  11. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict

    PubMed Central

    van den Berg, Berry; Krebs, Ruth M.; Lorist, Monicque M.; Woldorff, Marty G.

    2015-01-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus-conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive-task performance. In this task the cue indicated whether or not the subject needed to prepare for an upcoming Stroop stimulus, and if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued-attention and cued-reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (CNV) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted faster versus slower response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across-subjects with the degree to which reward-prospect both facilitated overall task performance (faster RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263

  12. Components of reward-driven attentional capture.

    PubMed

    Sha, Li Z; Jiang, Yuhong V

    2016-02-01

    Recent research reported that task-irrelevant colors captured attention if these colors previously served as search targets and received high monetary reward. We showed that both monetary reward and value-independent mechanisms influenced selective attention. Participants searched for two potential target colors among distractor colors in the training phase. Subsequently, they searched for a shape singleton in a testing phase. Experiment 1 found that participants were slower in the testing phase if a distractor of a previous target color was present rather than absent. Such slowing was observed even when no monetary reward was used during training. Experiment 2 associated monetary rewards with the target colors during the training phase. Participants were faster finding the target associated with higher monetary reward. However, reward training did not yield value-dependent attentional capture in the testing phase. Attentional capture by the previous target colors was not significantly greater for the previously high-reward color than the previously low or no-reward color. These findings revealed both the power and limitations of monetary reward on attention. Although monetary reward can increase attentional priority for the high-reward target during training, subsequent attentional capture effects may not be reward-based, but reflect, in part, attentional capture by previous targets.

  13. A test of the reward-contrast hypothesis.

    PubMed

    Dalecki, Stefan J; Panoz-Brown, Danielle E; Crystal, Jonathon D

    2017-12-01

    Source memory, a facet of episodic memory, is the memory of the origin of information. Whereas source memory in rats is sustained for at least a week, spatial memory degraded after approximately a day. Different forgetting functions may suggest that two memory systems (source memory and spatial memory) are dissociated. However, in previous work, the two tasks used baiting conditions consisting of chocolate and chow flavors; notably, the source memory task used the relatively better flavor. Thus, according to the reward-contrast hypothesis, when chocolate and chow were presented within the same context (i.e., within a single radial maze trial), the chocolate location was more memorable than the chow location because of contrast. We tested the reward-contrast hypothesis using baiting configurations designed to produce reward-contrast. The reward-contrast hypothesis predicts that under these conditions, spatial memory will survive a 24-h retention interval. We documented elimination of spatial memory performance after a 24-h retention interval using a reward-contrast baiting pattern. These data suggest that reward contrast does not explain our earlier findings that source memory survives unusually long retention intervals. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Disentangling reward anticipation with simultaneous pupillometry / fMRI.

    PubMed

    Schneider, Max; Leuchs, Laura; Czisch, Michael; Sämann, Philipp G; Spoormaker, Victor I

    2018-05-05

    The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Reward Modulates Adaptations to Conflict

    ERIC Educational Resources Information Center

    Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim

    2012-01-01

    Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single…

  16. I endeavor to make it: effort increases valuation of subsequent monetary reward.

    PubMed

    Ma, Qingguo; Meng, Liang; Wang, Lei; Shen, Qiang

    2014-03-15

    Although it is commonly accepted that the amount of effort we put into accomplishing a task would exert an influence on subsequent reward processing and outcome evaluation, whether effort is incorporated as a cost or it would increase the valuation of concomitant reward is still under debate. In this study, EEGs were recorded while subjects performed calculation tasks that required different amount of effort, correct responses of which were followed by either no reward or fixed compensation. Results showed that high effort induced larger differentiated FRN responses to the reward and non-reward discrepancy across two experimental conditions. Furthermore, P300 manifested valence effect during reward feedback, with more positive amplitudes for reward than for non-reward only in the high effort condition. These results suggest that effort might increase subjective evaluation toward subsequent reward. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation

    PubMed Central

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn. PMID:25278834

  18. Adaptive Reward Pursuit: How Effort Requirements Affect Unconscious Reward Responses and Conscious Reward Decisions

    ERIC Educational Resources Information Center

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2012-01-01

    When in pursuit of rewards, humans weigh the value of potential rewards against the amount of effort that is required to attain them. Although previous research has generally conceptualized this process as a deliberate calculation, recent work suggests that rudimentary mechanisms--operating without conscious intervention--play an important role as…

  19. Improving control over the impulse for reward: sensitivity of harmful alcohol drinkers to delayed reward but not immediate punishment.

    PubMed

    Rossiter, Sarah; Thompson, Julian; Hester, Robert

    2012-09-01

    Cognitive control dysfunction has been identified in dependent alcohol users and implicated in the transition from abuse to dependence, although evidence of dyscontrol in chronic but non-dependent 'harmful' alcohol abusers is mixed. The current study examined harmful alcohol users response inhibition over rewarding stimuli in the presence of monetary reward and punishment, to determine whether changes in sensitivity to these factors, noted in imaging studies of dependent users, influences impulse control. Harmful (n=30) and non-hazardous (n=55) alcohol users were administered a Monetary Incentive Go/No-go task that required participants to inhibit a prepotent motor response associated with reward. Harmful alcohol users showed a significantly poorer ability to withhold their impulse for a rewarding stimulus in the presence of immediate monetary punishment for failure, while retaining equivalent response inhibition performance under neutral conditions (associated with neither monetary loss or gain), and significantly better performance under delayed reward conditions. The results of the present study suggest that non-dependent alcohol abusers have altered sensitivity to reward and punishment that influences their impulse control for reward, in the absence of gross dyscontrol that is consistent with past findings in which such performance contingencies were not used. The ability of delayed monetary reward, but not punishment, to increase sustained impulse control in this sample has implications for the mechanism that might underlie the transition from alcohol abuse to dependence, as well as intervention strategies aimed at preventing this transition. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Cognitive Inflexibility in Gamblers is Primarily Present in Reward-Related Decision Making

    PubMed Central

    Boog, Michiel; Höppener, Paul; v. d. Wetering, Ben J. M.; Goudriaan, Anna E.; Boog, Matthijs C.; Franken, Ingmar H. A.

    2014-01-01

    One hallmark of gambling disorder (GD) is the observation that gamblers have problems stopping their gambling behavior once it is initiated. On a neuropsychological level, it has been hypothesized that this is the result of a cognitive inflexibility. The present study investigated cognitive inflexibility in patients with GD using a task involving cognitive inflexibility with a reward element (i.e., reversal learning) and a task measuring general cognitive inflexibility without such a component (i.e., response perseveration). For this purpose, scores of a reward-based reversal learning task (probabilistic reversal learning task) and the Wisconsin card sorting task were compared between a group of treatment seeking patients with GD and a gender and age matched control group. The results show that pathological gamblers have impaired performance on the neurocognitive task measuring reward-based cognitive inflexibility. However, no difference between the groups is observed regarding non-reward-based cognitive inflexibility. This suggests that cognitive inflexibility in GD is the result of an aberrant reward-based learning, and not based on a more general problem with cognitive flexibility. The pattern of observed problems is suggestive of a dysfunction of the orbitofrontal cortex, the ventrolateral prefrontal cortex, and the ventral regions of the striatum in gamblers. Relevance for the neurocognition of problematic gambling is discussed. PMID:25165438

  1. Monetary reward speeds up voluntary saccades.

    PubMed

    Chen, Lewis L; Chen, Y Mark; Zhou, Wu; Mustain, William D

    2014-01-01

    Past studies have shown that reward contingency is critical for sensorimotor learning, and reward expectation speeds up saccades in animals. Whether monetary reward speeds up saccades in human remains unknown. Here we addressed this issue by employing a conditional saccade task, in which human subjects performed a series of non-reflexive, visually-guided horizontal saccades. The subjects were (or were not) financially compensated for making a saccade in response to a centrally-displayed visual congruent (or incongruent) stimulus. Reward modulation of saccadic velocities was quantified independently of the amplitude-velocity coupling. We found that reward expectation significantly sped up voluntary saccades up to 30°/s, and the reward modulation was consistent across tests. These findings suggest that monetary reward speeds up saccades in human in a fashion analogous to how juice reward sped up saccades in monkeys. We further noticed that the idiosyncratic nasal-temporal velocity asymmetry was highly consistent regardless of test order, and its magnitude was not correlated with the magnitude of reward modulation. This suggests that reward modulation and the intrinsic velocity asymmetry may be governed by separate mechanisms that regulate saccade generation.

  2. Reward-based contextual learning supported by anterior cingulate cortex.

    PubMed

    Umemoto, Akina; HajiHosseini, Azadeh; Yates, Michael E; Holroyd, Clay B

    2017-06-01

    The anterior cingulate cortex (ACC) is commonly associated with cognitive control and decision making, but its specific function is highly debated. To explore a recent theory that the ACC learns the reward values of task contexts (Holroyd & McClure in Psychological Review, 122, 54-83, 2015; Holroyd & Yeung in Trends in Cognitive Sciences, 16, 122-128, 2012), we recorded the event-related brain potentials (ERPs) from participants as they played a novel gambling task. The participants were first required to select from among three games in one "virtual casino," and subsequently they were required to select from among three different games in a different virtual casino; unbeknownst to them, the payoffs for the games were higher in one casino than in the other. Analysis of the reward positivity, an ERP component believed to reflect reward-related signals carried to the ACC by the midbrain dopamine system, revealed that the ACC is sensitive to differences in the reward values associated with both the casinos and the games inside the casinos, indicating that participants learned the values of the contexts in which rewards were delivered. These results highlight the importance of the ACC in learning the reward values of task contexts in order to guide action selection.

  3. Visual perceptual learning by operant conditioning training follows rules of contingency.

    PubMed

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning.

  4. Visual perceptual learning by operant conditioning training follows rules of contingency

    PubMed Central

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning. PMID:26028984

  5. Ultrasound waiting lists: rational queue or extended capacity?

    PubMed

    Brasted, Christopher

    2008-06-01

    The features and issues regarding clinical waiting lists in general and general ultrasound waiting lists in particular are reviewed, and operational aspects of providing a general ultrasound service are also discussed. A case study is presented describing a service improvement intervention in a UK NHS hospital's ultrasound department, from which arises requirements for a predictive planning model for an ultrasound waiting list. In the course of this, it becomes apparent that a booking system is a more appropriate way of describing the waiting list than a conventional queue. Distinctive features are identified from the literature and the case study as the basis for a predictive model, and a discrete event simulation model is presented which incorporates the distinctive features.

  6. Self-Control Assessments of Capuchin Monkeys With the Rotating Tray Task and the Accumulation Task

    PubMed Central

    Beran, Michael J.; Perdue, Bonnie M.; Rossettie, Mattea S.; James, Brielle T.; Whitham, Will; Walker, Bradlyn; Futch, Sara E.; Parrish, Audrey E.

    2016-01-01

    Recent studies of delay of gratification in capuchin monkeys using a rotating tray (RT) task have shown improved self-control performance in these animals in comparison to the accumulation (AC) task. In this study, we investigated whether this improvement resulted from the difference in methods between the rotating tray task and previous tests, or whether it was the result of greater overall experience with delay of gratification tasks. Experiment 1 produced similar performance levels by capuchins monkeys in the RT and AC tasks when identical reward and temporal parameters were used. Experiment 2 demonstrated a similar result using reward amounts that were more similar to previous AC experiments with these monkeys. In Experiment 3, monkeys performed multiple versions of the AC task with varied reward and temporal parameters. Their self-control behavior was found to be dependent on the overall delay to reward consumption, rather than the overall reward amount ultimately consumed. These findings indicate that these capuchin monkeys’ self-control capacities were more likely to have improved across studies because of the greater experience they had with delay of gratification tasks. Experiment 4 and Experiment 5 tested new, task-naïve monkeys on both tasks, finding more limited evidence of self-control, and no evidence that one task was more beneficial than the other in promoting self-control. The results of this study suggest that future testing of this kind should focus on temporal parameters and reward magnitude parameters to establish accurate measures of delay of gratification capacity and development in this species and perhaps others. PMID:27298233

  7. Improved memory for reward cues following acute buprenorphine administration in humans.

    PubMed

    Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack

    2015-03-01

    In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues. Copyright © 2015. Published by Elsevier Ltd.

  8. Struggling toward reward: Recent experience of anhedonia interacts with motivation to predict reward pursuit in the face of a stressful manipulation.

    PubMed

    Bryant, Jessica; Winer, E Samuel; Salem, Taban; Nadorff, Michael R

    2017-01-01

    Anhedonia, or the loss of interest and/or pleasure, is a core symptom of depression. Individuals experiencing anhedonia have difficulty motivating themselves to pursue rewarding stimuli, which can result in dysfunction. Action orientation is a motivational factor that might interact with anhedonia to potentially buffer against this dysfunction, as action-oriented individuals upregulate positive affect to quickly motivate themselves to complete goals in the face of stress. The Effort-Expenditure for Rewards Task (EEfRT) is a promising new method for examining differences in motivation in individuals experiencing anhedonia. In the EEfRT, participants choose either easier tasks associated with smaller monetary rewards or harder tasks associated with larger monetary rewards. We examined the relationship between action orientation and EEfRT performance following a negative mood induction in a sample with varying levels of anhedonia. There were two competing hypotheses: (1) action orientation would act as a buffer against anhedonia such that action-oriented individuals, regardless of anhedonic symptoms, would be motivated to pursue greater rewards despite stress, or (2) anhedonia would act as a debilitating factor such that individuals with elevated anhedonic symptoms, regardless of action orientation, would not pursue greater rewards. We examined these hypotheses via Generalized Estimating Equations and found an interaction between anhedonia and action orientation. At low levels of anhedonia, action orientation was associated with effort for reward, but this relationship was not present at high levels of anhedonia. Thus, at low levels of anhedonia, action orientation acted as a buffer against stress, but at high levels, anhedonia debilitated action orientation so that it was no longer a promotive factor.

  9. Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward?

    PubMed

    Bechara, Antoine; Dolan, Sara; Hindes, Andrea

    2002-01-01

    On a decision-making instrument known as the "gambling task" (GT), a subgroup of substance dependent individuals (SDI) opted for choices that yield high immediate gains in spite of higher future losses. This resembles the behavior of patients with ventromedial (VM) prefrontal cortex lesions. In this study, we addressed the possibility that hypersensitivity to reward may account for the "myopia" for the future in this subgroup of SDI. We used a variant version of the GT, in which the good decks yielded high immediate punishment but higher delayed reward. The bad decks yielded low immediate punishment and lower delayed reward. We measured the skin conductance response (SCR) of subjects after receiving reward (reward SCR) and during their pondering from which deck to choose (anticipatory SCR). A subgroup of SDI who was not impaired on the original GT performed normally on the variant GT. The subgroup of SDI who was impaired on the original GT showed two levels of performance on the variant GT. One subgroup (36% of the sample) performed poorly on the variant GT, and showed similar behavioral and physiological impairments to VM patients. The other subgroup of SDI (64% of the sample) performed normally on the variant task, but had abnormally large physiological responses to reward, i.e. large SCR after receiving reward (reward SCR) and large SCR in anticipation of outcomes that yield large reward. Thus, the combined cognitive and physiological approach of assessing decision-making characterizes three sub-populations of SDI. One sub-population is without impairments that can be detected by any measure of the GT paradigm. Another sub-population is similar to VM patients in that they are insensitive to the future, both positive and negative. A third sub-population is hypersensitive to reward, so that the presence or the prospect of receiving, reward dominates their behavior.

  10. Sensitivity of Locus Ceruleus Neurons to Reward Value for Goal-Directed Actions

    PubMed Central

    Richmond, Barry J.

    2015-01-01

    The noradrenergic nucleus locus ceruleus (LC) is associated classically with arousal and attention. Recent data suggest that it might also play a role in motivation. To study how LC neuronal responses are related to motivational intensity, we recorded 121 single neurons from two monkeys while reward size (one, two, or four drops) and the manner of obtaining reward (passive vs active) were both manipulated. The monkeys received reward under three conditions: (1) releasing a bar when a visual target changed color; (2) passively holding a bar; or (3) touching and releasing a bar. In the first two conditions, a visual cue indicated the size of the upcoming reward, and, in the third, the reward was constant through each block of 25 trials. Performance levels and lipping intensity (an appetitive behavior) both showed that the monkeys' motivation in the task was related to the predicted reward size. In conditions 1 and 2, LC neurons were activated phasically in relation to cue onset, and this activation strengthened with increasing expected reward size. In conditions 1 and 3, LC neurons were activated before the bar-release action, and the activation weakened with increasing expected reward size but only in task 1. These effects evolved as monkeys progressed through behavioral sessions, because increasing fatigue and satiety presumably progressively decreased the value of the upcoming reward. These data indicate that LC neurons integrate motivationally relevant information: both external cues and internal drives. The LC might provide the impetus to act when the predicted outcome value is low. PMID:25740528

  11. Irrelevant learned reward associations disrupt voluntary spatial attention.

    PubMed

    MacLean, Mary H; Diaz, Gisella K; Giesbrecht, Barry

    2016-10-01

    Attention can be guided involuntarily by physical salience and by non-salient, previously learned reward associations that are currently task-irrelevant. Attention can be guided voluntarily by current goals and expectations. The current study examined, in two experiments, whether irrelevant reward associations could disrupt current, goal-driven, voluntary attention. In a letter-search task, attention was directed voluntarily (i.e., cued) on half the trials by a cue stimulus indicating the hemifield in which the target letter would appear with 100 % accuracy. On the other half of the trials, a cue stimulus was presented, but it did not provide information about the target hemifield (i.e., uncued). On both cued and uncued trials, attention could be involuntarily captured by the presence of a task-irrelevant, and physically non-salient, color, either within the cued or the uncued hemifield. Importantly, one week prior to the letter search task, the irrelevant color had served as a target feature that was predictive of reward in a separate training task. Target identification accuracy was better on cued compared to uncued trials. However, this effect was reduced when the irrelevant, and physically non-salient, reward-associated feature was present in the uncued hemifield. This effect was not observed in a second, control experiment in which the irrelevant color was not predictive of reward during training. Our results indicate that involuntary, value-driven capture can disrupt the voluntary control of spatial attention.

  12. Link Between Increased Satiety Gut Hormones and Reduced Food Reward After Gastric Bypass Surgery for Obesity.

    PubMed

    Goldstone, Anthony P; Miras, Alexander D; Scholtz, Samantha; Jackson, Sabrina; Neff, Karl J; Pénicaud, Luc; Geoghegan, Justin; Chhina, Navpreet; Durighel, Giuliana; Bell, Jimmy D; Meillon, Sophie; le Roux, Carel W

    2016-02-01

    Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.

  13. Reward alters the perception of time.

    PubMed

    Failing, Michel; Theeuwes, Jan

    2016-03-01

    Recent findings indicate that monetary rewards have a powerful effect on cognitive performance. In order to maximize overall gain, the prospect of earning reward biases visual attention to specific locations or stimulus features improving perceptual sensitivity and processing. The question we addressed in this study is whether the prospect of reward also affects the subjective perception of time. Here, participants performed a prospective timing task using temporal oddballs. The results show that temporal oddballs, displayed for varying durations, presented in a sequence of standard stimuli were perceived to last longer when they signaled a relatively high reward compared to when they signaled no or low reward. When instead of the oddball the standards signaled reward, the perception of the temporal oddball remained unaffected. We argue that by signaling reward, a stimulus becomes subjectively more salient thereby modulating its attentional deployment and distorting how it is perceived in time. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder.

    PubMed

    Wilbertz, Gregor; van Elst, Ludger Tebartz; Delgado, Mauricio R; Maier, Simon; Feige, Bernd; Philipsen, Alexandra; Blechert, Jens

    2012-03-01

    Impulsivity symptoms of adult attention deficit hyperactivity disorder (ADHD) such as increased risk taking have been linked with impaired reward processing. Previous studies have focused on reward anticipation or on rewarded executive functioning tasks and have described a striatal hyporesponsiveness and orbitofrontal alterations in adult and adolescent ADHD. Passive reward delivery and its link to behavioral impulsivity are less well understood. To study this crucial aspect of reward processing we used functional magnetic resonance imaging (fMRI) combined with electrodermal assessment in male and female adult ADHD patients (N=28) and matched healthy control participants (N=28) during delivery of monetary and non-monetary rewards. Further, two behavioral tasks assessed risky decision making (game of dice task) and delay discounting. Results indicated that both groups activated ventral and dorsal striatum and the medial orbitofrontal cortex (mOFC) in response to high-incentive (i.e. monetary) rewards. A similar, albeit less strong activation pattern was found for low-incentive (i.e. non-monetary) rewards. Group differences emerged when comparing high and low incentive rewards directly: activation in the mOFC coded for the motivational change in reward delivery in healthy controls, but not ADHD patients. Additionally, this dysfunctional mOFC activity in patients correlated with risky decision making and delay discounting and was paralleled by physiological arousal. Together, these results suggest that the mOFC codes reward value and type in healthy individuals whereas this function is deficient in ADHD. The brain-behavior correlations suggest that this deficit might be related to behavioral impulsivity. Reward value processing difficulties in ADHD should be considered when assessing reward anticipation and emotional learning in research and applied settings. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Reward-Related Behavioral Paradigms for Addiction Research in the Mouse: Performance of Common Inbred Strains

    PubMed Central

    Feyder, Michael; Brigman, Jonathan L.; Crombag, Hans S.; Saksida, Lisa M.; Bussey, Timothy J.; Holmes, Andrew

    2011-01-01

    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touchscreen-based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food

  16. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains.

    PubMed

    Lederle, Lauren; Weber, Susanna; Wright, Tara; Feyder, Michael; Brigman, Jonathan L; Crombag, Hans S; Saksida, Lisa M; Bussey, Timothy J; Holmes, Andrew

    2011-01-10

    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touch screen based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food

  17. Saccade selection when reward probability is dynamically manipulated using Markov chains

    PubMed Central

    Lovejoy, Lee P.; Krauzlis, Richard J.

    2012-01-01

    Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200–600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection. PMID:18330552

  18. Saccade selection when reward probability is dynamically manipulated using Markov chains.

    PubMed

    Nummela, Samuel U; Lovejoy, Lee P; Krauzlis, Richard J

    2008-05-01

    Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200-600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection.

  19. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    PubMed

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Self-control assessments of capuchin monkeys with the rotating tray task and the accumulation task.

    PubMed

    Beran, Michael J; Perdue, Bonnie M; Rossettie, Mattea S; James, Brielle T; Whitham, Will; Walker, Bradlyn; Futch, Sara E; Parrish, Audrey E

    2016-08-01

    Recent studies of delay of gratification in capuchin monkeys using a rotating tray (RT) task have shown improved self-control performance in these animals in comparison to the accumulation (AC) task. In this study, we investigated whether this improvement resulted from the difference in methods between the rotating tray task and previous tests, or whether it was the result of greater overall experience with delay of gratification tasks. Experiment 1 produced similar performance levels by capuchins monkeys in the RT and AC tasks when identical reward and temporal parameters were used. Experiment 2 demonstrated a similar result using reward amounts that were more similar to previous AC experiments with these monkeys. In Experiment 3, monkeys performed multiple versions of the AC task with varied reward and temporal parameters. Their self-control behavior was found to be dependent on the overall delay to reward consumption, rather than the overall reward amount ultimately consumed. These findings indicate that these capuchin monkeys' self-control capacities were more likely to have improved across studies because of the greater experience they had with delay of gratification tasks. Experiment 4 and Experiment 5 tested new, task-naïve monkeys on both tasks, finding more limited evidence of self-control, and no evidence that one task was more beneficial than the other in promoting self-control. The results of this study suggest that future testing of this kind should focus on temporal parameters and reward magnitude parameters to establish accurate measures of delay of gratification capacity and development in this species and perhaps others. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  2. 'Waiting for' and 'waiting in' public and private hospitals: a qualitative study of patient trust in South Australia.

    PubMed

    Ward, Paul R; Rokkas, Philippa; Cenko, Clinton; Pulvirenti, Mariastella; Dean, Nicola; Carney, A Simon; Meyer, Samantha

    2017-05-05

    Waiting times for hospital appointments, treatment and/or surgery have become a major political and health service problem, leading to national maximum waiting times and policies to reduce waiting times. Quantitative studies have documented waiting times for various types of surgery and longer waiting times in public vs private hospitals. However, very little qualitative research has explored patient experiences of waiting, how this compares between public and private hospitals, and the implications for trust in hospitals and healthcare professionals. The aim of this paper is to provide a deep understanding of the impact of waiting times on patient trust in public and private hospitals. A qualitative study in South Australia, including 36 in-depth interviews (18 from public and 18 from private hospitals). Data collection occurred in 2012-13, and data were analysed using pre-coding, followed by conceptual and theoretical categorisation. Participants differentiated between experiences of 'waiting for' (e.g. for specialist appointments and surgery) and 'waiting in' (e.g. in emergency departments and outpatient clinics) public and private hospitals. Whilst 'waiting for' public hospitals was longer than private hospitals, this was often justified and accepted by public patients (e.g. due to reduced government funding), therefore it did not lead to distrust of public hospitals. Private patients had shorter 'waiting for' hospital services, increasing their trust in private hospitals and distrust of public hospitals. Public patients also recounted many experiences of longer 'waiting in' public hospitals, leading to frustration and anxiety, although they rarely blamed or distrusted the doctors or nurses, instead blaming an underfunded system and over-worked staff. Doctors and nurses were seen to be doing their best, and therefore trustworthy. Although public patients experienced longer 'waiting for' and 'waiting in' public hospitals, it did not lead to widespread distrust

  3. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards

    PubMed Central

    Smoski, Moria J.; Rittenberg, Alison; Dichter, Gabriel S.

    2011-01-01

    Anhedonia, the loss of interest or pleasure in normally rewarding activities, is a hallmark feature of unipolar Major Depressive Disorder (MDD). A growing body of literature has identified frontostriatal dysfunction during reward anticipation and outcomes in MDD. However, no study to date has directly compared responses to different types of rewards such as pleasant images and monetary rewards in MDD. To investigate the neural responses to monetary and pleasant image rewards in MDD, a modified Monetary Incentive Delay task was used during fMRI scanning to assess neural responses during anticipation and receipt of monetary and pleasant image rewards. Participants included nine adults with MDD and thirteen affectively healthy controls. The MDD group showed lower activation than controls when anticipating monetary rewards in right orbitofrontal cortex and subcallosal cortex, and when anticipating pleasant image rewards in paracingulate and supplementary motor cortex. The MDD group had relatively greater activation in right putamen when anticipating monetary versus pleasant image rewards, relative to the control group. Results suggest reduced reward network activation in MDD when anticipating rewards, as well as relatively greater hypoactivation to pleasant image than monetary rewards. PMID:22079658

  4. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards.

    PubMed

    Smoski, Moria J; Rittenberg, Alison; Dichter, Gabriel S

    2011-12-30

    Anhedonia, the loss of interest or pleasure in normally rewarding activities, is a hallmark feature of unipolar Major Depressive Disorder (MDD). A growing body of literature has identified frontostriatal dysfunction during reward anticipation and outcomes in MDD. However, no study to date has directly compared responses to different types of rewards such as pleasant images and monetary rewards in MDD. To investigate the neural responses to monetary and pleasant image rewards in MDD, a modified Monetary Incentive Delay task was used during functional magnetic resonance imaging to assess neural responses during anticipation and receipt of monetary and pleasant image rewards. Participants included nine adults with MDD and 13 affectively healthy controls. The MDD group showed lower activation than controls when anticipating monetary rewards in right orbitofrontal cortex and subcallosal cortex, and when anticipating pleasant image rewards in paracingulate and supplementary motor cortex. The MDD group had relatively greater activation in right putamen when anticipating monetary versus pleasant image rewards, relative to the control group. Results suggest reduced reward network activation in MDD when anticipating rewards, as well as relatively greater hypoactivation to pleasant image than monetary rewards. 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model.

    PubMed

    Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of

  6. Practical solutions for reducing container ships' waiting times at ports using simulation model

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Abdorreza; Ilati, Gholamreza; Yeganeh, Yones Eftekhari

    2013-12-01

    The main challenge for container ports is the planning required for berthing container ships while docked in port. Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion. Good planning and management of container terminal operations reduces waiting time for liner ships. Reducing the waiting time improves the terminal's productivity and decreases the port difficulties. Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions. Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships. We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems. We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results. The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.

  7. Temporal dynamics of reward anticipation in the human brain.

    PubMed

    Zhang, Yuanyuan; Li, Qi; Wang, Zhao; Liu, Xun; Zheng, Ya

    2017-09-01

    Reward anticipation is a complex process including cue evaluation, motor preparation, and feedback anticipation. The present study investigated whether these psychological processes were dissociable on neural dynamics in terms of incentive valence and approach motivation. We recorded EEG when participants were performing a monetary incentive delay task, and found a cue-P3 during the cue-evaluation stage, a contingent negative variation (CNV) during the motor-preparation stage, and a stimulus-preceding negativity (SPN) during the feedback-anticipation stage. Critically, both the cue-P3 and SPN exhibited an enhanced sensitivity to gain versus loss anticipation, which was not observed for the CNV. Moreover, both the cue-P3 and SPN, instead of the CNV, for gain anticipation selectively predicted the participants' approach motivation as measured in a following effort expenditure for rewards task, particularly when reward uncertainty was maximal. Together, these results indicate that reward anticipation consists of several sub-stages, each with distinct functional significance, thus providing implications for neuropsychiatric diseases characterized by dysfunction in anticipatory reward processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Overt and covert attention to location-based reward.

