Sample records for wake behavior depends

  1. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning

    PubMed Central

    Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele

    2018-01-01

    Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in

  2. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  3. Forecasting behavior in smart homes based on sleep and wake patterns.

    PubMed

    Williams, Jennifer A; Cook, Diane J

    2017-01-01

    The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.

  4. Forecasting Behavior in Smart Homes Based on Sleep and Wake Patterns

    PubMed Central

    Williams, Jennifer A.; Cook, Diane J.

    2017-01-01

    Background The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. Objective We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. Methods This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. Results The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. Conclusions The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa. PMID:27689555

  5. Hypnagogic behavior disorder: complex motor behaviors during wake-sleep transitions in 2 young children.

    PubMed

    Pareja, Juan A; Cuadrado, María Luz; García-Morales, Irene; Gil-Nagel, Antonio; Franch, Oriol

    2008-08-01

    A nondescribed behavioral disorder was observed during wake-sleep transitions in 2 young children. Two boys had episodes of abnormal behavior in hypnagogic-and occasionally hypnopompic-periods for 1 year from the time they were 1 year and several months old. The episodes consisted of irregular body movements, which could be either gentle or violent but never made the children get out of bed. They lasted from a few seconds to 2 hours and were associated with poor reactivity and amnesia of the events. Electroencephalography (EEG) recordings showed wake-state features, with brief bursts of hypnagogic hypersynchrony, and did not display seizure activity. A distinctive behavior disorder occurring during wake-sleep transitions with a wake EEG pattern has been identified in very early childhood. The clinical profile does not fit any of the known parasomnias and might belong to a new category of parasomnia.

  6. Night-waking and behavior in preschoolers: a developmental trajectory approach.

    PubMed

    Reynaud, Eve; Forhan, Anne; Heude, Barbara; Charles, Marie-Aline; Plancoulaine, Sabine

    2018-03-01

    The aim was to study, with a developmental approach, the longitudinal association between night-waking from age 2 to 5-6 years and behavior at age 5-6 years. Within the French birth cohort study Etude sur les Déterminants pré et post natals du développement et de la santé de l'ENfant (EDEN), repeated measures of children's night-waking were collected at age 2, 3 and 5-6 through parental questionnaires and were used to model night-waking trajectories. Behavior was assessed with the "Strengths and Difficulties Questionnaire," which provides five subscales measuring a child's conduct problems, emotional symptoms, peer relation problems, antisocial behavior, and hyperactivity/attention problems. The behavioral subscales were dichotomized at the tenth percentile. Multivariable logistic regressions, adjusted for parents' socio-economic factors, parental characteristics, and children's characteristics and sleep habits allowed us to study, in 1143 children, the association between night-waking trajectories from 2 to 5-6 years and behavior at age 5-6 years. The "2 to 5-6 rare night-waking" trajectory represented 78% of the included population (n = 896), and the "2 to 5-6 common night-waking" 22% (n = 247%). Children belonging to the "2 to 5-6 common night-waking trajectory" had, at age 5-6, increased risk of presenting emotional symptoms (odds ratio [OR] = 2.17, 95% CI = 1.27-3.70, p = 0.004), conduct problems (OR = 1.63, 95% CI = 1.00-2.65, p = 0.050), and hyperactivity/attention problems (OR = 1.61, 95% CI = 1.00-2.57, p = 0.049). After adjusting for baseline behavior at age two years, only the association with emotional symptoms remained significant (OR = 2.02, 95% CI = 1.15-3.55, p = 0.015). Results did not differ according to sex. Results suggest that the persistence of night-waking difficulties in early years is positively associated with emotional symptoms, hyperactivity/inattention, and conduct problems. Copyright © 2017 Elsevier B

  7. Sleep/wake dependent changes in cortical glucose concentrations.

    PubMed

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  8. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers.

    PubMed

    Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2015-01-01

    Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing demand for developing new hypnotics and psychostimulants with high efficacy and few side effects. Toward this end, animal models are indispensable for use in genetic and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient to identify drugs with specific modes of action. We were also able to identify behavioral endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists and between sympathomimetic and non-sympathomimetic psychostimulants. This behavioral profiling can serve to identify genes related to sleep-wake disturbance associated with various neuropsychiatric diseases and novel therapeutic compounds for insomnia and excessive daytime sleep with fewer adverse side effects.

  9. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock.

    PubMed

    Abbott, Sabra M; Arnold, Jennifer M; Chang, Qing; Miao, Hai; Ota, Nobutoshi; Cecala, Christine; Gold, Paul E; Sweedler, Jonathan V; Gillette, Martha U

    2013-01-01

    Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders.

  10. Drosophila Neuropeptide F Signaling Independently Regulates Feeding and Sleep-Wake Behavior.

    PubMed

    Chung, Brian Y; Ro, Jennifer; Hutter, Sabine A; Miller, Kylie M; Guduguntla, Lakshmi S; Kondo, Shu; Pletcher, Scott D

    2017-06-20

    Proper regulation of sleep-wake behavior and feeding is essential for organismal health and survival. While previous studies have isolated discrete neural loci and substrates important for either sleep or feeding, how the brain is organized to coordinate both processes with respect to one another remains poorly understood. Here, we provide evidence that the Drosophila Neuropeptide F (NPF) network forms a critical component of both adult sleep and feeding regulation. Activation of NPF signaling in the brain promotes wakefulness and adult feeding, likely through its cognate receptor NPFR. Flies carrying a loss-of-function NPF allele do not suppress sleep following prolonged starvation conditions, suggesting that NPF acts as a hunger signal to keep the animal awake. NPF-expressing cells, specifically those expressing the circadian photoreceptor cryptochrome, are largely responsible for changes to sleep behavior caused by NPF neuron activation, but not feeding, demonstrating that different NPF neurons separately drive wakefulness and hunger. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Mild Traumatic Brain Injury Chronically Impairs Sleep- and Wake-Dependent Emotional Processing.

    PubMed

    Mantua, Janna; Henry, Owen S; Garskovas, Nolan F; Spencer, Rebecca M C

    2017-06-01

    A single traumatic brain injury (TBI), even when mild (ie, concussion), can cause lasting consequences. Individuals with a history of chronic (>1-year prior) mild TBI have an increased risk of mood disturbances (eg, depression, suicide). This population also has lingering sleep alterations, including poor sleep quality and changes in sleep stage proportions. Given these sleep deficits, we aimed to test whether sleep-dependent emotional memory consolidation is reduced in this population. We utilized a mild TBI group (3.7 ± 2.9 years post injury) and an uninjured (non-TBI) population. Participants viewed negative and neutral images both before and after a 12-hour period containing sleep ("Sleep" group) or an equivalent period of time spent awake ("Wake" group). Participants rated images for valence/arousal at both sessions, and memory recognition was tested at session two. The TBI group had less rapid eye movement (REM), longer REM latency, and more sleep complaints. Sleep-dependent memory consolidation of nonemotional images was present in all participants. However, consolidation of negative images was only present in the non-TBI group. A lack of differentiation between the TBI Sleep and Wake groups was due to poor performance in the sleep group and, unexpectedly, enhanced performance in the wake group. Additionally, although the non-TBI participants habituated to negative images over a waking period, the TBI participants did not. We propose disrupted sleep- and wake-dependent emotional processing contributes to poor emotional outcomes following chronic, mild TBI. This work has broad implications, as roughly one-third of the US population will sustain a mild TBI during their lifetime. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Scaling behavior of sleep-wake transitions across species

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan; Chou, Thomas; Ivanov, Plamen Ch.; Penzel, Thomas; Mochizuki, Takatoshi; Scammell, Thomas; Saper, Clifford B.; Stanley, H. Eugene

    2003-03-01

    Uncovering the mechanisms controlling sleep is a fascinating scientific challenge. It can be viewed as transitions of states of a very complex system, the brain. We study the time dynamics of short awakenings during sleep for three species: humans, rats and mice. We find, for all three species, that wake durations follow a power-law distribution, and sleep durations follow exponential distributions. Surprisingly, all three species have the same power-law exponent for the distribution of wake durations, but the exponential time scale of the distributions of sleep durations varies across species. We suggest that the dynamics of short awakenings are related to species-independent fluctuations of the system, while the dynamics of sleep is related to system-dependent mechanisms which change with species.

  13. Consolidating the effects of waking and sleep on motor-sequence learning.

    PubMed

    Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel

    2010-10-20

    Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.

  14. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors.

    PubMed

    Luo, Yan-Jia; Li, Ya-Dong; Wang, Lu; Yang, Su-Rong; Yuan, Xiang-Shan; Wang, Juan; Cherasse, Yoan; Lazarus, Michael; Chen, Jiang-Fan; Qu, Wei-Min; Huang, Zhi-Li

    2018-04-20

    Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D 1 receptor (D 1 R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D 1 R neurons. Optogenetic activation of NAc D 1 R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D 1 R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D 1 R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D 1 R neuron circuits are essential for the induction and maintenance of wakefulness.

  15. Mild Traumatic Brain Injury Chronically Impairs Sleep- and Wake-Dependent Emotional Processing

    PubMed Central

    Mantua, Janna; Henry, Owen S.; Garskovas, Nolan F.

    2017-01-01

    Abstract Study Objectives: A single traumatic brain injury (TBI), even when mild (ie, concussion), can cause lasting consequences. Individuals with a history of chronic (>1-year prior) mild TBI have an increased risk of mood disturbances (eg, depression, suicide). This population also has lingering sleep alterations, including poor sleep quality and changes in sleep stage proportions. Given these sleep deficits, we aimed to test whether sleep-dependent emotional memory consolidation is reduced in this population. We utilized a mild TBI group (3.7 ± 2.9 years post injury) and an uninjured (non-TBI) population. Methods: Participants viewed negative and neutral images both before and after a 12-hour period containing sleep (“Sleep” group) or an equivalent period of time spent awake (“Wake” group). Participants rated images for valence/arousal at both sessions, and memory recognition was tested at session two. Results: The TBI group had less rapid eye movement (REM), longer REM latency, and more sleep complaints. Sleep-dependent memory consolidation of nonemotional images was present in all participants. However, consolidation of negative images was only present in the non-TBI group. A lack of differentiation between the TBI Sleep and Wake groups was due to poor performance in the sleep group and, unexpectedly, enhanced performance in the wake group. Additionally, although the non-TBI participants habituated to negative images over a waking period, the TBI participants did not. Conclusions: We propose disrupted sleep- and wake-dependent emotional processing contributes to poor emotional outcomes following chronic, mild TBI. This work has broad implications, as roughly one-third of the US population will sustain a mild TBI during their lifetime. PMID:28460124

  16. Transitions in effective scaling behavior of accelerometric time series across sleep and wake

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Patrick; Kantelhardt, Jan W.; Zinkhan, Melanie; Schumann, Aicko Y.; Penzel, Thomas; Fietze, Ingo; Pillmann, Frank; Stang, Andreas

    2013-09-01

    We study the effective scaling behavior of high-resolution accelerometric time series recorded at the wrists and hips of 100 subjects during sleep and wake. Using spectral analysis and detrended fluctuation analysis we find long-term correlated fluctuations with a spectral exponent \\beta \\approx 1.0 (1/f noise). On short time scales, β is larger during wake (\\approx 1.4 ) and smaller during sleep (\\approx 0.6 ). In addition, characteristic peaks at 0.2-0.3 Hz (due to respiration) and 4-10 Hz (probably due to physiological tremor) are observed in periods of weak activity. Because of these peaks, spectral analysis is superior in characterizing effective scaling during sleep, while detrending analysis performs well during wake. Our findings can be exploited to detect sleep-wake transitions.

  17. EFFECT OF STRUCTURED PHYSICAL ACTIVITY ON SLEEP-WAKE BEHAVIORS IN SEDENTARY ELDERS WITH MOBILITY LIMITATIONS

    PubMed Central

    Vaz Fragoso, Carlos A.; Miller, Michael E.; King, Abby C.; Kritchevsky, Stephen B.; Liu, Christine K.; Myers, Valerie H.; Nadkarni, Neelesh K.; Pahor, Marco; Spring, Bonnie J.; Gill, Thomas M.

    2016-01-01

    OBJECTIVE To evaluate the effect of structured physical activity on sleep-wake behaviors in sedentary community-dwelling elders with mobility limitations. DESIGN Multicenter, randomized trial of moderate-intensity physical activity versus health education, with sleep-wake behaviors pre-specified as a tertiary outcome over a planned intervention period ranging between 24 and 30 months. SETTING Lifestyle Interventions and Independence in Elder (LIFE) Study. PARTICIPANTS 1635 community-dwelling persons, aged 70–89 years, who were initially sedentary with a Short Physical Performance Battery score <10. MEASUREMENTS Sleep-wake behaviors were evaluated by the Insomnia Severity Index (ISI) (≥8 defined insomnia), Epworth Sleepiness Scale (ESS) (≥10 defined daytime drowsiness), and Pittsburgh Sleep Quality Index (PSQI) (> 5 defined poor sleep quality) — administered at baseline and subsequently at 6, 18, and 30 months. RESULTS The randomized groups were similar on baseline demographic variables, including mean age (79 years) and sex (67% female). Relative to health education, structured physical activity significantly reduced the likelihood of having poor sleep quality (adjusted odds ratios [adjOR] for PSQI >5 of 0.80 [0.68, 0.94]), including a reduction in new cases (adjOR for PSQI >5 of 0.70 [0.54, 0.89]) but not in resolution of prevalent cases (adjOR for PSQI ≤5 of 1.13 [0.90, 1.43]). No significant intervention effects were observed for ISI or ESS. CONCLUSION Structured physical activity reduced the likelihood of developing poor sleep quality (PSQI >5) over the intervention period, when compared with health education, but had no effect on prevalent cases of poor sleep quality, or on sleep-wake behaviors evaluated by the ISI or ESS. These results suggest that the benefit of physical activity in this sample was preventive and limited to sleep-wake behaviors evaluated by the PSQI. PMID:26115386

  18. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  19. Rai1 frees mice from the repression of active wake behaviors by light.

    PubMed

    Diessler, Shanaz; Kostic, Corinne; Arsenijevic, Yvan; Kawasaki, Aki; Franken, Paul

    2017-05-26

    Besides its role in vision, light impacts physiology and behavior through circadian and direct ( aka 'masking') mechanisms. In Smith-Magenis syndrome (SMS), the dysregulation of both sleep-wake behavior and melatonin production strongly suggests impaired non-visual light perception. We discovered that mice haploinsufficient for the SMS causal gene, Retinoic acid induced-1 ( Rai1 ), were hypersensitive to light such that light eliminated alert and active-wake behaviors, while leaving time-spent-awake unaffected. Moreover, variables pertaining to circadian rhythm entrainment were activated more strongly by light. At the input level, the activation of rod/cone and suprachiasmatic nuclei (SCN) by light was paradoxically greatly reduced, while the downstream activation of the ventral-subparaventricular zone (vSPVZ) was increased. The vSPVZ integrates retinal and SCN input and, when activated, suppresses locomotor activity, consistent with the behavioral hypersensitivity to light we observed. Our results implicate Rai1 as a novel and central player in processing non-visual light information, from input to behavioral output.

  20. Eight weeks of citicoline treatment does not perturb sleep/wake cycles in cocaine-dependent adults

    PubMed Central

    Bracken, Bethany K.; Penetar, David M.; Rodolico, John; Ryan, Elizabeth T.; Lukas, Scott E.

    2011-01-01

    Background Citicoline (cytidine-5’-diphosphate) is a mononucleotide composed of ribose, cytosine, pyrophosphate, and choline, and is involved in the biosynthesis of the structural phosopholipids of cell membranes. Treatment with citicoline, improves memory in patients with dementia, and reduces damage to the brain after traumatic brain injury or stroke. Recent research has been conducted to assess whether citicoline is an effective treatment for cocaine dependence. In cocaine-dependent individuals, withdrawal from cocaine is associated with disturbed sleep, which may contribute to the high rate of relapse to cocaine use. Therefore, it is important to know the impact of citicoline on the sleep/wake cycle in these individuals in order to rate its overall efficacy. Method In this double-blind, placebo-controlled trial, the effects of citicoline treatment on the sleep/wake cycles of cocaine dependent participants were assessed. The results of the current study are reported as part of a larger study, consisting of an eight-week treatment period to assess the efficacy of longer-term treatment with citicoline at decreasing cocaine consumption in cocaine-dependent polydrug using participants. Results In this non-abstinent, cocaine-dependent population, citicoline had no effect on any of the sleep parameters measured including sleep efficiency, sleep latency, total sleep time, number of waking episodes, time awake per episode, amount of time in bed spent moving, number of sleep episodes, time asleep per episode, and amount of time in bed spent immobile. Conclusions These data suggest that eight weeks of citicoline administration does not disturb sleep/wake cycles of cocaine-dependent individuals. PMID:21397626

  1. Brain gene expression during REM sleep depends on prior waking experience.

    PubMed

    Ribeiro, S; Goyal, V; Mello, C V; Pavlides, C

    1999-01-01

    In most mammalian species studied, two distinct and successive phases of sleep, slow wave (SW), and rapid eye movement (REM), can be recognized on the basis of their EEG profiles and associated behaviors. Both phases have been implicated in the offline sensorimotor processing of daytime events, but the molecular mechanisms remain elusive. We studied brain expression of the plasticity-associated immediate-early gene (IEG) zif-268 during SW and REM sleep in rats exposed to rich sensorimotor experience in the preceding waking period. Whereas nonexposed controls show generalized zif-268 down-regulation during SW and REM sleep, zif-268 is upregulated during REM sleep in the cerebral cortex and the hippocampus of exposed animals. We suggest that this phenomenon represents a window of increased neuronal plasticity during REM sleep that follows enriched waking experience.

  2. Cortical–Subcortical Interactions in Hypersomnia Disorders: Mechanisms Underlying Cognitive and Behavioral Aspects of the Sleep–Wake Cycle

    PubMed Central

    Larson-Prior, Linda J.; Ju, Yo-El; Galvin, James E.