    PubMed

    McCoy, Brónagh; Theeuwes, Jan

    2018-01-01

    Recent research on the impact of location-based reward on attentional orienting has indicated that reward factors play an influential role in spatial priority maps. The current study investigated whether and how reward associations based on spatial location translate from overt eye movements to covert attention. If reward associations can be tied to locations in space, and if overt and covert attention rely on similar overlapping neuronal populations, then both overt and covert attentional measures should display similar spatial-based reward learning. Our results suggest that location- and reward-based changes in one attentional domain do not lead to similar changes in the other. Specifically, although we found similar improvements at differentially rewarded locations during overt attentional learning, this translated to the least improvement at a highly rewarded location during covert attention. We interpret this as the result of an increased motivational link between the high reward location and the trained eye movement response acquired during learning, leading to a relative slowing during covert attention when the eyes remained fixated and the saccade response was suppressed. In a second experiment participants were not required to keep fixated during the covert attention task and we no longer observed relative slowing at the high reward location. Furthermore, the second experiment revealed no covert spatial priority of rewarded locations. We conclude that the transfer of location-based reward associations is intimately linked with the reward-modulated motor response employed during learning, and alternative attentional and task contexts may interfere with learned spatial priorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. [Surgery for colorectal cancer since the introduction of the Netherlands national screening programmeInvestigations into changes in number of resections and waiting times for surgery].

    PubMed

    de Neree Tot Babberich, M P M; van der Willik, E M; van Groningen, J T; Ledeboer, M; Wiggers, T; Wouters, M W J M

    2017-01-01

    To investigate the impact of the Netherlands national colorectal cancer screening programme on the number of surgical resections for colorectal carcinoma and on waiting times for surgery. Descriptive study. Data were extracted from the Dutch Surgical Colorectal Audit. Patients with primary colorectal cancer surgery between 2011-2015 were included. The volume and median waiting times for the years 2011-2015 are described. Waiting times from first tumor positive biopsy until the operation (biopsy-operation) and first preoperative visit to the surgeon until the operation (visit-operation) are analyzed with a univariate and multivariate linear regression analysis. Separate analysis was done for visit-operation for academic and non-academic hospitals and for screening compared to non-screening patients. In 2014 there was an increase of 1469 (15%) patients compared to 2013. In 2015 this increase consisted of 1168 (11%) patients compared to 2014. In 2014 and 2015, 1359 (12%) and 3111 (26%) patients were referred to the surgeon through screening, respectively. The median waiting time of biopsy-operation significantly decreased (ß: 0.94, 95%BI) over the years 2014-2015 compared to 2011-2013. In non-academic hospitals, the waiting time visit-operation also decreased significantly (ß: 0.89, 95%BI 0.87-0.90) over the years 2014-2015 compared to 2011-2013. No difference was found in waiting times between patients referred to the surgeon through screening compared to non-screening. There is a clear increase in volume since the introduction of the colorectal cancer screening programme without an increase in waiting time until surgery.

  10. Letting go of the present: mind-wandering is associated with reduced delay discounting.

    PubMed

    Smallwood, Jonathan; Ruby, Florence J M; Singer, Tania

    2013-03-01

    The capacity to self-generate mental content that is unrelated to the current environment is a fundamental characteristic of the mind, and the current experiment explored how this experience is related to the decisions that people make in daily life. We examined how task-unrelated thought (TUT) varies with the length of time participants are willing to wait for an economic reward, as measured using an inter-temporal discounting task. When participants performed a task requiring minimal attention, the greater the amount of time spent engaged in TUT the longer the individual was prepared to wait for an economic reward. These data indicate that self-generated thought engages processes associated with the successful management of long-term goals. Although immersion in the here and now is undeniably advantageous, under appropriate conditions the capacity to let go of the present and consider more pertinent personal goals may have its own rewards. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Relief as a Reward: Hedonic and Neural Responses to Safety from Pain

    PubMed Central

    Leknes, Siri; Lee, Michael; Berna, Chantal; Andersson, Jesper; Tracey, Irene

    2011-01-01

    Relief fits the definition of a reward. Unlike other reward types the pleasantness of relief depends on the violation of a negative expectation, yet this has not been investigated using neuroimaging approaches. We hypothesized that the degree of negative expectation depends on state (dread) and trait (pessimism) sensitivity. Of the brain regions that are involved in mediating pleasure, the nucleus accumbens also signals unexpected reward and positive prediction error. We hypothesized that accumbens activity reflects the level of negative expectation and subsequent pleasant relief. Using fMRI and two purpose-made tasks, we compared hedonic and BOLD responses to relief with responses during an appetitive reward task in 18 healthy volunteers. We expected some similarities in task responses, reflecting common neural substrates implicated across reward types. However, we also hypothesized that relief responses would differ from appetitive rewards in the nucleus accumbens, since only relief pleasantness depends on negative expectations. The results confirmed these hypotheses. Relief and appetitive reward task activity converged in the ventromedial prefrontal cortex, which also correlated with appetitive reward pleasantness ratings. In contrast, dread and pessimism scores correlated with relief but not with appetitive reward hedonics. Moreover, only relief pleasantness covaried with accumbens activation. Importantly, the accumbens signal appeared to specifically reflect individual differences in anticipation of the adverse event (dread, pessimism) but was uncorrelated to appetitive reward hedonics. In conclusion, relief differs from appetitive rewards due to its reliance on negative expectations, the violation of which is reflected in relief-related accumbens activation. PMID:21490964

  12. Decreasing Off-Task Behavior through a Dot/Point Reward System and Portfolio Reflection with Second, Fifth, and Sixth Graders

    ERIC Educational Resources Information Center

    Butera, Lisa M.; Giacone, Maria V.; Wagner, Kelly A.

    2008-01-01

    The purpose of this action research project report was to decrease off-task behavior through a dot/point reward system and portfolio reflections. Students involved in this research were in second, fifth, and sixth grade. There were a total of 85 student participants and 35 teacher participants. The dates of this research began on September 4, 2007…

  13. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward

    PubMed Central

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios

    2014-01-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408

  14. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward.

    PubMed

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios; Musallam, Sam

    2014-10-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. Copyright © 2014 the American Physiological Society.

  15. Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning.

    PubMed

    Daniel, Reka; Pollmann, Stefan

    2010-01-06

    The dopaminergic system is known to play a central role in reward-based learning (Schultz, 2006), yet it was also observed to be involved when only cognitive feedback is given (Aron et al., 2004). Within the domain of information-integration category learning, in which information from several stimulus dimensions has to be integrated predecisionally (Ashby and Maddox, 2005), the importance of contingent feedback is well established (Maddox et al., 2003). We examined the common neural correlates of reward anticipation and prediction error in this task. Sixteen subjects performed two parallel information-integration tasks within a single event-related functional magnetic resonance imaging session but received a monetary reward only for one of them. Similar functional areas including basal ganglia structures were activated in both task versions. In contrast, a single structure, the nucleus accumbens, showed higher activation during monetary reward anticipation compared with the anticipation of cognitive feedback in information-integration learning. Additionally, this activation was predicted by measures of intrinsic motivation in the cognitive feedback task and by measures of extrinsic motivation in the rewarded task. Our results indicate that, although all other structures implicated in category learning are not significantly affected by altering the type of reward, the nucleus accumbens responds to the positive incentive properties of an expected reward depending on the specific type of the reward.

  16. Encoding of reward expectation by monkey anterior insular neurons

    PubMed Central

    Mizuhiki, Takashi; Richmond, Barry J.

    2012-01-01

    The insula, a cortical brain region that is known to encode information about autonomic, visceral, and olfactory functions, has recently been shown to encode information during reward-seeking tasks in both single neuronal recording and functional magnetic resonance imaging studies. To examine the reward-related activation, we recorded from 170 single neurons in anterior insula of 2 monkeys during a multitrial reward schedule task, where the monkeys had to complete a schedule of 1, 2, 3, or 4 trials to earn a reward. In one block of trials a visual cue indicated whether a reward would or would not be delivered in the current trial after the monkey successfully detected that a red spot turned green, and in other blocks the visual cue was random with respect to reward delivery. Over one-quarter of 131 responsive neurons were activated when the current trial would (certain or uncertain) be rewarded if performed correctly. These same neurons failed to respond in trials that were certain, as indicated by the cue, to be unrewarded. Another group of neurons responded when the reward was delivered, similar to results reported previously. The dynamics of population activity in anterior insula also showed strong signals related to knowing when a reward is coming. The most parsimonious explanation is that this activity codes for a type of expected outcome, where the expectation encompasses both certain and uncertain rewards. PMID:22402653

  17. The effect of waiting: A meta-analysis of wait-list control groups in trials for tinnitus distress.

    PubMed

    Hesser, Hugo; Weise, Cornelia; Rief, Winfried; Andersson, Gerhard

    2011-04-01

    The response rates and effects of being placed on a wait-list control condition are well documented in psychiatric populations. Despite the usefulness of such estimates and the frequent use of no-treatment controls in clinical trials for tinnitus, the effect of waiting in a tinnitus trial has not been investigated systematically. The aim of the present study was to quantify the overall effect of wait-list control groups on tinnitus distress. Studies were retrieved via a systematic review of randomised controlled trials of cognitive behaviour therapy for tinnitus distress. Outcomes of psychometrically robust tinnitus-specific measures (Tinnitus Handicap Inventory, Tinnitus Questionnaire, Tinnitus Reaction Questionnaire) from wait-list control groups were quantified using meta-analytic techniques. Percentage of change and standard mean difference effect sizes were calculated using the pre and post wait period. Eleven studies involving 314 wait-list subjects with tinnitus were located. The analysis for a waiting period of 6 to 12 weeks revealed a mean decrease in scores on tinnitus-specific measures of 3% to 8%. Across studies, a statically significant small mean within-group effect size was obtained (Hedges' g=.17). The effects were moderated by methodological quality of the trial, sample characteristics (i.e., age, tinnitus duration), time of the wait-list and how diagnosis was established. Subjects in a tinnitus trial improve in tinnitus distress over a short waiting phase. The effects of waiting are highly variable and depend on the characteristics of the sample and of the trial. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Waiting for thyroid surgery: a study of psychological morbidity and determinants of health associated with long wait times for thyroid surgery.

    PubMed

    Eskander, Antoine; Devins, Gerald M; Freeman, Jeremy; Wei, Alice C; Rotstein, Lorne; Chauhan, Nitin; Sawka, Anna M; Brown, Dale; Irish, Jonathan; Gilbert, Ralph; Gullane, Patrick; Higgins, Kevin; Enepekides, Danny; Goldstein, David

    2013-02-01

    Patients with thyroid pathology tend have longer surgical wait times. Uncertainty during this wait can have negative psychologically impact. This study aims to determine the degree of psychological morbidity in patients waiting for thyroid surgery. Prospectively assessing patients pre- and postoperative psychological morbidity (level 2c). Patients waiting for thyroidectomy were mailed a sociodemographic and four psychological morbidity questionnaires: Impact of Events Scale-Revised (IES-R), Illness Intrusiveness Ratings Scale (IIRS), Perceived Stress Scale (PSS) and Hospital Anxiety and Depression Scale (HADS). We assessed whether anxiety was related to length of wait and a number of clinical/sociodemographic factors. We achieved a 53% response rate over a 3-year period, with 176 patients providing complete preoperative data; and 74 (42%) completed postoperative data. The average age was 53 (± 12) years; 82% were female. Respondents with a suspicious or known malignancy waited an average of 107 days while those with benign neoplastic biopsies waited an average of 218 days for thyroidectomy. Respondents reported substantial psychological morbidity with high IES-R, IIRS, PSS, and HADS scores. There was no significant association between psychological morbidity and wait times, clinical or sociodemographic factors. Postoperative anxiety decreased significantly in all psychological morbidity measures except for the IIRS. Patients waiting for thyroid surgery have mild to moderate psychological morbidity and long wait times for surgery. These appear not to be related. Psychological morbidity decreases after surgery. Reducing wait time can potentially reduce the time that patients have to live with unnecessary stress and anxiety. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  19. Decision Making in the Reward and Punishment Variants of the Iowa Gambling Task: Evidence of “Foresight” or “Framing”?

    PubMed Central

    Singh, Varsha; Khan, Azizuddin

    2012-01-01

    Surface-level differences in the reward and punishment variants, specifically greater long-term decision making in the punishment variant of the Iowa Gambling Task (IGT) observed in previous studies led to the present comparison of long-term decision making in the two IGT variants (n = 320, male = 160). It was contended that risk aversion triggered by a positive frame of the reward variant and risk seeking triggered by a negative frame of the punishment variant appears as long-term decision making in the two IGT variants. Apart from the frame of the variant as a within-subjects factor (variant type: reward and punishment), the order in which the frame was triggered (order type: reward–punishment or punishment–reward), and the four types of instructions that delineated motivation toward reward from that of punishment (reward, punishment, reward and punishment, and no-hint) were hypothesized to have an effect on foresighted decision making in the IGT. As expected, long-term decision making differed across the two IGT variants suggesting that the frame of the variant has an effect on long-term decision making in the IGT (p < 0.001). The order in which a variant was presented, and the type of the instructions that were used both had an effect on long-term decision making in the two IGT variants (p < 0.05). A post hoc test suggested that the instructions that differentiated between reward and punishment resulted in greater foresight than the commonly used IGT instructions that fail to distinguish between reward and punishment. As observed in previous studies, there were more number of participants (60%) who showed greater foresight in the punishment variant than in the reward variant (p < 0.001). The results suggest that foresight in IGT decision making is sensitive to reward and punishment frame in an asymmetric manner, an observation that is aligned with the behavioral decision making framework. Benefits of integrating findings from behavioral

  20. Dopaminergic modulation of reward-guided decision making in alcohol-preferring AA rats.

    PubMed

    Oinio, Ville; Bäckström, Pia; Uhari-Väänänen, Johanna; Raasmaja, Atso; Piepponen, Petteri; Kiianmaa, Kalervo

    2017-05-30

    R**esults from animal gambling models have highlighted the importance of dopaminergic neurotransmission in modulating decision making when large sucrose rewards are combined with uncertainty. The majority of these models use food restriction as a tool to motivate animals to accomplish operant behavioral tasks, in which sucrose is used as a reward. As enhanced motivation to obtain sucrose due to hunger may impact its reward-seeking effect, we wanted to examine the decision-making behavior of rats in a situation where rats were fed ad libitum. For this purpose, we chose alcohol-preferring AA (alko alcohol) rats, as these rats have been shown to have high preference for sweet agents. In the present study, AA rats were trained to self-administer sucrose pellet rewards in a two-lever choice task (one pellet vs. three pellets). Once rational choice behavior had been established, the probability of gaining three pellets was decreased over time (50%, 33%, 25% then 20%). The effect of d-amphetamine on decision making was studied at every probability level, as well as the effect of the dopamine D 1 receptor agonist SKF-81297 and D 2 agonist quinpirole at probability levels of 100% and 25%. d-Amphetamine increased unprofitable choices in a dose-dependent manner at the two lowest probability levels. Quinpirole increased the frequency of unprofitable decisions at the 25% probability level, and SKF-82197 did not affect choice behavior. These results mirror the findings of probabilistic discounting studies using food-restricted rats. Based on this, the use of AA rats provides a new approach for studies on reward-guided decision making. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling effects of intrinsic and extrinsic rewards on the competition between striatal learning systems

    PubMed Central

    Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin

    2013-01-01

    A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider. PMID:24137146

  2. Modeling effects of intrinsic and extrinsic rewards on the competition between striatal learning systems.

    PubMed

    Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin

    2013-01-01

    A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider.

  3. Impairments in learning by monetary rewards and alcohol-associated rewards in detoxified alcoholic patients.

    PubMed

    Jokisch, Daniel; Roser, Patrik; Juckel, Georg; Daum, Irene; Bellebaum, Christian

    2014-07-01

    Excessive alcohol consumption has been linked to structural and functional brain changes associated with cognitive, emotional, and behavioral impairments. It has been suggested that neural processing in the reward system is also affected by alcoholism. The present study aimed at further investigating reward-based associative learning and reversal learning in detoxified alcohol-dependent patients. Twenty-one detoxified alcohol-dependent patients and 26 healthy control subjects participated in a probabilistic learning task using monetary and alcohol-associated rewards as feedback stimuli indicating correct responses. Performance during acquisition and reversal learning in the different feedback conditions was analyzed. Alcohol-dependent patients and healthy control subjects showed an increase in learning performance over learning blocks during acquisition, with learning performance being significantly lower in alcohol-dependent patients. After changing the contingencies, alcohol-dependent patients exhibited impaired reversal learning and showed, in contrast to healthy controls, different learning curves for different types of rewards with no increase in performance for high monetary and alcohol-associated feedback. The present findings provide evidence that dysfunctional processing in the reward system in alcohol-dependent patients leads to alterations in reward-based learning resulting in a generally reduced performance. In addition, the results suggest that alcohol-dependent patients are, in particular, more impaired in changing an established behavior originally reinforced by high rewards. Copyright © 2014 by the Research Society on Alcoholism.

  4. Reward-prospect interacts with trial-by-trial preparation for potential distraction

    PubMed Central

    Marini, Francesco; van den Berg, Berry; Woldorff, Marty G.

    2015-01-01

    When attending for impending visual stimuli, cognitive systems prepare to identify relevant information while ignoring irrelevant, potentially distracting input. Recent work (Marini et al., 2013) showed that a supramodal distracter-filtering mechanism is invoked in blocked designs involving expectation of possible distracter stimuli, although this entails a cost (distraction-filtering cost) on speeded performance when distracters are expected but not presented. Here we used an arrow-flanker task to study whether an analogous cost, potentially reflecting the recruitment of a specific distraction-filtering mechanism, occurs dynamically when potential distraction is cued trial-to-trial (cued distracter-expectation cost). In order to promote the maximal utilization of cue information by participants, in some experimental conditions the cue also signaled the possibility of earning a monetary reward for fast and accurate performance. This design also allowed us to investigate the interplay between anticipation for distracters and anticipation of reward, which is known to engender attentional preparation. Only in reward contexts did participants show a cued distracter-expectation cost, which was larger with higher reward prospect and when anticipation for both distracters and reward were manipulated trial-to-trial. Thus, these results indicate that reward prospect interacts with the distracter expectation during trial-by-trial preparatory processes for potential distraction. These findings highlight how reward guides cue-driven attentional preparation. PMID:26180506

  5. Reward-prospect interacts with trial-by-trial preparation for potential distraction.

    PubMed

    Marini, Francesco; van den Berg, Berry; Woldorff, Marty G

    2015-02-01

    When attending for impending visual stimuli, cognitive systems prepare to identify relevant information while ignoring irrelevant, potentially distracting input. Recent work (Marini et al., 2013) showed that a supramodal distracter-filtering mechanism is invoked in blocked designs involving expectation of possible distracter stimuli, although this entails a cost ( distraction-filtering cost ) on speeded performance when distracters are expected but not presented. Here we used an arrow-flanker task to study whether an analogous cost, potentially reflecting the recruitment of a specific distraction-filtering mechanism, occurs dynamically when potential distraction is cued trial-to-trial ( cued distracter-expectation cost ). In order to promote the maximal utilization of cue information by participants, in some experimental conditions the cue also signaled the possibility of earning a monetary reward for fast and accurate performance. This design also allowed us to investigate the interplay between anticipation for distracters and anticipation of reward, which is known to engender attentional preparation. Only in reward contexts did participants show a cued distracter-expectation cost, which was larger with higher reward prospect and when anticipation for both distracters and reward were manipulated trial-to-trial. Thus, these results indicate that reward prospect interacts with the distracter expectation during trial-by-trial preparatory processes for potential distraction. These findings highlight how reward guides cue-driven attentional preparation.

  6. Dopamine reward prediction errors reflect hidden state inference across time

    PubMed Central

    Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.

    2017-01-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301

  7. Dopamine reward prediction errors reflect hidden-state inference across time.

    PubMed

    Starkweather, Clara Kwon; Babayan, Benedicte M; Uchida, Naoshige; Gershman, Samuel J

    2017-04-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a 'belief state'). Here we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling showed a notable difference between two tasks that differed only with respect to whether reward was delivered in a deterministic manner. Our results favor an associative learning rule that combines cached values with hidden-state inference.

  8. Reduced Sensitivity to Sooner Reward During Intertemporal Decision-Making Following Insula Damage in Humans

    PubMed Central

    Sellitto, Manuela; Ciaramelli, Elisa; Mattioli, Flavia; di Pellegrino, Giuseppe

    2016-01-01

    During intertemporal choice, humans tend to prefer small-sooner rewards over larger-delayed rewards, reflecting temporal discounting (TD) of delayed outcomes. Functional neuroimaging (fMRI) evidence has implicated the insular cortex in time-sensitive decisions, yet it is not clear whether activity in this brain region is crucial for, or merely associated with, TD behavior. Here, patients with damage to the insula (Insular patients), control patients with lesions outside the insula, and healthy individuals chose between smaller-sooner and larger-later monetary rewards. Insular patients were less sensitive to sooner rewards than were the control groups, exhibiting reduced TD. A Voxel-based Lesion-Symptom Mapping (VLSM) analysis confirmed a statistically significant association between insular damage and reduced TD. These results indicate that the insular cortex is crucial for intertemporal choice. We suggest that he insula may be necessary to anticipate the bodily/emotional effects of receiving rewards at different delays, influencing the computation of their incentive value. Devoid of such input, insular patients’ choices would be governed by a heuristic of quantity, allowing patients to wait for larger options. PMID:26793084

  9. Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2016-02-01

    High reward sensitivity has been linked with motivational and cognitive disorders related with prefrontal and striatal brain function during inhibitory control. However, few studies have analyzed the interaction among reward sensitivity, task performance and neural activity. Participants (N=57) underwent fMRI while performing a Go/No-go task with Frequent-go (77.5%), Infrequent-go (11.25%) and No-go (11.25%) stimuli. Task-associated activity was found in inhibition-related brain regions, with different activity patterns for right and left inferior frontal gyri (IFG): right IFG responded more strongly to No-go stimuli, while left IFG responded similarly to all infrequent stimuli. Reward sensitivity correlated with omission errors in Go trials and reaction time (RT) variability, and with increased activity in right and left IFG for No-go and Infrequent-go stimuli compared with Frequent-go. Bilateral IFG activity was associated with RT variability, with reward sensitivity mediating this association. These results suggest that reward sensitivity modulates behavior and brain function during executive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modulation of spatial attention by goals, statistical learning, and monetary reward.

    PubMed

    Jiang, Yuhong V; Sha, Li Z; Remington, Roger W

    2015-10-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention.

  11. Modulation of spatial attention by goals, statistical learning, and monetary reward

    PubMed Central

    Sha, Li Z.; Remington, Roger W.

    2015-01-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention. PMID:26105657

  12. A target sample of adolescents and reward processing: same neural and behavioral correlates engaged in common paradigms?

    PubMed

    Nees, Frauke; Vollstädt-Klein, Sabine; Fauth-Bühler, Mira; Steiner, Sabina; Mann, Karl; Poustka, Luise; Banaschewski, Tobias; Büchel, Christian; Conrod, Patricia J; Garavan, Hugh; Heinz, Andreas; Ittermann, Bernd; Artiges, Eric; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Smolka, Michael N; Struve, Maren; Loth, Eva; Schumann, Gunter; Flor, Herta

    2012-11-01

    Adolescence is a transition period that is assumed to be characterized by increased sensitivity to reward. While there is growing research on reward processing in adolescents, investigations into the engagement of brain regions under different reward-related conditions in one sample of healthy adolescents, especially in a target age group, are missing. We aimed to identify brain regions preferentially activated in a reaction time task (monetary incentive delay (MID) task) and a simple guessing task (SGT) in a sample of 14-year-old adolescents (N = 54) using two commonly used reward paradigms. Functional magnetic resonance imaging was employed during the MID with big versus small versus no win conditions and the SGT with big versus small win and big versus small loss conditions. Analyses focused on changes in blood oxygen level-dependent contrasts during reward and punishment processing in anticipation and feedback phases. We found clear magnitude-sensitive response in reward-related brain regions such as the ventral striatum during anticipation in the MID task, but not in the SGT. This was also true for reaction times. The feedback phase showed clear reward-related, but magnitude-independent, response patterns, for example in the anterior cingulate cortex, in both tasks. Our findings highlight neural and behavioral response patterns engaged in two different reward paradigms in one sample of 14-year-old healthy adolescents and might be important for reference in future studies investigating reward and punishment processing in a target age group.

  13. Space station operations task force summary report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A companion to the Space Stations Operation Task Force Panels' Reports, this document summarizes all space station program goals, operations, and the characteristics of the expected user community. Strategies for operation and recommendations for implementation are included.

  14. Neural evidence reveals the rapid effects of reward history on selective attention.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions.

    PubMed

    Simen, Patrick; Contreras, David; Buck, Cara; Hu, Peter; Holmes, Philip; Cohen, Jonathan D

    2009-12-01

    The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.

  16. Reward sensitivity in Parkinson's patients with binge eating.

    PubMed

    Terenzi, Damiano; Rumiati, Raffaella I; Catalan, Mauro; Antonutti, Lucia; Furlanis, Giovanni; Garlasco, Paolo; Polverino, Paola; Bertolotti, Claudio; Manganotti, Paolo; Aiello, Marilena

    2018-06-01

    Parkinson's disease (PD) patients who are treated with dopamine replacement therapy are at risk of developing impulse control disorders (ICDs) (such as gambling, binge eating, and others). According to recent evidence, compulsive reward seeking in ICDs may arise from an excessive attribution of incentive salience (or 'wanting') to rewards. In this study, we tested this hypothesis in patients with PD who developed binge eating (BE). Patients with BE, patients without BE, and healthy controls performed different experimental tasks assessing food liking and wanting. Participants first rated the degree of liking and wanting for different foods using explicit self-report measures. They then performed an affective priming task that measured participants' affective reactions towards foods (liking), and a grip-force task that assessed their motivation for food rewards (wanting). All participants also completed several questionnaires assessing impulsivity, reward sensitivity, anxiety and depression, and underwent a neuropsychological evaluation. Patients with BE displayed an altered liking for sweet foods compared to controls but not to patients without BE. Furthermore, this difference emerged only when implicit measures were used. Importantly, an increased wanting was not associated with binge eating even if wanting, but not liking scores significantly correlated with LED levodopa, confirming the hypothesis of a distinction between the two components of rewards. Lastly, binge eating was associated with depression and lower working memory scores. Take together these results suggest that binge eating in PD is associated with cognitive abnormalities, and to lesser extent affective abnormalities, but not with an increased incentive salience. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    PubMed

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rewards and creative performance: a meta-analytic test of theoretically derived hypotheses.

    PubMed

    Byron, Kris; Khazanchi, Shalini

    2012-07-01

    Although many scholars and practitioners are interested in understanding how to motivate individuals to be more creative, whether and how rewards affect creativity remain unclear. We argue that the conflicting evidence may be due to differences between studies in terms of reward conditions and the context in which rewards are offered. Specifically, we examine 5 potential moderators of the rewards-creative performance relationship: (a) the reward contingency, (b) the extent to which participants are provided information about their past or current creative performance, (c) the extent to which the reward and context offer choice or impose control, (d) the extent to which the context serves to enhance task engagement, and (e) the extent to which the performance tasks are complex. Using random-effects models, we meta-analyzed 60 experimental and nonexperimental studies (including 69 independent samples) that examined the rewards-creativity relationship with children or adults. Our results suggest that creativity-contingent rewards tend to increase creative performance-and are more positively related to creative performance when individuals are given more positive, contingent, and task-focused performance feedback and are provided more choice (and are less controlled). In contrast, performance-contingent or completion-contingent rewards tend to have a slight negative effect on creative performance.

  19. Trading Later Rewards for Current Pleasure: Pornography Consumption and Delay Discounting.

    PubMed

    Negash, Sesen; Sheppard, Nicole Van Ness; Lambert, Nathaniel M; Fincham, Frank D

    2016-01-01

    Internet pornography is a multi-billion-dollar industry that has grown increasingly accessible. Delay discounting involves devaluing larger, later rewards in favor of smaller, more immediate rewards. The constant novelty and primacy of sexual stimuli as particularly strong natural rewards make Internet pornography a unique activator of the brain's reward system, thereby having implications for decision-making processes. Based on theoretical studies of evolutionary psychology and neuroeconomics, two studies tested the hypothesis that consuming Internet pornography would relate to higher rates of delay discounting. Study 1 used a longitudinal design. Participants completed a pornography use questionnaire and a delay discounting task at Time 1 and then again four weeks later. Participants reporting higher initial pornography use demonstrated a higher delay discounting rate at Time 2, controlling for initial delay discounting. Study 2 tested for causality with an experimental design. Participants were randomly assigned to abstain from either their favorite food or pornography for three weeks. Participants who abstained from pornography use demonstrated lower delay discounting than participants who abstained from their favorite food. The finding suggests that Internet pornography is a sexual reward that contributes to delay discounting differently than other natural rewards. Theoretical and clinical implications of these studies are highlighted.

  20. Music models aberrant rule decoding and reward valuation in dementia

    PubMed Central

    Clark, Camilla N; Golden, Hannah L; McCallion, Oliver; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Fletcher, Phillip D; Mummery, Catherine J; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D

    2018-01-01

    Abstract Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer’s disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved (‘finished’) or unresolved (‘unfinished’); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias. PMID:29186630

  1. Working memory and reward association learning impairments in obesity.

    PubMed

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Neural correlates of reward processing in healthy siblings of patients with schizophrenia

    PubMed Central

    Hanssen, Esther; van der Velde, Jorien; Gromann, Paula M.; Shergill, Sukhi S.; de Haan, Lieuwe; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André; van Atteveldt, Nienke

    2015-01-01

    Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ) may be driven by dysfunctional reward processing (RP). RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be related to SZ. Studies in patients with SZ have found less activation in the ventral striatum (VS) during anticipation of reward, but these findings do not provide information on effect of the genetic load on reward processing. Therefore, this study investigated RP in healthy first-degree relatives of SZ patients. The sample consisted of 94 healthy siblings of SZ patients and 57 healthy controls. Participants completed a classic RP task, the Monetary Incentive Delay task, during functional magnetic resonance imaging (fMRI). As expected, there were no behavioral differences between groups. In contrast to our expectations, we found no differences in any of the anticipatory reward related brain areas (region of interest analyses). Whole-brain analyses did reveal group differences during both reward anticipation and reward consumption; during reward anticipation siblings showed less deactivation in the insula, posterior cingulate cortex (PCC) and medial frontal gyrus (MFG) than controls. During reward consumption siblings showed less deactivation in the PCC and the right MFG compared to controls and activation in contrast to deactivation in controls in the precuneus and the left MFG. Exclusively in siblings, MFG activity correlated positively with subclinical negative symptoms. These regions are typically associated with the default mode network (DMN), which normally shows decreases in activation during task-related cognitive processes. Thus, in contrast to prior literature in patients with SZ, the results do not point to altered brain activity in classical RP brain areas, such as the VS. However, the weaker deactivation found outside the reward-related network in siblings could

  3. Smile! Social reward drives attention.

    PubMed

    Hayward, Dana A; Pereira, Effie J; Otto, A Ross; Ristic, Jelena

    2018-02-01

    Human social behavior is fine-tuned by interactions between individuals and their environments. Here we show that social motivation plays an important role in this process. Using a novel manipulation of social reward that included elements of real-life social exchanges, we demonstrate the emergence of attentional orienting for coincidental spatial associations that received positive social reward. After an interaction with the experimenter, participants completed a computerized task in which they received positive, negative, or no social reward for their performance to spatially congruent, spatially incongruent, and neutral cue-target pairings, respectively. Even though cue-target spatial correspondences remained at chance, attentional benefits emerged and persisted a day later for targets that received positive social reward. Our data further revealed that participants' level of social competence, as measured by the Autism-Spectrum Quotient scale, was predictably related to the magnitude of their reward-driven attentional benefits. No attentional effects emerged when the social interaction and social reward manipulations were removed. These results show that motivational incentives available during social exchanges affect later individual cognitive functioning, providing one of the first insights into why seemingly ambiguous social signals produce reliable and persistent attentional effects. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Social importance enhances prospective memory: evidence from an event-based task.

    PubMed

    Walter, Stefan; Meier, Beat

    2017-07-01

    Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.

  5. Diurnal rhythms in psychological reward functioning in healthy young men: 'Wanting', liking, and learning.

    PubMed

    Byrne, Jamie E M; Murray, Greg

    2017-01-01

    A range of evidence suggests that human reward functioning is partly driven by the endogenous circadian system, generating 24-hour rhythms in behavioural measures of reward activation. Reward functioning is multifaceted but literature to date is largely limited to measures of self-reported positive mood states. The aim of this study was to advance the field by testing for hypothesised diurnal variation in previously unexplored components of psychological reward: 'wanting', liking, and learning using subjective and behavioural measures. Risky decision making (automatic Balloon Analogue Risk Task), affective responsivity to positive images (International Affective Pictures System), uncued self-reported discrete emotions, and learning-contingent reward (Iowa Gambling Task) were measured at 10.00 hours, 14.00 hours, and 19.00 hours in a counterbalanced repeated measures design with 50 healthy male participants (aged 18-30). As hypothesised, risky decision making (unconscious 'wanting') and ratings of arousal towards positive images (conscious wanting) exhibited a diurnal waveform with indices highest at 14.00 hours. No diurnal rhythm was observed for liking (pleasure ratings to positive images, discrete uncued positive emotions) or in a learning-contingent reward task. Findings reaffirm that diurnal variation in human reward functioning is most pronounced in the motivational 'wanting' components of reward.

  6. Rewards boost sustained attention through higher effort: A value-based decision making approach.

    PubMed

    Massar, Stijn A A; Lim, Julian; Sasmita, Karen; Chee, Michael W L

    2016-10-01

    Maintaining sustained attention over time is an effortful process limited by finite cognitive resources. Recent theories describe the role of motivation in the allocation of such resources as a decision process: the costs of effortful performance are weighed against its gains. We examined this hypothesis by combining methods from attention research and decision neuroscience. Participants first performed a sustained attention task at different levels of reward. They then performed a reward-discounting task, measuring the subjective costs of performance. Results demonstrated that higher rewards led to improved performance (Exp 1-3), and enhanced attentional effort (i.e. pupil diameter; Exp 2 & 3). Moreover, discounting curves constructed from the choice task indicated that subjects devalued rewards that came at the cost of staying vigilant for a longer duration (Exp 1 & 2). Motivation can thus boost sustained attention through increased effort, while sustained performance is regarded as a cost against which rewards are discounted. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The multi-attribute task battery for human operator workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Arnegard, Ruth J.

    1992-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  8. Sensitivity for Cues Predicting Reward and Punishment in Young Women with Eating Disorders.

    PubMed

    Matton, Annelies; de Jong, Peter; Goossens, Lien; Jonker, Nienke; Van Malderen, Eva; Vervaet, Myriam; De Schryver, Nele; Braet, Caroline

    2017-11-01

    Increasing evidence shows that sensitivity to reward (SR) and punishment (SP) may be involved in eating disorders (EDs). Most studies used self-reported positive/negative effect in rewarding/punishing situations, whereas the implied proneness to detect signals of reward/punishment is largely ignored. This pilot study used a spatial orientation task to examine transdiagnostic and interdiagnostic differences in SR/SP. Participants (14-29 years) were patients with anorexia nervosa of restricting type (AN-R, n = 20), binge/purge ED group [AN of binge/purge type and bulimia nervosa (n = 16)] and non-symptomatic individuals (n = 23). Results revealed stronger difficulties to redirect attention away from signals of rewards in AN-R compared with binge/purge EDs, and binge/purge EDs showed stronger difficulties to direct attention away from signals of punishment compared with AN-R. Findings demonstrate interdiagnostic differences and show that the spatial orientation task is sensitive for individual differences in SP/SR within the context of EDs, thereby sustaining its usefulness as behavioural measure of reinforcement sensitivity. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. The influence of motherhood on neural systems for reward processing in low income, minority, young women.

    PubMed

    Moses-Kolko, Eydie L; Forbes, Erika E; Stepp, Stephanie; Fraser, David; Keenan, Kate E; Guyer, Amanda E; Chase, Henry W; Phillips, Mary L; Zevallos, Carlos R; Guo, Chaohui; Hipwell, Alison E

    2016-04-01

    , and use of reward tasks specific for social reward might reveal an impact of motherhood on reward system activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Improved estimation of commuter waiting times using headway and commuter boarding information

    NASA Astrophysics Data System (ADS)

    Ramli, Muhamad Azfar; Jayaraman, Vasundhara; Kwek, Hyen Chee; Tan, Kian Heong; Lee Kee Khoon, Gary; Monterola, Christopher

    2018-07-01

    The average amount of waiting time spent by commuters is one of the key indicators of service quality for public bus operations. While actual measurements of actual waiting time is difficult to be done en masse, models of waiting time can be derived from bus headways and these models have been adopted by transport planners in monitoring and regulating service reliability of operators. However, these models are founded on several assumptions on the patterns of commuter arrival which may not be applicable for bus services that experience high demand and heavily fluctuating commuter patterns. Given the availability of granular data on commuter boarding from automated fare collection systems, we propose a new methodology to better estimate the average waiting time of commuters. The formulation is anchored and validated using a three-month dataset from ten selected bus routes in Singapore. Finally, we discuss how our new measure allows for minimization of commuter waiting time through schedule optimization.

  11. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    PubMed

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events

    PubMed Central

    Murty, Vishnu P.; Adcock, R. Alison

    2014-01-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical–hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions—a potentially unique contribution of the hippocampus to reward learning. PMID:23529005

  13. Planning activity for internally generated reward goals in monkey amygdala neurons

    PubMed Central

    Schultz, Wolfram

    2015-01-01

    The best rewards are often distant and can only be achieved by planning and decision-making over several steps. We designed a multi-step choice task in which monkeys followed internal plans to save rewards towards self-defined goals. During this self-controlled behavior, amygdala neurons showed future-oriented activity that reflected the animal’s plan to obtain specific rewards several trials ahead. This prospective activity encoded crucial components of the animal’s plan, including value and length of the planned choice sequence. It began on initial trials when a plan would be formed, reappeared step-by-step until reward receipt, and readily updated with a new sequence. It predicted performance, including errors, and typically disappeared during instructed behavior. Such prospective activity could underlie the formation and pursuit of internal plans characteristic for goal-directed behavior. The existence of neuronal planning activity in the amygdala suggests an important role for this structure in guiding behavior towards internally generated, distant goals. PMID:25622146

  14. Positive mood enhances reward-related neural activity

    PubMed Central

    Nusslock, Robin

    2016-01-01

    Although behavioral research has shown that positive mood leads to desired outcomes in nearly every major life domain, no studies have directly examined the effects of positive mood on the neural processes underlying reward-related affect and goal-directed behavior. To address this gap, participants in the present fMRI study experienced either a positive (n = 20) or neutral (n = 20) mood induction and subsequently completed a monetary incentive delay task that assessed reward and loss processing. Consistent with prediction, positive mood elevated activity specifically during reward anticipation in corticostriatal neural regions that have been implicated in reward processing and goal-directed behavior, including the nucleus accumbens, caudate, lateral orbitofrontal cortex and putamen, as well as related paralimbic regions, including the anterior insula and ventromedial prefrontal cortex. These effects were not observed during reward outcome, loss anticipation or loss outcome. Critically, this is the first study to report that positive mood enhances reward-related neural activity. Our findings have implications for uncovering the neural mechanisms by which positive mood enhances goal-directed behavior, understanding the malleability of reward-related neural activity, and developing targeted treatments for psychiatric disorders characterized by deficits in reward processing. PMID:26833919

  15. Balancing risk and reward: a rat model of risky decision making.

    PubMed

    Simon, Nicholas W; Gilbert, Ryan J; Mayse, Jeffrey D; Bizon, Jennifer L; Setlow, Barry

    2009-09-01

    We developed a behavioral task in rats to assess the influence of risk of punishment on decision making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, 'safe' food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, 'risky' reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (ie, it made rats more risk averse). Cocaine did not cause a shift in reward choice, but instead impaired the rats' sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction.

  16. Neural basis of the undermining effect of monetary reward on intrinsic motivation

    PubMed Central

    Murayama, Kou; Matsumoto, Madoka; Izuma, Keise; Matsumoto, Kenji

    2010-01-01

    Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This “undermining effect” has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value. PMID:21078974

  17. Neural basis of the undermining effect of monetary reward on intrinsic motivation.

    PubMed

    Murayama, Kou; Matsumoto, Madoka; Izuma, Keise; Matsumoto, Kenji

    2010-12-07

    Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This "undermining effect" has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.

  18. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward.

    PubMed

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja; Jensen, Peter; Knudsen, Gitte M; Frokjaer, Vibe G; Siebner, Hartwig R

    2016-03-01

    Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women's vulnerability for mood disorders is linked to sex-steroid dynamics by investigating the effects of a pharmacologically induced fluctuation in ovarian sex steroids on the brain response to monetary rewards. In a double-blinded placebo controlled study, healthy women were randomized to receive either placebo or the gonadotropin-releasing hormone agonist (GnRHa) goserelin, which causes a net decrease in sex-steroid levels. Fifty-eight women performed a gambling task while undergoing functional MRI at baseline, during the mid-follicular phase, and again following the intervention. The gambling task enabled us to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following a rapid decline in sex-steroid hormones may reflect a reduced engagement in positive experiences. Abnormal reward processing may constitute a neurobiological mechanism by which sex-steroid fluctuations provoke mood disorders in susceptible women.

  19. Caudate clues to rewarding cues.

    PubMed

    Platt, Michael L

    2002-01-31

    Behavioral studies indicate that prior experience can influence discrimination of subsequent stimuli. The mechanisms responsible for highlighting a particular aspect of the stimulus, such as motion or color, as most relevant and thus deserving further scrutiny, however, remain poorly understood. In the current issue of Neuron, demonstrate that neurons in the caudate nucleus of the basal ganglia signal which dimension of a visual cue, either color or location, is associated with reward in an eye movement task. These findings raise the possibility that this structure participates in the reward-based control of visual attention.

  20. Attentional bias for nondrug reward is magnified in addiction.

    PubMed

    Anderson, Brian A; Faulkner, Monica L; Rilee, Jessica J; Yantis, Steven; Marvel, Cherie L

    2013-12-01

    Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcomes. Attentional biases also develop for stimuli that have been paired with nondrug rewards in adults without a history of addiction, the magnitude of which is predicted by visual working-memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for nondrug (monetary) reward relative to that of healthy controls, and that this bias is related to working-memory impairments and increased impulsiveness. Seventeen patients receiving methadone-maintenance treatment for opioid dependence and 17 healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995), visual working-memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual-search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. It is important to note, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working-memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with nondrug reward. This nonspecific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction.

  1. Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior.

    PubMed

    Garofalo, Sara; di Pellegrino, Giuseppe

    2015-01-01

    Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring incentive motivational proprieties that drive choices. It represents a crucial phenomenon for understanding cue-controlled behavior, and it has both adaptive and maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to which such cues bias performance have been identified in two types of individuals that exhibit distinct Conditioned Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study investigated, for the first time, the extent to which such individual differences might affect the influence of reward-paired cues in humans. In a first task, participants learned an instrumental response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired instrumental response when the task-irrelevant reward-paired cue was presented, in the absence of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased behavior, resulting in an increased likelihood to perform the instrumental response independently paired with the same reward when presented with the task-irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This finding has important implications for developing individualized treatment for maladaptive behaviors, such as addiction.

  2. Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior

    PubMed Central

    Garofalo, Sara; di Pellegrino, Giuseppe

    2015-01-01

    Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring incentive motivational proprieties that drive choices. It represents a crucial phenomenon for understanding cue-controlled behavior, and it has both adaptive and maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to which such cues bias performance have been identified in two types of individuals that exhibit distinct Conditioned Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study investigated, for the first time, the extent to which such individual differences might affect the influence of reward-paired cues in humans. In a first task, participants learned an instrumental response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired instrumental response when the task-irrelevant reward-paired cue was presented, in the absence of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased behavior, resulting in an increased likelihood to perform the instrumental response independently paired with the same reward when presented with the task-irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This finding has important implications for developing individualized treatment for maladaptive behaviors, such as addiction. PMID:26157371

  3. Incidental Learning of Rewarded Associations Bolsters Learning on an Associative Task

    ERIC Educational Resources Information Center

    Freedberg, Michael; Schacherer, Jonathan; Hazeltine, Eliot

    2016-01-01

    Reward has been shown to change behavior as a result of incentive learning (by motivating the individual to increase their effort) and instrumental learning (by increasing the frequency of a particular behavior). However, Palminteri et al. (2011) demonstrated that reward can also improve the incidental learning of a motor skill even when…

  4. Effects of reward and punishment on learning from errors in smokers.

    PubMed

    Duehlmeyer, Leonie; Levis, Bianca; Hester, Robert

    2018-04-30

    Punishing errors facilitates adaptation in healthy individuals, while aberrant reward and punishment sensitivity in drug-dependent individuals may change this impact. Many societies have institutions that use the concept of punishing drug use behavior, making it important to understand how drug dependency mediates the effects of negative feedback for influencing adaptive behavior. Using an associative learning task, we investigated differences in error correction rates of dependent smokers, compared with controls. Two versions of the task were administered to different participant samples: One assessed the effect of varying monetary contingencies to task performance, the other, the presence of reward as compared to avoidance of punishment for correct performance. While smokers recalled associations that were rewarded with a higher value 11% more often than lower rewarded locations, they did not correct higher punished locations more often. Controls exhibited the opposite pattern. The three-way interaction between magnitude, feedback type and group was significant, F(1,48) = 5.288, p =0.026, ɳ 2 p =0.099. Neither participant group corrected locations offering reward more often than those offering avoidances of punishment. The interaction between group and feedback condition was not significant, F(1,58) = 0.0, p =0.99, ɳ 2 p =0.001. The present results suggest that smokers have poorer learning from errors when receiving negative feedback. Moreover, larger rewards reinforce smokers' behavior stronger than smaller rewards, whereas controls made no distinction. These findings support the hypothesis that dependent smokers may respond to positively framed and rewarded anti-smoking programs when compared to those relying on negative feedback or punishment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Reward speeds up and increases consistency of visual selective attention: a lifespan comparison.

    PubMed

    Störmer, Viola; Eppinger, Ben; Li, Shu-Chen

    2014-06-01

    Children and older adults often show less favorable reward-based learning and decision making, relative to younger adults. It is unknown, however, whether reward-based processes that influence relatively early perceptual and attentional processes show similar lifespan differences. In this study, we investigated whether stimulus-reward associations affect selective visual attention differently across the human lifespan. Children, adolescents, younger adults, and older adults performed a visual search task in which the target colors were associated with either high or low monetary rewards. We discovered that high reward value speeded up response times across all four age groups, indicating that reward modulates attentional selection across the lifespan. This speed-up in response time was largest in younger adults, relative to the other three age groups. Furthermore, only younger adults benefited from high reward value in increasing response consistency (i.e., reduction of trial-by-trial reaction time variability). Our findings suggest that reward-based modulations of relatively early and implicit perceptual and attentional processes are operative across the lifespan, and the effects appear to be greater in adulthood. The age-specific effect of reward on reducing intraindividual response variability in younger adults likely reflects mechanisms underlying the development and aging of reward processing, such as lifespan age differences in the efficacy of dopaminergic modulation. Overall, the present results indicate that reward shapes visual perception across different age groups by biasing attention to motivationally salient events.

  6. The risk variant in ODZ4 for bipolar disorder impacts on amygdala activation during reward processing.

    PubMed

    Heinrich, Angela; Lourdusamy, Anbarasu; Tzschoppe, Jelka; Vollstädt-Klein, Sabine; Bühler, Mira; Steiner, Sabina; Bach, Christiane; Poustka, Luise; Banaschewski, Tobias; Barker, Gareth; Büchel, Christian; Conrod, Patricia; Garavan, Hugh; Gallinat, Jürgen; Heinz, Andreas; Ittermann, Bernd; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Smolka, Michael; Ströhle, Andreas; Struve, Maren; Witt, Stephanie; Flor, Herta; Schumann, Gunter; Rietschel, Marcella; Nees, Frauke

    2013-06-01

    Bipolar disorder is a severe mood disorder, which normally begins during adolescence or early adulthood and has a heritability of up to 80%. The largest genome-wide association analysis of bipolar disorder recently identified a new genome-wide associated variant in OZD4 (rs12576775). The aim of the present study was to further elucidate the role of this risk variant in the disease process using an imaging genetics approach. As increased amygdala and striatal responses during the processing of reward and emotion are characteristic for bipolar disorder patients, it was tested whether the risk variant has an influence on this endophenotype in healthy adolescents. We examined the impact of the risk variant rs12576775 on functional magnetic resonance imaging data in an adolescent sample (N = 485). Differential activation between carriers of the risk allele (G-allele) and homozygous A-allele carriers in the amygdala and the striatum during a modification of the monetary incentive delay task (examining reward) and a face task (examining emotion) was analyzed. Carriers of the risk allele showed an increased blood oxygen level-dependent response in the amygdala during reward sensitivity (p = 0.05) and reward expectation (p < 0.05) but not during the face task. No significant group differences were found in the striatum during both reward and emotion processing. Our results indicate that the ODZ4 risk variant influences reward processing in the amygdala. Alterations in the processing of emotion may have different underlying mechanisms and need to be further examined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Caudate responses to reward anticipation associated with delay discounting behavior in healthy youth

    PubMed Central

    Benningfield, Margaret M.; Blackford, Jennifer U.; Ellsworth, Melissa E.; Samanez-Larkin, Gregory R.; Martin, Peter R.; Cowan, Ronald L.; Zald, David H.

    2014-01-01

    Background Choices requiring delay of gratification made during adolescence can have significant impact on life trajectory. Willingness to delay gratification can be measured using delay discounting tasks that require a choice between a smaller immediate reward and a larger delayed reward. Individual differences in the subjective value of delayed rewards are associated with risk for development of psychopathology including substance abuse. The neurobiological underpinnings related to these individual differences early in life are not fully understood. Using functional magnetic resonance imaging (fMRI), we tested the hypothesis that individual differences in delay discounting behavior in healthy youth are related to differences in responsiveness to potential reward. Method Nineteen 10 to 14 year-olds performed a monetary incentive delay task to assess neural sensitivity to potential reward and a questionnaire to measure discounting of future monetary rewards. Results Left ventromedial caudate activation during anticipation of potential reward was negatively correlated with delay discounting behavior. There were no regions where brain responses during notification of reward outcome were associated with discounting behavior. Conclusions Brain activation during anticipation of potential reward may serve as a marker for individual differences in ability or willingness to delay gratification in healthy youth. PMID:24309299

  8. How performance-contingent reward prospect modulates cognitive control: Increased cue maintenance at the cost of decreased flexibility.

    PubMed

    Hefer, Carmen; Dreisbach, Gesine

    2017-10-01

    Growing evidence suggests that reward prospect promotes cognitive stability in terms of increased context or cue maintenance. In 3 Experiments, using different versions of the AX-continuous performance task, we investigated whether this reward effect comes at the cost of decreased cognitive flexibility. Experiment 1 shows that the reward induced increase of cue maintenance perseverates even when reward is no longer available. Experiment 2 shows that this reward effect not only survives the withdrawal of reward but also delays the adaptation to changed task conditions that make cue usage maladaptive. And finally in Experiment 3, it is shown that this reduced flexibility to adapt is observed in a more demanding modified version of the AX-continuous performance task and is even stronger under conditions of sustained reward. Taken together, all 3 Experiments thus speak to the idea that the prospect of reward increases cue maintenance and thereby cognitive stability. This increased cognitive stability however comes at the cost of decreased flexibility in terms of delayed adaptation to new reward and task conditions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    PubMed

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

  10. Decision-making patterns and sensitivity to reward and punishment in children with attention-deficit hyperactivity disorder.

    PubMed

    Masunami, Taiji; Okazaki, Shinji; Maekawa, Hisao

    2009-06-01

    Earlier studies have demonstrated that attention-deficit hyperactivity disorder (ADHD) is associated with aberrant sensitivity to rewards and punishments. Although some studies have focused on real-life decision making in children with ADHD using the Iowa gambling task, the number of good deck choices, a frequently used index of decision-making ability in the gambling task, is insufficient for investigating the complex decision-making strategies in subjects. In the present study, we investigated decision-making strategies in ADHD children, analyzing T-patterns with rewards, with punishments, and without rewards and punishments during the gambling task, and examined the relationship between decision-making strategies and skin conductance responses (SCRs) to rewards and punishments. We hypothesized that ADHD children and normal children would employ different decision-making strategies depending on their sensitivity to rewards and punishments in the gambling task. Our results revealed that ADHD children had fewer T-patterns with punishments and exhibited a significant tendency to have many T-patterns with rewards, thus supporting our hypothesis. Moreover, in contrast to normal children, ADHD children failed to demonstrate differences between reward and punishment SCRs, supporting the idea that they had an aberrant sensitivity to rewards and punishments. Therefore, we concluded that ADHD children would be impaired in decision-making strategies depending on their aberrant sensitivity to rewards and punishments. However, we were unable to specify whether large reward SCRs or small punishment SCRs is generated in ADHD children.

  11. Event-related EEG responses to anticipation and delivery of monetary and social reward.

    PubMed

    Flores, Amanda; Münte, Thomas F; Doñamayor, Nuria

    2015-07-01

    Monetary and a social incentive delay tasks were used to characterize reward anticipation and delivery with electroencephalography. During reward anticipation, N1, P2 and P3 components were modulated by both prospective reward value and incentive type (monetary or social), suggesting distinctive allocation of attentional and motivational resources depending not only on whether rewards or non-rewards were cued, but also on the monetary and social nature of the prospective outcomes. In the delivery phase, P2, FRN and P3 components were also modulated by levels of reward value and incentive type, illustrating how distinctive affective and cognitive processes were attached to the different outcomes. Our findings imply that neural processing of both reward anticipation and delivery can be specific to incentive type, which might have implications for basic as well as translational research. These results are discussed in the light of previous electrophysiological and neuroimaging work using similar tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    PubMed

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Autistic Traits Moderate the Impact of Reward Learning on Social Behaviour.

    PubMed

    Panasiti, Maria Serena; Puzzo, Ignazio; Chakrabarti, Bhismadev

    2016-04-01

    A deficit in empathy has been suggested to underlie social behavioural atypicalities in autism. A parallel theoretical account proposes that reduced social motivation (i.e., low responsivity to social rewards) can account for the said atypicalities. Recent evidence suggests that autistic traits modulate the link between reward and proxy metrics related to empathy. Using an evaluative conditioning paradigm to associate high and low rewards with faces, a previous study has shown that individuals high in autistic traits show reduced spontaneous facial mimicry of faces associated with high vs. low reward. This observation raises the possibility that autistic traits modulate the magnitude of evaluative conditioning. To test this, we investigated (a) if autistic traits could modulate the ability to implicitly associate a reward value to a social stimulus (reward learning/conditioning, using the Implicit Association Task, IAT); (b) if the learned association could modulate participants' prosocial behaviour (i.e., social reciprocity, measured using the cyberball task); (c) if the strength of this modulation was influenced by autistic traits. In 43 neurotypical participants, we found that autistic traits moderated the relationship of social reward learning on prosocial behaviour but not reward learning itself. This evidence suggests that while autistic traits do not directly influence social reward learning, they modulate the relationship of social rewards with prosocial behaviour. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.

  14. Dynamic Sensor Tasking for Space Situational Awareness via Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Linares, R.; Furfaro, R.

    2016-09-01

    This paper studies the Sensor Management (SM) problem for optical Space Object (SO) tracking. The tasking problem is formulated as a Markov Decision Process (MDP) and solved using Reinforcement Learning (RL). The RL problem is solved using the actor-critic policy gradient approach. The actor provides a policy which is random over actions and given by a parametric probability density function (pdf). The critic evaluates the policy by calculating the estimated total reward or the value function for the problem. The parameters of the policy action pdf are optimized using gradients with respect to the reward function. Both the critic and the actor are modeled using deep neural networks (multi-layer neural networks). The policy neural network takes the current state as input and outputs probabilities for each possible action. This policy is random, and can be evaluated by sampling random actions using the probabilities determined by the policy neural network's outputs. The critic approximates the total reward using a neural network. The estimated total reward is used to approximate the gradient of the policy network with respect to the network parameters. This approach is used to find the non-myopic optimal policy for tasking optical sensors to estimate SO orbits. The reward function is based on reducing the uncertainty for the overall catalog to below a user specified uncertainty threshold. This work uses a 30 km total position error for the uncertainty threshold. This work provides the RL method with a negative reward as long as any SO has a total position error above the uncertainty threshold. This penalizes policies that take longer to achieve the desired accuracy. A positive reward is provided when all SOs are below the catalog uncertainty threshold. An optimal policy is sought that takes actions to achieve the desired catalog uncertainty in minimum time. This work trains the policy in simulation by letting it task a single sensor to "learn" from its performance

  15. The Sexual Discounting Task: HIV Risk Behavior and the Discounting of Delayed Sexual Rewards in Cocaine Dependence

    PubMed Central

    Johnson, Matthew W.; Bruner, Natalie R.

    2011-01-01

    Background Cocaine dependence is associated with high rates of sexual risk behavior and HIV infection. However, little is known about the responsible mechanism(s). Methods Cocaine-dependent individuals (N=62) completed a novel Sexual Discounting Task assessing decisions between immediate unprotected sex and delayed sex with a condom across four hypothetical partners: most (and least) likely to have a sexually transmitted infection (STI), and most (and least) sexually desirable; a real rewards money delay-discounting task, and self-reported sexual risk behavior using the HIV Risk-Taking Behavior Scale (HRBS). Results Sexual Discounting Task results were largely systematic and showed a strong effect of delay in decreasing condom use. Sexual discounting (preference for immediate unprotected sex) was significantly greater when making responses for partners judged least (compared to most) likely to have an STI, and for partners judged most (compared to least) desirable. Differences in sexual discounting were significant after controlling for differences in condom use (with no delay) between conditions. Greater discounting in 3 or the 4 Sexual Discounting Task conditions, but not in the money discounting task, was associated with greater self-reported sexual risk behavior as measured by the HRBS Conclusions Results suggest that delay is a critical variable strongly affecting HIV sexual risk behavior, and that the Sexual Discounting Task provides a clinically sensitive measure of this phenomenon that may address a variety of questions about HIV risk in future research. The wealth of behavioral and neurobiological data on delay discounting should be brought to bear on HIV education and prevention. PMID:22055012

  16. Morphine and MK-801 administration leads to alternative NMDAR1 splicing and associated changes in reward seeking behavior and nociception on an operant orofacial assay

    PubMed Central

    Anderson, Ethan M.; Del Valle-Pinero, Arseima Y.; Suckow, Shelby K.; Nolan, Todd A.; Neubert, John K.; Caudle, Robert M.