    2014-01-01

    Subcortical circuits mediating sleep–wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep–wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders. PMID:25309500

  3. Rai1 frees mice from the repression of active wake behaviors by light

    PubMed Central

    Diessler, Shanaz; Kostic, Corinne; Arsenijevic, Yvan; Kawasaki, Aki; Franken, Paul

    2017-01-01

    Besides its role in vision, light impacts physiology and behavior through circadian and direct (aka ‘masking’) mechanisms. In Smith-Magenis syndrome (SMS), the dysregulation of both sleep-wake behavior and melatonin production strongly suggests impaired non-visual light perception. We discovered that mice haploinsufficient for the SMS causal gene, Retinoic acid induced-1 (Rai1), were hypersensitive to light such that light eliminated alert and active-wake behaviors, while leaving time-spent-awake unaffected. Moreover, variables pertaining to circadian rhythm entrainment were activated more strongly by light. At the input level, the activation of rod/cone and suprachiasmatic nuclei (SCN) by light was paradoxically greatly reduced, while the downstream activation of the ventral-subparaventricular zone (vSPVZ) was increased. The vSPVZ integrates retinal and SCN input and, when activated, suppresses locomotor activity, consistent with the behavioral hypersensitivity to light we observed. Our results implicate Rai1 as a novel and central player in processing non-visual light information, from input to behavioral output. DOI: http://dx.doi.org/10.7554/eLife.23292.001 PMID:28548639

  4. Maternal depressive symptoms, dysfunctional cognitions, and infant night waking: the role of maternal nighttime behavior.

    PubMed

    Teti, Douglas M; Crosby, Brian

    2012-01-01

    Mechanisms were examined to clarify relations between maternal depressive symptoms, dysfunctional cognitions, and infant night waking among 45 infants (1-24 months) and their mothers. A mother-driven mediational model was tested in which maternal depressive symptoms and dysfunctional cognitions about infant sleep predicted infant night waking via their impact on mothers' bedtime and nighttime behavior with infants (from video). Two infant-driven mediational models were also examined, in which infant night waking predicted maternal depressive symptoms, or dysfunctional cognitions, via their impact on nighttime maternal behavior. Stronger support for the mother-driven model was obtained, which was further supported by qualitative observations from video-recordings. This study provides important insights about maternal depression's effects on nighttime parenting, and how such parenting affects infant sleep. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  5. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. © 2016 European Sleep Research Society.

  6. Self-preservation of turbulent wakes

    NASA Technical Reports Server (NTRS)

    Mehta, Jayesh M.

    1989-01-01

    The present experiment has ascertained the development of the wake flow behind NASA GA(W)-1 airfoils, showing that, in the far wake, the mean velocity profiles exhibit self-similar behavior irrespective of the upstream boundary layer's character. It is noted, however, that the processes by means of which different wakes reach the asymptotic stage can be very different for different types of wake generators.

  7. Effect of Structured Physical Activity on Sleep-Wake Behaviors in Sedentary Elderly Adults with Mobility Limitations.

    PubMed

    Vaz Fragoso, Carlos A; Miller, Michael E; King, Abby C; Kritchevsky, Stephen B; Liu, Christine K; Myers, Valerie H; Nadkarni, Neelesh K; Pahor, Marco; Spring, Bonnie J; Gill, Thomas M

    2015-07-01

    To evaluate the effect of structured physical activity on sleep-wake behaviors in sedentary community-dwelling elderly adults with mobility limitations. Multicenter, randomized trial of moderate-intensity physical activity versus health education, with sleep-wake behaviors prespecified as a tertiary outcome over a planned intervention period ranging from 24 to 30 months. Lifestyle Interventions and Independence for Elders Study. Community-dwelling persons aged 70 to 89 who were initially sedentary and had a Short Physical Performance Battery score less than 10 (N = 1,635). Sleep-wake behaviors were evaluated using the Insomnia Severity Index (ISI) (≥8 defined insomnia), Epworth Sleepiness Scale (ESS) (≥10 defined daytime drowsiness), and Pittsburgh Sleep Quality Index (PSQI) (>5 defined poor sleep quality) administered at baseline and 6, 18, and 30 months. The randomized groups were similar in terms of baseline demographic variables, including mean age (79) and sex (67% female). Structured physical activity resulted in a significantly lower likelihood of having poor sleep quality (adjusted odds ratios (aOR) for PSQI >5 = 0.80, 95% confidence interval (CI) = 0.68-0.94), including fewer new cases (aOR for PSQI >5 = 0.70, 95% CI = 0.54-0.89), than health education but not in resolution of prevalent cases (aOR for PSQI ≤5 = 1.13, 95% CI = 0.90-1.43). No significant intervention effects were observed for the ISI or ESS. Structured physical activity resulted in a lower likelihood of developing poor sleep quality (PSQI >5) over the intervention period than health education but had no effect on prevalent cases of poor sleep quality or on sleep-wake behaviors evaluated using the ISI or ESS. These results suggest that the benefit of physical activity in this sample was preventive and limited to sleep-wake behaviors evaluated using the PSQI. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  8. Neural Correlates of Wakefulness, Sleep, and General Anesthesia: An Experimental Study in Rat.

    PubMed

    Pal, Dinesh; Silverstein, Brian H; Lee, Heonsoo; Mashour, George A

    2016-11-01

    Significant advances have been made in our understanding of subcortical processes related to anesthetic- and sleep-induced unconsciousness, but the associated changes in cortical connectivity and cortical neurochemistry have yet to be fully clarified. Male Sprague-Dawley rats were instrumented for simultaneous measurement of cortical acetylcholine and electroencephalographic indices of corticocortical connectivity-coherence and symbolic transfer entropy-before, during, and after general anesthesia (propofol, n = 11; sevoflurane, n = 13). In another group of rats (n = 7), these electroencephalographic indices were analyzed during wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Compared to wakefulness, anesthetic-induced unconsciousness was characterized by a significant decrease in cortical acetylcholine that recovered to preanesthesia levels during recovery wakefulness. Corticocortical coherence and frontal-parietal symbolic transfer entropy in high γ band (85 to 155 Hz) were decreased during anesthetic-induced unconsciousness and returned to preanesthesia levels during recovery wakefulness. Sleep-wake states showed a state-dependent change in coherence and transfer entropy in high γ bandwidth, which correlated with behavioral arousal: high during wakefulness, low during SWS, and lowest during REM sleep. By contrast, frontal-parietal θ connectivity during sleep-wake states was not correlated with behavioral arousal but showed an association with well-established changes in cortical acetylcholine: high during wakefulness and REM sleep and low during SWS. Corticocortical coherence and frontal-parietal connectivity in high γ bandwidth correlates with behavioral arousal and is not mediated by cholinergic mechanisms, while θ connectivity correlates with cortical acetylcholine levels.

  9. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice

    PubMed Central

    Kroeger, Daniel; Ferrari, Loris L.; Mahoney, Carrie E.; Arrigoni, Elda

    2017-01-01

    The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. SIGNIFICANCE STATEMENT More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep–wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior

  10. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.

    PubMed

    Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan; Mahoney, Carrie E; Fuller, Patrick M; Arrigoni, Elda; Scammell, Thomas E

    2017-02-01

    The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our

  11. Behavioral Sleep-Wake Homeostasis and EEG Delta Power Are Decoupled By Chronic Sleep Restriction in the Rat

    PubMed Central

    Stephenson, Richard; Caron, Aimee M.; Famina, Svetlana

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. DESIGN: A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Setting: Animal laboratory, rodent walking-wheel apparatus. Subjects: Male Sprague-Dawley rats. Interventions: Acute total sleep deprivation (TSD, 1 day × 18 or 24 h, N = 12), CSR (10 days × 18 h TSD, N = 6, or 5 days × 20 h TSD, N = 5). Measurements and Results: Behavioral rebounds were consistent with model predictions for proportional control of cumulative times in wake, nonrapid eye movement sleep (NREM) and rapid eye movement sleep (REM). Delta (Δ) energy homeostasis was secondary to behavioral homeostasis; a biphasic NREM Δ power rebound contributed to the dynamics (rapid response) but not to the magnitude of the rebound in Δ energy. REM behavioral homeostasis was little affected by CSR. NREM behavioral homeostasis was attenuated in proportion to cumulative NREM deficit, whereas the biphasic NREM Δ power rebound was only slightly suppressed, indicating decoupled regulatory mechanisms following CSR. Conclusions: We conclude that sleep homeostasis is achieved through behavioral regulation, that the nonrapid eye movement sleep behavioral homeostat is susceptible to attenuation during chronic sleep restriction and that the concept of sleep intensity is not essential in a model of sleep-wake regulation. Citation: Stephenson R, Caron AM, Famina S. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. SLEEP 2015;38(5):685–697. PMID:25669184

  12. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.

    PubMed

    Stephenson, Richard; Caron, Aimee M; Famina, Svetlana

    2015-05-01

    Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Animal laboratory, rodent walking-wheel apparatus. Male Sprague-Dawley rats. Acute total sleep deprivation (TSD, 1 day × 18 or 24 h, N = 12), CSR (10 days × 18 h TSD, N = 5, or 5 days × 20 h TSD, N = 6). Behavioral rebounds were consistent with model predictions for proportional control of cumulative times in wake, nonrapid eye movement (NREM) and rapid eye movement (REM). Delta (D) energy homeostasis was secondary to behavioral homeostasis; a biphasic NREM D power rebound contributed to the dynamics (rapid response) but not to the magnitude of the rebound in D energy. REM behavioral homeostasis was little affected by CSR. NREM behavioral homeostasis was attenuated in proportion to cumulative NREM deficit, whereas the biphasic NREM D power rebound was only slightly suppressed, indicating decoupled regulatory mechanisms following CSR. We conclude that sleep homeostasis is achieved through behavioral regulation, that the NREM behavioral homeostat is susceptible to attenuation during CSR and that the concept of sleep intensity is not essential in a model of sleep-wake regulation. Chronic sleep restriction (CSR) is prevalent in society and is linked to adverse consequences that might be ameliorated by acclimation of homeostatic drive. This study was designed to test the hypothesis that the sleep-wake homeostat will acclimatize to CSR. A four-parameter model of proportional control was used to quantify sleep homeostasis with and without recourse to a sleep intensity function. Animal laboratory, rodent walking-wheel apparatus. Male Sprague-Dawley rats. Acute total sleep

  13. Coalescing Wind Turbine Wakes

    DOE PAGES

    Lee, S.; Churchfield, M.; Sirnivas, S.; ...

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  14. Time to first cigarette after waking predicts cotinine levels

    PubMed Central

    Muscat, Joshua E.; Stellman, Steven D.; Caraballo, Ralph S.; Richie, John P.

    2010-01-01

    There is wide variability in cotinine levels per cigarette smoked. We hypothesized that in addition to smoking frequency, other behavioral measures of nicotine dependence such as the time to first cigarette after waking are associated with cotinine levels. To test this hypothesis, we measured plasma and urinary cotinine in a community-based study of 252 black and white daily cigarette smokers. Results: Among one pack per day smokers, plasma cotinine levels varied from 16 to 1180 (ng/ml), a 74-fold difference. Two nicotine dependence phenotypes were discerned by time after waking. Subjects in the ‘low’ dependent phenotype smoked > 30 minutes after waking and nearly all smoked ≤20 cigarettes per day. Cotinine levels increased linearly with cigarette consumption in this group. Subjects in the ‘high’ dependent phenotype smoked ≤30 minutes after waking, but had a wide range in the frequency of daily cigarettes (6-70). Compared with the low dependent phenotype, there were relatively small differences in cotinine by cigarette frequency with evidence of a plateau effect in heavy smokers (∼30). After adjusting for cigarette frequency, the levels of cotinine by time to first cigarette were: (≤ 5 minutes): 437 (95% confidence limits [CL] (380-494); (6-30 minutes): 352 (95% CL 291-413); (31-60 minutes): 229 (95% CL 140-317); (>60 minutes): 215 (95% CL 110-321). Similar findings were observed for urinary cotinine. These findings suggest that the time to first cigarette is a strong predictor of nicotine uptake and should be considered in the design of smoking interventions. PMID:19959690

  15. Development of a Wake Vortex Spacing System for Airport Capacity Enhancement and Delay Reduction

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; OConnor, Cornelius J.

    2000-01-01

    The Terminal Area Productivity project has developed the technologies required (weather measurement, wake prediction, and wake measurement) to determine the aircraft spacing needed to prevent wake vortex encounters in various weather conditions. The system performs weather measurements, predicts bounds on wake vortex behavior in those conditions, derives safe wake spacing criteria, and validates the wake predictions with wake vortex measurements. System performance to date indicates that the potential runway arrival rate increase with Aircraft VOrtex Spacing System (AVOSS), considering common path effects and ATC delivery variance, is 5% to 12% depending on the ratio of large and heavy aircraft. The concept demonstration system, using early generation algorithms and minimal optimization, is performing the wake predictions with adequate robustness such that only 4 hard exceedances have been observed in 1235 wake validation cases. This performance demonstrates the feasibility of predicting wake behavior bounds with multiple uncertainties present, including the unknown aircraft weight and speed, weather persistence between the wake prediction and the observations, and the location of the weather sensors several kilometers from the approach location. A concept for the use of the AVOSS system for parallel runway operations has been suggested, and an initial study at the JFK International Airport suggests that a simplified AVOSS system can be successfully operated using only a single lidar as both the weather sensor and the wake validation instrument. Such a selfcontained AVOSS would be suitable for wake separation close to the airport, as is required for parallel approach concepts such as SOIA.

  16. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  17. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence.

    PubMed

    Sharma, Rishi; Engemann, Samuel; Sahota, Pradeep; Thakkar, Mahesh M

    2010-11-01

    Insomnia is a severe symptom of alcohol withdrawal; however, the underlying neuronal mechanism is yet unknown. We hypothesized that chronic ethanol exposure will impair basal forebrain (BF) adenosinergic mechanism resulting in insomnia-like symptoms. We performed a series of experiments in Sprague-Dawley rats to test our hypothesis. We used Majchrowicz's chronic binge ethanol protocol to induce ethanol dependency. Our first experiment verified the effects of ethanol withdrawal on sleep-wakefulness. Significant increase in wakefulness was observed during ethanol withdrawal. Next, we examined c-Fos expression (marker of neuronal activation) in BF wake-promoting neurons during ethanol withdrawal. There was a significant increase in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Our third experiment examined the effects of ethanol withdrawal on sleep deprivation induced increase in BF adenosine levels. Sleep deprivation did not increase BF adenosine levels in ethanol dependent rats. Our last experiment examined the effects of ethanol withdrawal on equilibrative nucleoside transporter 1 and A1 receptor expression in the BF. There was a significant reduction in A1 receptor and equilibrative nucleoside transporter 1 expression in the BF of ethanol dependent rats. Based on these results, we suggest that insomnia observed during ethanol withdrawal is caused because of impaired adenosinergic mechanism in the BF. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  18. Numerical Study of Wake Vortex Behavior in Turbulent Domains with Ambient Stratification

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2000-01-01

    A three-dimensional large eddy simulation model is used to investigate the sensitivity of ambient stratification with turbulence on the behavior of aircraft wake vortices. Modeled ambient turbulence levels range from very weak to moderate, and stratification levels range from strongly stable to unstable. The results of profound significance from this study are: 1) very little sensitivity between vortex linking time and the level of stratification, 2) the mean vortex separation remained nearly constant regardless of stratification and turbulence (at least prior to linking), 3) the wake vortices did not rise regardless of the level of stratification, and 4) for very strong stratification, the vortex stopped descending and quickly dissipated even before vortex linking could occur. These results are supported by experimental data and are contrary to conclusions from other numerical studies that assume laminar flow and/or relatively-low Reynolds numbers.

  19. Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1992-01-01

    The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.

  20. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  1. Droplet depinning in a wake

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon

    2017-03-01

    Pinning and depinning of a windswept droplet on a surface is familiar yet deceptively complex for it depends on the interaction of the contact line with the microscopic features of the solid substrate. This physical picture is further compounded when wind of the Reynolds number greater than 100 blows over pinned drops, leading to the boundary layer separation and wake generation. In this Rapid Communication, we incorporate the well-developed ideas of the classical boundary layer to study partially wetting droplets in a wake created by a leader object. Depending on its distance from the leader, the droplet is observed to exhibit drafting, upstream motion, and splitting, due to the wake-induced hydrodynamic coupling that is analogous to drafting of moving bodies. We successfully rationalize the onset of the upstream motion regime using a reduced model that computes the droplet shape governed by the pressure field inside the wake.

  2. Dynamics and control of hydrofoil wakes

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Morten; Wosnik, Martin; Arndt, Roger

    2008-11-01

    The problem of rotor-stator interaction (RSI) is an issue within the field of turbomachinery. The flow field entering the rotor cascade will depend on the stator blade to blade velocity distributions, and the viscous wake trailing cascade blades. This flow field is also dependent on the mode of operation, e.g by changing the angle of each blade in hydroturbines. Manipulating the stator viscous wakes is one method to minimize the problems associated RSI; i.e. noise and vibration. In order to explore this concept, a comprehensive experimental program was carried out in a high-speed water tunnel utilizing a series of NACA 0015 hydrofoils. Baseline wake data were collected with a hydraulically smooth foil and compared with two foils modified with two sizes of vortex generators (VG) positioned close to the leading edge of the foil. Not only was the effect of the modifications on wake spreading investigated but also the effect on wake dynamics such as vortex shedding was studied. A high frame-rate PIV system was used at recording rates of 1 and 10 kHz to map the near wake region, extending roughly 1 chord-length downstream the trailing edge, over a range of angles of attack and velocities. The results show that wake dynamics and wake characteristics, i.e. velocity deficit and width, scale with average drag. It was demonstrated that the use of VGs can improve both the dynamics and spreading characteristics of the wake.

  3. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    NASA Technical Reports Server (NTRS)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  4. Wake measurements in a strong adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.

    1994-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  5. Circadian and Wake-Dependent Influences on Subjective Sleepiness, Cognitive Throughput, and Reaction Time Performance in Older and Young Adults

    PubMed Central

    Silva, Edward J.; Wang, Wei; Ronda, Joseph M.; Wyatt, James K.; Duffy, Jeanne F.