    2012-01-01

    The NMDA receptor plays a large role in opioid-induced plastic changes in the nervous system. The expression levels of its NR1 subunit are altered dramatically by morphine but no changes in its alternative splicing have been reported. Changes in the splicing of the N1, C1, C2, and C2’ cassettes can alter the pharmacology and regulation of this receptor. Western blots run on brain tissue from rats made tolerant to morphine revealed altered splicing of the N1 cassettes in the accumbens and amygdala, and the C1 cassette in the amygdala and the dorsal hippocampus. After three days of withdrawal C2’-containing NR1 subunits were down-regulated in each of these areas. These were not due to acute doses of morphine and may represent long term alterations in drug-induced neuroplasticity. We also examined the effects of morphine tolerance on an operant orofacial nociception assay which forces an animal to endure an aversive heat stimulus in order to receive a sweet milk reward. Morphine decreased pain sensitivity as expected but also increased motivational reward seeking in this task. NMDAR antagonism potentiated this reward seeking behavior suggesting that instead of attenuating tolerance, MK-801 may actually alter the rewarding and/or motivational properties of morphine. When combined, MK-801 and morphine had an additive effect which led to altered splicing in the accumbens, amygdala, and the dorsal hippocampus. In conclusion, NR1 splicing may play a major role in the cognitive behavioral aspects especially in motivational reward seeking behaviors. PMID:22531378

  17. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats

    PubMed Central

    Cardinal, Rudolf N; Howes, Nathan J

    2005-01-01

    Background Animals must frequently make choices between alternative courses of action, seeking to maximize the benefit obtained. They must therefore evaluate the magnitude and the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively). The nucleus accumbens core (AcbC) is known to contribute to rats' ability to choose large, delayed rewards over small, immediate rewards; AcbC lesions cause impulsive choice and an impairment in learning with delayed reinforcement. However, it is not known how the AcbC contributes to choice involving probabilistic reinforcement, such as between a large, uncertain reward and a small, certain reward. We examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Results Rats chose between a single food pellet delivered with certainty (p = 1) and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625) in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated) or at p = 0.70 (AcbC-lesioned) by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly preferred the small

  18. Elevated Striatal Reactivity Across Monetary and Social Rewards in Bipolar I Disorder

    PubMed Central

    Dutra, Sunny J.; Cunningham, William A.; Kober, Hedy; Gruber, June

    2016-01-01

    Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation employed both a monetary and social incentive delay task among adults with remitted BD type I (N=24) and a healthy non-psychiatric control group (HC; N=25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated ventral and dorsal striatal reactivity across monetary and social reward receipt, but not anticipation, in the BD group. Post-hoc analyses further suggested that greater striatal reactivity to reward receipt across monetary and social reward tasks predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC, but not BD, group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of reward reactivity. PMID:26390194

  19. Elevated striatal reactivity across monetary and social rewards in bipolar I disorder.

    PubMed

    Dutra, Sunny J; Cunningham, William A; Kober, Hedy; Gruber, June

    2015-11-01

    Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation used both a monetary and social incentive delay task among adults with remitted BD Type I (n = 24) and a healthy nonpsychiatric control group (HC; n = 25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated reactivity to reward receipt in the striatum, a region implicated in incentive sensitivity, in the BD group. Post hoc analyses revealed that greater striatal reactivity to reward receipt, across monetary and social reward tasks, predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC but not in the BD group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of persistent reward pursuit in BD. (c) 2015 APA, all rights reserved).

  20. Dopamine Depletion Reduces Food-Related Reward Activity Independent of BMI

    PubMed Central

    Frank, Sabine; Veit, Ralf; Sauer, Helene; Enck, Paul; Friederich, Hans-Christoph; Unholzer, Theresa; Bauer, Ute-Maria; Linder, Katarzyna; Heni, Martin; Fritsche, Andreas; Preissl, Hubert

    2016-01-01

    Reward sensitivity and possible alterations in the dopaminergic-reward system are associated with obesity. We therefore aimed to investigate the influence of dopamine depletion on food-reward processing. We investigated 34 female subjects in a randomized placebo-controlled, within-subject design (body mass index (BMI)=27.0 kg/m2 ±4.79 SD; age=28 years ±4.97 SD) using an acute phenylalanine/tyrosine depletion drink representing dopamine depletion and a balanced amino acid drink as the control condition. Brain activity was measured with functional magnetic resonance imaging during a ‘wanting' and ‘liking' rating of food items. Eating behavior-related traits and states were assessed on the basis of questionnaires. Dopamine depletion resulted in reduced activation in the striatum and higher activation in the superior frontal gyrus independent of BMI. Brain activity during the wanting task activated a more distributed network than during the liking task. This network included gustatory, memory, visual, reward, and frontal regions. An interaction effect of dopamine depletion and the wanting/liking task was observed in the hippocampus. The interaction with the covariate BMI was significant in motor and control regions but not in the striatum. Our results support the notion of altered brain activity in the reward and prefrontal network with blunted dopaminergic action during food-reward processing. This effect is, however, independent of BMI, which contradicts the reward-deficiency hypothesis. This hints to the hypothesis suggesting a different or more complex mechanism underlying the dopaminergic reward function in obesity. PMID:26450814

  1. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning

    PubMed Central

    Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-01-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. PMID:25680989

  2. Amygdala Signaling during Foraging in a Hazardous Environment.

    PubMed

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of

  3. Intrinsic Motivation and Rewards: What Sustains Young Children's Engagement with Text?

    ERIC Educational Resources Information Center

    Marinak, Barbara A.; Gambrell, Linda B.

    2008-01-01

    This study investigated the effects of reward proximity and choice of reward on the reading motivation of third-grade students as measured by indicators of task persistence. The major finding from this study was that students who were given a book as a reward and students who received no reward were more motivated to engage in subsequent reading…

  4. Training Rats Using Water Rewards Without Water Restriction

    PubMed Central

    Reinagel, Pamela

    2018-01-01

    High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity. PMID:29773982

  5. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.

    PubMed

    Uchibe, Eiji; Doya, Kenji

    2008-12-01

    Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.

  6. Establishing a probabilistic reversal learning test in mice: evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin.

    PubMed

    Ineichen, Christian; Sigrist, Hannes; Spinelli, Simona; Lesch, Klaus-Peter; Sautter, Eva; Seifritz, Erich; Pryce, Christopher R

    2012-11-01

    Valid animal models of psychopathology need to include behavioural readouts informed by human findings. In the probabilistic reversal learning (PRL) task, human subjects are confronted with serial reversal of the contingency between two operant stimuli and reward/punishment and, superimposed on this, a low probability (0.2) of punished correct responses/rewarded incorrect responses. In depression, reward-stay and reversals completed are unaffected but response-shift following punished correct response trials, referred to as negative feedback sensitivity (NFS), is increased. The aims of this study were to: establish an operant spatial PRL test appropriate for mice; obtain evidence for the processes mediating reward-stay and punishment-shift responding; and assess effects thereon of genetically- and pharmacologically-altered serotonin (5-HT) function. The study was conducted with wildtype (WT) and heterozygous mutant (HET) mice from a 5-HT transporter (5-HTT) null mutant strain. Mice were mildly food deprived and reward was sugar pellet and punishment was 5-s time out. Mice exhibited high motivation and adaptive reversal performance. Increased probability of punished correct response (PCR) trials per session (p = 0.1, 0.2 or 0.3) led to monotonic decrease in reward-stay and reversals completed, suggesting accurate reward prediction. NFS differed from chance-level at p PCR = 0.1, suggesting accurate punishment prediction, whereas NFS was at chance-level at p = 0.2-0.3. At p PCR = 0.1, HET mice exhibited lower NFS than WT mice. The 5-HTT blocker escitalopram was studied acutely at p PCR = 0.2: a low dose (0.5-1.5 mg/kg) resulted in decreased NFS, increased reward-stay and increased reversals completed, and similarly in WT and HET mice. This study demonstrates that testing PRL in mice can provide evidence on the regulation of reward and punishment processing that is, albeit within certain limits, of relevance to human emotional-cognitive processing, its dysfunction and

  7. Real waiting times for surgery. Proposal for an improved system for their management.

    PubMed

    Abásolo, Ignacio; Barber, Patricia; González López-Valcárcel, Beatriz; Jiménez, Octavio

    2014-01-01

    In Spain, official information on waiting times for surgery is based on the interval between the indication for surgery and its performance. We aimed to estimate total waiting times for surgical procedures, including outpatient visits and diagnostic tests prior to surgery. In addition, we propose an alternative system to manage total waiting times that reduces variability and maximum waiting times without increasing the use of health care resources. This system is illustrated by three surgical procedures: cholecystectomy, carpal tunnel release and inguinal/femoral hernia repair. Using data from two Autonomous Communities, we adjusted, through simulation, a theoretical distribution of the total waiting time assuming independence of the waiting times of each stage of the clinical procedure. We show an alternative system in which the waiting time for the second consultation is established according to the time previously waited for the first consultation. Average total waiting times for cholecystectomy, carpal tunnel release and inguinal/femoral hernia repair were 331, 355 and 137 days, respectively (official data are 83, 68 and 73 days, respectively). Using different negative correlations between waiting times for subsequent consultations would reduce maximum waiting times by between 2% and 15% and substantially reduce heterogeneity among patients, without generating higher resource use. Total waiting times are between two and five times higher than those officially published. The relationship between the waiting times at each stage of the medical procedure may be used to decrease variability and maximum waiting times. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  8. Data Entry Operator: Task List Competency Record.

    ERIC Educational Resources Information Center

    Minnesota Instructional Materials Center, White Bear Lake.

    One of 12 in the secretarial/clerical area, this booklet for the vocational instructor contains a job description for the data entry operator, a task list of areas of competency, an occupational tasks competency record (suggested as replacement for the traditional report card), a list of industry representatives and educators involved in…

  9. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    PubMed

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  10. Topography, Power and Current Source Density of Theta Oscillations during Reward Processing as Markers for Alcohol Dependence

    PubMed Central

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B.; Pandey, Ashwini K.; Roopesh, Bangalore N.; Porjesz, Bernice

    2013-01-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task which involved outcomes of either loss or gain of an amount (10¢ or 50¢) that was bet. Event-related theta band (3.0–7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200–500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current Source Density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition as compared to controls who manifested stronger and focused midline sources. Further, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. PMID:21520344

  11. Wait too long to talk about kidney disease and you could be waiting for a kidney.

    MedlinePlus

    ... Home Current Issue Past Issues Public Service Announcement Kidney Disease Past Issues / Summer 2006 Table of Contents ... Javascript on. Wait too long to talk about kidney disease and you could be waiting for a ...

  12. Involvement of the endocannabinoid system in reward processing in the human brain.

    PubMed

    van Hell, Hendrika H; Jager, Gerry; Bossong, Matthijs G; Brouwer, Annelies; Jansma, J Martijn; Zuurman, Lineke; van Gerven, Joop; Kahn, René S; Ramsey, Nick F

    2012-02-01

    Disturbed reward processing in humans has been associated with a number of disorders, such as depression, addiction, and attention-deficit hyperactivity disorder. The endocannabinoid (eCB) system has been implicated in reward processing in animals, but in humans, the relation between eCB functioning and reward is less clear. The current study uses functional magnetic resonance imaging (fMRI) to investigate the role of the eCB system in reward processing in humans by examining the effect of the eCB agonist Δ(9)-tetrahydrocannabinol (THC) on reward-related brain activity. Eleven healthy males participated in a randomized placebo-controlled pharmacological fMRI study with administration of THC to challenge the eCB system. We compared anticipatory and feedback-related brain activity after placebo and THC, using a monetary incentive delay task. In this task, subjects are notified before each trial whether a correct response is rewarded ("reward trial") or not ("neutral trial"). Subjects showed faster reaction times during reward trials compared to neutral trials, and this effect was not altered by THC. THC induced a widespread attenuation of the brain response to feedback in reward trials but not in neutral trials. Anticipatory brain activity was not affected. These results suggest a role for the eCB system in the appreciation of rewards. The involvement of the eCB system in feedback processing may be relevant for disorders in which appreciation of natural rewards may be affected such as addiction.

  13. When, What, and How Much to Reward in Reinforcement Learning-Based Models of Cognition

    ERIC Educational Resources Information Center

    Janssen, Christian P.; Gray, Wayne D.

    2012-01-01

    Reinforcement learning approaches to cognitive modeling represent task acquisition as learning to choose the sequence of steps that accomplishes the task while maximizing a reward. However, an apparently unrecognized problem for modelers is choosing when, what, and how much to reward; that is, when (the moment: end of trial, subtask, or some other…

  14. State-based versus reward-based motivation in younger and older adults.

    PubMed

    Worthy, Darrell A; Cooper, Jessica A; Byrne, Kaileigh A; Gorlick, Marissa A; Maddox, W Todd

    2014-12-01

    Recent decision-making work has focused on a distinction between a habitual, model-free neural system that is motivated toward actions that lead directly to reward and a more computationally demanding goal-directed, model-based system that is motivated toward actions that improve one's future state. In this article, we examine how aging affects motivation toward reward-based versus state-based decision making. Participants performed tasks in which one type of option provided larger immediate rewards but the alternative type of option led to larger rewards on future trials, or improvements in state. We predicted that older adults would show a reduced preference for choices that led to improvements in state and a greater preference for choices that maximized immediate reward. We also predicted that fits from a hybrid reinforcement-learning model would indicate greater model-based strategy use in younger than in older adults. In line with these predictions, older adults selected the options that maximized reward more often than did younger adults in three of the four tasks, and modeling results suggested reduced model-based strategy use. In the task where older adults showed similar behavior to younger adults, our model-fitting results suggested that this was due to the utilization of a win-stay-lose-shift heuristic rather than a more complex model-based strategy. Additionally, within older adults, we found that model-based strategy use was positively correlated with memory measures from our neuropsychological test battery. We suggest that this shift from state-based to reward-based motivation may be due to age related declines in the neural structures needed for more computationally demanding model-based decision making.

  15. Balancing Risk and Reward: A Rat Model of Risky Decision-Making

    PubMed Central

    Simon, Nicholas W.; Gilbert, Ryan J.; Mayse, Jeffrey D.; Bizon, Jennifer L.; Setlow, Barry

    2009-01-01

    We developed a behavioral task in rats to assess the influence of risk of punishment on decision-making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, “safe” food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, “risky” reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision-making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (i.e. – it made rats more risk-averse). Cocaine did not cause a shift in reward choice, but instead impaired rats’ sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction. PMID:19440192

  16. Impaired Feedback Processing for Symbolic Reward in Individuals with Internet Game Overuse

    PubMed Central

    Kim, Jinhee; Kim, Hackjin; Kang, Eunjoo

    2017-01-01

    Reward processing, which plays a critical role in adaptive behavior, is impaired in addiction disorders, which are accompanied by functional abnormalities in brain reward circuits. Internet gaming disorder, like substance addiction, is thought to be associated with impaired reward processing, but little is known about how it affects learning, especially when feedback is conveyed by less-salient motivational events. Here, using both monetary (±500 KRW) and symbolic (Chinese characters “right” or “wrong”) rewards and penalties, we investigated whether behavioral performance and feedback-related neural responses are altered in Internet game overuse (IGO) group. Using functional MRI, brain responses for these two types of reward/penalty feedback were compared between young males with problems of IGO (IGOs, n = 18, mean age = 22.2 ± 2.0 years) and age-matched control subjects (Controls, n = 20, mean age = 21.2 ± 2.1) during a visuomotor association task where associations were learned between English letters and one of four responses. No group difference was found in adjustment of error responses following the penalty or in brain responses to penalty, for either monetary or symbolic penalties. The IGO individuals, however, were more likely to fail to choose the response previously reinforced by symbolic (but not monetary) reward. A whole brain two-way ANOVA analysis for reward revealed reduced activations in the IGO group in the rostral anterior cingulate cortex/ventromedial prefrontal cortex (vmPFC) in response to both reward types, suggesting impaired reward processing. However, the responses to reward in the inferior parietal region and medial orbitofrontal cortex/vmPFC were affected by the types of reward in the IGO group. Unlike the control group, in the IGO group the reward response was reduced only for symbolic reward, suggesting lower attentional and value processing specific to symbolic reward. Furthermore, the more severe

  17. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    PubMed

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  18. Bayesian deterministic decision making: a normative account of the operant matching law and heavy-tailed reward history dependency of choices.

    PubMed

    Saito, Hiroshi; Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato

    2014-01-01

    The decision making behaviors of humans and animals adapt and then satisfy an "operant matching law" in certain type of tasks. This was first pointed out by Herrnstein in his foraging experiments on pigeons. The matching law has been one landmark for elucidating the underlying processes of decision making and its learning in the brain. An interesting question is whether decisions are made deterministically or probabilistically. Conventional learning models of the matching law are based on the latter idea; they assume that subjects learn choice probabilities of respective alternatives and decide stochastically with the probabilities. However, it is unknown whether the matching law can be accounted for by a deterministic strategy or not. To answer this question, we propose several deterministic Bayesian decision making models that have certain incorrect beliefs about an environment. We claim that a simple model produces behavior satisfying the matching law in static settings of a foraging task but not in dynamic settings. We found that the model that has a belief that the environment is volatile works well in the dynamic foraging task and exhibits undermatching, which is a slight deviation from the matching law observed in many experiments. This model also demonstrates the double-exponential reward history dependency of a choice and a heavier-tailed run-length distribution, as has recently been reported in experiments on monkeys.

  19. Waiting for hip arthroplasty: economic costs and health outcomes.

    PubMed

    Fielden, Jann M; Cumming, J M; Horne, J G; Devane, P A; Slack, A; Gallagher, L M

    2005-12-01

    This prospective cohort study of 153 patients aimed to determine the economic and health costs of waiting for total hip arthroplasty (THA). Health-related quality of life, using self-completed WOMAC and EQ-5D questionnaires, was assessed monthly from enrolment preoperatively to 6 months postsurgery. Monthly cost diaries were used to record costs. The mean waiting time was 5.1 months and mean total cost of waiting for surgery was NZ 4305 dollars(US 2876 dollars) per person (pp) (NZ 1 dollar = US 0.668 dollar). Waiting more than 6 months was associated with a higher total mean cost (NZ 4278 dollars/US 2858 dollars pp) than waiting less than 6 months (NZ 2828 dollars/US 1889 dollars pp; P < .01). Improvements from preoperative to postoperative WOMAC and EQ-5D scores were identified (P < or = .01). Waiting longer led to poorer physical function preoperatively (P < or = .01). Those with poor initial health status showed greater improvement in WOMAC (P = .0001) and EQ-5D (P = .003) measures by 6 months after surgery. Longer waits for total hip arthroplasty incur greater economic costs and deterioration in physical function while waiting.

  20. Striatal dopaminergic modulation of reinforcement learning predicts reward-oriented behavior in daily life.

    PubMed

    Kasanova, Zuzana; Ceccarini, Jenny; Frank, Michael J; Amelsvoort, Thérèse van; Booij, Jan; Heinzel, Alexander; Mottaghy, Felix; Myin-Germeys, Inez

    2017-07-01

    Much human behavior is driven by rewards. Preclinical neurophysiological and clinical positron emission tomography (PET) studies have implicated striatal phasic dopamine (DA) release as a primary modulator of reward processing. However, the relationship between experimental reward-induced striatal DA release and responsiveness to naturalistic rewards, and therefore functional relevance of these findings, has been elusive. We therefore combined, for the first time, a DA D 2/3 receptor [ 18 F]fallypride PET during a probabilistic reinforcement learning (RL) task with a six day ecological momentary assessments (EMA) of reward-related behavior in the everyday life of 16 healthy volunteers. We detected significant reward-induced DA release in the bilateral putamen, caudate nucleus and ventral striatum, the extent of which was associated with better behavioral performance on the RL task across all regions. Furthermore, individual variability in the extent of reward-induced DA release in the right caudate nucleus and ventral striatum modulated the tendency to be actively engaged in a behavior if the active engagement was previously deemed enjoyable. This study suggests a link between striatal reward-related DA release and ecologically relevant reward-oriented behavior, suggesting an avenue for the inquiry into the DAergic basis of optimal and impaired motivational drive. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Maximally Expressive Modeling of Operations Tasks

    NASA Technical Reports Server (NTRS)

    Jaap, John; Richardson, Lea; Davis, Elizabeth

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.

  2. Dogs are able to solve a means-end task

    PubMed Central

    Range, Friederike; Hentrup, Marleen; Viranyi, Zsofia

    2014-01-01

    Dogs, although very skilled in social communicative tasks, have shown limited abilities in the domain of physical cognition. Consequently, several researchers hypothesized that domestication enhanced dogs’ cognitive abilities in the social realm, but relaxed selection on the physical one. For instance, dogs failed to demonstrate means-end understanding, an important form of relying on physical causal connection, when tested in a string-pulling task. Here, we tested dogs in an ‘on/off’ task using a novel approach. Thirty-two dogs were confronted with four different conditions in which they could choose between two boards one with a reward ‘on’ and another one with a reward ‘off’ (reward was placed next to the board). The dogs chose the correct board when 1) both rewards were placed at the same distance from the dog, when 2) the reward placed ‘on’ the board was closer to the dog, and 3) even when the reward placed ‘off’ the board was much closer to the dog and was food. Interestingly, in the latter case dogs did not perform above chance, if instead of a direct reward, the dogs had to retrieve an object placed on the board to get a food reward. In contrast to previous string pulling studies, our results show that dogs are able to solve a means-end task even if proximity of the unsupported reward is a confounding factor. PMID:21445577

  3. I Don’t Want to Come Back Down: Undoing versus Maintaining of Reward Recovery in Older Adolescents

    PubMed Central

    Gilbert, Kirsten E.; Nolen-Hoeksema, Susan; Gruber, June

    2017-01-01

    Adolescence is characterized by heightened and sometimes impairing reward sensitivity, yet less is known about how adolescents recover from highly arousing positive states. This is particularly important given high onset rates of psychopathology associated with reward sensitivity during late adolescence and early adulthood. The current study thus utilized a novel reward sensitivity task in order to examine potential ways in which older adolescent females (ages 18–21; N = 83) might recover from high arousal positive reward sensitive states. Participants underwent a fixed incentive reward sensitivity task and subsequently watched a neutral, sad, or a low approach-motivated positive emotional film clip during which subjective and physiological recovery was assessed. Results indicated that the positive and negative film conditions were associated with maintained physiological arousal while the neutral condition facilitated faster physiological recovery from the reward sensitivity task. Interestingly, individual differences in self-reported positive emotion during the reward task were associated with faster recovery in the neutral condition. Findings suggest elicited emotion (regardless of valence) may serve to maintain reward sensitivity while self-reported positive emotional experience may be a key ingredient facilitating physiological recovery or undoing. Understanding the nuances of reward recovery provides a critical step in understanding the etiology and persistence of reward dysregulation more generally. PMID:26595439

  4. Reward- and attention-related biasing of sensory selection in visual cortex.

    PubMed

    Buschschulte, Antje; Boehler, Carsten N; Strumpf, Hendrik; Stoppel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max

    2014-05-01

    Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220-250 msec) of the response to reward probes, which followed a prior (160-180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top-down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top

  5. Neurological Correlates of Reward Responding in Adolescents With and Without Externalizing Behavior Disorders

    PubMed Central

    Gatzke-Kopp, Lisa M.; Beauchaine, Theodore P.; Shannon, Katherine E.; Chipman, Jane; Fleming, Andrew P.; Crowell, Sheila E.; Liang, Olivia; Aylward, Elizabeth; Johnson, L. Clark

    2009-01-01

    Opposing theories of striatal hyper- and hypodopaminergic functioning have been suggested in the pathophysiology of externalizing behavior disorders. To test these competing theories, the authors used functional MRI to evaluate neural activity during a simple reward task in 12- to 16-year-old boys with attention-deficit/hyperactivity disorder and/or conduct disorder (n = 19) and in controls with no psychiatric condition (n = 11). The task proceeded in blocks during which participants received either (a) monetary incentives for correct responses or (b) no rewards for correct responses. Controls exhibited striatal activation only during reward, shifting to anterior cingulate activation during nonreward. In contrast, externalizing adolescents exhibited striatal activation during both reward and nonreward. Externalizing psychopathology appears to be characterized by deficits in processing the omission of predicted reward, which may render behaviors that are acquired through environmental contingencies difficult to extinguish when those contingencies change. PMID:19222326

  6. The neuroscience of investing: fMRI of the reward system.

    PubMed

    Peterson, Richard L

    2005-11-15

    Functional magnetic resonance imaging (fMRI) has proven a useful tool for observing neural BOLD signal changes during complex cognitive and emotional tasks. Yet the meaning and applicability of the fMRI data being gathered is still largely unknown. The brain's reward system underlies the fundamental neural processes of goal evaluation, preference formation, positive motivation, and choice behavior. fMRI technology allows researchers to dynamically visualize reward system processes. Experimenters can then correlate reward system BOLD activations with experimental behavior from carefully controlled experiments. In the SPAN lab at Stanford University, directed by Brian Knutson Ph.D., researchers have been using financial tasks during fMRI scanning to correlate emotion, behavior, and cognition with the reward system's fundamental neural activations. One goal of the SPAN lab is the development of predictive models of behavior. In this paper we extrapolate our fMRI results toward understanding and predicting individual behavior in the uncertain and high-risk environment of the financial markets. The financial market price anomalies of "value versus glamour" and "momentum" may be real-world examples of reward system activation biasing collective behavior. On the individual level, the investor's bias of overconfidence may similarly be related to reward system activation. We attempt to understand selected "irrational" investor behaviors and anomalous financial market price patterns through correlations with findings from fMRI research of the reward system.

  7. Reward and Affective Regulation in Depression-Prone Smokers

    PubMed Central

    Audrain-McGovern, Janet; Wileyto, E. Paul; Ashare, Rebecca; Cuevas, Jocelyn; Strasser, Andrew A.

    2014-01-01

    Background There is a disproportionately high smoking prevalence among individuals who are prone to depression. While depression has been conceptualized as a disorder of dysregulated positive affect and disrupted reward processing, little research has been conducted to determine the role of smoking in these processes among depression-prone smokers. Methods Depression-prone smokers (DP+; n = 34) and smokers not depression-prone (DP-; n=49) underwent two laboratory sessions, once while smoking abstinent and once while smoking ad-libitum, to assess the relative reinforcing value of smoking and reward sensitivity. Using experience sampling methods, participants completed self-report measures of subjective reward, positive affect, and negative affect across three days while smoking as usual and three days while smoking abstinent. Results DP+ were two times more likely to work for cigarette puffs versus money in a progressive ratio, choice task (OR 2.05; CI 95% 1.04 to 4.06, p=0.039) compared to DP-. Reward sensitivity as measured by the signal detection task did not yield any significant findings. Mixed models regressions revealed a 3-way interaction (depression group, smoking phase, and time) for subjective reward, negative affect and positive affect. For all three of these outcomes, the slopes for DP- and DP+ differed significantly from each other (p's < 0.05), and the effect of smoking (vs. abstinence) over time was greater for DP+ than DP- smokers (p's <0.05). Conclusions These findings indicate that the effects of smoking on reward and positive affect regulation are specific to DP+ smokers and highlight novel targets for smoking cessation treatment in this population. PMID:24947541

  8. Reward and affective regulation in depression-prone smokers.

    PubMed

    Audrain-McGovern, Janet; Wileyto, E Paul; Ashare, Rebecca; Cuevas, Jocelyn; Strasser, Andrew A

    2014-11-01

    There is a disproportionately high smoking prevalence among individuals who are prone to depression. While depression has been conceptualized as a disorder of dysregulated positive affect and disrupted reward processing, little research has been conducted to determine the role of smoking in these processes among depression-prone smokers. Depression-prone smokers (DP+; n = 34) and smokers not depression-prone (DP-; n = 49) underwent two laboratory sessions, one while smoking abstinent and one while smoking ad libitum, to assess the relative reinforcing value of smoking and reward sensitivity. Using experience sampling methods, participants completed self-report measures of subjective reward, positive affect, and negative affect across 3 days while smoking as usual and 3 days while smoking abstinent. DP+ were two times more likely to work for cigarette puffs versus money in a progressive ratio, choice task (odds ratio 2.05; 95% confidence interval 1.04 to 4.06, p = .039) compared with DP-. Reward sensitivity as measured by the signal detection task did not yield any significant findings. Mixed models regressions revealed a three-way interaction (depression group, smoking phase, and time) for subjective reward, negative affect, and positive affect. For all three of these outcomes, the slopes for DP- and DP+ differed significantly from each other (ps < .05) and the effect of smoking (versus abstinence) over time was greater for DP+ than DP- smokers (ps < .05). These findings indicate that the effects of smoking on reward and positive affect regulation are specific to DP+ smokers and highlight novel targets for smoking cessation treatment in this population. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Differences in reward processing between putative cell types in primate prefrontal cortex.

    PubMed

    Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.