    2010-01-01

    Study Objectives: To assess circadian and homeostatic influences on subjective sleepiness and cognitive performance in older adults when sleep and waking are scheduled at different times of day; to assess changes in subjective sleepiness and cognitive performance across several weeks of an inpatient study; and to compare these findings with results from younger adults. Design: Three 24-h baseline days consisting of 16 h of wakefulness and an 8-h sleep opportunity followed by 3-beat cycles of a 20-h forced desynchrony (FD) condition; 18 20-h “days,” each consisting of 13.33 h of scheduled wakefulness and 6.67 h of scheduled sleep opportunity. Setting: Intensive Physiological Monitoring Unit of the Brigham and Women's Hospital General Clinical Research Center. Participants: 10 healthy older adults (age 64.00 ± 5.98 y, 5 females) and 10 healthy younger adults (age 24.50 ± 3.54 y, 5 females). Interventions: Wake episodes during FD scheduled to begin 4 h earlier each day allowing for data collection at a full range of circadian phases. Measurements and Results: Subjective sleepiness, cognitive throughput, and psychomotor vigilance assessed every 2 h throughout the study. Core body temperature (CBT) data collected throughout to assess circadian phase. Older subjects were less sleepy and performed significantly better on reaction time (RT) measures than younger subjects. Decrements among younger subjects increased in magnitude further into the experiment, while the performance of older subjects remained stable. Conclusions: Our findings demonstrate that the waking performance and alertness of healthy older subjects are less impacted by the cumulative effects of repeated exposure to adverse circadian phase than that of young adults. This suggests that there are age-related changes in the circadian promotion of alertness, in the wake-dependent decline of alertness, and/or in how these 2 regulatory systems interact in healthy aging. Citation: Silva EJ; Wang W; Ronda JM

  6. Predictors of the Nicotine Dependence Behavior Time to the First Cigarette in a Multiracial Cohort.

    PubMed

    Branstetter, Steven A; Mercincavage, Melissa; Muscat, Joshua E

    2015-07-01

    The time to first cigarette of the day (TTFC) is a strong indicator of nicotine dependence behaviors such as nicotine uptake and quit success in young and older smokers. There are substantial differences in levels of nicotine dependence by race and ethnic group. Data from Wave III of the multiracial National Longitudinal Study of Adolescent Health were analyzed for young smokers between the ages of 21 and 28 (N = 1,425). Time to first cigarette data was compared between Hispanic, White, Black, Native American, and Asian smokers. Black smokers were significantly more likely to smoke within 5min of waking than White, Hispanic, and Asian smokers. Lower personal income predicted smoking within 5min of waking for both White and Black smokers. For White smokers, increased number of cigarettes per day and increased years of smoking also predicted smoking within 5min of waking. The number of days smoked or number of cigarettes per day did not predict smoking within 5min of waking among smokers. The higher prevalence of early TTFC among Blacks indicates increased nicotine and carcinogen exposure, and may help explain the increased lung cancer rates and failed cessation attempts among Black smokers. TTFC may be an important screening item, independent of cigarettes per day, for clinicians and interventions to identify those at highest risk for cessation failure and disease risk. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.

    PubMed

    Schmidt, Markus H

    2014-11-01

    The energy allocation (EA) model defines behavioral strategies that optimize the temporal utilization of energy to maximize reproductive success. This model proposes that all species of the animal kingdom share a universal sleep function that shunts waking energy utilization toward sleep-dependent biological investment. For endotherms, REM sleep evolved to enhance energy appropriation for somatic and CNS-related processes by eliminating thermoregulatory defenses and skeletal muscle tone. Alternating REM with NREM sleep conserves energy by decreasing the need for core body temperature defense. Three EA phenotypes are proposed: sleep-wake cycling, torpor, and continuous (or predominant) wakefulness. Each phenotype carries inherent costs and benefits. Sleep-wake cycling downregulates specific biological processes in waking and upregulates them in sleep, thereby decreasing energy demands imposed by wakefulness, reducing cellular infrastructure requirements, and resulting in overall energy conservation. Torpor achieves the greatest energy savings, but critical biological operations are compromised. Continuous wakefulness maximizes niche exploitation, but endures the greatest energy demands. The EA model advances a new construct for understanding sleep-wake organization in ontogenetic and phylogenetic domains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Genetic and environmental contributions to sleep-wake behavior in 12-year-old twins.

    PubMed

    Sletten, Tracey L; Rajaratnam, Shantha M W; Wright, Margaret J; Zhu, Gu; Naismith, Sharon; Martin, Nicholas G; Hickie, Ian

    2013-11-01

    To examine the role of genetic and environmental factors on sleep behavior in 12-year-old twins matched for family environment. Population-based twin cohort. Participants were assessed in their home environment. One hundred thirty-two adolescent twins comprising 25 monozygotic (MZ) and 41 dizygotic (DZ) twin pairs; aged 12.2 ± 0.1 y (mean ± standard deviation). N/A. For 2 weeks in their home environment, participants wore a wrist activity monitor and completed a daily sleep diary. Sleep diaries included reports of bedtime, wake time, and estimated sleep onset time. Mean timing, duration, and quality of sleep during the 2 weeks were calculated for each individual and compared within twin pairs. MZ twin correlations were higher than the DZ correlations for total sleep time (MZr = 0.64; DZr = 0.38) and sleep onset latency (MZr = 0.83; DZr = 0.53) and significantly higher for wake after sleep onset (MZr = 0.66; DZr = 0.04) and sleep efficiency (MZr = 0.82; DZr = 0.10). Univariate modeling showed additive genetic factors accounted for 65% of the variance in total sleep time, 83% in sleep onset latency, and 52% and 57% of the variance in wake after sleep onset and sleep efficiency, respectively. A predominant influence of shared environment was found on the timing of sleep (67% for sleep start time, 86% for sleep end time). There is a strong genetic influence on the sleep-wake patterns of 12-year-old adolescents. Genes have a greater influence on sleep initiation and sleep maintenance and a smaller role in sleep timing, likely to be influenced by family environment.

  9. Large HAWT wake measurement and analysis

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-01-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of

  10. Large HAWT wake measurement and analysis

    NASA Astrophysics Data System (ADS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of

  11. Foraging behavior of Long-tailed Ducks in a ferry wake

    USGS Publications Warehouse

    Perry, Matthew C.

    2012-01-01

    Clangula hyemalis (Long-tailed Ducks) were observed diving in the wake of the Nantucket Island ferry during December over a 5-year period (2005–2009). The unusual diving behavior appeared to be related to foraging, but could not be confirmed. Long-tailed Ducks typically feed on more mobile prey than most other diving ducks, and it is speculated that the propeller wash in shallow water dislodged or disturbed prey and provided an enhanced feeding opportunity. Long-tailed Ducks collected while feeding in a disturbed area near a clamming boat not far from the ferry channel were feeding predominantly on Crangon septemspinosa (Sand Shrimp) that apparently had been dislodged by the clamming operation.

  12. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    PubMed

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  13. Direct Numerical Simulation of a Weakly Stratified Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Redford, J. A.; Lund, T. S.; Coleman, Gary N.

    2014-01-01

    Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.

  14. Sleep-wake behavior in the rat: ultradian rhythms in a light-dark cycle and continuous bright light.

    PubMed

    Stephenson, Richard; Lim, Joonbum; Famina, Svetlana; Caron, Aimee M; Dowse, Harold B

    2012-12-01

    Ultradian rhythms are a prominent but little-studied feature of mammalian sleep-wake and rest-activity patterns. They are especially evident in long-term records of behavioral state in polyphasic animals such as rodents. However, few attempts have been made to incorporate ultradian rhythmicity into models of sleep-wake dynamics, and little is known about the physiological mechanisms that give rise to ultradian rhythms in sleep-wake state. This study investigated ultradian dynamics in sleep and wakefulness in rats entrained to a 12-h:12-h light-dark cycle (LD) and in rats whose circadian rhythms were suppressed and free-running following long-term exposure to uninterrupted bright light (LL). We recorded sleep-wake state continuously for 7 to 12 consecutive days and used time-series analysis to quantify the dynamics of net cumulative time in each state (wakefulness [WAKE], rapid eye movement sleep [REM], and non-REM sleep [NREM]) in each animal individually. Form estimates and autocorrelation confirmed the presence of significant ultradian and circadian rhythms; maximum entropy spectral analysis allowed high-resolution evaluation of multiple periods within the signal, and wave-by-wave analysis enabled a statistical evaluation of the instantaneous period, peak-trough range, and phase of each ultradian wave in the time series. Significant ultradian periodicities were present in all 3 states in all animals. In LD, ultradian range was approximately 28% of circadian range. In LL, ultradian range was slightly reduced relative to LD, and circadian range was strongly attenuated. Ultradian rhythms were found to be quasiperiodic in both LD and LL. That is, ultradian period varied randomly around a mean of approximately 4 h, with no relationship between ultradian period and time of day.

  15. Oil dependence and Thai foreign-policy behavior during the Arab-Israeli war of October 1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keophumihae, S.

    1985-01-01

    The purpose of this study is to explain Thai foreign-policy behavior toward the Arab-Israeli conflict during the Arab oil embargo of 1973-1974 in the wake of the October 1973 War. The major hypothesis is that Thai foreign policy behavior shifted from a neutral to a pro-Arab position after the Arab oil embargo. This shift was motivated by Thai oil-import dependence on OAPEC (Organization of Arab Petroleum Exporting Countries). Oil has assumed an economic as well as a political dimension. Therefore, its political influence over the oil-dependent states cannot be dismissed. Thai foreign-policy behavior in the Arab-Israeli conflict is analyzed throughmore » the use of the dependence approach, which contends that external reliance is a potent factor for explaining behavior of actors. Thailand's foreign-policy stand is first delineated through the use of documents containing policy statements by Thai delegates to the United Nations. It was found that although Thai public policy statements were never bluntly anti-Israel, they moved from between neutrality before the oil crisis to a pro-Arab position after the oil crisis of 1973-1974. This shift of Thailand's foreign policy behavior position was then measured against its UN voting records. Results of the voting analysis indicated that the shifting of Thai foreign policy behavior during the October war was motivated by Thailand's oil-import dependence.« less

  16. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    PubMed

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  17. Calculation of wake vortex structures in the near-field wake behind cruising aircraft

    NASA Astrophysics Data System (ADS)

    Ehret, T.; Oertel, H.

    Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.

  18. Functional anatomy of the sleep-wakefulness cycle: wakefulness.

    PubMed

    Reinoso-Suárez, Fernando; de Andrés, Isabel; Garzón, Miguel

    2011-01-01

    Sleep is a necessary, diverse, periodic, and an active condition circadian and homeostatically regulated and precisely meshed with waking time into the sleep-wakefulness cycle (SWC). Photic retinal stimulation modulates the suprachiasmatic nucleus, which acts as the pacemaker for SWC rhythmicity. Both the light period and social cues adjust the internal clock, making the SWC a circadian, 24-h period in the adult human. Bioelectrical and behavioral parameters characterize the different phases of the SWC. For a long time, lesions and electrical stimulation of brain structures, as well as connection studies, were the main methods used to decipher the foundations of the functional anatomy of the SWC. That is why the first section of this review presents these early historical studies to then discuss the current state of our knowledge based on our understanding of the functional anatomy of the structures underlying the SWC. Supported by this description, we then present a detailed review and update of the structures involved in the phase of wakefulness (W), including their morphological, functional, and chemical characteristics, as well as their anatomical connections. The structures for W generation are known as the "ascending reticular activating system", and they keep and maintain the "thalamo-cerebral cortex unit" awake. This system originates from the neuronal groups located within the brainstem, hypothalamus, and basal forebrain, which use known neurotransmitters and whose neurons are more active during W than during the other SWC states. Thus, synergies among several of these neurotransmitters are necessary to generate the cortical and thalamic activation that is characteristic of the W state, with all the plastic qualities and nuances present in its different behavioral circumstances. Each one of the neurotransmitters exerts powerful influences on the information and cognitive processes as well as attentional, emotional, motivational, behavioral, and arousal

  19. Increased Reward-Related Behaviors during Sleep and Wakefulness in Sleepwalking and Idiopathic Nightmares.

    PubMed

    Perogamvros, Lampros; Aberg, Kristoffer; Gex-Fabry, Marianne; Perrig, Stephen; Cloninger, C Robert; Schwartz, Sophie

    2015-01-01

    We previously suggested that abnormal sleep behaviors, i.e., as found in parasomnias, may often be the expression of increased activity of the reward system during sleep. Because nightmares and sleepwalking predominate during REM and NREM sleep respectively, we tested here whether exploratory excitability, a waking personality trait reflecting high activity within the mesolimbic dopaminergic (ML-DA) system, may be associated with specific changes in REM and NREM sleep patterns in these two sleep disorders. Twenty-four unmedicated patients with parasomnia (12 with chronic sleepwalking and 12 with idiopathic nightmares) and no psychiatric comorbidities were studied. Each patient spent one night of sleep monitored by polysomnography. The Temperament and Character Inventory (TCI) was administered to all patients and healthy controls from the Geneva population (n = 293). Sleepwalkers were more anxious than patients with idiopathic nightmares (Spielberger Trait anxiety/STAI-T), but the patient groups did not differ on any personality dimension as estimated by the TCI. Compared to controls, parasomnia patients (sleepwalkers together with patients with idiopathic nightmares) scored higher on the Novelty Seeking (NS) TCI scale and in particular on the exploratory excitability/curiosity (NS1) subscale, and lower on the Self-directedness (SD) TCI scale, suggesting a general increase in reward sensitivity and impulsivity. Furthermore, parasomnia patients tended to worry about social separation persistently, as indicated by greater anticipatory worry (HA1) and dependence on social attachment (RD3). Moreover, exploratory excitability (NS1) correlated positively with the severity of parasomnia (i.e., the frequency of self-reported occurrences of nightmares and sleepwalking), and with time spent in REM sleep in patients with nightmares. These results suggest that patients with parasomnia might share common waking personality traits associated to reward-related brain functions

  20. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits

    PubMed Central

    Grønli, Janne; Clegern, William C.; Schmidt, Michelle A.; Nemri, Rahmi S.; Rempe, Michael J.; Gallitano, Amelia L.; Wisor, Jonathan P.

    2016-01-01

    Study Objective: The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Methods: Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Results: Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1–3 Hz power) and in quiet wakefulness (elevated 3–8 Hz and 15–35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1–4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Conclusion: Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. Citation: Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP. Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient

  1. Preliminary rotor wake measurements with a laser velocimeter

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Rhodes, D. B.; Meyers, J. F.

    1983-01-01

    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel.

  2. Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat

    PubMed Central

    Homberg, Judith R.; Olivier, Jocelien D. A.; Blom, Tom; Arentsen, Tim; van Brunschot, Chantal; Schipper, Pieter; Korte-Bouws, Gerdien; van Luijtelaar, Gilles; Reneman, Liesbeth

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine

  3. Running promotes wakefulness and increases cataplexy in orexin knockout mice.

    PubMed

    España, Rodrigo A; McCormack, Sarah L; Mochizuki, Takatoshi; Scammell, Thomas E

    2007-11-01

    People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.

  4. Sleep-Dependent Consolidation of Rewarded Behavior Is Diminished in Children with Attention Deficit Hyperactivity Disorder and a Comorbid Disorder of Social Behavior

    PubMed Central

    Wiesner, Christian D.; Molzow, Ina; Prehn-Kristensen, Alexander; Baving, Lioba

    2017-01-01

    Children suffering from attention-deficit hyperactivity disorder (ADHD) often also display impaired learning and memory. Previous research has documented aberrant reward processing in ADHD as well as impaired sleep-dependent consolidation of declarative memory. We investigated whether sleep also fosters the consolidation of behavior learned by probabilistic reward and whether ADHD patients with a comorbid disorder of social behavior show deficits in this memory domain, too. A group of 17 ADHD patients with comorbid disorders of social behavior aged 8–12 years and healthy controls matched for age, IQ, and handedness took part in the experiment. During the encoding task, children worked on a probabilistic learning task acquiring behavioral preferences for stimuli rewarded most often. After a 12-hr retention interval of either sleep at night or wakefulness during the day, a reversal task was presented where the contingencies were reversed. Consolidation of rewarded behavior is indicated by greater resistance to reversal learning. We found that healthy children consolidate rewarded behavior better during a night of sleep than during a day awake and that the sleep-dependent consolidation of rewarded behavior by trend correlates with non-REM sleep but not with REM sleep. In contrast, children with ADHD and comorbid disorders of social behavior do not show sleep-dependent consolidation of rewarded behavior. Moreover, their consolidation of rewarded behavior does not correlate with sleep. The results indicate that dysfunctional sleep in children suffering from ADHD and disorders of social behavior might be a crucial factor in the consolidation of behavior learned by reward. PMID:28228742

  5. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    , leading to unstable sleep and waking behavioral patterns and an entirely idiosyncratic sleep-wake schedule. Familiarity with these major circadian rhythm sleep-wake disorder phenotypes and their overlap with other neurologic disorders is essential for the neurologist so that clinicians may intervene and improve patient functioning and quality of life.

  6. Sleep Fragmentation Exacerbates Mechanical Hypersensitivity and Alters Subsequent Sleep-Wake Behavior in a Mouse Model of Musculoskeletal Sensitization

    PubMed Central

    Sutton, Blair C.; Opp, Mark R.

    2014-01-01

    Study Objectives: Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. Design: This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Methods: Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Results: Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on

  7. Dissipation of turbulence in the wake of a wind turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2013-12-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behavior of an individual wake as it merges with other wakes and propagates downwind is of great importance in assessing wind farm power production as well as impacts of wind energy deployment on local and regional environments. The rate of turbulence dissipation in the wake quantifies the wake behavior as it propagates. In situ field measurements of turbulence dissipation rate in the wake of wind turbines have not been previously collected although correct modeling of dissipation rate is required for accurate simulations of wake evolution. In Fall 2012, we collected in situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine, using the University of Colorado at Boulder's Tethered Lifting System (TLS). The TLS is a unique state-of-the-art tethersonde, proven in numerous boundary-layer field experiments to be able to measure turbulence kinetic energy dissipation rates. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located upwind of the turbine, from a profiling lidar upwind, and from a scanning lidar measuring both inflow to and wake from the turbine. Measurements collected within the wake indicate that dissipation rates are higher in the turbine wake than in the ambient flow. Profiles of dissipation and turbulence throughout the rotor disk suggest that dissipation peaks near the hub height of the turbine. Suggestions for incorporating this information into wind turbine modeling approaches will be provided.

  8. Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice

    PubMed Central

    España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.

    2007-01-01

    Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476

  9. The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Churchfield, M. J.; Moriarty, P. J.; Lundquist, J. K.; Oxley, G. S.; Hahn, S.; Pryor, S. C.

    2015-06-01

    The aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity [1]. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as a whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds (Figure 2). The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.

  10. The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm

    DOE PAGES

    Barthelmie, R. J.; Churchfield, Matthew J.; Moriarty, Patrick J.; ...

    2015-06-18

    Here, the aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as amore » whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds. The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.« less

  11. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  12. Involvement of the α1-adrenoceptor in sleep-waking and sleep loss-induced anxiety behavior in zebrafish.

    PubMed

    Singh, A; Subhashini, N; Sharma, S; Mallick, B N

    2013-08-15

    Sleep is a universal phenomenon in vertebrates, and its loss affects various behaviors. Independent studies have reported that sleep loss increases anxiety; however, the detailed mechanism is unknown. Because sleep deprivation increases noradrenalin (NA), which modulates many behaviors and induces patho-physiological changes, this study utilized zebrafish as a model to investigate whether sleep loss-induced increased anxiety is modulated by NA. Continuous behavioral quiescence for at least 6s was considered to represent sleep in zebrafish; although some authors termed it as a sleep-like state, in this study we have termed it as sleep. The activity of fish that signified sleep-waking was recorded in light-dark, during continuous dark and light; the latter induced sleep loss in fish. The latency, number of entries, time spent and distance travelled in the light chamber were assessed in a light-dark box test to estimate the anxiety behavior of normal, sleep-deprived and prazosin (PRZ)-treated fish. Zebrafish showed increased waking during light and complete loss of sleep upon continuous exposure to light for 24h. PRZ significantly increased sleep in normal fish. Sleep-deprived fish showed an increased preference for dark (expression of increased anxiety), and this effect was prevented by PRZ, which increased sleep as well. Our findings suggest that sleep loss-induced anxiety-like behavior in zebrafish is likely to be mediated by NA's action on the α1-adrenoceptor. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness

    PubMed Central

    Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Dineley, Kelly T.; Haydon, Philip G.

    2017-01-01

    Summary The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active)-phase that dissipates to sub-saturating levels during the light (sleep)-phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically-tested α7nAChR agonist successfully enhances NMDARs activation. PMID:28479102

  14. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    PubMed Central

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  15. Characterization of forced response of density stratified reacting wake

    NASA Astrophysics Data System (ADS)

    Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim

    2018-02-01

    The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.

  16. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made

  17. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    PubMed

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  18. The plasma wake of mesosonic conducting bodies. II - An experimental parametric study of the mid-wake ion density peak

    NASA Technical Reports Server (NTRS)

    Stone, N. H.

    1981-01-01

    An experimental investigation of the disturbed flow field created by conducting bodies in a mesosonic, collisionless plasma stream is reported. The mid-wake region is investigated, where, for bodies of the order of a Debye length in size, the focused ion streams converge to form a significant current density peak on the wake axis. A parametric description is obtained of the behavior of the amplitude, width, and position of this peak. The results also indicate that portions of the axial ion peak are created by additional mechanisms and that body geometry affects the mid-wake structure only when the sheath is sufficiently thin to conform to the shape of the body.

  19. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness

    PubMed Central

    Branch, Abigail F.; Navidi, William; Tabuchi, Sawako; Terao, Akira; Yamanaka, Akihiro; Scammell, Thomas E.; Diniz Behn, Cecilia

    2016-01-01

    Study Objectives: Narcolepsy is caused by loss of the orexin (also known as hypocretin) neurons. In addition to the orexin peptides, these neurons release additional neurotransmitters, which may produce complex effects on sleep/wake behavior. Currently, it remains unknown whether the orexin neurons promote the initiation as well as the maintenance of wakefulness, and whether the orexin neurons influence initiation or maintenance of sleep. To determine the effects of the orexin neurons on the dynamics of sleep/wake behavior, we analyzed sleep/wake architecture in a novel mouse model of acute orexin neuron loss. Methods: We used survival analysis and other statistical methods to analyze sleep/wake architecture in orexin-tTA ; TetO diphtheria toxin A mice at different stages of orexin neuron degeneration. Results: Progressive loss of the orexin neurons dramatically reduced survival of long wake bouts, but it also improved survival of brief wake bouts. In addition, with loss of the orexin neurons, mice were more likely to wake during the first 30 sec of nonrapid eye movement sleep and then less likely to return to sleep during the first 60 sec of wakefulness. Conclusions: These findings help explain the sleepiness and fragmented sleep that are characteristic of narcolepsy. Orexin neuron loss impairs survival of long wake bouts resulting in poor maintenance of wakefulness, but this neuronal loss also fragments sleep by increasing the risk of awakening at the beginning of sleep and then reducing the likelihood of quickly returning to sleep. Citation: Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive loss of the orexin neurons reveals dual effects on wakefulness. SLEEP 2016;39(2):369–377. PMID:26446125

  20. Multiple Near Wake Patterns Behind Annular Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro

    1996-11-01

    Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.

  1. Night Waking, Sleep-Wake Organization, and Self-Soothing in the First Year of Life

    PubMed Central

    GOODLIN-JONES, BETH L.; BURNHAM, MELISSA M.; GAYLOR, ERIKA E.; ANDERS, THOMAS F.

    2005-01-01

    Few objective data are available regarding infants’ night waking behaviors and the development of self-soothing during the first year of life. This cross-sectional study examined 80 infants in one of four age groups (3, 6, 9, or 12 mo) for four nights by using videosomnography to code nighttime awakenings and parent-child interactions. A large degree of variability was observed in parents’ putting the infant to bed awake or asleep and in responding to vocalizations after nighttime awakenings. Most infants woke during the night at all ages observed. Younger infants tended to require parental intervention at night to return to sleep, whereas older infants exhibited a greater proportion of self-soothing after nighttime awakenings. However, even in the 12-month-old group, 50% of infants typically required parental intervention to get back to sleep after waking. Results emphasize the individual and contextual factors that effect the development of self-soothing behavior during the first year of life. PMID:11530895

  2. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Wang, Q.; Scholbrock, A.

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  3. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  4. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE PAGES

    Churchfield, M.; Wang, Q.; Scholbrock, A.; ...

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  5. Characterization of the bout durations of sleep and wakefulness.

    PubMed

    McShane, Blakeley B; Galante, Raymond J; Jensen, Shane T; Naidoo, Nirinjini; Pack, Allan I; Wyner, Abraham

    2010-11-30

    (a) Develop a new statistical approach to describe the microarchitecture of wakefulness and sleep in mice; (b) evaluate differences among inbred strains in this microarchitecture; (c) compare results when data are scored in 4-s versus 10-s epochs. Studies in male mice of four inbred strains: AJ, C57BL/6, DBA and PWD. EEG/EMG were recorded for 24h and scored independently in 4-s and 10-s epochs. Distribution of bout durations of wakefulness, NREM and REM sleep in mice has two distinct components, i.e., short and longer bouts. This is described as a spike (short bouts) and slab (longer bouts) distribution, a particular type of mixture model. The distribution in any state depends on the state the mouse is transitioning from and can be characterized by three parameters: the number of such bouts conditional on the previous state, the size of the spike, and the average length of the slab. While conventional statistics such as time spent in state, average bout duration, and number of bouts show some differences between inbred strains, this new statistical approach reveals more major differences. The major difference between strains is their ability to sustain long bouts of NREM sleep or wakefulness. Scoring mouse sleep/wake in 4-s epochs offered little new information when using conventional metrics but did when evaluating the microarchitecture based on this new approach. Standard statistical approaches do not adequately characterize the microarchitecture of mouse behavioral state. Approaches based on a spike-and-slab provide a quantitative description. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Waking at night to smoke as a marker for tobacco dependence: patient characteristics and relationship to treatment outcome.

    PubMed

    Bover, M T; Foulds, J; Steinberg, M B; Richardson, D; Marcella, S W

    2008-02-01

    This study aimed to describe the characteristics of treatment-seeking patients who wake at night to smoke (night-smoking), identify factors that may be associated with night-smoking, and assess the association between night-smoking and treatment outcome. A total of 2312 consecutive eligible cigarette smokers who sought treatment at a specialist tobacco-dependence clinic declared a Target Quit Date, provided baseline information at assessment, and were then followed-up 4 and 26 weeks after their target quit date. Of the total sample, 51.1% were identified as night-smokers and 25.1% reported smoking abstinence at 26-week follow-up. Night-smoking was associated with a number of other patient characteristics, including African-American race or Hispanic ethnicity, having smoking-related medical symptoms, having been treated for a behavioural health problem, smoking mentholated cigarettes, smoking within 30 min of waking in the morning, increased cigarettes smoked per day, and not having private health insurance. In multivariate analyses, night-smoking at assessment remained a significant predictor of smoking at 26-week follow-up when controlling for other factors associated with treatment outcome (adjusted odds ratio: 0.77, 95% confidence interval: 0.62-0.96). Night-smokers also experienced a shorter average time to relapse (38.5 vs. 56 days, p<0.0001). Several socioeconomic and tobacco use characteristics are shared among patients who wake at night to smoke. This behaviour can be assessed by a simple question and used as a marker for tobacco dependence and as an indicator that more intensive and sustained treatment may be required.

  7. Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation

    PubMed Central

    Amador, Ariadna; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag. PMID:27603791

  8. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

    PubMed

    Grønli, Janne; Clegern, William C; Schmidt, Michelle A; Nemri, Rahmi S; Rempe, Michael J; Gallitano, Amelia L; Wisor, Jonathan P

    2016-12-01

    The expression of the immediate early gene early growth response 3 ( Egr3 ) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3 -/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Egr3 -/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1-3 Hz power) and in quiet wakefulness (elevated 3-8 Hz and 15-35 Hz power) differed in comparison to WT-mice. Egr3 -/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1-4 Hz power) relative to WT-mice. Egr3 -/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3 -/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3 -/- mice. Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. © 2016 Associated Professional Sleep Societies, LLC.

  9. Contrasting expressions of aggressive behavior released by lesions of the central nucleus of the amygdala during wakefulness and rapid eye movement sleep without atonia in cats.

    PubMed

    Zagrodzka, J; Hedberg, C E; Mann, G L; Morrison, A R

    1998-06-01

    Whether damage to the central nucleus of the amygdala (Ace) contributes to the predatorylike attack sometimes observed in rapid eye movement sleep without atonia (REM-A), created in cats by bilateral pontine lesions, was examined. Such lesions eliminate REM sleep skeletal muscle atonia and release elaborate behavior. Unilateral damage to the Ace alone increased affective defensive aggressive behavior toward humans and conspecifics without altering predatory behavior in wakefulness. Pontine lesions added at loci normally not leading to aggression induced predatorylike attacks in REM-A as well as the waking affective defense. Alterations of autonomic activity, the absence of relevant environmental stimuli in REM-A, or both may explain the state-related differences.

  10. Retinogeniculate transmission in wakefulness.

    PubMed

    Weyand, Theodore G

    2007-08-01

    Despite popular belief that the primary function of the thalamus is to "gate" sensory inputs by state, few studies have attempted to directly characterize the efficacy of such gating in the awake, behaving animal. I measured the efficacy of retinogeniculate transmission in the awake cat by taking advantage of the fact that many neurons in the lateral geniculate nucleus (LGN) are dominated by a single retinal input, and that this input produces a distinct event known as the S-potential. Retinal input failed to produce an LGN action potential half of the time. However, success or failure was powerfully tied to the recency of the S-potential. Short intervals tend to be successful and long intervals unsuccessful. For four of 12 neurons, the probability that a given S-potential could cause a spike exceeded 90% if that S-potential was preceded by an S-potential within the previous 10 ms (100 Hz). Whereas this temporal influence on efficacy has been demonstrated extensively in anesthetized animals, wakefulness is different in several ways. Overall efficacy is better in wakefulness than in anesthesia, the durations of facilitating effects are briefer in wakefulness, efficacy of long intervals is superior in wakefulness, and the temporal dependence can be briefly disrupted by altering background illumination. The last two observations may be particularly significant. Increased success at long intervals in wakefulness provides additional evidence that the spike code of the anesthetized animal is not the spike code of the awake animal. Altering retinogeniculate efficacy by altering visual conditions undermines the influence inter-S-potential interval might have in determining efficacy in the real world. Finally, S-potential amplitude, duration, and even slope are dynamic and systematic within wakefulness; providing further support that the S-potential is the extracellular signature of the retinal EPSP.

  11. Brain Energetics During the Sleep-Wake Cycle

    PubMed Central

    DiNuzzo, Mauro; Nedergaard, Maiken

    2017-01-01

    Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage of interstitial fluid. These events are accompanied by changes in neuronal discharge patterns, astrocyte-neuron interactions, synaptic transactions and underlying metabolic features. Internally-generated neuronal activity and network homeostasis are proposed to account for the high sleep-related energy demand. PMID:29024871

  12. Untangling a Cholinergic Pathway from Wakefulness to Memory.

    PubMed

    Gais, Steffen; Schönauer, Monika

    2017-05-17

    Acetylcholine is a major modulator of learning and memory, and its availability varies across the sleep-wake cycle. In this issue of Neuron, Papouin et al. (2017) describe a D-serine-dependent pathway involving astroglia by which the transmitter tunes the hippocampus toward memory encoding during wakefulness. Copyright © 2017. Published by Elsevier Inc.

  13. Nonlinear Kinetic Instabilities in Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.

    2015-12-01

    Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.

  14. Locus ceruleus control of state-dependent gene expression.

    PubMed

    Cirelli, Chiara; Tononi, Giulio

    2004-06-09

    Wakefulness and sleep are accompanied by changes in behavior and neural activity, as well as by the upregulation of different functional categories of genes. However, the mechanisms responsible for such state-dependent changes in gene expression are unknown. Here we investigate to what extent state-dependent changes in gene expression depend on the central noradrenergic (NA) system, which is active in wakefulness and reduces its firing during sleep. We measured the levels of approximately 5000 transcripts expressed in the cerebral cortex of control rats and in rats pretreated with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a neurotoxin that removes the noradrenergic innervation of the cortex. We found that NA depletion reduces the expression of approximately 20% of known wakefulness-related transcripts. Most of these transcripts are involved in synaptic plasticity and in the cellular response to stress. In contrast, NA depletion increased the expression of the sleep-related gene encoding the translation elongation factor 2. These results indicate that the activity of the central NA system during wakefulness modulates neuronal transcription to favor synaptic potentiation and counteract cellular stress, whereas its inactivity during sleep may play a permissive role to enhance brain protein synthesis.

  15. Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output.

    PubMed

    Schiemann, Julia; Puggioni, Paolo; Dacre, Joshua; Pelko, Miha; Domanski, Aleksander; van Rossum, Mark C W; Duguid, Ian

    2015-05-26

    Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A review of recent wake vortex research for increasing airport capacity

    NASA Astrophysics Data System (ADS)

    Hallock, James N.; Holzäpfel, Frank

    2018-04-01

    This paper is a brief review of recent wake vortex research as it affects the operational problem of spacing aircraft to increase airport capacity and throughput. The paper addresses the questions of what do we know about wake vortices and what don't we know about wake vortices. The introduction of Heavy jets in the late 1960s stimulated the study of wake vortices for safety reasons and the use of pulsed lidars and the maturity of computational fluid dynamics in the last three decades have led to extensive data collection and analyses which are now resulting in the development and implementation of systems to safely decrease separations in the terminal environment. Although much has been learned about wake vortices and their behavior, there is still more to be learned about the phenomena of aircraft wake vortices.

  17. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats.

    PubMed

    Oishi, Masafumi; Kushikata, Tetsuya; Niwa, Hidetomo; Yakoshi, Chihiro; Ogasawara, Chihiro; Calo, Girolamo; Guerrini, Remo; Hirota, Kazuyoshi

    2014-10-03

    Neuropeptide S (NPS) is an endogenous peptide that exerts wakefulness promoting, analgesic, and anxiolytic effects when administered exogenously. However, it remains to be determined if endogenous NPS tone is involved in the control of the diurnal sleep-wake cycle, or spontanous behavior. In this study, we examined the effects of the NPS receptor antagonist [D-Cys((t)Bu)(5)]NPS (2 and 20 nmol, icv) on physiological sleep and spontaneous locomotor behavior. The higher dose of [D-Cys((t)Bu)(5)]NPS decreased the amount of time spent in wakefulness [control 782.5 ± 25.5 min, treatment 751.7 ± 28.1 min; p<0.05] and increased the time spent in NREMS [control 572.6 ± 17.2 min, treatment 600.2 ± 26.1 min; p<0.05]. There was no statistically significant difference in time spent in REMS. There were no behavioral changes including abnormal gross motor behavior in response to [D-Cys((t)Bu)(5)]NPS administration. Collectively these data suggest an involvement of the endogenous NPS/NPS receptor system in physiological sleep architecture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Wind tunnel measurements for dispersion modelling of vehicle wakes

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2012-12-01

    Wind tunnel measurements downwind of reduced scale car models have been made to study the wake regions in detail, test the usefulness of existing vehicle wake models, and draw key information needed for dispersion modelling in vehicle wakes. The experiments simulated a car moving in still air. This is achieved by (i) the experimental characterisation of the flow, turbulence and concentration fields in both the near and far wake regions, (ii) the preliminary assessment of existing wake models using the experimental database, and (iii) the comparison of previous field measurements in the wake of a real diesel car with the wind tunnel measurements. The experiments highlighted very large gradients of velocities and concentrations existing, in particular, in the near-wake. Of course, the measured fields are strongly dependent on the geometry of the modelled vehicle and a generalisation for other vehicles may prove to be difficult. The methodology applied in the present study, although improvable, could constitute a first step towards the development of mathematical parameterisations. Experimental results were also compared with the estimates from two wake models. It was found that they can adequately describe the far-wake of a vehicle in terms of velocities, but a better characterisation in terms of turbulence and pollutant dispersion is needed. Parameterised models able to predict velocity and concentrations with fine enough details at the near-wake scale do not exist.

  19. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less

  20. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  1. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  2. Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Neitzke, Kurt W.

    2012-01-01

    A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.

  3. Ship wakes and their manifestations on the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, Stanislav; Kapustin, Ivan; Kalimulin, Rashid

    2013-04-01

    Spatial/temporal evolution of turbulence generated by surface ships and the effect of the wake on short wind waves has been studied on the Black Sea and on the Gorky Water Reservoir. Measurements of currents in ship wakes were conducted using an Acoustic Doppler Current Profiler deployed from a motor boat. It was obtained that the temporal/spatial evolution of the wake width could be described approximately by a 0.4-power dependence, and the wake depth remained nearly constant at its initial stage. This allowed one to consider the wake widening as a one-dimensional process. We have developed a simple one-dimensional model of ship wake evolution using a semi-empirical theory of turbulence, and the initial stage of the wake widening (when neglecting dissipation) was described by the equation of turbulent energy balance with the pulse initial condition. Mean circulating currents in the wake zone resulting in the wind wave intensification ("suloi" areas) at the boundaries of the wake were detected in experiment. The asymmetry of the "suloi" bands was observed when the wind was blowing nearly perpendicular to the wake axis. It was shown that the later stage of the wake evolution is characterized by the formation of slick bands at the edges of the wake. The slick bands is a result of the transport of surfactants to the water surface by air bubbles in the wake and their compression due to the mean circulating currents. The work was supported by RFBR (projects 12-05-31237, 11-05-00295), the Program RAN Radiophysics, and by the Russian Government (Grants No. 11.G34.31.0048 and 11.G34.31.0078).

  4. Adaptive sleep-wake discrimination for wearable devices.

    PubMed

    Karlen, Walter; Floreano, Dario

    2011-04-01

    Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.