  10. Virtual reality conditioned place preference using monetary reward

    PubMed Central

    Childs, Emma; Astur, Robert S.; de Wit, Harriet

    2017-01-01

    Computerized tasks based on conditioned place preference (CPP) methodology offer the opportunity to study learning mechanisms involved in conditioned reward in humans. In this study, we examined acquisition and extinction of a CPP for virtual environments associated with monetary reward ($). Healthy men and women (N=57) completed a computerized CPP task in which they controlled an avatar within a virtual environment. On day 1, subjects completed 6 conditioning trials in which one room was paired with high $ and another with low $. Acquisition of place conditioning was assessed by measuring the time spent in each room during an exploration test of the virtual environments and using self-reported ratings of room liking and preference. Twenty-four hours later, retention and extinction of CPP were assessed during 4 successive exploration tests of the virtual environments. Participants exhibited a place preference for (spent significantly more time in) the virtual room paired with high $ over the one paired with low $ (p=0.015). They also reported that they preferred the high $ room (p<0.001) and liked it significantly more than the low $ room (p<0.001). However, these preferences were short-lived: 24h later subjects did not exhibit a behavioral or subjective preference for the high $ room. These findings show that individuals exhibit transient behavioral and subjective preferences for a virtual environment paired with monetary reward. Variations on this task may be useful to study mechanisms and brain substrates involved in conditioned reward and to examine the influence of drugs upon appetitive conditioning. PMID:28108321

  11. Virtual reality conditioned place preference using monetary reward.

    PubMed

    Childs, Emma; Astur, Robert S; de Wit, Harriet

    2017-03-30

    Computerized tasks based on conditioned place preference (CPP) methodology offer the opportunity to study learning mechanisms involved in conditioned reward in humans. In this study, we examined acquisition and extinction of a CPP for virtual environments associated with monetary reward ($). Healthy men and women (N=57) completed a computerized CPP task in which they controlled an avatar within a virtual environment. On day 1, subjects completed 6 conditioning trials in which one room was paired with high $ and another with low $. Acquisition of place conditioning was assessed by measuring the time spent in each room during an exploration test of the virtual environments and using self-reported ratings of room liking and preference. Twenty-four hours later, retention and extinction of CPP were assessed during 4 successive exploration tests of the virtual environments. Participants exhibited a place preference for (spent significantly more time in) the virtual room paired with high $ over the one paired with low $ (p=0.015). They also reported that they preferred the high $ room (p<0.001) and liked it significantly more than the low $ room (p<0.001). However, these preferences were short-lived: 24h later subjects did not exhibit a behavioral or subjective preference for the high $ room. These findings show that individuals exhibit transient behavioral and subjective preferences for a virtual environment paired with monetary reward. Variations on this task may be useful to study mechanisms and brain substrates involved in conditioned reward and to examine the influence of drugs upon appetitive conditioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anticipation of Monetary Reward Can Attenuate the Vigilance Decrement

    PubMed Central

    Grosso, Mallory; Liu, Guanyu; Mitko, Alex; Morris, Rachael; DeGutis, Joseph

    2016-01-01

    Motivation and reward can have differential effects on separate aspects of sustained attention. We previously demonstrated that continuous reward/punishment throughout a sustained attention task improves overall performance, but not vigilance decrements. One interpretation of these findings is that vigilance decrements are due to resource depletion, which is not overcome by increasing overall motivation. However, an alternative explanation is that as one performs a continuously rewarded task there are less potential gains/losses as the task progresses, which could decrease motivation over time, producing a vigilance decrement. This would predict that keeping future gains/losses consistent throughout the task would reduce the vigilance decrement. In the current study, we examined this possibility by comparing two versions (continuous-small loss vs. anticipate-large loss) of a 10-minute gradual onset continuous performance task (gradCPT), a challenging go/no-go sustained attention task. Participants began each task with the potential to keep $18. In the continuous-small-loss version, small monetary losses were accrued continuously throughout the task for each error. However, in the anticipate-large-loss version, participants lost all $18 if they erroneously responded to one target that always appeared toward the end of the vigil. Typical vigilance decrements were observed in the continuous-small-loss condition. In the anticipate-large-loss condition, vigilance decrements were reduced, particularly when the anticipate-large loss condition was completed second. This suggests that the looming possibility of a large loss can attenuate the vigilance decrement and that this attenuation may occur most consistently after sufficient task experience. We discuss these results in the context of current theories of sustained attention. PMID:27472785

  13. Evidences from Rewarding System, FRN and P300 Effect in Internet-Addiction in Young People SHORT TITLE: Rewarding System and EEG in Internet-Addiction

    PubMed Central

    Venturella, Irene; Finocchiaro, Roberta

    2017-01-01

    The present research explored rewarding bias and attentional deficits in Internet addiction (IA) based on the IAT (Internet Addiction Test) construct, during an attentional inhibitory task (Go/NoGo task). Event-related Potentials (ERPs) effects (Feedback Related Negativity (FRN) and P300) were monitored in concomitance with Behavioral Activation System (BAS) modulation. High-IAT young participants showed specific responses to IA-related cues (videos representing online gambling and videogames) in terms of cognitive performance (decreased Response Times, RTs; and Error Rates, ERs) and ERPs modulation (decreased FRN and increased P300). Consistent reward and attentional biases was adduced to explain the cognitive “gain” effect and the anomalous response in terms of both feedback behavior (FRN) and attentional (P300) mechanisms in high-IAT. In addition, BAS and BAS-Reward subscales measures were correlated with both IAT and ERPs variations. Therefore, high sensitivity to IAT may be considered as a marker of dysfunctional reward processing (reduction of monitoring) and cognitive control (higher attentional values) for specific IA-related cues. More generally, a direct relationship among reward-related behavior, Internet addiction and BAS attitude was suggested. PMID:28704978

  14. It's about time: Earlier rewards increase intrinsic motivation.

    PubMed

    Woolley, Kaitlin; Fishbach, Ayelet

    2018-06-01

    Can immediate (vs. delayed) rewards increase intrinsic motivation? Prior research compared the presence versus absence of rewards. By contrast, this research compared immediate versus delayed rewards, predicting that more immediate rewards increase intrinsic motivation by creating a perceptual fusion between the activity and its goal (i.e., the reward). In support of the hypothesis, framing a reward from watching a news program as more immediate (vs. delayed) increased intrinsic motivation to watch the program (Study 1), and receiving more immediate bonus (vs. delayed, Study 2; and vs. delayed and no bonus, Study 3) increased intrinsic motivation in an experimental task. The effect of reward timing was mediated by the strength of the association between an activity and a reward, and was specific to intrinsic (vs. extrinsic) motivation-immediacy influenced the positive experience of an activity, but not perceived outcome importance (Study 4). In addition, the effect of the timing of rewards was independent of the effect of the magnitude of the rewards (Study 5). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Effects of alexithymia and empathy on the neural processing of social and monetary rewards.

    PubMed

    Goerlich, Katharina Sophia; Votinov, Mikhail; Lammertz, Sarah E; Winkler, Lina; Spreckelmeyer, Katja N; Habel, Ute; Gründer, Gerhard; Gossen, Anna

    2017-07-01

    Empathy has been found to affect the neural processing of social and monetary rewards. Alexithymia, a subclinical condition showing a close inverse relationship with empathy is linked to dysfunctions of socio-emotional processing in the brain. Whether alexithymia alters the neural processing of rewards, which is currently unknown. Here, we investigated the influence of both alexithymia and empathy on reward processing using a social incentive delay (SID) task and a monetary incentive delay (MID) task in 45 healthy men undergoing functional magnetic resonance imaging. Controlling for temperament-character dimensions and rejection sensitivity, the relationship of alexithymia and empathy with neural activity in several a priori regions of interest (ROIs) was examined by means of partial correlations, while participants anticipated and received social and monetary rewards. Results were considered significant if they survived Holm-Bonferroni correction for multiple comparisons. Alexithymia modulated neural activity in several ROIs of the emotion and reward network, both during the anticipation of social and monetary rewards and in response to the receipt of monetary rewards. In contrast, empathy did not affect reward anticipation and modulated ROI activity only in response to the receipt of social rewards. These results indicate a significant influence of alexithymia on the processing of social and monetary rewards in the healthy brain.

  16. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2013-06-01

    Visual working memory (VWM) capacity is affected by motivational influences; however, little is known about how reward-related brain activities facilitate the VWM systems. To investigate the dynamic relationship between VWM- and reward-related brain activities, we conducted time-frequency analyses using electroencephalograph (EEG) data obtained during a monetary-incentive delayed-response task that required participants to memorize the position of colored disks. In case of a correct answer, participants received a monetary reward (0, 10 or 50 Japanese yen) announced at the beginning of each trial. Behavioral results showed that VWM capacity under high-reward condition significantly increased compared with that under low- or no-reward condition. EEG results showed that frontal theta (6 Hz) amplitudes enhanced during delay periods and positively correlated with VWM capacity, indicating involvement of theta local synchronizations in VWM. Moreover, frontal beta activities (24 Hz) were identified as reward-related activities, because delay-period amplitudes correlated with increases in VWM capacity between high-reward and no-reward conditions. Interestingly, cross-frequency couplings between frontal theta and beta phases were observed only under high-reward conditions. These findings suggest that the functional dynamic linking between VWM-related theta and reward-related beta activities on the frontal regions plays an integral role in facilitating increases in VWM capacity.

  17. Video game training and the reward system.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training.

  18. Attentional Bias for Non-drug Reward is Magnified in Addiction

    PubMed Central

    Anderson, Brian A.; Faulkner, Monica L.; Rilee, Jessica J.; Yantis, Steven; Marvel, Cherie L.

    2014-01-01

    Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcome. Attentional biases also develop for stimuli that have been paired with non-drug reward in adults without a history of addiction, the magnitude of which is predicted by visual working memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for non-drug (monetary) reward relative to that of healthy controls, and that this bias is related to working memory impairments and increased impulsiveness. Seventeen patients receiving methadone maintenance treatment for opioid dependence and seventeen healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11), visual working memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. Importantly, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with non-drug reward. This non-specific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction. PMID:24128148

  19. A liquid-delivery device that provides precise reward control for neurophysiological and behavioral experiments.

    PubMed

    Mitz, Andrew R

    2005-10-15

    Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.

  20. Effect of failure/success feedback and the moderating influence of personality on reward motivation.

    PubMed

    Anand, Deepika; Oehlberg, Katherine A; Treadway, Michael T; Nusslock, Robin

    2016-01-01

    While motivation to pursue goals is often assumed to be a trait-like characteristic, it is influenced by a variety of situational factors. In particular, recent experiences of success or failure, as well as cognitive responses to these outcomes, may shape subsequent willingness to expend effort for future rewards. To date, however, these effects have not been explicitly tested. In the present study, 131 healthy individuals received either failure or success feedback on a cognitive task. They were then instructed to either ruminate or distract themselves from their emotions. Finally, they completed the Effort Expenditure for Rewards Task, a laboratory measure of reward motivation. Results indicate that participants who received failure feedback relied more strongly on the reward magnitude when choosing whether to exert greater effort to obtain larger rewards, though this effect only held under conditions of significant uncertainty about whether the effort would be rewarded. Further, participants with high levels of trait inhibition were less responsive to reward value and probability when choosing whether to expend greater effort, results that echo past studies of effort-based decision-making in psychological disorders.

  1. Psychometric properties of neural responses to monetary and social rewards across development.

    PubMed

    Ethridge, Paige; Weinberg, Anna

    2018-02-02

    Reward-related event-related potentials (ERPs) are often used to index individual differences that signal the presence or predict the onset of psychopathology. However, relatively little research has explored the psychometric properties of reward-related ERPs. Without understanding their psychometric properties, the value of using ERPs as biomarkers for psychopathology is limited. The present study, therefore, sought to establish the internal consistency reliability and convergent validity of the reward positivity (RewP) and feedback negativity (FN) elicited by two types of incentives commonly used in individual differences research - monetary and social rewards. A large, developmentally-diverse sample completed a forced-choice guessing task in which they won or lost money, as well as a social interaction task in which they received acceptance and rejection feedback. Data were analyzed at both Cz and at a frontocentral region of interest (ROI) using techniques derived from classical test theory and generalizability theory. Results demonstrated good to excellent internal consistency of the RewP and FN within 20 trials in both tasks, in addition to convergent validity between the two tasks. Results from a regression-based approach to isolating activity specific to a single response demonstrated acceptable to good internal consistency within 20 trials in both tasks, while a subtraction-based approach (∆RewP) did not achieve acceptable internal consistency in either task. Internal consistency was not moderated by age and did not differ between Cz and the frontocentral ROI; however, the magnitudes of the RewP and FN were significantly associated with age at Cz but not at the ROI. This work replicates previous studies demonstrating good psychometric properties of the monetary RewP/FN and provides novel information about the psychometric properties of the social RewP/FN. These data support the use of reward-related ERPs elicited by multiple reward types in studies of

  2. Effect of yohimbine on reinstatement of operant responding in rats is dependent on cue contingency but not food reward history.

    PubMed

    Chen, Yu-Wei; Fiscella, Kimberly A; Bacharach, Samuel Z; Tanda, Gianluigi; Shaham, Yavin; Calu, Donna J

    2015-07-01

    Yohimbine is an alpha-2 adrenoceptor antagonist that has been used in numerous studies as a pharmacological stressor in rodents, monkeys and humans. Recently, yohimbine has become the most common stress manipulation in studies on reinstatement of drug and food seeking. However, the wide range of conditions under which yohimbine promotes reward seeking is significantly greater than that of stressors like intermittent footshock. Here, we addressed two fundamental questions regarding yohimbine's effect on reinstatement of reward seeking: (1) whether the drug's effect on operant responding is dependent on previous reward history or cue contingency, and (2) whether yohimbine is aversive or rewarding under conditions typically used in reinstatement studies. We also used in vivo microdialysis to determine yohimbine's effect on dopamine levels in nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). We found that the magnitude of yohimbine-induced (0.5, 1.0, 2.0 mg/kg) operant responding during the reinstatement tests was critically dependent on the contingency between lever pressing and discrete tone-light cue delivery but not the previous history with food reward during training. We also found that yohimbine (2 mg/kg) did not cause conditioned place aversion. Finally, we found that yohimbine modestly increased dopamine levels in mPFC but not NAc. Results suggest that yohimbine's effects on operant responding in reinstatement studies are likely independent of the history of contingent self-administration of food or drug rewards and may not be related to the commonly assumed stress-like effects of yohimbine. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Can a near win kindle motivation? The impact of nearly winning on motivation for unrelated rewards.

    PubMed

    Wadhwa, Monica; Kim, JeeHye Christine

    2015-06-01

    Common intuition and research suggest that winning is more motivating than losing. However, we propose that just failing to obtain a reward (i.e., nearly winning it) in one task leads to broader, positive motivational effects on subsequent unrelated tasks relative to clearly losing or actually obtaining the reward. We manipulated a near-win experience using a game app in Experiments 1 through 3 and a lottery in Experiment 4. Our findings showed that nearly winning in one task subsequently led participants to walk faster to get to a chocolate bar (Experiment 1), salivate more for money (Experiment 2), and increase their effort to earn money in a card-sorting task (Experiment 3). A field study (Experiment 4) demonstrated that nearly winning led people to subsequently spend more money on desirable consumer products. Finally, our findings showed that when the activated motivational state was dampened in an intervening task, the nearly-winning effect was attenuated. © The Author(s) 2015.

  4. The Religious Meaning in "Waiting for Godot"

    ERIC Educational Resources Information Center

    Wang, Jing

    2011-01-01

    "Waiting for Godot" is one of the classic works of theater of the absurd. The play seems absurd but with a deep religious meaning. This text tries to explore the theme in four parts of God and man, breaking the agreement, repentance and imprecation and waiting for salvation.

  5. Space, place and (waiting) time: reflections on health policy and politics.

    PubMed

    Sheard, Sally

    2018-02-19

    Health systems have repeatedly addressed concerns about efficiency and equity by employing trans-national comparisons to draw out the strengths and weaknesses of specific policy initiatives. This paper demonstrates the potential for explicit historical analysis of waiting times for hospital treatment to add value to spatial comparative methodologies. Waiting times and the size of the lists of waiting patients have become key operational indicators. In the United Kingdom, as National Health Service (NHS) financial pressures intensified from the 1970s, waiting times have become a topic for regular public and political debate. Various explanations for waiting times include the following: hospital consultants manipulate NHS waiting lists to maintain their private practice; there is under-investment in the NHS; and available (and adequate) resources are being used inefficiently. Other countries have also experienced ongoing tensions between the public and private delivery of universal health care in which national and trans-national comparisons of waiting times have been regularly used. The paper discusses the development of key UK policies, and provides a limited Canadian comparative perspective, to explore wider issues, including whether 'waiting crises' were consciously used by policymakers, especially those brought into government to implement new economic and managerial strategies, to diminish the autonomy and authority of the medical professional in the hospital environment.

  6. Noradrenergic modulation of risk/reward decision making.

    PubMed

    Montes, David R; Stopper, Colin M; Floresco, Stan B

    2015-08-01

    Catecholamine transmission modulates numerous cognitive and reward-related processes that can subserve more complex functions such as cost/benefit decision making. Dopamine has been shown to play an integral role in decisions involving reward uncertainty, yet there is a paucity of research investigating the contributions of noradrenaline (NA) transmission to these functions. The present study was designed to elucidate the contribution of NA to risk/reward decision making in rats, assessed with a probabilistic discounting task. We examined the effects of reducing noradrenergic transmission with the α2 agonist clonidine (10-100 μg/kg), and increasing activity at α2A receptor sites with the agonist guanfacine (0.1-1 mg/kg), the α2 antagonist yohimbine (1-3 mg/kg), and the noradrenaline transporter (NET) inhibitor atomoxetine (0.3-3 mg/kg) on probabilistic discounting. Rats chose between a small/certain reward and a larger/risky reward, wherein the probability of obtaining the larger reward either decreased (100-12.5 %) or increased (12.5-100 %) over a session. In well-trained rats, clonidine reduced risky choice by decreasing reward sensitivity, whereas guanfacine did not affect choice behavior. Yohimbine impaired adjustments in decision biases as reward probability changed within a session by altering negative feedback sensitivity. In a subset of rats that displayed prominent discounting of probabilistic rewards, the lowest dose of atomoxetine increased preference for the large/risky reward when this option had greater long-term utility. These data highlight an important and previously uncharacterized role for noradrenergic transmission in mediating different aspects of risk/reward decision making and mediating reward and negative feedback sensitivity.

  7. Opposing effects of reward and punishment on human vigor

    PubMed Central

    Griffiths, Benjamin; Beierholm, Ulrik R.

    2017-01-01

    The vigor with which humans and animals engage in a task is often a determinant of the likelihood of the task’s success. An influential theoretical model suggests that the speed and rate at which responses are made should depend on the availability of rewards and punishments. While vigor facilitates the gathering of rewards in a bountiful environment, there is an incentive to slow down when punishments are forthcoming so as to decrease the rate of punishments, in conflict with the urge to perform fast to escape punishment. Previous experiments confirmed the former, leaving the latter unanswered. We tested the influence of punishment in an experiment involving economic incentives and contrasted this with reward related behavior on the same task. We found that behavior corresponded with the theoretical model; while instantaneous threat of punishment caused subjects to increase the vigor of their response, subjects’ response times would slow as the overall rate of punishment increased. We quantitatively show that this is in direct contrast to increases in vigor in the face of increased overall reward rates. These results highlight the opposed effects of rewards and punishments and provide further evidence for their roles in the variety of types of human decisions. PMID:28205567

  8. Identifying demand for health resources using waiting times information.

    PubMed

    Blundell, R; Windmeijer, F

    2000-09-01

    In this paper the differences in average waiting times are utilized to identify the determinants of demand for health services. The equilibrium waiting time framework is used, but the full equilibrium assumption is relaxed by selecting areas with low waiting times and by estimating a (semi-)parametric selection model. Determinants of supply are used as instruments for the endogeneity of waiting times. A model for the demand for acute services at the ward level in the UK is estimated. The model estimates, and their implications for health service allocations in the UK, are contrasted against more standard allocation models. The present results show that it is critically important to account for rationing by waiting times when identifying needs from care utilization data. Copyright 2000 John Wiley & Sons, Ltd.

  9. I don't want to come back down: Undoing versus maintaining of reward recovery in older adolescents.

    PubMed

    Gilbert, Kirsten E; Nolen-Hoeksema, Susan; Gruber, June

    2016-03-01

    Adolescence is characterized by heightened and sometimes impairing reward sensitivity, yet less is known about how adolescents recover from highly arousing positive states. This is particularly important given high onset rates of psychopathology associated with reward sensitivity during late adolescence and early adulthood. The current study thus utilized a novel reward sensitivity task in order to examine potential ways in which older adolescent females (ages 18-21; N = 83) might recover from high arousal positive reward sensitive states. Participants underwent a fixed incentive reward sensitivity task and subsequently watched a neutral, sad, or a low approach-motivated positive emotional film clip during which subjective and physiological recovery was assessed. Results indicated that the positive and negative film conditions were associated with maintained physiological arousal while the neutral condition facilitated faster physiological recovery from the reward sensitivity task. It is interesting to note that individual differences in self-reported positive emotion during the reward task were associated with faster recovery in the neutral condition. Findings suggest elicited emotion (regardless of valence) may serve to maintain reward sensitivity whereas self-reported positive emotional experience may be a key ingredient facilitating physiological recovery or undoing. Understanding the nuances of reward recovery provides a critical step in understanding the etiology and persistence of reward dysregulation more generally. (c) 2016 APA, all rights reserved).

  10. A Validated Task Analysis of the Single Pilot Operations Concept

    NASA Technical Reports Server (NTRS)

    Wolter, Cynthia A.; Gore, Brian F.

    2015-01-01

    The current day flight deck operational environment consists of a two-person Captain/First Officer crew. A concept of operations (ConOps) to reduce the commercial cockpit to a single pilot from the current two pilot crew is termed Single Pilot Operations (SPO). This concept has been under study by researchers in the Flight Deck Display Research Laboratory (FDDRL) at the National Aeronautics and Space Administration's (NASA) Ames (Johnson, Comerford, Lachter, Battiste, Feary, and Mogford, 2012) and researchers from Langley Research Centers (Schutte et al., 2007). Transitioning from a two pilot crew to a single pilot crew will undoubtedly require changes in operational procedures, crew coordination, use of automation, and in how the roles and responsibilities of the flight deck and ATC are conceptualized in order to maintain the high levels of safety expected of the US National Airspace System. These modifications will affect the roles and the subsequent tasks that are required of the various operators in the NextGen environment. The current report outlines the process taken to identify and document the tasks required by the crew according to a number of operational scenarios studied by the FDDRL between the years 2012-2014. A baseline task decomposition has been refined to represent the tasks consistent with a new set of entities, tasks, roles, and responsibilities being explored by the FDDRL as the move is made towards SPO. Information from Subject Matter Expert interviews, participation in FDDRL experimental design meetings, and study observation was used to populate and refine task sets that were developed as part of the SPO task analyses. The task analysis is based upon the proposed ConOps for the third FDDRL SPO study. This experiment possessed nine different entities operating in six scenarios using a variety of SPO-related automation and procedural activities required to guide safe and efficient aircraft operations. The task analysis presents the roles and

  11. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.

    PubMed

    Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel

    2017-07-05

    The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Parametric changes in response equilibrium during an intra-cranial self stimulation (ICSS) task: can reward value be assessed independently of absolute threshold?

    PubMed

    Easterling, K W; Holtzman, S G

    1997-01-01

    Traditional ICSS methodologies have attempted to evaluate changes in the rewarding value of brain stimulation by assessing the lowest value of the stimulation that will support responding. However, orderly changes in suprathreshold indicants of hedonic magnitude such as titration point have been shown. In the present experiments, rats were trained to respond on two ICSS autotitration schedules in which every response on one lever produced stimulation of the medial forebrain bundle, and every Xth response decreased either the stimulation current or the stimulation frequency. At any time, a response on a second "reset" lever restored the stimulation current or frequency available on the stimulation lever to its starting level and operationally defined changes in "reward value". In order to study this titration point measure, two response requirements (responses/stepdown; step size) and two stimulation parameters (initial stimulation level; train duration) were systematically varied. Under both current and frequency titration schedules, data indicated that response rate and titration point remained stable over repeated trials and multiple testing days--parameters being constant. Across all conditions, compared to the frequency titration schedule, subjects responding under the current titration schedule showed significantly higher titration points and lower rates of responding. Indicating the independence of rate and titration point data, parametric manipulations did not affect titration point and rate data concurrently. Results support the conclusion that titration point is a relative measure of "reward value" that is generally independent of response rate, but that is affected by manipulations that alter the amount of stimulation available between "resets". Additional work is needed in order to determine the relationship between the magnitude of stimulation needed to maintain minimal responding and that needed to maintain response equilibrium in an autotitration task.

  13. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task

    PubMed Central

    Martig, Adria K; Mizumori, Sheri JY

    2010-01-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicates DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N=9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N=167) and CA3 (N=94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations “rescued” performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps specifically by maintaining place field stability selectively in CA1/CA2. PMID:20082295

  14. Influence of supraliminal reward information on unconsciously triggered response inhibition.

    PubMed

    Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong

    2014-01-01

    Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition.

  15. Influence of Supraliminal Reward Information on Unconsciously Triggered Response Inhibition

    PubMed Central

    Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong

    2014-01-01

    Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition. PMID:25268227

  16. Serotonergic neurons signal reward and punishment on multiple timescales

    PubMed Central

    Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige

    2015-01-01

    Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923

  17. Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats.

    PubMed

    Der-Avakian, Andre; D'Souza, Manoranjan S; Potter, David N; Chartoff, Elena H; Carlezon, William A; Pizzagalli, Diego A; Markou, Athina

    2017-05-01

    Mood disorders can be triggered by stress and are characterized by deficits in reward processing, including disrupted reward learning (the ability to modulate behavior according to past rewards). Reward learning is regulated by the anterior cingulate cortex (ACC) and striatal circuits, both of which are implicated in the pathophysiology of mood disorders. Here, we assessed in rats the effects of a potent stressor (social defeat) on reward learning and gene expression in the ACC, ventral tegmental area (VTA), and striatum. Adult male Wistar rats were trained on an operant probabilistic reward task (PRT) and then exposed to 3 days of social defeat before assessment of reward learning. After testing, the ACC, VTA, and striatum were dissected, and expression of genes previously implicated in stress was assessed. Social defeat blunted reward learning (manifested as reduced response bias toward a more frequently rewarded stimulus) and was associated with increased nociceptin/orphanin FQ (N/OFQ) peptide mRNA levels in the striatum and decreased Fos mRNA levels in the VTA. Moreover, N/OFQ peptide and nociceptin receptor mRNA levels in the ACC, VTA and striatum were inversely related to reward learning. The behavioral findings parallel previous data in humans, suggesting that stress similarly disrupts reward learning in both species. Increased striatal N/OFQ mRNA in stressed rats characterized by impaired reward learning is consistent with accumulating evidence that antagonism of nociceptin receptors, which bind N/OFQ, has antidepressant-like effects. These results raise the possibility that nociceptin systems represent a molecular substrate through which stress produces reward learning deficits in mood disorders.

  18. Effects of motivation on reward and attentional networks: an fMRI study.

    PubMed

    Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Friston, Karl; Newcorn, Jeffrey H; Fan, Jin

    2012-11-01

    Existing evidence suggests that reward and attentional networks function in concert and that activation in one system influences the other in a reciprocal fashion; however, the nature of these influences remains poorly understood. We therefore developed a three-component task to assess the interaction effects of reward anticipation and conflict resolution on the behavioral performance and the activation of brain reward and attentional systems. Sixteen healthy adult volunteers aged 21-45 years were scanned with functional magnetic resonance imaging (fMRI) while performing the task. A two-way repeated measures analysis of variance (ANOVA) with cue (reward vs. non-reward) and target (congruent vs. incongruent) as within-subjects factors was used to test for main and interaction effects. Neural responses to anticipation, conflict, and reward outcomes were tested. Behaviorally there were main effects of both reward cue and target congruency on reaction time. Neuroimaging results showed that reward anticipation and expected reward outcomes activated components of the attentional networks, including the inferior parietal and occipital cortices, whereas surprising non-rewards activated the frontoinsular cortex bilaterally and deactivated the ventral striatum. In turn, conflict activated a broad network associated with cognitive control and motor functions. Interaction effects showed decreased activity in the thalamus, anterior cingulated gyrus, and middle frontal gyrus bilaterally when difficult conflict trials (e.g., incongruent targets) were preceded by reward cues; in contrast, the ventral striatum and orbitofrontal cortex showed greater activation during congruent targets preceded by reward cues. These results suggest that reward anticipation is associated with lower activation in attentional networks, possibly due to increased processing efficiency, whereas more difficult, conflict trials are associated with lower activity in regions of the reward system, possibly

  19. Age differences in default and reward networks during processing of personally relevant information.

    PubMed

    Grady, Cheryl L; Grigg, Omer; Ng, Charisa

    2012-06-01

    We recently found activity in default mode and reward-related regions during self-relevant tasks in young adults. Here we examine the effect of aging on engagement of the default network (DN) and reward network (RN) during these tasks. Previous studies have shown reduced engagement of the DN and reward areas in older adults, but the influence of age on these circuits during self-relevant tasks has not been examined. The tasks involved judging personality traits about one's self or a well known other person. There were no age differences in reaction time on the tasks but older adults had more positive Self and Other judgments, whereas younger adults had more negative judgments. Both groups had increased DN and RN activity during the self-relevant tasks, relative to non-self tasks, but this increase was reduced in older compared to young adults. Functional connectivity of both networks during the tasks was weaker in the older relative to younger adults. Intrinsic functional connectivity, measured at rest, also was weaker in the older adults in the DN, but not in the RN. These results suggest that, in younger adults, the processing of personally relevant information involves robust activation of and functional connectivity within these two networks, in line with current models that emphasize strong links between the self and reward. The finding that older adults had more positive judgments, but weaker engagement and less consistent functional connectivity in these networks, suggests potential brain mechanisms for the "positivity bias" with aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Age differences in default and reward networks during processing of personally relevant information

    PubMed Central

    Grady, Cheryl L.; Grigg, Omer; Ng, Charisa

    2013-01-01

    We recently found activity in default mode and reward-related regions during self-relevant tasks in young adults. Here we examine the effect of aging on engagement of the default network (DN) and reward network (RN) during these tasks. Previous studies have shown reduced engagement of the DN and reward areas in older adults, but the influence of age on these circuits during self-relevant tasks has not been examined. The tasks involved judging personality traits about one’s self or a well known other person. There were no age differences in reaction time on the tasks but older adults had more positive Self and Other judgments, whereas younger adults had more negative judgments. Both groups had increased DN and RN activity during the self-relevant tasks, relative to non-self tasks, but this increase was reduced in older compared to young adults. Functional connectivity of both networks during the tasks was weaker in the older relative to younger adults. Intrinsic functional connectivity, measured at rest, also was weaker in the older adults in the DN, but not in the RN. These results suggest that, in younger adults, the processing of personally relevant information involves robust activation of and functional connectivity within these two networks, in line with current models that emphasize strong links between the self and reward. The finding that older adults had more positive judgments, but weaker engagement and less consistent functional connectivity in these networks, suggests potential brain mechanisms for the “positivity bias” with aging. PMID:22484520

  1. Age Differences in the Impact of Peers on Adolescents’ and Adults’ Neural Response to Reward

    PubMed Central

    Smith, Ashley R.; Steinberg, Laurence; Strang, Nicole; Chein, Jason

    2014-01-01

    Prior research suggests that increased adolescent risk-taking in the presence of peers may be linked to the influence of peers on the valuation and processing of rewards during decision-making. The current study explores this idea by examining how peer observation impacts the processing of rewards when such processing is isolated from other facets of risky decision-making (e.g. risk-perception and preference, inhibitory processing, etc.). In an fMRI paradigm, a sample of adolescents (ages 14–19) and adults (ages 25–35) completed a modified High/Low Card Guessing Task that included rewarded and un-rewarded trials. Social context was manipulated by having participants complete the task both alone and while being observed by two, same-age, same-sex peers. Results indicated an interaction of age and social context on the activation of reward circuitry during the receipt of reward; when observed by peers adolescents exhibited greater ventral striatal activation than adults, but no age-related differences were evinced when the task was completed alone. These findings suggest that, during adolescence, peers influence recruitment of reward-related regions even when they are engaged outside of the context of risk-taking. Implications for engagement in prosocial, as well as risky, behaviors during adolescence are discussed. PMID:25280778

  2. Differences in reward processing between putative cell types in primate prefrontal cortex

    PubMed Central

    Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734

  3. Reward Sensitivity for a Palatable Food Reward Peaks During Pubertal Developmental in Rats

    PubMed Central

    Friemel, Chris M.; Spanagel, Rainer; Schneider, Miriam

    2010-01-01

    Puberty is a critical period for the initiation of drug use and abuse. Because early drug use onset often accounts for a more severe progression of addiction, it is of importance to understand the underlying mechanisms and neurodevelopmental changes during puberty that are contributing to enhanced reward processing in teenagers. The present study investigated the progression of reward sensitivity toward a natural food reward over the whole course of adolescence in male rats (postnatal days 30–90) by monitoring consummatory, motivational behavior and neurobiological correlates of reward. Using a limited-free intake paradigm, consumption of sweetened condensed milk (SCM) was measured repeatedly in adolescent and adult rats. Additionally, early- and mid-pubertal animals were tested in Progressive Ratio responding for SCM and c-fos protein expression in reward-associated brain structures was examined after odor conditioning for SCM. We found a transient increase in SCM consumption and motivational incentive for SCM during puberty. This increased reward sensitivity was most pronounced around mid-puberty. The behavioral findings are paralleled by enhanced c-fos staining in reward-related structures revealing an intensified neuronal response after reward-cue presentation, distinctive for pubertal animals. Taken together, these data indicate an increase in reward sensitivity during adolescence accompanied by enhanced responsiveness of reward-associated brain structures to incentive stimuli, and it seems that both is strongly pronounced around mid-puberty. Therefore, higher reward sensitivity during pubertal maturation might contribute to the enhanced vulnerability of teenagers for the initiation of experimental drug use. PMID:20700386

  4. Theory of choice in bandit, information sampling and foraging tasks.

    PubMed

    Averbeck, Bruno B

    2015-03-01

    Decision making has been studied with a wide array of tasks. Here we examine the theoretical structure of bandit, information sampling and foraging tasks. These tasks move beyond tasks where the choice in the current trial does not affect future expected rewards. We have modeled these tasks using Markov decision processes (MDPs). MDPs provide a general framework for modeling tasks in which decisions affect the information on which future choices will be made. Under the assumption that agents are maximizing expected rewards, MDPs provide normative solutions. We find that all three classes of tasks pose choices among actions which trade-off immediate and future expected rewards. The tasks drive these trade-offs in unique ways, however. For bandit and information sampling tasks, increasing uncertainty or the time horizon shifts value to actions that pay-off in the future. Correspondingly, decreasing uncertainty increases the relative value of actions that pay-off immediately. For foraging tasks the time-horizon plays the dominant role, as choices do not affect future uncertainty in these tasks.