  5. Cylinder wakes in flowing soap films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobieff, P.; Ecke, R.E.; Vorobieff, P.

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society

  6. Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence

    PubMed Central

    Datta, Subimal; MacLean, Robert Ross

    2007-01-01

    At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the Cellular-Molecular-Network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research. PMID:17445891

  7. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  8. Dissipation of Turbulence in the Wake of a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  9. The Impact of Subthalamic Deep Brain Stimulation on Sleep-Wake Behavior: A Prospective Electrophysiological Study in 50 Parkinson Patients.

    PubMed

    Baumann-Vogel, Heide; Imbach, Lukas L; Sürücü, Oguzkan; Stieglitz, Lennart; Waldvogel, Daniel; Baumann, Christian R; Werth, Esther

    2017-05-01

    This prospective observational study was designed to systematically examine the effect of subthalamic deep brain stimulation (DBS) on subjective and objective sleep-wake parameters in Parkinson patients. In 50 consecutive Parkinson patients undergoing subthalamic DBS, we assessed motor symptoms, medication, the position of DBS electrodes within the subthalamic nucleus (STN), subjective sleep-wake parameters, 2-week actigraphy, video-polysomnography studies, and sleep electroencepahalogram frequency and dynamics analyses before and 6 months after surgery. Subthalamic DBS improved not only motor symptoms and reduced daily intake of dopaminergic agents but also enhanced subjective sleep quality and reduced sleepiness (Epworth Sleepiness Scale: -2.1 ± 3.8, p < .001). Actigraphy recordings revealed longer bedtimes (+1:06 ± 0:51 hours, p < .001) without shifting of circadian timing. Upon polysomnography, we observed an increase in sleep efficiency (+5.2 ± 17.6%, p = .005) and deep sleep (+11.2 ± 32.2 min, p = .017) and increased accumulation of slow-wave activity over the night (+41.0 ± 80.0%, p = .005). Rapid eye movement sleep features were refractory to subthalamic DBS, and the dynamics of sleep as assessed by state space analyses did not normalize. Increased sleep efficiency was associated with active electrode contact localization more distant from the ventral margin of the left subthalamic nucleus. Subthalamic DBS deepens and consolidates nocturnal sleep and improves daytime wakefulness in Parkinson patients, but several outcomes suggest that it does not normalize sleep. It remains elusive whether modulated activity in the STN directly contributes to changes in sleep-wake behavior, but dorsal positioning of electrodes within the STN is linked to improved sleep-wake outcomes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Wake vortex effects on parallel runway operations

    DOT National Transportation Integrated Search

    2003-01-06

    Aircraft wake vortex behavior in ground effect between two parallel runways at Frankfurt/Main International Airport was studied. The distance and time of vortex demise were examined as a function of crosswind, aircraft type, and a measure of atmosphe...

  11. Kelvin-Mach Wake in a Two-Dimensional Fermi Sea

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2018-06-01

    The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic approximation interpolates between Ω ∝√{q } and Ω ∝q dependences as the wave vector q increases. As a result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach number M . For 1 wake consists of transverse wave fronts confined within a sector, whose angle is given by the classic Mach condition. An additional wake of a larger angle resembling the Kelvin ship wake, and consisting of both transverse and diverging wave fronts, is found outside the Mach sector for M >√{2 }. These wakes also trail an external charge, traveling supersonically, a fixed distance away from the electron gas.

  12. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks

    PubMed Central

    Vanvinckenroye, Amaury; Vandewalle, Gilles; Chellappa, Sarah L.

    2016-01-01

    Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states. PMID:26885400

  13. Effects of gas interparticle interaction on dissipative wake-mediated forces.

    PubMed

    Kliushnychenko, O V; Lukyanets, S P

    2017-01-01

    We examine how the short-range repulsive interaction in a gas of Brownian particles affects behavior of the nonequilibrium depletion forces between obstacles embedded into the gas flow. It is shown that for an ensemble of small and widely separated obstacles the dissipative wake-mediated interaction belongs to the type of induced dipole-dipole interaction governed by an anisotropic screened Coulomb-like potential. For closely located obstacles, formation of a common density perturbation "coat" around them leads to enhancement of dissipative interaction, manifested by characteristic peaks in its dependence on both the bath fraction and the external driving field. Moreover, additional screening of the gas flow due to nonlinear blockade effect gives rise to generation of a pronounced step-like profile of gas density distribution around the obstacles. This can lead to additional enhancement of dissipative interaction between obstacles. The possibility of the dissipative pairing effect and dissipative interaction switching provoked by wake inversion is briefly discussed. All the results are obtained within the classical lattice-gas model.

  14. Dissipation of turbulence in the wake of a wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J. K.; Bariteau, L.

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  15. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGES

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  16. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  17. Low-Dimensional Model of a Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Luchtenburg, Mark; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom

    2003-11-01

    In a two-dimensional cylinder wake, self-excited oscillations in the form of periodic shedding of vortices are observed above a critical Reynolds number of about 47. These flow-induced non-linear oscillations lead to some undesirable effects associated with unsteady pressures such as fluid-structure interactions. An effective way of suppressing the self-excited flow oscillations is by the incorporation of closed-loop flow control. In this effort, a low dimensional, proper orthogonal decomposition (POD) model is based on data obtained from direct numerical simulations of the Navier Stokes equations for the two dimensional circular cylinder wake at a Reynolds number of 100. Three different conditions are examined, namely, the unforced wake experiencing steady-state vortex shedding, the transient behavior of the unforced wake at the startup of the simulation, and transient response to open-loop harmonic forcing by translation. We discuss POD mode selection and the number of modes that need to be included in the low-dimensional model. It is found that the transient dynamics need to be represented by a coupled system that includes an aperiodic mean-flow mode, an aperiodic shift mode and the periodic von Karman modes. Finally, a least squares mapping method is introduced to develop the non-linear state equations. The predictive capability of the state equations demonstrates the ability of the above approach to model the transient dynamics of the wake.

  18. Approaches to Measuring the Effects of Wake-Promoting Drugs: A Focus on Cognitive Function

    PubMed Central

    Edgar, Christopher J.; Pace-Schott, Edward F.; Wesnes, Keith A.

    2009-01-01

    Objectives In clinical drug development, wakefulness and wake-promotion maybe assessed by a large number of scales and questionnaires. Objective assessment of wakefulness is most commonly made using sleep latency/maintenance of wakefulness tests, polysomnography and/or behavioral measures. The purpose of the present review is to highlight the degree of overlap in the assessment of wakefulness and cognition, with consideration of assessment techniques and the underlying neurobiology of both concepts. Design Reviews of four key areas were conducted: commonly used techniques in the assessment of wakefulness; neurobiology of sleep/wake and cognition; targets of wake promoting and/or cognition enhancing drugs; and ongoing clinical trials investigating wake promoting effects. Results There is clear overlap between the assessment of wakefulness and cognition. There are common techniques which may be used to assess both concepts; aspects of the neurobiology of both concepts may be closely related; and wake promoting drugs may have nootropic properties (and vice-versa). Clinical trials of wake promoting drugs often, though not routinely, assess aspects of cognition. Conclusions Routine and broad assessment of cognition in the development of wake promoting drugs may reveal important nootropic effects, which are not secondary to alertness/wakefulness, whilst existing cognitive enhancers may have under explored or unknown wake promoting properties. PMID:19565524

  19. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  20. Neuroligin-1 links neuronal activity to sleep-wake regulation.

    PubMed

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G; Franken, Paul; Mongrain, Valérie

    2013-06-11

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.

  1. Neuroligin-1 links neuronal activity to sleep-wake regulation

    PubMed Central

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  2. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  3. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    NASA Astrophysics Data System (ADS)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  4. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  5. Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons.

    PubMed

    Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Somach, Rebecca; Xin, Ryan; Veasey, Sigrid

    2016-08-01

    Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence. © 2016 Associated Professional Sleep Societies, LLC.

  6. Oscillations, neural computations and learning during wake and sleep.

    PubMed

    Penagos, Hector; Varela, Carmen; Wilson, Matthew A

    2017-06-01

    Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of noise measured from a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    In this experimental study, the acoustic characteristics of a propeller operating in a wake were studied. The propeller performance and noise were measured from two 0.25 scale propellers operating in an open jet anechoic flow environment with and without a wake. One propeller had NACA 16 series sections; the other, ARA-D. Wake thicknesses of 1 and 3 propeller chords were generated by an airfoil which spanned the full diameter of the propeller. The airfoil wake profiles were measured. Noise measurements were made in and out of the flow. The propellers were operated at 40, 83, and 100 inf of thrust. The acoustic data are analyzed, and the effects on the overall sound pressure level (OASPL) and scaled A weighted sound level L sub A with propeller thrust, wake thickness, and observer location are presented. The analysis showed that, generally, the wake increased the overall noise (OASPL) produced by the propeller; increased the harmonic content of the noise, thus the scaled L sub a; and produced an azimuthal dependence. With few exceptions, both propellers generally produced the same trends in delta OASPL and delta L sub a with thrust and wake thickness.

  8. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  9. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  10. [Regulation of the phases of the sleep-wakefulness cycle with histamine].

    PubMed

    Diez-Garcia, A; Garzon, M

    2017-03-16

    Distributed neural networks in the brain sustain generation of wakefulness and two sleep states: non-REM sleep and REM sleep. These three behavioral states are jointly ingrained in a rhythmic sequence that constitutes the sleep-wakefulness cycle. This paper reviews and updates knowledge about the involvement of the histaminergic system in sleep-wakefulness cycle organization. Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, but are the source of a widespread projection system to many brain regions. Histamine neurons are active during waking, especially with high attention need, and remain silent in both non-REM and REM sleep. There have been described four metabotropic histamine receptors, of which H1R, H2R and H3R are present in the nervous system. H1R and H2R are mainly postsynaptic heteroreceptors, whereas H3R is thought to be mostly a presynaptic auto- and hetero-receptor. Histaminergic neurons are excited by hypocretinergic neurons and most of the arousing hypocretin effects are thought to depend on histaminergic actions. Interactions among histaminergic axons and cholinergic nuclei within forebrain and brainstem are particularly important for cortical activation. In contrast, histaminergic tuberomammillary neurons, similarly to other aminergic neurons in locus coeruleus or dorsal raphe nucleus, are inhibited by non-REM sleep-promoting neurons of the preoptic region. Further inhibitory actions on histamine neurons come from adenosine release on tuberomammillary region. Finally, histaminergic neurons inhibit REM-on hypothalamic neurons containing melanine-concentrating hormone, thus supporting a permissive role of tuberomammillary nucleus in REM sleep. Actually, knockout mice for histidine decarboxylase, the enzyme synthetizing histamine, show a significant REM sleep increase.

  11. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  12. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  13. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starschich, S.; Böttger, U.; Menzel, S.

    The wake-up effect which is observed in ferroelectric hafnium oxide is investigated in yttrium doped hafnium oxide prepared by chemical solution deposition. It can be shown that not the amount of cycles but the duration of the applied electrical field is essential for the wake-up. Temperature dependent wake-up cycling in a range of −160 °C to 100 °C reveals a strong temperature activation of the wake-up, which can be attributed to ion rearrangement during cycling. By using asymmetrical electrodes, resistive valence change mechanism switching can be observed coincident with ferroelectric switching. From the given results, it can be concluded that redistribution ofmore » oxygen vacancies is the origin of the wake-up effect.« less

  14. Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons

    PubMed Central

    Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Somach, Rebecca; Xin, Ryan; Veasey, Sigrid

    2016-01-01

    Study Objectives: Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. Methods: To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. Results: ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. Conclusions: Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence. Citation: Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S. Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. SLEEP 2016;39(8):1601–1611. PMID:27306266

  15. The sleep–wake cycle and Alzheimer’s disease: what do we know?

    PubMed Central

    Lim, Miranda M.; Gerstner, Jason R.; Holtzman, David M.

    2014-01-01

    SUMMARY Sleep–wake disturbances are a highly prevalent and often disabling feature of Alzheimer’s disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep–wake cycle, in that as Aβ accumulates, more sleep–wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep–wake cycle itself may influence Alzheimer’s disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep–wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD. PMID:25405649

  16. Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression

    PubMed Central

    2013-01-01

    Background Clinical psychiatry has always been limited by the lack of objective tests to substantiate diagnoses and a lack of specific treatments that target underlying pathophysiology. One area in which these twin failures has been most frustrating is major depression. Due to very considerable progress in the basic and clinical neurosciences of sleep-wake cycles and underlying circadian systems this situation is now rapidly changing. Discussion The development of specific behavioral or pharmacological strategies that target these basic regulatory systems is driving renewed clinical interest. Here, we explore the extent to which objective tests of sleep-wake cycles and circadian function - namely, those that measure timing or synchrony of circadian-dependent physiology as well as daytime activity and nighttime sleep patterns - can be used to identify a sub-class of patients with major depression who have disturbed circadian profiles. Summary Once this unique pathophysiology is characterized, a highly personalized treatment plan can be proposed and monitored. New treatments will now be designed and old treatments re-evaluated on the basis of their effects on objective measures of sleep-wake cycles, circadian rhythms and related metabolic systems. PMID:23521808

  17. Why does rem sleep occur? A wake-up hypothesis.

    PubMed

    Klemm, W R

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  18. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model

    NASA Technical Reports Server (NTRS)

    Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.

    2016-01-01

    Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.

  19. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    considered here, the wake Reynolds number and the ratio of the turbulent kinetic energy to the square of the wake mean velocity deficit are determined nearly entirely by the total strain. For these measures the order in which the strains are applied does not matter and the changes brought about by the strain are nearly reversible. The wake mean velocity deficit and width, on the other hand, differ by about a factor of three when the total strain returns to one, depending on whether the wake was first "favourably" or "adversely" strained. The strain history is important for predicting the evolution of these quantities.

  20. LDV measurements of B-747 wake vortex characteristics

    DOT National Transportation Integrated Search

    1977-01-01

    In order to determine the behavior of the wake vortices of a B-747 at low : altitudes and to measure the vortex decay process behind the B-747 as a function : of altitude above ground, flap and spoiler settings and different flight configurations; a ...

  1. RNAV (GPS) total system error models for use in wake encounter risk analysis of dependent paired approaches to closely-spaced parallel runways : Project memorandum - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models : for aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed : simultaneous dependent (paired) approach operations to Closel...

  2. Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state

    PubMed Central

    Kelemen, Eduard; Bahrendt, Marie; Born, Jan; Inostroza, Marion

    2014-01-01

    We studied the interaction between glucocorticoid (GC) level and sleep/wake state during memory consolidation. Recent research has accumulated evidence that sleep supports memory consolidation in a unique physiological process, qualitatively distinct from consolidation occurring during wakefulness. This appears particularly true for memories that rely on the hippocampus, a region with abundant expression of GC receptors. Against this backdrop we hypothesized that GC effects on consolidation depend on the brain state, i.e., sleep and wakefulness. Following exploration of two objects in an open field, during 80 min retention periods rats received an intrahippocampal infusion of corticosterone (10 ng) or vehicle while asleep or awake. Then the memory was tested in the hippocampus-dependent object-place recognition paradigm. GCs impaired memory consolidation when administered during sleep but improved consolidation during the wake retention interval. Intrahippocampal infusion of GC or sleep/wake manipulations did not alter novel-object recognition performance that does not require the hippocampus. This work corroborates the notion of distinct consolidation processes occurring in sleep and wakefulnesss, and identifies GCs as a key player controlling distinct hippocampal memory consolidation processes in sleep and wake conditions. © 2014 Wiley Periodicals, Inc. PMID:24596244

  3. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    NASA Astrophysics Data System (ADS)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  4. Analysis of WakeVAS Benefits Using ACES Build 3.2.1

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.

    2005-01-01

    The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. This report contains an analysis that evaluates the benefits of a closely spaced parallel runway (CSPR) Phase I ConOps, a single runway and CSPR Phase II ConOps and a single runway Phase III ConOps. A series of simulation runs were performed using the Airspace Concepts Evaluation System (ACES) Build 3.21 air traffic simulator to provide an initial assessment of the reduction in delay and cost savings obtained by the use of a WakeVAS at selected U.S. airports. The ACES simulator is being developed by NASA Ames Research Center as part of the Virtual Airspace Modelling and Simulation (VAMS) program.

  5. Maternal Depressive Symptoms, Dysfunctional Cognitions, and Infant Night Waking: The Role of Maternal Nighttime Behavior

    ERIC Educational Resources Information Center

    Teti, Douglas M.; Crosby, Brian

    2012-01-01

    Mechanisms were examined to clarify relations between maternal depressive symptoms, dysfunctional cognitions, and infant night waking among 45 infants (1-24 months) and their mothers. A mother-driven mediational model was tested in which maternal depressive symptoms and dysfunctional cognitions about infant sleep predicted infant night waking via…

  6. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine.

    PubMed

    Silva, Paulo A S F; Oliveira, Taygoara F DE; Brasil, Antonio C P; Vaz, Jerson R P

    2016-01-01

    Over the years most studies on wake characteristics have been devoted to wind turbines, while few works are related to hydrokinetic turbines. Among studies applied to rivers, depth and width are important parameters for a suitable design. In this work, a numerical study of the wake in a horizontal-axis hydrokinetic turbine is performed, where the main objective is an investigation on the wake structure, which can be a constraining factor in rivers. The present paper uses the Reynolds Averaged Navier Stokes (RANS) flow simulation technique, in which the Shear-Stress Transport (SST) turbulent model is considered, in order to simulate a free hydrokinetic runner in a typical river flow. The NREL-PHASE VI wind turbine was used to validate the numerical approach. Simulations for a 3-bladed axial hydrokinetic turbine with 10 m diameter were carried out, depicting the expanded helical behavior of the wake. The axial velocity, in this case, is fully recovered at 12 diameters downstream in the wake. The results are compared with others available in the literature and also a study of the turbulence kinetic energy and mean axial velocity is presented so as to assess the influence of proximity of river surface from rotor in the wake geometry. Hence, even for a single turbine facility it is still necessary to consider the propagation of the wake over the spatial domain.

  7. Turbulence Climatology at Dallas/Ft.Worth (DFW) Airport: Implications for a Departure Wake Vortex Spacing System

    NASA Technical Reports Server (NTRS)

    Perras, G. H.; Dasey, T. J.

    2000-01-01

    Potential adaptive wake vortex spacing systems may need to rely on wake vortex decay rather than wake vortex transport in reducing wake separations. A wake vortex takeoff-spacing system in particular will need to rely on wake decay. Ambient turbulence is the primary influence on wake decay away from the ground. This study evaluated 18 months of ambient turbulence measurements at Dallas/Ft. Worth (DFW) Airport. The measurements show minor variation in the turbulence levels at various times of the year or times of the day for time periods when a departure system could be used. Arrival system operation was also examined, and a slightly lower overall turbulence level was found as compared to departure system benefit periods. The Sarpkaya model, a validated model of wake vortex behavior, was applied to various turbulence levels and compared to the DFW turbulence statistics. The results show that wake vortices from heavy aircraft on takeoff should dissipate within one minute for the majority of the time and will rarely last two minutes. These results will need to be verified by wake vortex measurements on departure.

  8. A vortex wake capturing method for potential flow calculations

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Stremel, P. M.

    1982-01-01

    A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.

  9. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near-wake

  10. Wind effects on the lateral motion of wake vortices

    DOT National Transportation Integrated Search

    1999-11-01

    This report examines the influence of crosswind and other factors on the behavior of wake vortices between parallel runways. The measurements used in the analysis came from landing (1976-77) and takeoff (1980) operations at O'Hare International Airpo...

  11. Structure Function Scaling Exponent and Intermittency in the Wake of a Wind Turbine Array

    NASA Astrophysics Data System (ADS)

    Aseyev, Aleksandr; Ali, Naseem; Cal, Raul

    2015-11-01

    Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze high order structure functions, intermittency effects as well as the probability density functions of velocity increments at different scales within the energy cascade. The intermittency exponent is found to be greater in the far wake region in comparison to the near wake. At hub height, the intermittency exponent is found to be null. ESS scaling exponents of the second, fourth, and fifth order structure functions remain relatively constant as a function of height in the far-wake whereas in the near-wake these highly affected by the passage of the rotor thus showing a dependence on physical location. When comparing with proposed models, these generally over predict the structure functions in the far wake region. The pdf distributions in the far wake region display wider tails compared to the near wake region, and constant skewness hypothesis based on the local isotropy is verified in the wake. CBET-1034581.

  12. Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat.

    PubMed

    Shaw, Fu-Zen; Lee, Su-Ying; Chiu, Ted H

    2006-03-01

    To clarify the cortical evoked responses in the primary somatosensory cortex of the rat under states of waking, slow-wave sleep (SWS), paradoxical sleep (PS), and spike-wave discharges (SWDs), which are associated with absence seizure. Somatosensory evoked potentials (SEPs) in response to single- and paired-pulse stimulations under waking, SWS, PS, and SWDs were compared. SEPs to a single-pulse stimulus with regard to cortical spikes of sleep spindles and SWDs were also evaluated. Twenty Long Evans rats. Single- and paired-pulse innocuous electrical stimulations were applied to the tail of rats with chronically implanted electrodes in the primary somatosensory cortex and neck muscle under waking, SWS, PS, and SWDs. SEPs displayed distinct patterns under waking/PS and SWS/SWDs. The short-latency P1-N1 wave of the SEP was severely impeded during SWDs but not in other states. Reduction of the P1-N1 magnitude to the second stimulus of the paired-pulse stimulus for interstimulus intervals of < or = 300 milliseconds appeared in waking and PS states, but the decrease occurred only at particular interstimulus intervals under SWS. Interestingly, augmentation was found under SWDs. Moreover, cyclic augmentation of the P1-N1 magnitude was associated with spindle spikes, but cyclic reduction was observed with SWD spikes. Changes in SEPs are not only behavior dependent, but also phase locked onto ongoing brain activity. Distinct short-term plasticity of SEPs during sleep spindles or SWDs may merit further studies for seizure control and tactile information processing.

  13. Development of Predictive Wake Vortex Transport Model for Terminal Area Wake Vortex Avoidance

    DOT National Transportation Integrated Search

    1976-05-01

    The wake vortex transport program has been expanded to include viscous effects and the influence of initial roll-up, atmospheric turbulence, and wind shear on the persistence and motion of wake vortices in terminal areas. Analysis of wake characteris...

  14. A simple and complete model for wind turbine wakes over complex terrain

    NASA Astrophysics Data System (ADS)

    Rommelfanger, Nick; Rajborirug, Mai; Luzzatto-Fegiz, Paolo

    2017-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. These models typically prescribe empirical relations for how the wake radius grows with downstream distance x and obtain the wake velocity at each x through the application of either mass conservation, or of both mass and momentum conservation (e.g. Katić et al. 1986; Frandsen et al. 2006; Bastankhah & Porté-Agel 2014). Since these models assume a global behavior of the wake (for example, linear spreading with x) they cannot respond to local changes in background flow, as may occur over complex terrain. Instead of assuming a global wake shape, we develop a model by relying on a local assumption for the growth of the turbulent interface. To this end, we introduce to wind turbine wakes the use of the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. We obtain two coupled ordinary differential equations for mass and momentum conservation, which can be readily solved with a prescribed background pressure gradient. Our model is in good agreement with published data for the development of wakes over complex terrain.

  15. Respiratory-related activity in hypoglossal neurons across sleep-waking states in cats.

    PubMed

    Richard, C A; Harper, R M

    1991-02-22

    Activity of behaviorally identified neurons in the hypoglossal nuclei supplying the genioglossal muscles was assessed in intact, unanesthetized cats across sleep-wake states. Nineteen of 37 recorded cells discharged on a breath-by-breath or tonic basis with the respiratory cycle in at least one state. Most respiratory-related cells discharged more slowly during quiet sleep, whereas rates during rapid eye movement sleep were similar to those of waking.

  16. Connectivity of Sleep- and Wake-Promoting Regions of the Human Hypothalamus During Resting Wakefulness.

    PubMed

    Boes, Aaron D; Fischer, David; Geerling, Joel C; Bruss, Joel; Saper, Clifford B; Fox, Michael D

    2018-05-29

    The hypothalamus is a central hub for regulating sleep-wake patterns, the circuitry of which has been investigated extensively in experimental animals. This work has identified a wake-promoting region in the posterior hypothalamus, with connections to other wake-promoting regions, and a sleep-promoting region in the anterior hypothalamus, with inhibitory projections to the posterior hypothalamus. It is unclear whether a similar organization exists in humans. Here, we use anatomical landmarks to identify homologous sleep and wake-promoting regions of the human hypothalamus and investigate their functional relationships using resting-state functional connectivity MRI in healthy awake participants. First, we identify a negative correlation (anticorrelation) between the anterior and posterior hypothalamus, two regions with opposing roles in sleep-wake regulation. Next, we show that hypothalamic connectivity predicts a pattern of regional sleep-wake changes previously observed in humans. Specifically, regions that are more positively correlated with the posterior hypothalamus and more negatively correlated with the anterior hypothalamus correspond to regions with the greatest change in cerebral blood flow between sleep-wake states. Taken together, these findings provide preliminary evidence relating a hypothalamic circuit investigated in animals to sleep-wake neuroimaging results in humans, with implications for our understanding of human sleep-wake regulation and the functional significance of anticorrelations.

  17. Aircraft Wake Vortex Takeoff Tests at Toronto International Airport

    DOT National Transportation Integrated Search

    1979-02-01

    This report describes the collection and analysis of data related to the behavior of the wake vortices of departing aircraft. The test site was located on the departure end of Runway 23L at Toronto International Airport, Toronto, Ontario, Canada. Thr...

  18. Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.

    2016-12-01

    Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth

  19. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    PubMed

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  20. Reynolds Stress Balance in Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Miichael M.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of various irrotational plane strains have been generated. A pseudospectral numerical method with up to 25 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, R(sub e), of about 2,000. All the terms in the equations governing the evolution of the Reynolds stresses have been calculated. The relative importance of the various terms is examined for the different strain geometries and the behavior of the individual terms is used to better assess whether the strained wakes are evolving self-similarly.

  1. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep.

    PubMed

    Schmidt, Markus H; Swang, Theodore W; Hamilton, Ian M; Best, Janet A

    2017-01-01

    Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an

  2. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  3. Computation of wake/exhaust mixing downstream of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Teske, Milton E.; Bilanin, Alan J.

    1993-01-01

    The mixing of engine exhaust with the vortical wake of high speed aircraft operating in the stratosphere can play an important role in the formation of chemical products that deplete atmospheric ozone. An accurate analysis of this type of interaction is therefore necessary as a part of the assessment of the impact of proposed High Speed Civil Transport (HSCT) designs on atmospheric chemistry. This paper describes modifications to the parabolic Navier-Stokes flow field analysis in the UNIWAKE unified aircraft wake model to accommodate the computation of wake/exhaust mixing and the simulation of reacting flow. The present implementation uses a passive chemistry model in which the reacting species are convected and diffused by the fluid dynamic solution but in which the evolution of the species does not affect the flow field. The resulting analysis, UNIWAKE/PCHEM (Passive CHEMistry) has been applied to the analysis of wake/exhaust flows downstream of representative HSCT configurations. The major elements of the flow field model are described, as are the results of sample calculations illustrating the behavior of the thermal exhaust plume and the production of species important to the modeling of condensation in the wake. Appropriate steps for further development of the UNIWAKE/PCHEM model are also outlined.

  4. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality. Copyright © 2017, American Association for the Advancement of Science.

  5. Wake Vortex Research in the USA (WakeNet-USA)

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Bryant, Wayne

    2006-01-01

    This viewgraph presentation reviews the cooperative work that FAA and NASA are engaged in to safely increase the capacity of the National Airspace System by studying the wake vortex operations. Wake vortex avoidance is a limiting factor in defining separation standards in the airport terminal area and could become a reducing separation standards in en route airspace.

  6. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  7. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness.

    PubMed

    Vanini, Giancarlo; Baghdoyan, Helen A

    2013-03-01

    Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Within/between subjects. University of Michigan. Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.

  8. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  9. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance for hover and helicopter mode operation, and airloads for helicopter mode. Calculated induced power, profile power, and wake geometry provide additional information about the aerodynamic behavior. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  10. A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia

    PubMed Central

    Friedman, Eliot B.; Sun, Yi; Moore, Jason T.; Hung, Hsiao-Tung; Meng, Qing Cheng; Perera, Priyan; Joiner, William J.; Thomas, Steven A.; Eckenhoff, Roderic G.; Sehgal, Amita; Kelz, Max B.

    2010-01-01

    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states. PMID:20689589

  11. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  12. Aircraft wake RCS measurement

    NASA Astrophysics Data System (ADS)

    Gilson, William H.

    1994-07-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  13. Transitions in the vortex wake behind the plunging profile

    NASA Astrophysics Data System (ADS)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

  14. Island wake produced by Antipodes Islands south of New Zealand

    NASA Image and Video Library

    1973-12-16

    SL4-137-3655 (16 Dec. 1973) --- An island wake produced by the Antipodes Islands in the ocean current south of New Zealand is seen in this photograph taken from the Skylab space station in Earth orbit. A Skylab 4 crewmen took the picture with a hand-held 70mm Hasselblad camera. The bow wave pattern is quite evident and can be used to determine the current speed from the angle of the bow wave if the propagation speed of the surface wave is known. Also, evident is the darker band extending downstream from the island tens of miles. This is the actual wake of the island. The existence of water color differences from within to outside a turbulent island wake may indicate a temperature difference, with cooler water being stirred to the surface in the wake. This temperature difference could be used to drive a thermo-electric type generator to reduce small islands' dependence on imported oil for power generation. Photo credit: NASA

  15. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  16. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    PubMed Central

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  17. A wind-tunnel investigation of wind-turbine wakes in yawed conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-06-01

    Wind-tunnel experiments were performed to study the performance of a model wind turbine and its wake characteristics in a boundary layer under different operating conditions, including different yaw angles and tip speed ratios. High-resolution particle image- velocimetry (PIV) was used to measure the three velocity components in a horizontal plane at hub height covering a broad streamwise range from upstream of the turbine to the far- wake region. Additionally, thrust and power coefficients of the turbine were measured under different conditions. These power and thrust measurements, together with the highly-resolved flow measurements, enabled us to systematically study different wake properties. The near-wake region is found to have a highly complex structure influenced by different factors such as tip speed ratio and wake rotation. In particular, for higher tip speed ratios, a noticeable speed-up region is observed in the central part of near wake, which greatly affects the flow distribution in this region. In this regard, the behavior of the near wake for turbines with similar thrust coefficients but different tip speed ratios can vary widely. In contrast, it is shown that the mean streamwise velocity in the far wake of the turbine with zero yaw angle has a self-similar Gaussian distribution, and the strength of wake in this region is consistent with the magnitude of the thrust coefficient. With increasing yaw angle, as expected, the power and thrust coefficients decrease, and the wake deflection increases. The measurements also reveal that, in addition to turbulent momentum flux, lateral mean momentum flux boosts the flow entrainment in only one side of the wake, which results in a faster wake recovery in that side. It is also found that the induced velocity upstream of a yawed turbine has a non-symmetric distribution, and its distribution is in agreement with the available model in the literature. Moreover, the results suggest that in order to accurately

  18. Analysis of Wake VAS Benefits Using ACES Build 3.2.1: VAMS Type 1 Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.

    2005-01-01

    The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. The Phase III Wake VAS ConOps is one element of the Virtual Airspace Modelling and Simulation (VAMS) program blended concepts for enhancing the total system wide capacity of the National Airspace System (NAS). This report contains a VAMS Program Type 1 (stand-alone) assessment of the expected capacity benefits of Wake VAS at the 35 FAA Benchmark Airports and determines the consequent reduction in delay using the Airspace Concepts Evaluation System (ACES) Build 3.2.1 simulator.

  19. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  20. Sleep-Wake Concordance in Couples Is Inversely Associated With Cardiovascular Disease Risk Markers.

    PubMed

    Gunn, Heather E; Buysse, Daniel J; Matthews, Karen A; Kline, Christopher E; Cribbet, Matthew R; Troxel, Wendy M

    2017-01-01

    To determine whether interdependence in couples' sleep (sleep-wake concordance i.e., whether couples are awake or asleep at the same time throughout the night) is associated with two markers of cardiovascular disease (CVD) risk, ambulatory blood pressure (BP) and systemic inflammation. This community-based study is a cross-sectional analysis of 46 adult couples, aged 18-45 years, without known sleep disorders. Percent sleep-wake concordance, the independent variable, was calculated for each individual using actigraphy. Ambulatory BP monitors measured BP across 48 h. Dependent variables included mean sleep systolic BP (SBP) and diastolic BP (DBP), mean wake SBP and DBP, sleep-wake SBP and DBP ratios, and C-reactive protein (CRP). Mixed models were used and were adjusted for age, sex, education, race, and body mass index. Higher sleep-wake concordance was associated with lower sleep SBP (b = -.35, SE = .01) and DBP (b = -.22, SE = .10) and lower wake SBP (b = -.26, SE = .12; all p values < .05). Results were moderated by sex; for women, high concordance was associated with lower BP. Men and women with higher sleep-wake concordance also had lower CRP values (b = -.15, SE = .03, p < .05). Sleep-wake concordance was not associated with wake DBP or sleep/wake BP ratios. Significant findings remained after controlling for individual sleep quality, duration, and wake after sleep onset. Sleep-wake concordance was associated with sleep BP, and this association was stronger for women. Higher sleep-wake concordance was associated with lower systemic inflammation for men and women. Sleep-wake concordance may be a novel mechanism by which marital relationships are associated with long-term CVD outcomes. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. Statistical analysis and modeling of the temperature-dependent sleep behavior of drosophila

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Lin, Hsuan-Wen; Chiang, Ann-Shyn

    2011-01-01

    The sleep behavior of drosophila is analyzed under different temperatures. The activity per minute of the flies is recorded automatically. Sleep for a fruit fly is defined as the periods without any activity and longer than 5 minutes. Several parameters such as total sleep time, circadian sleep profile, quality of sleep are analyzed. The sleep behaviors are significantly different for flies at different temperature. Interestingly, the durations of daytime sleep periods show a common scale-free power law distribution. We propose a stochastic model to simulate the activities of the population of neurons which regulate the dynamics of sleep-wake process to explain the distribution of daytime sleep.

  2. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  3. Independent Circadian and Sleep/Wake Regulation of Adipokines and Glucose in Humans

    PubMed Central

    Shea, Steven A.; Hilton, Michael F.; Orlova, Christine; Ayers, R. Timothy; Mantzoros, Christos S.

    2010-01-01

    Leptin and adiponectin play important physiological roles in regulating appetite, food intake, and energy balance and have pathophysiological roles in obesity and anorexia nervosa. To assess the relative contributions of day/night patterns in behaviors (sleep/wake cycle and food intake) and of the endogenous circadian pacemaker on observed day/night patterns of adipokines, in six healthy subjects we measured circulating leptin, soluble leptin receptor, adiponectin, glucose, and insulin levels throughout a constant routine protocol (38 h of wakefulness with constant posture, temperature, and dim light, as well as identical snacks every 2 h) and throughout sleep and fasting periods before and after the constant routine. There were significant endogenous circadian rhythms in leptin, glucose, and insulin, with peaks around the usual time of awakening. Sleep/fasting resulted in additional systematic decreases in leptin, glucose, and insulin, whereas wakefulness/food intake resulted in a systematic increase in leptin. Thus, the day/night pattern in leptin is likely caused by combined effects from the endogenous circadian pacemaker and day/night patterns in behaviors. Our data imply that alterations in the sleep/wake schedule would lead to an increased daily range in circulating leptin, with lowest leptin upon awakening, which, by influencing food intake and energy balance, could be implicated in the increased prevalence of obesity in the shift work population. PMID:15687326

  4. Extrasynaptic GABAA Receptors in Rat Pontine Reticular Formation Increase Wakefulness

    PubMed Central

    Vanini, Giancarlo; Baghdoyan, Helen A.

    2013-01-01

    Study Objectives: Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Design: Within/between subjects. Setting: University of Michigan. Patients or Participants: Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Interventions: Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Measurements and Results: Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Conclusion: Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Citation: Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343. PMID:23450652

  5. Numerical and Experimental Study of Wake Redirection Techniques in a Boundary Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Wang, J.; Foley, S.; Nanos, E. M.; Yu, T.; Campagnolo, F.; Bottasso, C. L.; Zanotti, A.; Croce, A.

    2017-05-01

    The aim of the present paper is to validate a wind farm LES framework in the context of two distinct wake redirection techniques: yaw misalignment and individual cyclic pitch control. A test campaign was conducted using scaled wind turbine models in a boundary layer wind tunnel, where both particle image velocimetry and hot-wire thermo anemometers were used to obtain high quality measurements of the downstream flow. A LiDAR system was also employed to determine the non-uniformity of the inflow velocity field. A high-fidelity large-eddy simulation lifting-line model was used to simulate the aerodynamic behavior of the system, including the geometry of the wind turbine nacelle and tower. A tuning-free Lagrangian scale-dependent dynamic approach was adopted to improve the sub-grid scale modeling. Comparisons with experimental measurements are used to systematically validate the simulations. The LES results are in good agreement with the PIV and hot-wire data in terms of time-averaged wake profiles, turbulence intensity and Reynolds shear stresses. Discrepancies are also highlighted, to guide future improvements.