  5. Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control.

    PubMed

    Manohar, Sanjay G; Chong, Trevor T-J; Apps, Matthew A J; Batla, Amit; Stamelou, Maria; Jarman, Paul R; Bhatia, Kailash P; Husain, Masud

    2015-06-29

    Speed-accuracy trade-off is an intensively studied law governing almost all behavioral tasks across species. Here we show that motivation by reward breaks this law, by simultaneously invigorating movement and improving response precision. We devised a model to explain this paradoxical effect of reward by considering a new factor: the cost of control. Exerting control to improve response precision might itself come at a cost--a cost to attenuate a proportion of intrinsic neural noise. Applying a noise-reduction cost to optimal motor control predicted that reward can increase both velocity and accuracy. Similarly, application to decision-making predicted that reward reduces reaction times and errors in cognitive control. We used a novel saccadic distraction task to quantify the speed and accuracy of both movements and decisions under varying reward. Both faster speeds and smaller errors were observed with higher incentives, with the results best fitted by a model including a precision cost. Recent theories consider dopamine to be a key neuromodulator in mediating motivational effects of reward. We therefore examined how Parkinson's disease (PD), a condition associated with dopamine depletion, alters the effects of reward. Individuals with PD showed reduced reward sensitivity in their speed and accuracy, consistent in our model with higher noise-control costs. Including a cost of control over noise explains how reward may allow apparent performance limits to be surpassed. On this view, the pattern of reduced reward sensitivity in PD patients can specifically be accounted for by a higher cost for controlling noise. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A new model for recognizing and rewarding the educational accomplishments of surgery faculty.

    PubMed

    Sachdeva, A K; Cohen, R; Dayton, M T; Hebert, J C; Jamieson, C; Neumayer, L A; Sharp, K W; Spence, R K

    1999-12-01

    Faculty members' educational endeavors have generally not received adequate recognition. The Association for Surgical Education in 1993 established a task force to determine the magnitude of this problem and to create a model to address the challenges and opportunities identified. To obtain baseline information, the task force reviewed information from national sources and the literature on recognizing and rewarding faculty members for educational accomplishments. The group also developed and mailed to surgery departments at all U.S. and Canadian medical schools a questionnaire asking about the educational endeavors of the surgery faculty and their recognition for such activities. The response rate after two mailings was only 56%, but the responses reaffirmed the inadequacy of systems for rewarding and recognizing surgeon-teachers and surgeon-educators, and confirmed that the distinction between the roles of teacher and educator was rarely made. The task force created a four-tier hierarchical model based on the designations teacher, master teacher, educator, and master educator as a framework to offer appropriate recognition and rewards to the faculty, and endorsed a broad definition of educational scholarship. Criteria for various levels of achievement, ways to demonstrate and document educational contributions, appropriate support and recognition, and suggested faculty ranks were defined for these levels. The task force recommended that each surgery department have within its faculty ranks a cadre of trained teachers, a few master teachers, and at least one educator. Departments with a major commitment to education should consider supporting a master educator to serve as a resource not only for the department but also for the department's medical school and other medical schools. Although this model was created for surgery departments, it is generalizable to other disciplines.

  7. Rational Snacking: Young Children's Decision-Making on the Marshmallow Task is Moderated by Beliefs about Environmental Reliability

    ERIC Educational Resources Information Center

    Kidd, Celeste; Palmeri, Holly; Aslin, Richard N.

    2013-01-01

    Children are notoriously bad at delaying gratification to achieve later, greater rewards (e.g., Piaget, 1970)--and some are worse at waiting than others. Individual differences in the ability-to-wait have been attributed to self-control, in part because of evidence that long-delayers are more successful in later life (e.g., Shoda, Mischel, &…

  8. The impact of cognitive load on reward evaluation.

    PubMed

    Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M

    2015-11-19

    The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The impact of Parkinson's disease and subthalamic deep brain stimulation on reward processing.

    PubMed

    Evens, Ricarda; Stankevich, Yuliya; Dshemuchadse, Maja; Storch, Alexander; Wolz, Martin; Reichmann, Heinz; Schlaepfer, Thomas E; Goschke, Thomas; Lueken, Ulrike

    2015-08-01

    Due to its position in cortico-subthalamic and cortico-striatal pathways, the subthalamic nucleus (STN) is considered to play a crucial role not only in motor, but also in cognitive and motivational functions. In the present study we aimed to characterize how different aspects of reward processing are affected by disease and deep brain stimulation of the STN (DBS-STN) in patients with idiopathic Parkinson's disease (PD). We compared 33 PD patients treated with DBS-STN under best medical treatment (DBS-on, medication-on) to 33 PD patients without DBS, but optimized pharmacological treatment and 34 age-matched healthy controls. We then investigated DBS-STN effects using a postoperative stimulation-on/ -off design. The task set included a delay discounting task, a task to assess changes in incentive salience attribution, and the Iowa Gambling Task. The presence of PD was associated with increased incentive salience attribution and devaluation of delayed rewards. Acute DBS-STN increased risky choices in the Iowa Gambling Task under DBS-on condition, but did not further affect incentive salience attribution or the evaluation of delayed rewards. Findings indicate that acute DBS-STN affects specific aspects of reward processing, including the weighting of gains and losses, while larger-scale effects of disease or medication are predominant in others reward-related functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dopamine neurons learn relative chosen value from probabilistic rewards

    PubMed Central

    Lak, Armin; Stauffer, William R; Schultz, Wolfram

    2016-01-01

    Economic theories posit reward probability as one of the factors defining reward value. Individuals learn the value of cues that predict probabilistic rewards from experienced reward frequencies. Building on the notion that responses of dopamine neurons increase with reward probability and expected value, we asked how dopamine neurons in monkeys acquire this value signal that may represent an economic decision variable. We found in a Pavlovian learning task that reward probability-dependent value signals arose from experienced reward frequencies. We then assessed neuronal response acquisition during choices among probabilistic rewards. Here, dopamine responses became sensitive to the value of both chosen and unchosen options. Both experiments showed also the novelty responses of dopamine neurones that decreased as learning advanced. These results show that dopamine neurons acquire predictive value signals from the frequency of experienced rewards. This flexible and fast signal reflects a specific decision variable and could update neuronal decision mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18044.001 PMID:27787196

  11. The Effects of Methylphenidate on Discounting of Delayed Rewards in ADHD

    PubMed Central

    Shiels, Keri; Hawk, Larry W.; Reynolds, Brady; Mazzullo, Rebecca; Rhodes, Jessica; Pelham, William E.; Waxmonsky, James G.; Gangloff, Brian P.

    2010-01-01

    Impulsivity is a central component of attention-deficit/hyperactivity disorder (ADHD). Delay discounting, or a preference for smaller, immediate rewards over larger, delayed rewards is considered an important aspect of impulsivity, and delay-related impulsivity has been emphasized in etiological models of ADHD. The current study examined whether stimulant medication, an effective treatment for ADHD, reduces discounting of delayed experiential and hypothetical rewards among 49 children (age 9–12 years) with ADHD. Following a practice day, participants completed a 3-day double-blind placebo-controlled acute medication assessment. Active doses were long-acting methylphenidate (Concerta), with the nearest equivalents of 0.3 and 0.6 mg/kg TID immediate-release methylphenidate. On each testing day, participants completed experiential (real-world money in real time) and hypothetical discounting tasks. Relative to placebo, methylphenidate reduced discounting of delayed experiential rewards, but not hypothetical rewards. Broadly consistent with etiological models that emphasize delay-related impulsivity among children with ADHD, these findings provide initial evidence that stimulant medication reduces delay discounting among those with the disorder. The present results also draw attention to task parameters that may influence the sensitivity of various delay discounting measures to medication effects. PMID:19803628

  12. Negative mood disrupts self- and reward-biases in perceptual matching.

    PubMed

    Sui, Jie; Ohrling, Erik; Humphreys, Glyn W

    2016-01-01

    There are established effects of self- and reward-biases even on simple perceptual matching tasks [Sui, J., He, X., & Humphreys, G. W. (2012). Perceptual effects of social salience: Evidence from self-prioritization effects on perceptual matching. Journal of Experimental Psychology, Human Perception and Performance, 38, 1105-1117]; however we know little about whether these biases can be modulated by particular interventions, and whether the biases then change in the same way. Here we assessed how the biases alter under conditions designed to induce negative mood. We had participants read a list of self-related negative or neutral mood statements [Velten, E. (1968). A laboratory task for induction of mood states. Behavior Research and Therapy, 6, 473-482] and also listen for 10 min to a passage of negative or neutral music, prior to carrying out perceptual matching with shapes associated to personal labels (self or stranger) or reward (£12 or £1). Responses to the self- and high-reward-associated shapes were selectively slower and less sensitive (d') following the negative mood induction procedures, and the decrease in mood correlated with decreases in the reaction time bias across "high saliency" (self and high-reward) stimuli. We suggest that negative mood may decrease self- and reward-biases through reducing attention to salient external stimuli.

  13. The role of reward in word learning and its implications for language acquisition.

    PubMed

    Ripollés, Pablo; Marco-Pallarés, Josep; Hielscher, Ulrike; Mestres-Missé, Anna; Tempelmann, Claus; Heinze, Hans-Jochen; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2014-11-03

    The exact neural processes behind humans' drive to acquire a new language--first as infants and later as second-language learners--are yet to be established. Recent theoretical models have proposed that during human evolution, emerging language-learning mechanisms might have been glued to phylogenetically older subcortical reward systems, reinforcing human motivation to learn a new language. Supporting this hypothesis, our results showed that adult participants exhibited robust fMRI activation in the ventral striatum (VS)--a core region of reward processing--when successfully learning the meaning of new words. This activation was similar to the VS recruitment elicited using an independent reward task. Moreover, the VS showed enhanced functional and structural connectivity with neocortical language areas during successful word learning. Together, our results provide evidence for the neural substrate of reward and motivation during word learning. We suggest that this strong functional and anatomical coupling between neocortical language regions and the subcortical reward system provided a crucial advantage in humans that eventually enabled our lineage to successfully acquire linguistic skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Decision-making impairments in the context of intact reward sensitivity in schizophrenia.

    PubMed

    Heerey, Erin A; Bell-Warren, Kimberly R; Gold, James M

    2008-07-01

    Deficits in motivated behavior and decision-making figure prominently in the behavioral syndrome that characterizes schizophrenia and are difficult both to treat and to understand. One explanation for these deficits is that schizophrenia decreases sensitivity to rewards in the environment. An alternate explanation is that sensitivity to rewards is intact but that poor integration of affective with cognitive information impairs the ability to use this information to guide behavior. We tested reward sensitivity with a modified version of an existing signal detection task with asymmetric reinforcement and decision-making with a probabilistic decision-making task in 40 participants with schizophrenia and 26 healthy participants. Results showed normal sensitivity to reward in participants with schizophrenia but differences in choice patterns on the decision-making task. A logistic regression model of the decision-making data showed that participants with schizophrenia differed from healthy participants in the ability to weigh potential outcomes, specifically potential losses, when choosing between competing response options. Deficits in working memory ability accounted for group differences in ability to use potential outcomes during decision-making. These results suggest that the implicit mechanisms that drive reward-based learning are surprisingly intact in schizophrenia but that poor ability to integrate cognitive and affective information when calculating the value of possible choices might hamper the ability to use such information during explicit decision-making.

  15. SpaceDock: A Performance Task Platform for Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Strangman, Gary E.; Strauss, Monica S.; Sutton, Jeffrey P.

    2003-01-01

    Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments.

  16. Evidence for deficits in reward responsivity in antisocial youth with callous-unemotional traits.

    PubMed

    Marini, Victoria A; Stickle, Timothy R

    2010-10-01

    This study investigated reward responsivity in youth with high levels of callous-unemotional (CU) traits using a cross-sectional design. Whereas deficits in responding to punishment cues are well established in youth with CU traits, it is unclear whether responsivity to rewarding stimuli is impaired as well. Participants were 148 predominantly Caucasian, adjudicated adolescents between the ages of 11 and 17 (M = 15.1, SD = 1.4) who completed the Balloon Analogue Risk Task as part of a larger battery investigating aggression and social information processing. A Reward Responsivity variable was created to capture changes in participants' responding after receiving a reward. A hierarchical regression analysis indicated that higher levels of CU traits significantly predicted less reward responsivity, above and beyond gender, sensation seeking, and impulsivity. Results support Blair's (2004) Integrated Emotion Systems model that proposes individuals with CU traits are impaired in their responsivity to both appetitive and aversive stimuli.

  17. Computer support for cooperative tasks in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Moore, Mike

    1994-01-01

    Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.

  18. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity

    PubMed Central

    Yamaguchi, Yoko

    2013-01-01

    Visual working memory (VWM) capacity is affected by motivational influences; however, little is known about how reward-related brain activities facilitate the VWM systems. To investigate the dynamic relationship between VWM- and reward-related brain activities, we conducted time–frequency analyses using electroencephalograph (EEG) data obtained during a monetary-incentive delayed-response task that required participants to memorize the position of colored disks. In case of a correct answer, participants received a monetary reward (0, 10 or 50 Japanese yen) announced at the beginning of each trial. Behavioral results showed that VWM capacity under high-reward condition significantly increased compared with that under low- or no-reward condition. EEG results showed that frontal theta (6 Hz) amplitudes enhanced during delay periods and positively correlated with VWM capacity, indicating involvement of theta local synchronizations in VWM. Moreover, frontal beta activities (24 Hz) were identified as reward-related activities, because delay-period amplitudes correlated with increases in VWM capacity between high-reward and no-reward conditions. Interestingly, cross-frequency couplings between frontal theta and beta phases were observed only under high-reward conditions. These findings suggest that the functional dynamic linking between VWM-related theta and reward-related beta activities on the frontal regions plays an integral role in facilitating increases in VWM capacity. PMID:22349800

  19. Colour Consideration for Waiting areas in hospitals

    NASA Astrophysics Data System (ADS)

    Zraati, Parisa

    2012-08-01

    Colour is one the most important factors in the nature that can have some affects on human behaviour. Many years ago, it was proven that using colour in public place can have some affect on the users. Depend of the darkness and lightness; it can be vary from positive to negative. The research will mainly focus on the colour and psychological influences and physical factors. The statement of problem in this research is what is impact of colour usually applied to waiting area? The overall aim of the study is to explore the visual environment of hospitals and to manage the colour psychological effect of the hospital users in the waiting area by creating a comfortable, pleasant and cozy environment for users while spend their time in waiting areas. The analysisconcentrate on satisfaction and their interesting regarding applied colour in two private hospital waiting area in Malaysia.

  20. Characterization of reward and effort mechanisms in apathy

    PubMed Central

    Bonnelle, Valerie; Veromann, Kai-Riin; Burnett Heyes, Stephanie; Lo Sterzo, Elena; Manohar, Sanjay; Husain, Masud

    2015-01-01

    Apathy is a common but poorly understood condition with a wide societal impact observed in several brain disorders as well as, to some extent, in the normal population. Hence the need for better characterization of the underlying mechanisms. The processes by which individuals decide to attribute physical effort to obtain rewards might be particularly relevant to relate to apathy traits. Here, we designed two paradigms to assess individual differences in physical effort production and effort-based decision-making and their relation to apathy in healthy people. Apathy scores were measured using a modified version of the Lille Apathy Rating Scale, suitable for use in a non-clinical population. In the first study, apathy scores were correlated with the degree to which stake (reward on offer) and difficulty level impacts on physical effort production. Individuals with relatively high apathy traits showed an increased modulation of effort while more motivated individuals generally exerted greater force across different levels of stake. To clarify the underlying mechanisms for this behavior, we designed a second task that allows independent titration of stake and effort levels for which subjects are willing to engage in an effortful response to obtain a reward. Our results suggest that apathy traits in the normal population are related to the way reward subjectively affects the estimation of effort costs, and more particularly manifest as decreased willingness to exert effort when rewards are small, or below threshold. The tasks we introduce here may provide useful tools to further investigate apathy in clinical populations. PMID:24747776

  1. [Has the time arrived for the management of waiting lists?].

    PubMed

    Bernal, E

    2002-01-01

    Individuals on the waiting list frequently suffer an additional risk caused by the mean time until they receive treatment; however, other individuals do not need the treatment for which they are waiting.Both arguments, which can be contrasted with empirical evidence, would be sufficient to affirm that waiting list management should be implemented, leaving aside policies that are more of less opportunistic. Opportunistic policies are understood as those providing misinformation on waiting lists or their "manipulation", and using programs of auto-coordination with the sole aim of reaching the end of the year without a waiting list of not more than six months, etc. The panorama is not completely bleak. Some management initiatives (and even Politics with a capital P) are opening the way forward and may enter the Agenda in the next few years. In this context, the application of guaranteed times of medical care or the prioritization of waiting lists according to explicit criteria should be highlighted. It is worth remembering that, except for the queues in the waiting rooms of health centers and emergency departments, waiting lists are mediated by the decision of the physician. Therefore, an essential strategy for managing waiting lists consists of attenuating the problems caused by uncertainty (or ignorance) of the patient's diagnosis or prognosis.

  2. Illegitimate Tasks as an Impediment to Job Satisfaction and Intrinsic Motivation: Moderated Mediation Effects of Gender and Effort-Reward Imbalance

    PubMed Central

    Omansky, Rachel; Eatough, Erin M.; Fila, Marcus J.

    2016-01-01

    The current work examines a contemporary workplace stressor that has only recently been introduced into the literature: illegitimate tasks. Illegitimate tasks are work tasks that violate identity role norms about what can reasonably be expected from an employee in a given position. Although illegitimate tasks have been linked to employee well-being in past work, we know little about the potential explanatory mechanisms linking illegitimate tasks to work-relevant negative psychological states. Using a sample of 213 US-based employees of mixed occupations and a cross-sectional design, the present study examines job satisfaction and intrinsic motivation as outcomes of illegitimate tasks. Additionally, we examine perception of effort-reward imbalance (ERI) as a potential mediating mechanism through which illegitimate tasks relate to job satisfaction and intrinsic motivation, highlighting a possible pathway by which these relationships are functioning. Finally, we explore gender as a socially constructed variable that could contribute to variation in responses to illegitimate tasks and moderate the mediated link between illegitimate tasks and outcomes. Results indicated that illegitimate tasks were significantly related to job satisfaction and intrinsic motivation both directly and indirectly through perceptions of ERI in the predicted directions. Moreover, a moderated-mediation effect was found such that male workers reacted more than female workers to illegitimate tasks through the mechanism of perceived ERI. PMID:27917145

  3. Illegitimate Tasks as an Impediment to Job Satisfaction and Intrinsic Motivation: Moderated Mediation Effects of Gender and Effort-Reward Imbalance.

    PubMed

    Omansky, Rachel; Eatough, Erin M; Fila, Marcus J

    2016-01-01

    The current work examines a contemporary workplace stressor that has only recently been introduced into the literature: illegitimate tasks. Illegitimate tasks are work tasks that violate identity role norms about what can reasonably be expected from an employee in a given position. Although illegitimate tasks have been linked to employee well-being in past work, we know little about the potential explanatory mechanisms linking illegitimate tasks to work-relevant negative psychological states. Using a sample of 213 US-based employees of mixed occupations and a cross-sectional design, the present study examines job satisfaction and intrinsic motivation as outcomes of illegitimate tasks. Additionally, we examine perception of effort-reward imbalance (ERI) as a potential mediating mechanism through which illegitimate tasks relate to job satisfaction and intrinsic motivation, highlighting a possible pathway by which these relationships are functioning. Finally, we explore gender as a socially constructed variable that could contribute to variation in responses to illegitimate tasks and moderate the mediated link between illegitimate tasks and outcomes. Results indicated that illegitimate tasks were significantly related to job satisfaction and intrinsic motivation both directly and indirectly through perceptions of ERI in the predicted directions. Moreover, a moderated-mediation effect was found such that male workers reacted more than female workers to illegitimate tasks through the mechanism of perceived ERI.

  4. Adolescent behavioral and neural reward sensitivity: a test of the differential susceptibility theory

    PubMed Central

    Richards, J S; Arias Vásquez, A; von Rhein, D; van der Meer, D; Franke, B; Hoekstra, P J; Heslenfeld, D J; Oosterlaan, J; Faraone, S V; Buitelaar, J K; Hartman, C A

    2016-01-01

    Little is known about the causes of individual differences in reward sensitivity. We investigated gene–environment interactions (GxE) on behavioral and neural measures of reward sensitivity, in light of the differential susceptibility theory. This theory states that individuals carrying plasticity gene variants will be more disadvantaged in negative, but more advantaged in positive environments. Reward responses were assessed during a monetary incentive delay task in 178 participants with and 265 without attention-deficit/hyperactivity disorder (ADHD), from N=261 families. We examined interactions between variants in candidate plasticity genes (DAT1, 5-HTT and DRD4) and social environments (maternal expressed emotion and peer affiliation). HTTLPR short allele carriers showed the least reward speeding when exposed to high positive peer affiliation, but the most when faced with low positive peer affiliation or low maternal warmth. DAT1 10-repeat homozygotes displayed similar GxE patterns toward maternal warmth on general task performance. At the neural level, DRD4 7-repeat carriers showed the least striatal activation during reward anticipation when exposed to high maternal warmth, but the most when exposed to low warmth. Findings were independent of ADHD severity. Our results partially confirm the differential susceptibility theory and indicate the importance of positive social environments in reward sensitivity and general task performance for persons with specific genotypes. PMID:27045841

  5. The attention habit: how reward learning shapes attentional selection.

    PubMed

    Anderson, Brian A

    2016-04-01

    There is growing consensus that reward plays an important role in the control of attention. Until recently, reward was thought to influence attention indirectly by modulating task-specific motivation and its effects on voluntary control over selection. Such an account was consistent with the goal-directed (endogenous) versus stimulus-driven (exogenous) framework that had long dominated the field of attention research. Now, a different perspective is emerging. Demonstrations that previously reward-associated stimuli can automatically capture attention even when physically inconspicuous and task-irrelevant challenge previously held assumptions about attentional control. The idea that attentional selection can be value driven, reflecting a distinct and previously unrecognized control mechanism, has gained traction. Since these early demonstrations, the influence of reward learning on attention has rapidly become an area of intense investigation, sparking many new insights. The result is an emerging picture of how the reward system of the brain automatically biases information processing. Here, I review the progress that has been made in this area, synthesizing a wealth of recent evidence to provide an integrated, up-to-date account of value-driven attention and some of its broader implications. © 2015 New York Academy of Sciences.

  6. Video game training and the reward system

    PubMed Central

    Lorenz, Robert C.; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training. PMID:25698962

  7. Differences in delay discounting between smokers and nonsmokers remain when both rewards are delayed

    PubMed Central

    Mitchell, Suzanne H.; Wilson, Vanessa B.

    2013-01-01

    Rationale When offered a choice between a small monetary reward available immediately (SmallNow) versus a larger reward available after a delay (LargeLater), smokers select the SmallNow alternative more than nonsmokers. That is, smokers discount the value of the LargeLater reward more than nonsmokers. Objectives To investigate whether this group difference was due to smokers overweighing the value of rewards available immediately compared with nonsmokers, we examined whether the group difference was also seen when both alternatives were delayed, i.e., when choosing between a SmallSoon reward and a LargeLater reward. Methods In Experiment 1, smokers and nonsmokers completed a task including SmallNow versus LargeLater choices and SmallSoon versus LargeLater choices. In Experiment 2, smokers and nonsmokers completed the same task but with hypothetical choices. Results Analyses using hyperbolic and double exponential (β-δ) models replicate prior findings that smokers discount the LargeLater reward more than nonsmokers when the smaller reward is available immediately. The smoker-nonsmoker difference was also seen when the smaller reward was slightly delayed, though this effect was primarily driven by heightened discounting in male smokers. However, for potentially real rewards only, this smoker-nonsmoker difference was significantly reduced when the smaller reward was delayed. Conclusions The smoker-nonsmoker difference in discounting is not confined to situations involving immediate rewards. Differences associated with potentially real vs. hypothetical rewards and gender underscore the complexity of the smoking-delay discounting relationship. PMID:21983917

  8. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Third degree waiting time discrimination: optimal allocation of a public sector healthcare treatment under rationing by waiting.

    PubMed

    Gravelle, Hugh; Siciliani, Luigi

    2009-08-01

    In many public healthcare systems treatments are rationed by waiting time. We examine the optimal allocation of a fixed supply of a given treatment between different groups of patients. Even in the absence of any distributional aims, welfare is increased by third degree waiting time discrimination: setting different waiting times for different groups waiting for the same treatment. Because waiting time imposes dead weight losses on patients, lower waiting times should be offered to groups with higher marginal waiting time costs and with less elastic demand for the treatment.

  10. The use of preferred social stimuli as rewards for rhesus macaques in behavioural neuroscience

    PubMed Central

    Pearce, Bradley; Thiele, Alexander; Rowe, Candy

    2017-01-01

    Macaques are often motivated to perform in neuroscientific experiments by implementing fluid restriction protocols. Daily access to water is controlled and the monkeys are rewarded with droplets of fluid for performing correct trials in the laboratory. Although these protocols are widely used and highly effective, it is important from a 3Rs perspective to investigate refinements that may help to lessen the severity of the fluid restriction applied. We assessed the use of social stimuli (images of conspecifics) as rewards for four rhesus macaques performing simple cognitive tasks. We found that individual preferences for images of male faces, female perinea and control stimuli could be identified in each monkey. However, using preferred images did not translate into effective motivators on a trial-by-trial basis: animals preferred fluid rewards, even when fluid restriction was relaxed. There was no difference in the monkeys’ performance of a task when using greyscale versus colour images. Based on our findings, we cannot recommend the use of social stimuli, in this form, as a refinement to current fluid restriction protocols. We discuss the potential alternatives and possibilities for future research. PMID:28542356

  11. Differential effects of social and non-social reward on response inhibition in children and adolescents.

    PubMed

    Kohls, Gregor; Peltzer, Judith; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2009-07-01

    An important issue in the field of clinical and developmental psychopathology is whether cognitive control processes, such as response inhibition, can be specifically enhanced by motivation. To determine whether non-social (i.e. monetary) and social (i.e. positive facial expressions) rewards are able to differentially improve response inhibition accuracy in typically developing children and adolescents, an 'incentive' go/no-go task was applied with reward contingencies for successful inhibition. In addition, the impact of children's personality traits (such as reward seeking and empathy) on monetary and social reward responsiveness was assessed in 65 boys, ages 8 to 12 years. All subjects were tested twice: At baseline, inhibitory control was assessed without reward, and then subjects were pseudorandomly assigned to one of four experimental conditions, including (1) social reward only, (2) monetary reward only, (3) mixed social and monetary reward, or (4) a retest condition without reward. Both social and non-social reward significantly improved task performance, although larger effects were observed for monetary reward. The higher the children scored on reward seeking scales, the larger was their improvement in response inhibition, but only if monetary reward was used. In addition, there was a tendency for an association between empathic skills and benefits from social reward. These data suggest that social incentives do not have an equally strong reinforcing value as compared to financial incentives. However, different personality traits seem to determine to what extent a child profits from different types of reward. Clinical implications regarding probable hyposensitivity to social reward in subjects with autism and dysregulated reward-seeking behaviour in children with attention-deficit/hyperactivity disorder (ADHD) are discussed.