  6. Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography.

    PubMed

    Bastianini, Stefano; Alvente, Sara; Berteotti, Chiara; Lo Martire, Viviana; Silvani, Alessandro; Swoap, Steven J; Valli, Alice; Zoccoli, Giovanna; Cohen, Gary

    2017-01-31

    A major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be discriminated from breathing and body movements registered by the WBP signal alone. Our goal was to compare the EEG/EMG-based and the WBP-based scoring of wake-sleep states of mice, and provide formal guidelines for the latter. EEG, EMG, blood pressure and WBP signals were simultaneously recorded from 20 mice. Wake-sleep states were scored based either on EEG/EMG or on WBP signals and sleep-dependent respiratory and cardiovascular estimates were calculated. We found that the overall agreement between the 2 methods was 90%, with a high Cohen's Kappa index (0.82). The inter-rater agreement between 2 experts and between 1 expert and 1 naïve sleep investigators gave similar results. Sleep-dependent respiratory and cardiovascular estimates did not depend on the scoring method. We show that non-invasive discrimination of the wake-sleep states of mice based on visual inspection of the WBP signal is accurate, reliable and reproducible. This work may set the stage for non-invasive high-throughput experiments evaluating sleep and breathing patterns on mouse models of pathophysiology.

  7. Wind Turbine Wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee; Maniaci, David Charles; Resor, Brian R.

    2015-10-01

    The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Windmore » Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.« less

  8. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  9. Influence of flaps and engines on aircraft wake vortices

    DOT National Transportation Integrated Search

    1974-09-01

    Although pervious investigations have shown that the nature of aircraft wake vortices depends on the aircraft type and flap configuration, the causes for these differences have not been clearly identified. In this Note we show that observed differenc...

  10. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Tatnall, Chris R.

    1997-01-01

    A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

  11. Laser Doppler Velocimeter Measurements of B-747 Wake Vortex Characteristics

    DOT National Transportation Integrated Search

    1977-09-01

    To determine the behavior of the wake vortices of a B-747 at low altitudes and to measure the vortex-decay process behind the B-747 as a function of altitude above ground, flap and spoiler settings, and different flight configurations, a B-747 aircra...

  12. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  13. Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2012-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a rigid V22 rotor in hover, and a flexible UH-60A rotor in forward flight. Emphasis is placed on understanding and characterizing the effects of high-order spatial differencing, grid resolution, and Spalart-Allmaras (SA) detached eddy simulation (DES) in predicting the rotor figure of merit (FM) and resolving the turbulent rotor wake. The FM was accurately predicted within experimental error using SA-DES. Moreover, a new adaptive mesh refinement (AMR) procedure revealed a complex and more realistic turbulent rotor wake, including the formation of turbulent structures resembling vortical worms. Time-dependent flow visualization played a crucial role in understanding the physical mechanisms involved in these complex viscous flows. The predicted vortex core growth with wake age was in good agreement with experiment. High-resolution wakes for the UH-60A in forward flight exhibited complex turbulent interactions and turbulent worms, similar to the V22. The normal force and pitching moment coefficients were in good agreement with flight-test data.

  14. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness.

    PubMed

    Brevig, Holly N; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2010-10-01

    Hypocretin-1/orexin A administered directly into the oral part of rat pontine reticular formation (PnO) causes an increase in wakefulness and extracellular gamma-aminobutyric acid (GABA) levels. The receptors in the PnO that mediate these effects have not been identified. Therefore, this study tested the hypothesis that the increase in wakefulness caused by administration of hypocretin-1 into the PnO occurs via activation of GABAA receptors and hypocretin receptors. Within/between subjects. University of Michigan. Twenty-three adult male Crl:CD*(SD) (Sprague Dawley) rats. Microinjection of hypocretin-1, bicuculline (GABAA receptor antagonist), SB-334867 (hypocretin receptor-1 antagonist), and Ringer solution (vehicle control) into the PnO. Hypocretin-1 caused a significant concentration-dependent increase in wakefulness and decrease in rapid eye movement (REM) sleep and non-REM (NREM) sleep. Coadministration of SB-334867 and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in both the NREM and REM phases of sleep. Coadministration of bicuculline and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in NREM sleep caused by hypocretin-1. The increase in wakefulness caused by administering hypocretin-1 to the PnO is mediated by hypocretin receptors and GABAA receptors in the PnO. These results show for the first time that hypocretinergic and GABAergic transmission in the PnO can interact to promote wakefulness.

  15. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat.

    PubMed

    Stephenson, Richard; Caron, Aimee M; Famina, Svetlana

    2016-12-01

    Sleep-wake behavior exhibits diurnal rhythmicity, rebound responses to acute total sleep deprivation (TSD), and attenuated rebounds following chronic sleep restriction (CSR). We investigated how these long-term patterns of behavior emerge from stochastic short-term dynamics of state transition. Male Sprague-Dawley rats were subjected to TSD (1day×24h, N=9), or CSR (10days×18h TSD, N=7) using a rodent walking-wheel apparatus. One baseline day and one recovery day following TSD and CSR were analyzed. The implications of the zero sum principle were evaluated using a Markov model of sleep-wake state transition. Wake bout duration (a combined function of the probability of wake maintenance and proportional representations of brief and long wake) was a key variable mediating the baseline diurnal rhythms and post-TSD responses of all three states, and the attenuation of the post-CSR rebounds. Post-NREM state transition trajectory was an important factor in REM rebounds. The zero sum constraint ensures that a change in any transition probability always affects bout frequency and cumulative time of at least two, and usually all three, of wakefulness, NREM and REM. Neural mechanisms controlling wake maintenance may play a pivotal role in regulation and dysregulation of all three states. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Wake losses from averaged and time-resolved power measurements at full scale wind turbines

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Mana, Matteo; Becchetti, Matteo; Segalini, Antonio

    2017-05-01

    This work deals with the experimental analysis of wake losses fluctuations at full-scale wind turbines. The test case is a wind farm sited on a moderately complex terrain: 4 turbines are installed, having 2 MW of rated power each. The sources of information are the time-resolved data, as collected from the OPC server, and the 10-minutes averaged SCADA data. The objective is to compare the statistical distributions of wake losses for far and middle wakes, as can be observed through the “fast” lens of time-resolved data, for certain selected test-case time series, and through the “slow” lens of SCADA data, on a much longer time basis that allow to set the standards of the mean wake losses along the wind farm. Further, time-resolved data are used for an insight into the spectral properties of wake fluctuations, highlighting the role of the wind turbine as low-pass filter. Summarizing, the wind rose, the layout of the site and the structure of the data sets at disposal allow to study middle and far wake behavior, with a “slow” and “fast” perspective.

  17. Transverse Mode Coupling Instability of the Bunch with Oscillating Wake Field and Space Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a single bunch caused by oscillating wake field is considered in the paper. The instability threshold is found at different frequencies of the wake with space charge tune shift taken into account. The wake phase advance in the bunch length from 0 up tomore » $$4\\pi$$ is investigated. It is shown that the space charge can push the instability threshold up or down dependent on the phase advance. Transition region is investigated thoroughly, and simple asymptotic formulas for the threshold are represented.« less

  18. Wake-Induced Aerodynamics on a Trailing Aircraft

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Kelly, Michael J.

    2016-01-01

    NASA conducted flight tests to measure the exhaust products from alternative fuels using a DC-8 transport aircraft and a Falcon business jet. An independent analysis of the maximum vortex-induced loads on the Falcon in the DC-8 wake was conducted for pre-flight safety analysis and to define safe trail distances for the flight tests. Static and dynamic vortex-induced aerodynamic loads on the Falcon were predicted at a matrix of locations aft of the DC-8 under flight-test conditions, and the maximum loads were compared with design limit loads to assess aircraft safety. Trajectory simulations for the Falcon during close encounters with the DC-8 wake were made to study the vortex-induced loads during traverses of the DC-8 primary trailing vortex. A parametric study of flight traverses through the trailing vortex was conducted to assess Falcon flight behavior and motion characteristics.

  19. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  20. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  1. Appraisal of ALM predictions of turbulent wake features

    NASA Astrophysics Data System (ADS)

    Rocchio, Benedetto; Cilurzo, Lorenzo; Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano

    2017-11-01

    Wind turbine blades create a turbulent wake that may persist far downstream, with significant implications on wind farm design and on its power production. The numerical representation of the real blade geometry would lead to simulations beyond the present computational resources. We focus our attention on the Actuator Line Model (ALM), in which the blade is replaced by a rotating line divided into finite segments with representative aerodynamic coefficients. The total aerodynamic force is projected along the computational axis and, to avoid numerical instabilities, it is distributed among the nearest grid points by using a Gaussian regularization kernel. The standard deviation of this kernel is a fundamental parameter that strongly affects the characteristics of the wake. We compare here the wake features obtained in direct numerical simulations of the flow around 2D bodies (a flat plate and an airfoil) modeled using the Immersed Boundary Method with the results of simulations in which the body is modeled by ALM. In particular, we investigate whether the ALM is able to reproduce the mean velocity field and the turbulent kinetic energy in the wake for the considered bodies at low and high angles of attack and how this depends on the choice of the ALM kernel. S. Leonardi was supported by the National Science Foundation, Grant No. 1243482 (the WINDINSPIRE project).

  2. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    PubMed

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Dynamic wake prediction and visualization with uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)

    2005-01-01

    A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.

  4. Monoamine Release during Unihemispheric Sleep and Unihemispheric Waking in the Fur Seal

    PubMed Central

    Lyamin, Oleg I.; Lapierre, Jennifer L.; Kosenko, Peter O.; Kodama, Tohru; Bhagwandin, Adhil; Korneva, Svetlana M.; Peever, John H.; Mukhametov, Lev M.; Siegel, Jerome M.

    2016-01-01

    Study Objectives: Our understanding of the role of neurotransmitters in the control of the electroencephalogram (EEG) has been entirely based on studies of animals with bilateral sleep. The study of animals with unihemispheric sleep presents the opportunity of separating the neurochemical substrates of waking and sleep EEG from the systemic, bilateral correlates of sleep and waking states. Methods: The release of histamine (HI), norepinephrine (NE), and serotonin (5HT) in cortical and subcortical areas (hypothalamus, thalamus and caudate nucleus) was measured in unrestrained northern fur seals (Callorhinus ursinus) using in vivo microdialysis, in combination with, polygraphic recording of EEG, electrooculogram, and neck electromyogram. Results: The pattern of cortical and subcortical HI, NE, and 5HT release in fur seals is similar during bilaterally symmetrical states: highest in active waking, reduced in quiet waking and bilateral slow wave sleep, and lowest in rapid eye movement (REM) sleep. Cortical and subcortical HI, NE, and 5HT release in seals is highly elevated during certain waking stimuli and behaviors, such as being sprayed with water and feeding. However, in contrast to acetylcholine (ACh), which we have previously studied, the release of HI, NE, and 5HT during unihemispheric sleep is not lateralized in the fur seal. Conclusions: Among the studied neurotransmitters most strongly implicated in waking control, only ACh release is asymmetric in unihemispheric sleep and waking, being greatly increased on the activated side of the brain. Commentary: A commentary on this article appears in this issue on page 491. Citation: Lyamin OI, Lapierre JL, Kosenko PO, Kodama T, Bhagwandin A, Korneva SM, Peever JH, Mukhametov LM, Siegel JM. Monoamine release during unihemispheric sleep and unihemispheric waking in the fur seal. SLEEP 2016;39(3):625–636. PMID:26715233

  5. Wake Turbulence Training Aid.

    DOT National Transportation Integrated Search

    1995-04-01

    The goal of the Wake Turbulence Training Aid is to reduce the number of wake-turbulence related accidents and incidents by improving the pilot's and air traffic controller's decision making and situational awareness through increased and shared under...

  6. Neural Circuitry of Wakefulness and Sleep.

    PubMed

    Scammell, Thomas E; Arrigoni, Elda; Lipton, Jonathan O

    2017-02-22

    Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

    1999-01-01

    NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

  8. Cosmic string wakes and large-scale structure

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.

    1988-01-01

    The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.

  9. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  10. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  11. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  12. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  13. Objective Investigation of the Sleep-Wake Cycle in Adults with Intellectual Disabilities and Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Hare, D. J.; Jones, S.; Evershed, K.

    2006-01-01

    Background: Disturbances in circadian rhythm functioning, as manifest in abnormal sleep-wake cycles, have been postulated to be present in people with autistic spectrum disorders (ASDs). To date, research into the sleep-wake cycle in people with ASDs has been primarily dependant on third-party data collection. Method: The utilization of…

  14. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  15. Characteristics of Low-Frequency Waves at the Lunar Wake Boundary

    NASA Astrophysics Data System (ADS)

    Leisner, J. S.; Glassmeier, K.; Constantinescu, D. O.; Halekas, J. S.; Fornacon, K.

    2013-12-01

    The Moon has generally been considered to be a simple absorbing body that does not have a complex interaction with the solar wind. Recent studies using Kaguya and Chandrayaan, however, how demonstrated that this is not the case. The ARTEMIS spacecraft (formerly THEMIS-B and -C) entered lunar orbit in July 2011 and now provide an opportunity to make robust, long-term observations of this plasma interaction. During a November 2012 wake crossing, when the IMF was steady and nearly radial, Halekas et al. [2013] documented a previously unseen feature of the Moon environment. As ARTEMIS P2 approached the wake, it observed low-amplitude fast magnetonic waves that were convected from upstream; inside the rarefaction region, the compressional strength of these waves intensified; and through the wake boundary, the waves changed from correlated to anti-correlated density and field fluctuations. Halekas et al. explained this structure as the superposition of the magnetosonic waves and lateral wake motion driven by the same. In this study, we use wake observations through the ARTEMIS mission to characterize the presence and behavior of these waves as a function of the solar wind and IMF conditions and of spacecraft location relative to the Moon. With this survey, we test the Halekas et al. predictions that these phenomena will be most common during radial IMF conditions, but will still be observable in oblique fields. Finally, we discuss what implications these results have for the more common situation where a bow shock is present.

  16. Wake Vortex Advisory System (WakeVAS) Evaluation of Impacts on the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2005-01-01

    This report is one of a series that describes an ongoing effort in high-fidelity modeling/simulation, evaluation and analysis of the benefits and performance metrics of the Wake Vortex Advisory System (WakeVAS) Concept of Operations being developed as part of the Virtual Airspace Modeling and Simulation (VAMS) project. A previous study, determined the overall increases in runway arrival rates that could be achieved at 12 selected airports due to WakeVAS reduced aircraft spacing under Instrument Meteorological Conditions. This study builds on the previous work to evaluate the NAS wide impacts of equipping various numbers of airports with WakeVAS. A queuing network model of the National Airspace System, built by the Logistics Management Institute, Mclean, VA, for NASA (LMINET) was used to estimate the reduction in delay that could be achieved by using WakeVAS under non-visual meteorological conditions for the projected air traffic demand in 2010. The results from LMINET were used to estimate the total annual delay reduction that could be achieved and from this, an estimate of the air carrier variable operating cost saving was made.

  17. Role of Basal Ganglia in Sleep–Wake Regulation: Neural Circuitry and Clinical Significance

    PubMed Central

    Vetrivelan, Ramalingam; Qiu, Mei-Hong; Chang, Celene; Lu, Jun

    2010-01-01

    Researchers over the last decade have made substantial progress toward understanding the roles of dopamine and the basal ganglia (BG) in the control of sleep–wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson's disease) in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine, and modafinil) may be linked to the ventral periaquductal gray (vPAG) dopaminergic circuitry targeting the extra-BG sleep–wake network. PMID:21151379

  18. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  19. The Effect of Flow Curvature on the Axisymmetric Wake

    NASA Astrophysics Data System (ADS)

    Holmes, Marlin; Naughton, Jonathan

    2016-11-01

    The swirling turbulent wake is a perturbation to the canonical axisymmetric turbulent wake. Past studies of the axisymmetric turbulent wake have increased understanding of wake Reynolds number influence on wake characteristics such as centerline wake velocity deficit and wake width. In comparison, the axisymmetric turbulent swirling wake has received little attention. Earlier work by our group has shown that the addition of swirl can change the characteristics of the wake. The goal of this current work is to examine how wake mean flow quantities are related to the wake Reynolds number and the swirl number, where the latter quantity is the ratio of the angular momentum flux to the axial momentum deficit flux. A custom designed swirling wake generator is used in a low turbulence intensity wind tunnel flow to study the turbulent swirling wake in isolation. Stereoscopic Particle Image Velocimetry is used to obtain three component velocity fields in the axial-radial plane. From this data, the wake Reynolds number, the swirl number, centerline velocity decay, wake width, and other relevant wake mean flow quantities are determined. Using these results, the impact of swirl on wake development is discussed. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  20. Formation of vortex wakes at flow separation from plate

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.; Govorova, A. I.

    2017-05-01

    The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.

  1. Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture.

    PubMed

    Ahnaou, Abdellah; Dautzenberg, Frank M; Geys, Helena; Imogai, Hassan; Gibelin, Antoine; Moechars, Dieder; Steckler, Thomas; Drinkenburg, Wilhelmus H I M

    2009-01-28

    Compiling pharmacological evidence implicates metabotropic glutamate mGlu(2) receptors in the regulation of emotional states and suggests positive modulators as a novel therapeutic approach of Anxiety/Depression and Schizophrenia. Here, we investigated subcutaneous effects of the metabotropic glutamate mGlu(2/3) agonist (LY354740) on sleep-wake architecture in rat. To confirm the specific effects on rapid eye movement (REM) sleep were mediated via metabotropic glutamate mGlu(2) receptors, we characterized the sleep-wake cycles in metabotropic glutamate mGlu(2) receptor deficient mice (mGlu(2)R(-/-)) and their arousal response to LY354740. We furthermore examined effects on sleep behavior in rats of the positive allosteric modulator, biphenyl-indanone A (BINA) alone and in combination with LY354740 at sub-effective doses. LY354740 (1, 3 and 10 mg/kg) dose-dependently suppressed REM sleep and prolonged its onset latency. Metabotropic glutamate mGlu(2)R(-/-) and their wild type (WT) littermates exhibited similar spontaneous sleep-wake phenotype, while LY354740 (10 mg/kg) significantly affected REM sleep variables in WT but not in the mutant. In rats, BINA (1, 3, 10, 20, 40 mg/kg) dose-dependently suppressed REM sleep, lengthened its onset latency and slightly enhanced passive waking. Additionally, combined treatment elicited a synergistic action on REM sleep variables. Our findings show common changes of REM sleep variables following modulation of metabotropic glutamate mGlu(2) receptor and support an active role of this receptor in the regulation of REM sleep. The synergistic action of BINA on LY354740's effects on sleep pattern implies that positive modulators would tune the endogenous glutamate tone suggesting potential benefit in the treatment of psychiatric disorders, in which REM sleep overdrive is manifested.