  12. Fronto-striatal Dysfunction During Reward Processing in Unaffected Siblings of Schizophrenia Patients

    PubMed Central

    de Leeuw, Max; Kahn, René S.; Vink, Matthijs

    2015-01-01

    Schizophrenia is a psychiatric disorder that is associated with impaired functioning of the fronto-striatal network, in particular during reward processing. However, it is unclear whether this dysfunction is related to the illness itself or whether it reflects a genetic vulnerability to develop schizophrenia. Here, we examined reward processing in unaffected siblings of schizophrenia patients using functional magnetic resonance imaging. Brain activity was measured during reward anticipation and reward outcome in 27 unaffected siblings of schizophrenia patients and 29 healthy volunteers using a modified monetary incentive delay task. Task performance was manipulated online so that all subjects won the same amount of money. Despite equal performance, siblings showed reduced activation in the ventral striatum, insula, and supplementary motor area (SMA) during reward anticipation compared to controls. Decreased ventral striatal activation in siblings was correlated with sub-clinical negative symptoms. During the outcome of reward, siblings showed increased activation in the ventral striatum and orbitofrontal cortex compared to controls. Our finding of decreased activity in the ventral striatum during reward anticipation and increased activity in this region during receiving reward may indicate impaired cue processing in siblings. This is consistent with the notion of dopamine dysfunction typically associated with schizophrenia. Since unaffected siblings share on average 50% of their genes with their ill relatives, these deficits may be related to the genetic vulnerability for schizophrenia. PMID:25368371

  13. Piglets Learn to Use Combined Human-Given Visual and Auditory Signals to Find a Hidden Reward in an Object Choice Task

    PubMed Central

    Bensoussan, Sandy; Cornil, Maude; Meunier-Salaün, Marie-Christine; Tallet, Céline

    2016-01-01

    Although animals rarely use only one sense to communicate, few studies have investigated the use of combinations of different signals between animals and humans. This study assessed for the first time the spontaneous reactions of piglets to human pointing gestures and voice in an object-choice task with a reward. Piglets (Sus scrofa domestica) mainly use auditory signals–individually or in combination with other signals—to communicate with their conspecifics. Their wide hearing range (42 Hz to 40.5 kHz) fits the range of human vocalisations (40 Hz to 1.5 kHz), which may induce sensitivity to the human voice. However, only their ability to use visual signals from humans, especially pointing gestures, has been assessed to date. The current study investigated the effects of signal type (visual, auditory and combined visual and auditory) and piglet experience on the piglets’ ability to locate a hidden food reward over successive tests. Piglets did not find the hidden reward at first presentation, regardless of the signal type given. However, they subsequently learned to use a combination of auditory and visual signals (human voice and static or dynamic pointing gestures) to successfully locate the reward in later tests. This learning process may result either from repeated presentations of the combination of static gestures and auditory signals over successive tests, or from transitioning from static to dynamic pointing gestures, again over successive tests. Furthermore, piglets increased their chance of locating the reward either if they did not go straight to a bowl after entering the test area or if they stared at the experimenter before visiting it. Piglets were not able to use the voice direction alone, indicating that a combination of signals (pointing and voice direction) is necessary. Improving our communication with animals requires adapting to their individual sensitivity to human-given signals. PMID:27792731

  14. Piglets Learn to Use Combined Human-Given Visual and Auditory Signals to Find a Hidden Reward in an Object Choice Task.

    PubMed

    Bensoussan, Sandy; Cornil, Maude; Meunier-Salaün, Marie-Christine; Tallet, Céline

    2016-01-01

    Although animals rarely use only one sense to communicate, few studies have investigated the use of combinations of different signals between animals and humans. This study assessed for the first time the spontaneous reactions of piglets to human pointing gestures and voice in an object-choice task with a reward. Piglets (Sus scrofa domestica) mainly use auditory signals-individually or in combination with other signals-to communicate with their conspecifics. Their wide hearing range (42 Hz to 40.5 kHz) fits the range of human vocalisations (40 Hz to 1.5 kHz), which may induce sensitivity to the human voice. However, only their ability to use visual signals from humans, especially pointing gestures, has been assessed to date. The current study investigated the effects of signal type (visual, auditory and combined visual and auditory) and piglet experience on the piglets' ability to locate a hidden food reward over successive tests. Piglets did not find the hidden reward at first presentation, regardless of the signal type given. However, they subsequently learned to use a combination of auditory and visual signals (human voice and static or dynamic pointing gestures) to successfully locate the reward in later tests. This learning process may result either from repeated presentations of the combination of static gestures and auditory signals over successive tests, or from transitioning from static to dynamic pointing gestures, again over successive tests. Furthermore, piglets increased their chance of locating the reward either if they did not go straight to a bowl after entering the test area or if they stared at the experimenter before visiting it. Piglets were not able to use the voice direction alone, indicating that a combination of signals (pointing and voice direction) is necessary. Improving our communication with animals requires adapting to their individual sensitivity to human-given signals.

  15. Biocybernetic system evaluates indices of operator engagement in automated task

    NASA Technical Reports Server (NTRS)

    Pope, A. T.; Bogart, E. H.; Bartolome, D. S.

    1995-01-01

    A biocybernetic system has been developed as a method to evaluate automated flight deck concepts for compatibility with human capabilities. A biocybernetic loop is formed by adjusting the mode of operation of a task set (e.g., manual/automated mix) based on electroencephalographic (EEG) signals reflecting an operator's engagement in the task set. A critical issue for the loop operation is the selection of features of the EEG to provide an index of engagement upon which to base decisions to adjust task mode. Subjects were run in the closed-loop feedback configuration under four candidate and three experimental control definitions of an engagement index. The temporal patterning of system mode switching was observed for both positive and negative feedback of the index. The indices were judged on the basis of their relative strength in exhibiting expected feedback control system phenomena (stable operation under negative feedback and unstable operation under positive feedback). Of the candidate indices evaluated in this study, an index constructed according to the formula, beta power/(alpha power + theta power), reflected task engagement best.

  16. Reward prediction error signal enhanced by striatum-amygdala interaction explains the acceleration of probabilistic reward learning by emotion.

    PubMed

    Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko

    2013-03-06

    Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.

  17. Incentive-Rewarding Mechanism for User-position Control in Mobile Services

    NASA Astrophysics Data System (ADS)

    Yoshino, Makoto; Sato, Kenichiro; Shinkuma, Ryoichi; Takahashi, Tatsuro

    When the number of users in a service area increases in mobile multimedia services, no individual user can obtain satisfactory radio resources such as bandwidth and signal power because the resources are limited and shared. A solution for such a problem is user-position control. In the user-position control, the operator informs users of better communication areas (or spots) and navigates them to these positions. However, because of subjective costs caused by subjects moving from their original to a new position, they do not always attempt to move. To motivate users to contribute their resources in network services that require resource contributions for users, incentive-rewarding mechanisms have been proposed. However, there are no mechanisms that distribute rewards appropriately according to various subjective factors involving users. Furthermore, since the conventional mechanisms limit how rewards are paid, they are applicable only for the network service they targeted. In this paper, we propose a novel incentive-rewarding mechanism to solve these problems, using an external evaluator and interactive learning agents. We also investigated ways of appropriately controlling rewards based on user contributions and system service quality. We applied the proposed mechanism and reward control to the user-position control, and demonstrated its validity.

  18. General functioning predicts reward and punishment learning in schizophrenia.

    PubMed

    Somlai, Zsuzsanna; Moustafa, Ahmed A; Kéri, Szabolcs; Myers, Catherine E; Gluck, Mark A

    2011-04-01

    Previous studies investigating feedback-driven reinforcement learning in patients with schizophrenia have provided mixed results. In this study, we explored the clinical predictors of reward and punishment learning using a probabilistic classification learning task. Patients with schizophrenia (n=40) performed similarly to healthy controls (n=30) on the classification learning task. However, more severe negative and general symptoms were associated with lower reward-learning performance, whereas poorer general psychosocial functioning was correlated with both lower reward- and punishment-learning performances. Multiple linear regression analyses indicated that general psychosocial functioning was the only significant predictor of reinforcement learning performance when education, antipsychotic dose, and positive, negative and general symptoms were included in the analysis. These results suggest a close relationship between reinforcement learning and general psychosocial functioning in schizophrenia. Published by Elsevier B.V.

  19. Two Effective Ways to Implement Wait Time. A Symposium on Wait Time.

    ERIC Educational Resources Information Center

    Swift, J. Nathan; And Others

    The effects of instructional guides and a wait time feedback device (called a "Wait Timer") on the classroom interaction of middle school science teachers are examined. The Wait Timer, an unobtrusive indicator of wait time, is an automatic device that activates a light when a person speaks. The duration of the light at the end of a…

  20. Impairment of probabilistic reward-based learning in schizophrenia.

    PubMed

    Weiler, Julia A; Bellebaum, Christian; Brüne, Martin; Juckel, Georg; Daum, Irene

    2009-09-01

    Recent models assume that some symptoms of schizophrenia originate from defective reward processing mechanisms. Understanding the precise nature of reward-based learning impairments might thus make an important contribution to the understanding of schizophrenia and the development of treatment strategies. The present study investigated several features of probabilistic reward-based stimulus association learning, namely the acquisition of initial contingencies, reversal learning, generalization abilities, and the effects of reward magnitude. Compared to healthy controls, individuals with schizophrenia exhibited attenuated overall performance during acquisition, whereas learning rates across blocks were similar to the rates of controls. On the group level, persons with schizophrenia were, however, unable to learn the reversal of the initial reward contingencies. Exploratory analysis of only the subgroup of individuals with schizophrenia who showed significant learning during acquisition yielded deficits in reversal learning with low reward magnitudes only. There was further evidence of a mild generalization impairment of the persons with schizophrenia in an acquired equivalence task. In summary, although there was evidence of intact basic processing of reward magnitudes, individuals with schizophrenia were impaired at using this feedback for the adaptive guidance of behavior.

  1. Reward-Dependent Modulation of Movement Variability

    PubMed Central

    Izawa, Jun; Shadmehr, Reza

    2015-01-01

    Movement variability is often considered an unwanted byproduct of a noisy nervous system. However, variability can signal a form of implicit exploration, indicating that the nervous system is intentionally varying the motor commands in search of actions that yield the greatest success. Here, we investigated the role of the human basal ganglia in controlling reward-dependent motor variability as measured by trial-to-trial changes in performance during a reaching task. We designed an experiment in which the only performance feedback was success or failure and quantified how reach variability was modulated as a function of the probability of reward. In healthy controls, reach variability increased as the probability of reward decreased. Control of variability depended on the history of past rewards, with the largest trial-to-trial changes occurring immediately after an unrewarded trial. In contrast, in participants with Parkinson's disease, a known example of basal ganglia dysfunction, reward was a poor modulator of variability; that is, the patients showed an impaired ability to increase variability in response to decreases in the probability of reward. This was despite the fact that, after rewarded trials, reach variability in the patients was comparable to healthy controls. In summary, we found that movement variability is partially a form of exploration driven by the recent history of rewards. When the function of the human basal ganglia is compromised, the reward-dependent control of movement variability is impaired, particularly affecting the ability to increase variability after unsuccessful outcomes. PMID:25740529

  2. The Impact of Financial Reward Contingencies on Cognitive Function Profiles in Adult ADHD

    PubMed Central

    Marx, Ivo; Höpcke, Cornelia; Berger, Christoph; Wandschneider, Roland; Herpertz, Sabine C.

    2013-01-01

    Objectives Although it is well established that cognitive performance in children with attention-deficit/hyperactivity disorder (ADHD) is affected by reward and that key deficits associated with the disorder may thereby be attenuated or even compensated, this phenomenon in adults with ADHD has thus far not been addressed. Therefore, the aim of the present study was to examine the motivating effect of financial reward on task performance in adults with ADHD by focusing on the domains of executive functioning, attention, time perception, and delay aversion. Methods We examined male and female adults aged 18–40 years with ADHD (n = 38) along with a matched control group (n = 40) using six well-established experimental paradigms. Results Impaired performance in the ADHD group was observed for stop-signal omission errors, n-back accuracy, reaction time variability in the continuous performance task, and time reproduction accuracy, and reward normalized time reproduction accuracy. Furthermore, when rewarded, subjects with ADHD exhibited longer reaction times and fewer false positives in the continuous performance task, which suggests the use of strategies to prevent impulsivity errors. Conclusions Taken together, our results support the existence of both cognitive and motivational mechanisms for the disorder, which is in line with current models of ADHD. Furthermore, our data suggest cognitive strategies of “stopping and thinking” as a possible underlying mechanism for task improvement that seems to be mediated by reward, which highlights the importance of the interaction between motivation and cognition in adult ADHD. PMID:23840573

  3. Parabolic discounting of monetary rewards by physical effort.

    PubMed

    Hartmann, Matthias N; Hager, Oliver M; Tobler, Philippe N; Kaiser, Stefan

    2013-11-01

    When humans and other animals make decisions in their natural environments prospective rewards have to be weighed against costs. It is well established that increasing costs lead to devaluation or discounting of reward. While our knowledge about discount functions for time and probability costs is quite advanced, little is known about how physical effort discounts reward. In the present study we compared three different models in a binary choice task in which human participants had to squeeze a handgrip to earn monetary rewards: a linear, a hyperbolic, and a parabolic model. On the group as well as the individual level, the concave parabolic model explained most variance of the choice data, thus contrasting with the typical hyperbolic discounting of reward value by delay. Research on effort discounting is not only important to basic science but also holds the potential to quantify aberrant motivational states in neuropsychiatric disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The dark side of monetary incentive: how does extrinsic reward crowd out intrinsic motivation.

    PubMed

    Ma, Qingguo; Jin, Jia; Meng, Liang; Shen, Qiang

    2014-02-12

    It was widely believed that incentives could effectively enhance the motivation of both students and employees. However, psychologists reported that extrinsic reward actually could undermine individuals' intrinsic motivation to a given interesting task, which challenged viewpoints from traditional incentive theories. Numerous studies have been carried out to test and explain the undermining effect; however, the neural basis of this effect is still elusive. Here, we carried out an electrophysiological study with a simple but interesting stopwatch task to explore to what extent the performance-based monetary reward undermines individuals' intrinsic motivation toward the task. The electrophysiological data showed that the differentiated feedback-related negativity amplitude toward intrinsic success failure divergence was prominently reduced once the extrinsic reward was imposed beforehand. However, such a difference was not observed in the control group, in which no extrinsic reward was provided throughout the experiment. Furthermore, such a pattern was not observed for P300 amplitude. Therefore, the current results indicate that extrinsic reward demotivates the intrinsic response of individuals toward success-failure outcome, which was reflected in the corresponding reduced motivational-related differentiated feedback-related negativity, but not in amplitude of P300.

  5. Multifamily Building Operator Job/Task Analysis and Report: September 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, C. M.

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Building Operator JTA identifies and catalogs all of the tasks performed by multifamily building operators, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  6. Oscillatory Activity in the Medial Prefrontal Cortex and Nucleus Accumbens Correlates with Impulsivity and Reward Outcome

    PubMed Central

    Rich, P. Dylan; Nevado-Holgado, Alejo J.; Fernando, Anushka B. P.; Van Dijck, Gert; Holzhammer, Tobias; Paul, Oliver; Ruther, Patrick; Paulsen, Ole; Robbins, Trevor W.; Dalley, Jeffrey W.

    2014-01-01

    Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50–60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7–9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour. PMID:25333512

  7. Outpatient Office Wait Times and Quality of Care for Medicaid Patients

    PubMed Central

    Oostrom, Tamar; Einav, Liran; Finkelstein, Amy

    2018-01-01

    Time spent in the doctor’s waiting room captures an important aspect of the healthcare experience. We analyzed data on 21 million outpatient visits obtained from electronic health record systems, allowing us to measure time spent in the waiting room beyond the scheduled appointment time. Median wait time was just over 4 minutes. Almost one-fifth of visits had waits longer than 20 minutes, and 10% were over 30 minutes. Waits were shorter for early morning appointments, younger patients, and at larger practices. Median wait time was 4.1 minutes for privately-insured and 4.6 minutes for Medicaid patients; adjusting for patient and appointment characteristics, Medicaid patients were 20% more likely than the privately-insured to wait longer than 20 minutes (P<0.001), with most of this disparity explained by differences in practices and providers they saw. Wait time for Medicaid patients relative to the privately-insured was longer in states with relatively lower Medicaid reimbursement rates. PMID:28461348

  8. Thalamic regulation of sucrose-seeking during unexpected reward omission

    PubMed Central

    Do-Monte, Fabricio H.; Minier-Toribio, Angélica; Quiñones-Laracuente, Kelvin; Medina-Colón, Estefanía M.; Quirk, Gregory J.

    2017-01-01

    SUMMARY The paraventricular nucleus of the thalamus (PVT) is thought to regulate behavioral responses under emotionally arousing conditions. Reward-associated cues activate PVT neurons, however, the specific PVT efferents regulating reward-seeking remain elusive. Using a cued sucrose-seeking task, we manipulated PVT activity under two emotionally distinct conditions: 1) when reward was available during the cue as expected, or 2) when reward was unexpectedly omitted during the cue. Pharmacological inactivation of the anterior PVT (aPVT), but not the posterior PVT, increased sucrose-seeking only when reward was omitted. Consistent with this, photoactivation of aPVT neurons abolished sucrose-seeking, and the firing of aPVT neurons differentiated reward availability. Photoinhibition of aPVT projections to the nucleus accumbens or to the amygdala increased or decreased, respectively, sucrose-seeking only when reward was omitted. Our findings suggest that PVT bidirectionally modulates sucrose-seeking under the negative (frustrative) conditions of reward omission. PMID:28426970

  9. The influence of contextual reward statistics on risk preference

    PubMed Central

    Rigoli, Francesco; Rutledge, Robb B.; Dayan, Peter; Dolan, Raymond J.

    2016-01-01

    Decision theories mandate that organisms should adjust their behaviour in the light of the contextual reward statistics. We tested this notion using a gambling choice task involving distinct contexts with different reward distributions. The best fitting model of subjects' behaviour indicated that the subjective values of options depended on several factors, including a baseline gambling propensity, a gambling preference dependent on reward amount, and a contextual reward adaptation factor. Combining this behavioural model with simultaneous functional magnetic resonance imaging we probed neural responses in three key regions linked to reward and value, namely ventral tegmental area/substantia nigra (VTA/SN), ventromedial prefrontal cortex (vmPFC) and ventral striatum (VST). We show that activity in the VTA/SN reflected contextual reward statistics to the extent that context affected behaviour, activity in the vmPFC represented a value difference between chosen and unchosen options while VST responses reflected a non-linear mapping between the actual objective rewards and their subjective value. The findings highlight a multifaceted basis for choice behaviour with distinct mappings between components of this behaviour and value sensitive brain regions. PMID:26707890

  10. Personality correlates of individual differences in the recruitment of cognitive mechanisms when rewards are at stake.

    PubMed

    Heritage, Allan J; Long, Laura J; Woodman, Geoffrey F; Zald, David H

    2018-02-01

    Individuals differ greatly in their sensitivity to rewards and punishments. In the extreme, these differences are implicated in a range of psychiatric disorders from addiction to depression. However, it is unclear how these differences influence the recruitment of attention, working memory, and long-term memory when responding to potential rewards. Here, we used a rewarded memory-guided visual search task and ERPs to examine the influence of individual differences in self-reported reward/punishment sensitivity, as measured by the Behavioral Inhibition System (BIS)/Behavioral Activation System (BAS) scales, on the recruitment of cognitive mechanisms in conditions of potential reward. Select subscales of the BAS, including the fun seeking and reward responsiveness scales, showed unique relationships with context updating to reward cues and working memory maintenance of potentially rewarded stimuli. In contrast, BIS scores showed unique relationships with deployment of attention at different points in the task. These results suggest that sensitivity to rewards (i.e., BAS) and to punishment (i.e., BIS) may play an important role in the recruitment of specific and distinct cognitive mechanisms in conditions of potential rewards. © 2017 Society for Psychophysiological Research.

  11. Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice.

    PubMed

    Vichaya, Elisabeth G; Hunt, Sarah C; Dantzer, Robert

    2014-11-01

    Inflammation has been implicated in the development of various psychiatric disorders, including depression. However, the neurobehavioral mechanism involved in this relationship remains elusive. This gap in knowledge may best be filled by evaluating elementary neurobehavioral units affected by inflammation rather than behavioral changes in conventional animal tests of depression. To this end, the current study used a concurrent choice paradigm to evaluate inflammation-induced motivational changes. Male C57BL/6J mice (n=27) were food restricted to between 85 and 90% of their free-feeding weight and were trained to perform a concurrent choice task where they nose-poked for grain rewards on a fixed ratio (FR) 1 schedule (low effort/low reward) and chocolate-flavored rewards on a FR-10 schedule (high effort/high reward). A counterbalanced-within subjects design was used. A single intraperitoneal injection of 0.33 mg/kg lipopolysaccharide (LPS) was used to induce peripheral inflammation. Twenty-four hours after LPS administration, mice showed a reduction in the total number of nose pokes. A proportionally greater reduction in nose pokes was observed for grain, resulting in an increase in percent chocolate pellets earned. These behavioral changes cannot be explained by reduced appetite as feeding before the test led to a similar increase in percent chocolate pellets earned but without any decrease in responding. These results indicate that inflammation modulates incentive motivation by affecting willingness to exert effort for reward and not by reducing sensitivity to reward.

  12. Individual differences in regulatory focus predict neural response to reward.

    PubMed

    Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J

    2017-08-01

    Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.

  13. Blunted responses to reward in remitted post-traumatic stress disorder

    PubMed Central

    Kalebasi, Nilufer; Kuelen, Eveline; Schnyder, Ulrich; Schumacher, Sonja; Mueller-Pfeiffer, Christoph; Wilhelm, Frank H; Athilingam, Jegath; Moergeli, Hanspeter; Martin-Soelch, Chantal

    2015-01-01

    Background Recent evidence suggests blunted responses to rewarding stimuli in patients with post-traumatic stress disorder (PTSD). However, it is not clear whether these alterations in reward processing normalize in remitted PTSD patients. Methods We tested behavioral and physiological responses to monetary reward in a spatial memory task in 13 accident survivors with remitted PTSD, 14 accident survivors who never had PTSD, and 16 nontrauma-exposed subjects. All accident survivors were recruited from two samples of severely physically injured patients, who had participated in previous prospective studies on the incidence of PTSD after accidental injury approximately 10 years ago. Reaction time, accuracy, skin conductance responses, and self-reported mood were assessed during the task. Results Accident survivors who never had PTSD and nontrauma exposed controls reported significantly higher positive mood in the reinforced versus nonreinforced condition (P < 0.045 and P < 0.001, respectively), while there was no effect of reinforcement in remitted PTSD subjects. Conclusions Our findings suggest an alteration of the reward system in remitted PTSD. Further research is needed to investigate whether altered reward processing is a residual characteristic in PTSD after remission of symptoms or, alternatively, a preexisting risk factor for the development of PTSD after a traumatic event. PMID:26357590

  14. Age differences in the impact of peers on adolescents' and adults' neural response to reward.

    PubMed

    Smith, Ashley R; Steinberg, Laurence; Strang, Nicole; Chein, Jason

    2015-02-01

    Prior research suggests that increased adolescent risk-taking in the presence of peers may be linked to the influence of peers on the valuation and processing of rewards during decision-making. The current study explores this idea by examining how peer observation impacts the processing of rewards when such processing is isolated from other facets of risky decision-making (e.g. risk-perception and preference, inhibitory processing, etc.). In an fMRI paradigm, a sample of adolescents (ages 14-19) and adults (ages 25-35) completed a modified High/Low Card Guessing Task that included rewarded and un-rewarded trials. Social context was manipulated by having participants complete the task both alone and while being observed by two, same-age, same-sex peers. Results indicated an interaction of age and social context on the activation of reward circuitry during the receipt of reward; when observed by peers adolescents exhibited greater ventral striatal activation than adults, but no age-related differences were evinced when the task was completed alone. These findings suggest that, during adolescence, peers influence recruitment of reward-related regions even when they are engaged outside of the context of risk-taking. Implications for engagement in prosocial, as well as risky, behaviors during adolescence are discussed. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Heimdall System for MSSS Sensor Tasking

    NASA Astrophysics Data System (ADS)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved

  16. Cortisol alters reward processing in the human brain.

    PubMed

    Kinner, Valerie L; Wolf, Oliver T; Merz, Christian J

    2016-08-01

    Dysfunctional reward processing is known to play a central role for the development of psychiatric disorders. Glucocorticoids that are secreted in response to stress have been shown to attenuate reward sensitivity and thereby might promote the onset of psychopathology. However, the underlying neurobiological mechanisms mediating stress hormone effects on reward processing as well as potential sex differences remain elusive. In this neuroimaging study, we administered 30mg cortisol or a placebo to 30 men and 30 women and subsequently tested them in the Monetary Incentive Delay Task. Cortisol attenuated anticipatory neural responses to a verbal and a monetary reward in the left pallidum and the right anterior parahippocampal gyrus. Furthermore, in men, activation in the amygdala, the precuneus, the anterior cingulate, and in hippocampal regions was reduced under cortisol, whereas in cortisol-treated women a signal increase was observed in these regions. Behavioral performance also indicated that reward learning in men is impaired under high cortisol concentrations, while it is augmented in women. These findings illustrate that the stress hormone cortisol substantially diminishes reward anticipation and provide first evidence that cortisol effects on the neural reward system are sensitive to sex differences, which might translate into different vulnerabilities for psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Waiting for Water

    ERIC Educational Resources Information Center

    Lamson-Nussbaum, Jorie

    2013-01-01

    The author waits in the hot and oppressive air while dust devils are born and die over the newly plowed field. It is a dry spring and she prays for rain. The lupine beans withered to dry threads last week and the corn that sprouted in a green haze over the north field is turning to brown paper. However, driving north, the author discovers the Rum…

  18. Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior.

    PubMed

    Sieling, Fred; Bédécarrats, Alexis; Simmers, John; Prinz, Astrid A; Nargeot, Romuald

    2014-05-05

    Rewarding stimuli in associative learning can transform the irregularly and infrequently generated motor patterns underlying motivated behaviors into output for accelerated and stereotyped repetitive action. This transition to compulsive behavioral expression is associated with modified synaptic and membrane properties of central neurons, but establishing the causal relationships between cellular plasticity and motor adaptation has remained a challenge. We found previously that changes in the intrinsic excitability and electrical synapses of identified neurons in Aplysia's central pattern-generating network for feeding are correlated with a switch to compulsive-like motor output expression induced by in vivo operant conditioning. Here, we used specific computer-simulated ionic currents in vitro to selectively replicate or suppress the membrane and synaptic plasticity resulting from this learning. In naive in vitro preparations, such experimental manipulation of neuronal membrane properties alone increased the frequency but not the regularity of feeding motor output found in preparations from operantly trained animals. On the other hand, changes in synaptic strength alone switched the regularity but not the frequency of feeding output from naive to trained states. However, simultaneously imposed changes in both membrane and synaptic properties reproduced both major aspects of the motor plasticity. Conversely, in preparations from trained animals, experimental suppression of the membrane and synaptic plasticity abolished the increase in frequency and regularity of the learned motor output expression. These data establish direct causality for the contributions of distinct synaptic and nonsynaptic adaptive processes to complementary facets of a compulsive behavior resulting from operant reward learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Social and monetary reward learning engage overlapping neural substrates.

    PubMed

    Lin, Alice; Adolphs, Ralph; Rangel, Antonio

    2012-03-01

    Learning to make choices that yield rewarding outcomes requires the computation of three distinct signals: stimulus values that are used to guide choices at the time of decision making, experienced utility signals that are used to evaluate the outcomes of those decisions and prediction errors that are used to update the values assigned to stimuli during reward learning. Here we investigated whether monetary and social rewards involve overlapping neural substrates during these computations. Subjects engaged in two probabilistic reward learning tasks that were identical except that rewards were either social (pictures of smiling or angry people) or monetary (gaining or losing money). We found substantial overlap between the two types of rewards for all components of the learning process: a common area of ventromedial prefrontal cortex (vmPFC) correlated with stimulus value at the time of choice and another common area of vmPFC correlated with reward magnitude and common areas in the striatum correlated with prediction errors. Taken together, the findings support the hypothesis that shared anatomical substrates are involved in the computation of both monetary and social rewards. © The Author (2011). Published by Oxford University Press.

  20. When theory and biology differ: The relationship between reward prediction errors and expectancy.

    PubMed

    Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E

    2017-10-01

    Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dopamine, reward learning, and active inference.

    PubMed

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  2. Feedback associated with expectation for larger-reward improves visuospatial working memory performances in children with ADHD.

    PubMed

    Hammer, Rubi; Tennekoon, Michael; Cooke, Gillian E; Gayda, Jessica; Stein, Mark A; Booth, James R

    2015-08-01

    We tested the interactive effect of feedback and reward on visuospatial working memory in children with ADHD. Seventeen boys with ADHD and 17 Normal Control (NC) boys underwent functional magnetic resonance imaging (fMRI) while performing four visuospatial 2-back tasks that required monitoring the spatial location of letters presented on a display. Tasks varied in reward size (large; small) and feedback availability (no-feedback; feedback). While the performance of NC boys was high in all conditions, boys with ADHD exhibited higher performance (similar to those of NC boys) only when they received feedback associated with large-reward. Performance pattern in both groups was mirrored by neural activity in an executive function neural network comprised of few distinct frontal brain regions. Specifically, neural activity in the left and right middle frontal gyri of boys with ADHD became normal-like only when feedback was available, mainly when feedback was associated with large-reward. When feedback was associated with small-reward, or when large-reward was expected but feedback was not available, boys with ADHD exhibited altered neural activity in the medial orbitofrontal cortex and anterior insula. This suggests that contextual support normalizes activity in executive brain regions in children with ADHD, which results in improved working memory. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Parkinson's Disease and Dopaminergic Therapy--Differential Effects on Movement, Reward and Cognition

    ERIC Educational Resources Information Center

    Rowe, J. B.; Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.

    2008-01-01

    Cognitive deficits are very common in Parkinson's disease particularly for "executive functions" associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex…

  4. Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards.

    PubMed

    Damiano, Cara R; Aloi, Joseph; Dunlap, Kaitlyn; Burrus, Caley J; Mosner, Maya G; Kozink, Rachel V; McLaurin, Ralph Edward; Mullette-Gillman, O'Dhaniel A; Carter, Ronald McKell; Huettel, Scott A; McClernon, Francis Joseph; Ashley-Koch, Allison; Dichter, Gabriel S

    2014-01-31

    There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation.

  5. Human ventromedial prefrontal lesions alter incentivisation by reward

    PubMed Central

    Manohar, Sanjay G.; Husain, Masud

    2016-01-01

    Although medial frontal brain regions are implicated in valuation of rewards, evidence from focal lesions to these areas is scant, with many conflicting results regarding motivation and affect, and no human studies specifically examining incentivisation by reward. Here, 19 patients with isolated, focal damage in ventral and medial prefrontal cortex were selected from a database of 453 individuals with subarachnoid haemorrhage. Using a speeded saccadic task based on the oculomotor capture paradigm, we manipulated the maximum reward available on each trial using an auditory incentive cue. Modulation of behaviour by motivation permitted quantification of reward sensitivity. At the group level, medial frontal damage was overall associated with significantly reduced effects of reward on invigorating saccadic velocity and autonomic (pupil) responses compared to age-matched, healthy controls. Crucially, however, some individuals instead showed abnormally strong incentivisation effects for vigour. Increased sensitivity to rewards within the lesion group correlated with damage in subgenual ventromedial prefrontal cortex (vmPFC) areas, which have recently become the target for deep brain stimulation (DBS) in depression. Lesion correlations with clinical apathy suggested that the apathy associated with prefrontal damage is in fact reduced by damage at those coordinates. Reduced reward sensitivity showed a trend to correlate with damage near nucleus accumbens. Lesions did not, on the other hand, influence reward sensitivity of cognitive control, as measured by distractibility. Thus, although medial frontal lesions may generally reduce reward sensitivity, damage to key subregions paradoxically protect from this effect. PMID:26874940

  6. Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women

    PubMed Central

    Appelhans, Bradley M.; Woolf, Kathleen; Pagoto, Sherry L.; Schneider, Kristin L.; Whited, Matthew C.; Liebman, Rebecca

    2012-01-01

    Overeating is believed to result when the appetitive motivation to consume palatable food exceeds an individual’s capacity for inhibitory control of eating. This hypothesis was supported in recent studies involving predominantly normal weight women, but has not been tested in obese populations. The current study tested the interaction between food reward sensitivity and inhibitory control in predicting palatable food intake among energy-replete overweight and obese women (N=62). Sensitivity to palatable food reward was measured with the Power of Food Scale. Inhibitory control was assessed with a computerized choice task that captures the tendency to discount large delayed rewards relative to smaller immediate rewards. Participants completed an eating in the absence of hunger protocol in which homeostatic energy needs were eliminated with a bland preload of plain oatmeal, followed by a bogus laboratory taste test of palatable and bland snacks. The interaction between food reward sensitivity and inhibitory control was a significant predictor of palatable food intake in regression analyses controlling for body mass index and the amount of preload consumed. Probing this interaction indicated that higher food reward sensitivity predicted greater palatable food intake at low levels of inhibitory control, but was not associated with intake at high levels of inhibitory control. As expected, no associations were found in a similar regression analysis predicting intake of bland foods. Findings support a neurobehavioral model of eating behavior in which sensitivity to palatable food reward drives overeating only when accompanied by insufficient inhibitory control. Strengthening inhibitory control could enhance weight management programs. PMID:21475139

  7. FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.

    PubMed

    Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie

    2017-06-01

    In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.

  8. Unconscious Reward Cues Increase Invested Effort, but Do Not Change Speed-Accuracy Tradeoffs

    ERIC Educational Resources Information Center

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2010-01-01

    While both conscious and unconscious reward cues enhance effort to work on a task, previous research also suggests that conscious rewards may additionally affect speed-accuracy tradeoffs. Based on this idea, two experiments explored whether reward cues that are presented above (supraliminal) or below (subliminal) the threshold of conscious…

  9. Motivational orientation modulates the neural response to reward.

    PubMed

    Linke, Julia; Kirsch, Peter; King, Andrea V; Gass, Achim; Hennerici, Michael G; Bongers, André; Wessa, Michèle

    2010-02-01

    Motivational orientation defines the source of motivation for an individual to perform a particular action and can either originate from internal desires (e.g., interest) or external compensation (e.g., money). To this end, motivational orientation should influence the way positive or negative feedback is processed during learning situations and this might in turn have an impact on the learning process. In the present study, we thus investigated whether motivational orientation, i.e., extrinsic and intrinsic motivation modulates the neural response to reward and punishment as well as learning from reward and punishment in 33 healthy individuals. To assess neural responses to reward, punishment and learning of reward contingencies we employed a probabilistic reversal learning task during functional magnetic resonance imaging. Extrinsic and intrinsic motivation were assessed with a self-report questionnaire. Rewarding trials fostered activation in the medial orbitofrontal cortex and anterior cingulate gyrus (ACC) as well as the amygdala and nucleus accumbens, whereas for punishment an increased neural response was observed in the medial and inferior prefrontal cortex, the superior parietal cortex and the insula. High extrinsic motivation was positively correlated to increased neural responses to reward in the ACC, amygdala and putamen, whereas a negative relationship between intrinsic motivation and brain activation in these brain regions was observed. These findings show that motivational orientation indeed modulates the responsiveness to reward delivery in major components of the human reward system and therefore extends previous results showing a significant influence of individual differences in reward-related personality traits on the neural processing of reward. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  10. Object-based task-level control: A hierarchical control architecture for remote operation of space robots

    NASA Technical Reports Server (NTRS)

    Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.

    1994-01-01

    Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.

  11. Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment

    PubMed Central

    Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E.L.

    2011-01-01

    The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what extent, the striatum is modulated by punishment during an instrumental learning task. Using high-resolution functional magnetic resonance imaging (fMRI) during a reward- and punishment-based probabilistic associative learning task, we observed activity in the ventral putamen for stimuli learned via reward regardless of whether participants were correct or incorrect (i.e., outcome). In contrast, activity in the dorsal caudate was modulated by trials that received feedback—either correct reward or incorrect punishment trials. We also identified an anterior/posterior dissociation reflecting reward and punishment prediction error estimates. Additionally, differences in patterns of activity that correlated with the amount of training were identified along the anterior/posterior axis of the striatum. We suggest that unique subregions of the striatum—separated along both a dorsal/ventral and anterior/posterior axis— differentially participate in the learning of associations through reward and punishment. PMID:22021252

  12. Dissociable effects of surprising rewards on learning and memory.

    PubMed

    Rouhani, Nina; Norman, Kenneth A; Niv, Yael

    2018-03-19

    Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning. How do such errors in prediction interact with memory for the rewarding episode? Existing findings point to both cooperative and competitive interactions between learning and memory mechanisms. Here, we investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors, would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context. Experiment 1 showed that recognition was better for items associated with larger absolute prediction errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly we did not find a relationship between learning rate for reward and recognition-memory accuracy for items, suggesting that these two effects of prediction errors were caused by separate underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed stronger memory demands and allowed for more learning. We also showed improved source and sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty of reward learning in the risk environments, again replicating the previous results. Moreover, this control revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction errors. In summary, our results show that prediction errors boost both episodic item memory and incremental reward learning, but the two effects are likely mediated by distinct underlying systems. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Task oriented nonlinear control laws for telerobotic assembly operations

    NASA Technical Reports Server (NTRS)

    Walker, R. A.; Ward, L. S.; Elia, C. F.

    1987-01-01

    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.

  14. Win for your kin: Neural responses to personal and vicarious rewards when mothers win for their adolescent children.

    PubMed

    Spaans, Jochem P; Burke, Sarah M; Altikulaç, Sibel; Braams, Barbara R; Op de Macks, Zdeňa A; Crone, Eveline A

    2018-01-01

    Mother-child relationships change considerably in adolescence, but it is not yet understood how mothers experience vicarious rewards for their adolescent children. In the current study, we investigated neural responses of twenty mothers winning and losing money for their best friend and for their adolescent child in a gambling task. During the task, functional neuroimaging data were acquired. We examined the activation patterns when playing for or winning for self, adolescent children and friends in four a-priori selected ROIs (nucleus accumbens, dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Behaviorally, mothers indicated that they experienced most enjoyment when they gained money for their children and that their children deserved to win more, relative to friends and self. At the neural level, nucleus accumbens activity was stronger when winning versus losing. This pattern was not only found when playing for self, but also for friends and children, possibly reflecting the rewarding value of vicarious prosocial gains. In addition, dorsomedial prefrontal cortex, precuneus, and temporo-parietal junction were more active when receiving outcomes for children and friends compared to self, possibly reflecting increased recruitment of mentalizing processes. Interestingly, activity in this network was stronger for mothers who indicated that their children and friends deserved to win more. These findings provide initial evidence that vicarious rewards for one's children are processed similarly as rewards for self, and that activation in social brain regions are related to social closeness.

  15. Social and monetary reward processing in autism spectrum disorders.

    PubMed

    Delmonte, Sonja; Balsters, Joshua H; McGrath, Jane; Fitzgerald, Jacqueline; Brennan, Sean; Fagan, Andrew J; Gallagher, Louise

    2012-09-26

    Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD). However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD) response during the anticipation and receipt of both reward types. Behaviorally, the ASD group showed less of a reduction in reaction time (RT) for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS). The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in ASD. In line with social motivation theory, the ASD

  16. Social and monetary reward processing in autism spectrum disorders

    PubMed Central

    2012-01-01

    Background Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD). However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. Methods Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD) response during the anticipation and receipt of both reward types. Results Behaviorally, the ASD group showed less of a reduction in reaction time (RT) for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS). The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in ASD. Conclusions In line

  17. Atypical valuation of monetary and cigarette rewards in substance dependent smokers.

    PubMed

    Baker, Travis E; Wood, Jonathan M A; Holroyd, Clay B

    2016-02-01

    Substance dependent (SD) relative to non-dependent (ND) individuals exhibit an attenuated reward positivity, an electrophysiological signal believed to index sensitivity of anterior cingulate cortex (ACC) to rewards. Here we asked whether this altered neural response reflects a specific devaluation of monetary rewards relative to drug-related rewards by ACC. We recorded the reward positivity from SD and ND individuals who currently smoke, following an overnight period of abstinence, while they engaged in two feedback tasks. In a money condition the feedback indicated either a monetary reward or no reward, and in a cigarette condition the feedback indicated either a drug-related reward or no reward. Overall, cigarette relative to monetary rewards elicited a larger reward positivity. Further, for the subjects who engaged in the money condition first, the reward positivity was smaller for the SD compared to the ND participants, but for the subjects who engaged in the cigarette condition first, the reward positivity was larger for the SD compared to the ND participants. Our results suggest that the initial category of feedback "primed" the response of the ACC to the alternative feedback type on subsequent trials, and that SD and ND individuals responded differently to this priming effect. We propose that for people who misuse addictive substances, the prospect of obtaining drug-related rewards engages the ACC to exert control over extended behaviors. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  19. Acquisition of decision making criteria: reward rate ultimately beats accuracy.

    PubMed

    Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A; Holmes, Philip; Cohen, Jonathan D

    2011-02-01

    Speed-accuracy trade-offs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy trade-offs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy trade-offs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: (1) favoring accuracy over reward rate and (2) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation.

  20. Neural reward and punishment sensitivity in cigarette smokers.

    PubMed

    Potts, Geoffrey F; Bloom, Erika L; Evans, David E; Drobes, David J

    2014-11-01

    Nicotine addiction remains a major public health problem but the neural substrates of addictive behavior remain unknown. One characteristic of smoking behavior is impulsive choice, selecting the immediate reward of smoking despite the potential long-term negative consequences. This suggests that drug users, including cigarette smokers, may be more sensitive to rewards and less sensitive to punishment. We used event-related potentials (ERPs) to test the hypothesis that smokers are more responsive to reward signals and less responsive to punishment, potentially predisposing them to risky behavior. We conducted two experiments, one using a reward prediction design to elicit a Medial Frontal Negativity (MFN) and one using a reward- and punishment-motivated flanker task to elicit an Error Related Negativity (ERN), ERP components thought to index activity in the cortical projection of the dopaminergic reward system. The smokers had a greater MFN response to unpredicted rewards, and non-smokers, but not smokers, had a larger ERN on punishment motivated trials indicating that smokers are more reward sensitive and less punishment sensitive than nonsmokers, overestimating the appetitive value and underestimating aversive outcomes of stimuli and actions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Neural Reward and Punishment Sensitivity in Cigarette Smokers

    PubMed Central

    Potts, Geoffrey F.; Bloom, Erika; Evans, David E.; Drobes, David J.

    2014-01-01

    Background Nicotine addiction remains a major public health problem but the neural substrates of addictive behavior remain unknown. One characteristic of smoking behavior is impulsive choice, selecting the immediate reward of smoking despite the potential long-term negative consequences. This suggests that drug users, including cigarette smokers, may be more sensitive to rewards and less sensitive to punishment. Methods We used event-related potentials (ERPs) to test the hypothesis that smokers are more responsive to reward signals and less responsive to punishment, potentially predisposing them to risky behavior. We conducted two experiments, one using a reward prediction design to elicit a Medial Frontal Negativity (MFN) and one using a reward- and punishment-motivated flanker task to elicit an Error Related Negativity (ERN), ERP components thought to index activity in the cortical projection of the dopaminergic reward system. Results and Conclusions The smokers had a greater MFN response to unpredicted rewards, and non-smokers, but not smokers, had a larger ERN on punishment motivated trials indicating that smokers are more reward sensitive and less punishment sensitive than nonsmokers, overestimating the appetitive value and underestimating aversive outcomes of stimuli and actions. PMID:25292454

  2. Individual and system influences on waiting time for substance abuse treatment.

    PubMed

    Carr, Carey J A; Xu, Jiangmin; Redko, Cristina; Lane, D Timothy; Rapp, Richard C; Goris, John; Carlson, Robert G

    2008-03-01

    Waiting time is a contemporary reality of many drug abuse treatment programs, resulting in substantial problems for substance users and society. Individual and system factors that influence waiting time are diverse and may vary at different points in the treatment continuum. This study assessed waiting time preceding clinical assessment at a centralized intake unit and during the period after the assessment but before treatment entry. The present study included 577 substance abusers who were enrolled in a large clinical trial of two brief treatment interventions in a midsize metropolitan area in Ohio. Bivariate analyses identified individual and system factors that influenced preassessment and postassessment waiting time, as well as total wait to treatment services. Multivariate analyses demonstrated that longer wait time for an assessment is influenced by being court referred, less belief in having a substance abuse problem, and less desire for change. A shorter wait to actually enter treatment is predicted by having a case manager, being more ready for treatment, and having less severe employment and alcohol problems. The different influences present during the two waiting periods suggest that assessment and treatment programs need to implement system changes and entry enhancement interventions that are specific to the needs of substance abusers at each waiting period.

  3. Activity of striatal neurons reflects social action and own reward.

    PubMed

    Báez-Mendoza, Raymundo; Harris, Christopher J; Schultz, Wolfram

    2013-10-08

    Social interactions provide agents with the opportunity to earn higher benefits than when acting alone and contribute to evolutionary stable strategies. A basic requirement for engaging in beneficial social interactions is to recognize the actor whose movement results in reward. Despite the recent interest in the neural basis of social interactions, the neurophysiological mechanisms identifying the actor in social reward situations are unknown. A brain structure well suited for exploring this issue is the striatum, which plays a role in movement, reward, and goal-directed behavior. In humans, the striatum is involved in social processes related to reward inequity, donations to charity, and observational learning. We studied the neurophysiology of social action for reward in rhesus monkeys performing a reward-giving task. The behavioral data showed that the animals distinguished between their own and the conspecific's reward and knew which individual acted. Striatal neurons coded primarily own reward but rarely other's reward. Importantly, the activations occurred preferentially, and in approximately similar fractions, when either the own or the conspecific's action was followed by own reward. Other striatal neurons showed social action coding without reward. Some of the social action coding disappeared when the conspecific's role was simulated by a computer, confirming a social rather than observational relationship. These findings demonstrate a role of striatal neurons in identifying the social actor and own reward in a social setting. These processes may provide basic building blocks underlying the brain's function in social interactions.

  4. 46 CFR 9.10 - Waiting time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Waiting time. 9.10 Section 9.10 Shipping COAST GUARD... § 9.10 Waiting time. The same construction should be given the act when charging for waiting time as... for duty the waiting time amounts to at least one hour. ...

  5. 46 CFR 9.10 - Waiting time.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Waiting time. 9.10 Section 9.10 Shipping COAST GUARD... § 9.10 Waiting time. The same construction should be given the act when charging for waiting time as... for duty the waiting time amounts to at least one hour. ...

  6. 46 CFR 9.10 - Waiting time.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Waiting time. 9.10 Section 9.10 Shipping COAST GUARD... § 9.10 Waiting time. The same construction should be given the act when charging for waiting time as... for duty the waiting time amounts to at least one hour. ...

  7. Implication of Dopaminergic Modulation in Operant Reward Learning and the Induction of Compulsive-Like Feeding Behavior in "Aplysia"

    ERIC Educational Resources Information Center

    Bedecarrats, Alexis; Cornet, Charles; Simmers, John; Nargeot, Romuald

    2013-01-01

    Feeding in "Aplysia" provides an amenable model system for analyzing the neuronal substrates of motivated behavior and its adaptability by associative reward learning and neuromodulation. Among such learning processes, appetitive operant conditioning that leads to a compulsive-like expression of feeding actions is known to be associated…

  8. Informationally administered reward enhances intrinsic motivation in schizophrenia.

    PubMed

    Lee, Hyeon-Seung; Jang, Seon-Kyeong; Lee, Ga-Young; Park, Seon-Cheol; Medalia, Alice; Choi, Kee-Hong

    2017-10-01

    Even when individuals with schizophrenia have an intact ability to enjoy rewarding moments, the means to assist them to translate rewarding experiences into goal-directed behaviors is unclear. The present study sought to determine whether informationally administered rewards enhance intrinsic motivation to foster goal-directed behaviors in individuals with schizophrenia (SZ) and healthy controls (HCs). Eighty-four participants (SZ=43, HCs=41) were randomly assigned to conditions involving either a performance-contingent reward with an informationally administered reward or a task-contingent reward with no feedback. Participants were asked to play two cognitive games of equalized difficulty. Accuracy, self-reported intrinsic motivation, free-choice intrinsic motivation (i.e., game play during a free-choice observation period), and perceived competency were measured. Intrinsic motivation and perceived competency in the cognitive games were similar between the two participant groups. The informationally administered reward significantly enhanced self-reported intrinsic motivation and perceived competency in both the groups. The likelihood that individuals with schizophrenia would play the game during the free-choice observation period was four times greater in the informationally administered reward condition than that in the no-feedback condition. Our findings suggest that, in the context of cognitive remediation, individuals with schizophrenia would benefit from informationally administered rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia.

    PubMed

    Grimm, Oliver; Heinz, Andreas; Walter, Henrik; Kirsch, Peter; Erk, Susanne; Haddad, Leila; Plichta, Michael M; Romanczuk-Seiferth, Nina; Pöhland, Lydia; Mohnke, Sebastian; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Schäfer, Axel; Cichon, Sven; Nöthen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2014-05-01

    Attenuated ventral striatal response during reward anticipation is a core feature of schizophrenia that is seen in prodromal, drug-naive, and chronic schizophrenic patients. Schizophrenia is highly heritable, raising the possibility that this phenotype is related to the genetic risk for the disorder. To examine a large sample of healthy first-degree relatives of schizophrenic patients and compare their neural responses to reward anticipation with those of carefully matched controls without a family psychiatric history. To further support the utility of this phenotype, we studied its test-retest reliability, its potential brain structural contributions, and the effects of a protective missense variant in neuregulin 1 (NRG1) linked to schizophrenia by meta-analysis (ie, rs10503929). Examination of a well-established monetary reward anticipation paradigm during functional magnetic resonance imaging at a university hospital; voxel-based morphometry; test-retest reliability analysis of striatal activations in an independent sample of 25 healthy participants scanned twice with the same task; and imaging genetics analysis of the control group. A total of 54 healthy first-degree relatives of schizophrenic patients and 80 controls matched for demographic, psychological, clinical, and task performance characteristics were studied. Blood oxygen level-dependent response during reward anticipation, analysis of intraclass correlations of functional contrasts, and associations between striatal gray matter volume and NRG1 genotype. Compared with controls, healthy first-degree relatives showed a highly significant decrease in ventral striatal activation during reward anticipation (familywise error-corrected P < .03 for multiple comparisons across the whole brain). Supplemental analyses confirmed that the identified systems-level functional phenotype is reliable (with intraclass correlation coefficients of 0.59-0.73), independent of local gray matter volume (with no

  10. Stimulus-related activity during conditional associations in monkey perirhinal cortex neurons depends on upcoming reward outcome.

    PubMed

    Ohyama, Kaoru; Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Shidara, Munetaka; Sato, Chikara

    2012-11-28

    Acquiring the significance of events based on reward-related information is critical for animals to survive and to conduct social activities. The importance of the perirhinal cortex for reward-related information processing has been suggested. To examine whether or not neurons in this cortex represent reward information flexibly when a visual stimulus indicates either a rewarded or unrewarded outcome, neuronal activity in the macaque perirhinal cortex was examined using a conditional-association cued-reward task. The task design allowed us to study how the neuronal responses depended on the animal's prediction of whether it would or would not be rewarded. Two visual stimuli, a color stimulus as Cue1 followed by a pattern stimulus as Cue2, were sequentially presented. Each pattern stimulus was conditionally associated with both rewarded and unrewarded outcomes depending on the preceding color stimulus. We found an activity depending upon the two reward conditions during Cue2, i.e., pattern stimulus presentation. The response appeared after the response dependent upon the image identity of Cue2. The response delineating a specific cue sequence also appeared between the responses dependent upon the identity of Cue2 and reward conditions. Thus, when Cue1 sets the context for whether or not Cue2 indicates a reward, this region represents the meaning of Cue2, i.e., the reward conditions, independent of the identity of Cue2. These results suggest that neurons in the perirhinal cortex do more than associate a single stimulus with a reward to achieve flexible representations of reward information.

  11. Signed reward prediction errors drive declarative learning

    PubMed Central

    Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected” signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli. PMID:29293493

  12. Signed reward prediction errors drive declarative learning.

    PubMed

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  13. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  14. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  15. Further support for association between GWAS variant for positive emotion and reward systems.

    PubMed

    Lancaster, T M; Ihssen, N; Brindley, L M; Linden, D E J

    2017-01-31

    A recent genome-wide association study (GWAS) identified a significant single-nucleotide polymorphism (SNP) for trait-positive emotion at rs322931 on chromosome 1, which was also associated with brain activation in the reward system of healthy individuals when observing positive stimuli in a functional magnetic resonance imaging (fMRI) study. In the current study, we aimed to further validate the role of variation at rs322931 in reward processing. Using a similar fMRI approach, we use two paradigms that elicit a strong ventral striatum (VS) blood oxygen-level dependency (BOLD) response in a sample of young, healthy individuals (N=82). In the first study we use a similar picture-viewing task to the discovery sample (positive>neutral stimuli) to replicate an effect of the variant on emotion processing. In the second study we use a probabilistic reversal learning procedure to identify reward processing during decision-making under uncertainly (reward>punishment). In a region of interest (ROI) analysis of the bilateral VS, we show that the rs322931 genotype was associated with BOLD in the left VS during the positive>neutral contrast (P ROI-CORRECTED =0.045) and during the reward>punishment contrast (P ROI-CORRECTED =0.018), although the effect of passive picture viewing was in the opposite direction from that reported in the discovery sample. These findings suggest that the recently identified GWAS hit may influence positive emotion via individual differences in activity in the key hubs of the brain's reward system. Furthermore, these effects may not be limited to the passive viewing of positive emotional scenes, but may also be observed during dynamic decision-making. This study suggests that future studies of this GWAS locus may yield further insight into the biological mechanisms of psychopathologies characterised by deficits in reward processing and positive emotion.

  16. The effects of expected reward on creative problem solving.

    PubMed

    Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan

    2018-06-12

    Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

  17. Consumer behaviour in the waiting area.

    PubMed

    Mobach, Mark P

    2007-02-01

    To determine consumer behaviour in the pharmacy waiting area. The applied methods for data-collection were direct observations. Three Dutch community pharmacies were selected for the study. The topics in the observation list were based on available services at each waiting area (brochures, books, illuminated new trailer, children's play area, etc.). Per patient each activity was registered, and at each pharmacy the behaviour was studied for 2 weeks. Most patients only waited during the waiting time at the studied pharmacies. Few consumers obtained written information during their wait. The waiting area may have latent possibilities to expand the information function of the pharmacy and combine this with other activities that distract the consumer from the wait. Transdisciplinary research, combining knowledge from pharmacy practice research with consumer research, has been a useful approach to add information on queueing behaviour of consumers.

  18. Interventions to reduce waiting times for elective procedures.

    PubMed

    Ballini, Luciana; Negro, Antonella; Maltoni, Susanna; Vignatelli, Luca; Flodgren, Gerd; Simera, Iveta; Holmes, Jane; Grilli, Roberto

    2015-02-23

    Long waiting times for elective healthcare procedures may cause distress among patients, may have adverse health consequences and may be perceived as inappropriate delivery and planning of health care. To assess the effectiveness of interventions aimed at reducing waiting times for elective care, both diagnostic and therapeutic. We searched the following electronic databases: Cochrane Effective Practice and Organisation of Care (EPOC) Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (1946-), EMBASE (1947-), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), ABI Inform, the Canadian Research Index, the Science, Social Sciences and Humanities Citation Indexes, a series of databases via Proquest: Dissertations & Theses (including UK & Ireland), EconLit, PAIS (Public Affairs International), Political Science Collection, Nursing Collection, Sociological Abstracts, Social Services Abstracts and Worldwide Political Science Abstracts. We sought related reviews by searching the Cochrane Database of Systematic Reviews and the Database of Abstracts of Reviews of Effectiveness (DARE). We searched trial registries, as well as grey literature sites and reference lists of relevant articles. We considered randomised controlled trials (RCTs), controlled before-after studies (CBAs) and interrupted time series (ITS) designs that met EPOC minimum criteria and evaluated the effectiveness of any intervention aimed at reducing waiting times for any type of elective procedure. We considered studies reporting one or more of the following outcomes: number or proportion of participants whose waiting times were above or below a specific time threshold, or participants' mean or median waiting times. Comparators could include any type of active intervention or standard practice. Two review authors independently extracted data from, and assessed risk of bias of, each included study, using a standardised form and the EPOC 'Risk

  19. Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online gamers.

    PubMed

    Hahn, Tim; Notebaert, Karolien Hilde; Dresler, Thomas; Kowarsch, Linda; Reif, Andreas; Fallgatter, Andreas J

    2014-01-01

    Millions of people regularly play so-called massively multiplayer online role playing games (MMORPGs). Recently, it has been argued that MMORPG overuse is becoming a significant health problem worldwide. Symptoms such as tolerance, withdrawal, and craving have been described. Based on behavioral, resting state, and task-related neuroimaging data, we test whether frequent players of the MMORPG "World of Warcraft" (WoW) - similar to drug addicts and individuals with an increased risk for addictions - show a generally deficient reward system. In frequent players of the MMORPG "World of Warcraft" (WoW-players) and in a control group of non-gamers we assessed (1) trait sensitivity to reward (SR), (2) BOLD responses during monetary reward processing in the ventral striatum, and (3) ventral-striatal resting-state dynamics. We found a decreased neural activation in the ventral striatum during the anticipation of both small and large monetary rewards. Additionally, we show generally altered neurodynamics in this region independent of any specific task for WoW players (resting state). On the behavioral level, we found differences in trait SR, suggesting that the reward processing deficiencies found in this study are not a consequence of gaming, but predisposed to it. These findings empirically support a direct link between frequent online gaming and the broad field of behavioral and drug addiction research, thus opening new avenues for clinical interventions in addicted gamers and potentially improving the assessment of addiction-risk in the vast population of frequent gamers.

  20. Deficits in context-dependent adaptive coding of reward in schizophrenia

    PubMed Central

    Kirschner, Matthias; Hager, Oliver M; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan

    2016-01-01

    Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism’s ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder. PMID:27430009