  2. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  3. Wake shed by an accelerating carangiform fish

    NASA Astrophysics Data System (ADS)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  4. Overview of experimental and conventional pharmacological approaches in the treatment of sleep and wake disorders.

    PubMed

    Renger, John J

    2008-01-01

    The fundamental purpose of sleep remains one of the most compelling questions yet to be answered in the area of neuroscience, if not all of biology. A pervasive behavior among members of the animal kingdom, the functional necessity of engaging regularly in sleep is best demonstrated by showing that failing to do so leads to a broad repertoire of pathological outcomes including cognitive, immunological, hormonal, and metabolic outcomes, among others. Indeed, an absolute requirement for sleep has been shown in studies that have demonstrated that continuous total deprivation of sleep for as short a period as 15 days is generally lethal in some species. The most common clinical sleep disorder, insomnia, is both a principal disease (primary insomnia) as well as a co-morbidity of a large number of other ostensibly unrelated diseases including chronic pain, attention deficit hyperactivity disorder, and depression. From a treatment perspective, restoring normal healthy sleep delivers subsequent benefits in waking cognitive function and mood with the potential for beneficial therapeutic impact on daily functioning across multiple diseases for which restorative healthy sleep is compromised. Our remarkable escalation in understanding the anatomy and physiology of sleep/wake control mechanisms provides new opportunities to modify the neurobiology of sleep and wake-related behaviors in novel and exciting ways. In parallel, expansion of sleep research into novel interfaces between sleep-wake biology and disease states is revealing additional extensive implications of lost sleep. Current investigational and conventional pharmacological approaches for the treatment of sleep and wake disorders are discussed based on their mechanism of action within the CNS and their effect on sleep and wake. This review of recent sleep biology and sleep pharmacology peers into the future of sleep therapeutics to highlight both mechanistic safety and functional outcomes as key for differentiating

  5. Experimental Study of the Effects of Periodic Unsteady Wakes on Flow Separation in Low Pressure Turbines

    NASA Technical Reports Server (NTRS)

    Ozturk, Burak; Schobeiri, Meinhard T.

    2009-01-01

    The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.

  6. Four-dimensional characterization of inflow to and wakes from a multi-MW turbine: overview of the Turbine Wake and Inflow Characterization Study (TWICS2011)

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.

    2011-12-01

    To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign

  7. Neonatal Sleep-Wake Analyses Predict 18-month Neurodevelopmental Outcomes.

    PubMed

    Shellhaas, Renée A; Burns, Joseph W; Hassan, Fauziya; Carlson, Martha D; Barks, John D E; Chervin, Ronald D

    2017-11-01

    The neurological examination of critically ill neonates is largely limited to reflexive behavior. The exam often ignores sleep-wake physiology that may reflect brain integrity and influence long-term outcomes. We assessed whether polysomnography and concurrent cerebral near-infrared spectroscopy (NIRS) might improve prediction of 18-month neurodevelopmental outcomes. Term newborns with suspected seizures underwent standardized neurologic examinations to generate Thompson scores and had 12-hour bedside polysomnography with concurrent cerebral NIRS. For each infant, the distribution of sleep-wake stages and electroencephalogram delta power were computed. NIRS-derived fractional tissue oxygen extraction (FTOE) was calculated across sleep-wake stages. At age 18-22 months, surviving participants were evaluated with Bayley Scales of Infant Development (Bayley-III), 3rd edition. Twenty-nine participants completed Bayley-III. Increased newborn time in quiet sleep predicted worse 18-month cognitive and motor scores (robust regression models, adjusted r2 = 0.22, p = .007, and 0.27, .004, respectively). Decreased 0.5-2 Hz electroencephalograph (EEG) power during quiet sleep predicted worse 18-month language and motor scores (adjusted r2 = 0.25, p = .0005, and 0.33, .001, respectively). Predictive values remained significant after adjustment for neonatal Thompson scores or exposure to phenobarbital. Similarly, an attenuated difference in FTOE, between neonatal wakefulness and quiet sleep, predicted worse 18-month cognitive, language, and motor scores in adjusted analyses (each p < .05). These prospective, longitudinal data suggest that inefficient neonatal sleep-as quantified by increased time in quiet sleep, lower electroencephalogram delta power during that stage, and muted differences in FTOE between quiet sleep and wakefulness-may improve prediction of adverse long-term outcomes for newborns with neurological dysfunction. © Sleep Research Society 2017. Published by Oxford

  8. Human cortical–hippocampal dialogue in wake and slow-wave sleep

    PubMed Central

    Mitra, Anish; Hacker, Carl D.; Pahwa, Mrinal; Tagliazucchi, Enzo; Laufs, Helmut; Leuthardt, Eric C.; Raichle, Marcus E.

    2016-01-01

    Declarative memory consolidation is hypothesized to require a two-stage, reciprocal cortical–hippocampal dialogue. According to this model, higher frequency signals convey information from the cortex to hippocampus during wakefulness, but in the reverse direction during slow-wave sleep (SWS). Conversely, lower-frequency activity propagates from the information “receiver” to the “sender” to coordinate the timing of information transfer. Reversal of sender/receiver roles across wake and SWS implies that higher- and lower-frequency signaling should reverse direction between the cortex and hippocampus. However, direct evidence of such a reversal has been lacking in humans. Here, we use human resting-state fMRI and electrocorticography to demonstrate that δ-band activity and infraslow activity propagate in opposite directions between the hippocampus and cerebral cortex. Moreover, both δ activity and infraslow activity reverse propagation directions between the hippocampus and cerebral cortex across wake and SWS. These findings provide direct evidence for state-dependent reversals in human cortical–hippocampal communication. PMID:27791089

  9. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  10. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    PubMed

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  12. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE PAGES

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...

    2016-10-03

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  13. Investigation of the Behavioral Characteristics of Dogs Purpose-Bred and Prepared to Perform Vapor Wake® Detection of Person-Borne Explosives

    PubMed Central

    Lazarowski, Lucia; Haney, Pamela Sue; Brock, Jeanne; Fischer, Terry; Rogers, Bart; Angle, Craig; Katz, Jeffrey S.; Waggoner, L. Paul

    2018-01-01

    Specialized detector dogs are increasingly being utilized for the detection of modern threats. The Vapor Wake® (VW) dog was developed to create a dog phenotype ideally suited for detecting hand-carried and body-worn explosives. VW dogs (VWDs) are trained to sample and alert to target odors in the aerodynamic wakes of moving persons, which entrains vapor and small particles from the person. The behavioral characteristics necessary for dogs to be successfully trained and employed for the application of VW are a distinct subset of the desired general characteristics of dogs used for detection tasks due to the dynamic nature of moving targets. The purpose of this study was to examine the behavioral characteristics of candidate detector dogs to determine the particular qualities that set apart VW-capable dogs from others. We assessed 146 candidate detector dogs from a VW breeding and training program. Dogs received identical puppy development and foundational odor training and underwent performance evaluations at 3, 6, 10, and 12 months old, after which they were sold for service. Dogs were categorized based on their final outcome of the training program, independently determined by private vendors, corresponding to three groups: dogs successfully sold for VW, dogs sold for standard explosives detection, and dogs that failed to be placed in any type of detector dog service (Washouts). Comparisons of behavioral evaluations between the groups were made across domains pertaining to search-related behaviors (Performance), reactions to novel stimuli (Environmental), and overall ease of learning new tasks (Trainability). Comparisons were also made at each evaluation to determine any early emergence of differences. VWDs scored significantly higher on Performance characteristics compared to standard explosives detection dogs (EDDs) and Washouts. However, Environmental characteristics did not differentiate VWDs from EDDs, though scores on these measures were significantly

  14. Investigation of the Behavioral Characteristics of Dogs Purpose-Bred and Prepared to Perform Vapor Wake® Detection of Person-Borne Explosives.

    PubMed

    Lazarowski, Lucia; Haney, Pamela Sue; Brock, Jeanne; Fischer, Terry; Rogers, Bart; Angle, Craig; Katz, Jeffrey S; Waggoner, L Paul

    2018-01-01

    Specialized detector dogs are increasingly being utilized for the detection of modern threats. The Vapor Wake ® (VW) dog was developed to create a dog phenotype ideally suited for detecting hand-carried and body-worn explosives. VW dogs (VWDs) are trained to sample and alert to target odors in the aerodynamic wakes of moving persons, which entrains vapor and small particles from the person. The behavioral characteristics necessary for dogs to be successfully trained and employed for the application of VW are a distinct subset of the desired general characteristics of dogs used for detection tasks due to the dynamic nature of moving targets. The purpose of this study was to examine the behavioral characteristics of candidate detector dogs to determine the particular qualities that set apart VW-capable dogs from others. We assessed 146 candidate detector dogs from a VW breeding and training program. Dogs received identical puppy development and foundational odor training and underwent performance evaluations at 3, 6, 10, and 12 months old, after which they were sold for service. Dogs were categorized based on their final outcome of the training program, independently determined by private vendors, corresponding to three groups: dogs successfully sold for VW, dogs sold for standard explosives detection, and dogs that failed to be placed in any type of detector dog service (Washouts). Comparisons of behavioral evaluations between the groups were made across domains pertaining to search-related behaviors (Performance), reactions to novel stimuli (Environmental), and overall ease of learning new tasks (Trainability). Comparisons were also made at each evaluation to determine any early emergence of differences. VWDs scored significantly higher on Performance characteristics compared to standard explosives detection dogs (EDDs) and Washouts. However, Environmental characteristics did not differentiate VWDs from EDDs, though scores on these measures were significantly

  15. Impulsivity, risky behaviors and accidents in alcohol-dependent patients

    PubMed Central

    Jakubczyk, Andrzej; Klimkiewicz, Anna; Wnorowska, Anna; Mika, Katarzyna; Bugaj, Marcin; Podgórska, Anna; Barry, Kristen; Blow, Frederic C.; Brower, Kirk J.; Wojnar, Marcin

    2013-01-01

    Impulsivity and alcohol drinking are both considered as important predictors of unintentional as well as intentional injuries. However, relationships of impulsivity with risky behaviors and a history of accidents have not been investigated in alcohol dependence. The aim of this study was to analyze relationships between the frequency of risky behaviors and level of behavioral as well as cognitive impulsivity in alcohol-dependent patients. By means of Barratt’s Impulsiveness Scale (BIS) and stop-signal task, the levels of cognitive and behavioral impulsivity among 304 alcohol-dependent patients were measured. Also, patients were asked to answer questions from the Short Inventory of Problems applying to risky behaviors and accidents after alcohol drinking. In addition participants completed a questionnaire to assess frequency of other behaviors from the analyzed spectrum (use of other drugs, driving or aggressive behavior after alcohol drinking). The statistical analysis revealed a significant association between impulsivity and frequency of risky behaviors in alcohol-dependent patients. Individuals with higher scores in BIS behaved more frequently in a risky way and had significantly more accidents after alcohol drinking. The association with risky behaviors was strongest for non-planning and attentional impulsivity subscales, whereas frequency of accidents was particularly associated with motor impulsivity. A multivariate analysis revealed that impulsivity was the most important predictor of risky behaviors, but did not significantly predict a history of accidents. Our study confirms that impulsivity is an important correlate of risky behaviors in alcohol-dependent individuals, along with global psychopathology and severity of alcohol dependence. PMID:23246707

  16. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  17. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  18. Clinical relevance of cannabis tolerance and dependence.

    PubMed

    Jones, R T; Benowitz, N L; Herning, R I

    1981-01-01

    Psychoactive drugs are often widely used before tolerance and dependence is fully appreciated. Tolerance to cannabis-induced cardiovascular and autonomic changes, decreased intraocular pressure, sleep and sleep EEG, mood and behavioral changes is acquired and, to a great degree, lost rapidly with optimal conditions. Mechanisms appear more functional than metabolic. Acquisition rate depends on dose and dose schedule. Dependence, manifested by withdrawal symptoms after as little as 7 days of THC administration, is characterized by irritability, restlessness, insomnia, anorexia, nausea, sweating, salivation, increased body temperature, altered sleep and waking EEG, tremor, and weight loss. Mild and transient in the 120 subjects studied, the syndrome was similar to sedative drug withdrawal. Tolerance to drug side effects can be useful. Tolerance to therapeutic effects or target symptoms poses problems. Clinical significance of dependence is difficult to assess since drug-seeking behavior has many determinants. Cannabis-induced super sensitivity should be considered wherever chronic drug administration is anticipated in conditions like epilepsy, glaucoma or chronic pain. Cannabis pharmacology suggests ways of minimizing tolerance and dependence problems.

  19. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  20. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  1. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    NASA Astrophysics Data System (ADS)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  2. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  3. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S; Lundquist, J K; Marjanovic, N

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads onmore » the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the

  4. Coupled wake boundary layer model of windfarms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  5. 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banta, Robert M.; Pichugina, Yelena L.; Brewer, W. Alan

    Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a mannermore » that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6-2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.« less

  6. Experimental investigation of the wake behind a rotating sphere

    NASA Astrophysics Data System (ADS)

    Skarysz, M.; Rokicki, J.; Goujon-Durand, S.; Wesfreid, J. E.

    2018-01-01

    The wake behind a sphere, rotating about an axis aligned with the streamwise direction, has been experimentally investigated in a low-velocity water tunnel using laser-induced fluorescence visualizations and particle image velocimetry measurements. The measurements focused on the evolution of the flow regimes that appear depending on two control parameters: the Reynolds number Re and the dimensionless rotation or swirl rate Ω , which is the ratio of the maximum azimuthal velocity of the body to the free-stream velocity. In the present investigation, we cover the range of Re smaller than 400 and Ω from 0 and 4. Different wakes regimes such as an axisymmetric flow, a low helical state, and a high helical mode are represented in the (Re, Ω ) parameter plane.

  7. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice.

    PubMed

    Wright, Samantha; Wallace, Eli; Hwang, Youngdeok; Maganti, Rama

    2016-02-01

    This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data

    NASA Technical Reports Server (NTRS)

    Bunde, A.; Amaral, L. A.; Havlin, S.; Fritsch-Yelle, J.; Baevsky, R. M.; Stanley, H. E.; Goldberger, A. L.

    1999-01-01

    We compare scaling properties of the cardiac dynamics during sleep and wake periods for healthy individuals, cosmonauts during orbital flight, and subjects with severe heart disease. For all three groups, we find a greater degree of anticorrelation in the heartbeat fluctuations during sleep compared to wake periods. The sleep-wake difference in the scaling exponents for the three groups is comparable to the difference between healthy and diseased individuals. The observed scaling differences are not accounted for simply by different levels of activity, but appear related to intrinsic changes in the neuroautonomic control of the heartbeat.

  9. Cntnap2 Knockout Rats and Mice Exhibit Epileptiform Activity and Abnormal Sleep-Wake Physiology.

    PubMed

    Thomas, Alexia M; Schwartz, Michael D; Saxe, Michael D; Kilduff, Thomas S

    2017-01-01

    Although recent innovations have enabled modification of the rat genome, it is unclear whether enhanced utility of rodents as human disease models will result. We compared electroencephalogram (EEG) and behavioral phenotypes of rats and mice with homozygous deletion of Cntnap2, a gene associated with cortical dysplasia-focal epilepsy (CDFE) and autism spectrum disorders (ASD). Male contactin-associated protein-like 2 (Cntnap2) knockout (KO) and wild-type (WT) rats and male Cntnap2 KO and WT mice were implanted with telemeters to record EEG, electromyogram, body temperature, and locomotor activity. Animals were subjected to a test battery for ASD-related behaviors, followed by 24-hr EEG recordings that were analyzed for sleep-wake parameters and subjected to spectral analysis. Cntnap2 KO rats exhibited severe motor seizures, hyperactivity, and increased consolidation of wakefulness and REM sleep. By contrast, Cntnap2 KO mice demonstrated absence seizure-like events, hypoactivity, and wake fragmentation. Although seizures observed in Cntnap2 KO rats were more similar to those in CDFE patients than in KO mice, neither model fully recapitulated the full spectrum of disease symptoms. However, KOs in both species had reduced spectral power in the alpha (9-12 Hz) range during wake, suggesting a conserved EEG biomarker. Deletion of Cntnap2 impacts similar behaviors and EEG measures in rats and mice, but with profound differences in nature and phenotypic severity. These observations highlight the importance of cross-species comparisons to understand conserved gene functions and the limitations of single- species models to provide translational insights relevant to human diseases. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. [THE CRITICAL INCIDENTS IN THE COMBINED ANESTHESIA DURING MAJOR ABDOMINAL SURGERY IN ELDERRY AND OLD PATIENTS: ROLE PREOPERATIVE LEVEL OF WAKEFULNESS.

    PubMed

    Veyler, R V; Musaeva, T S; Trembach, N V; Zabolotskikh, I B

    2016-09-01

    to determine patterns during combined anesthesia andfrequency ofcritical incidents, depending on the initial level of wakefulness and patient age. 158 patients of planning operated under combined anesthesia for colon tumors were divided into two groups of elderly patients (n= 79) and old (n= 79). Each group was divided into 3 subgroups, depending on level of wakefulness, the estimatedfor level of direct current potential: low, optimum and high levels ofwakefulness. Relations of age and level ofwakefulness with afrequency of critical incidents. In the number of registered incidents included hemodynamic incidents: hypotension, hypertension, bradycardia, arrhythmia and tachycardia; respiratory incidents: hypoxemia, hypercapnia, the needfor prolonged postoperative mechanical ventilation; metabolic incidents: hypothermia, slow recovery of neuromuscular conduction, slow postoperative awakening has been studied. The most frequent incidents in our study were hemodynamic incidents, which prevailed in the structure of hypotension and hypertension. Among of the respiratory incidents dominated by hypoxia and hypercapnia. In the group of elderly patients the most incidents occurred in the subgroup with low level of wakefulness, while in the oldest patients statistically group significant differences between the groups were not found Conclusion. Frequency of critical incidents does not only depend from the age but also from a preoperative level of wakefulness; frequency was lower in elderly patients with an optimum level of wakefulness, and the low level of wakefulness - was high regardless of age.

  11. Vortex wake control via smart structures technology

    NASA Astrophysics Data System (ADS)

    Quackenbush, Todd R.; Bilanin, Alan J.; McKillip, Robert M., Jr.

    1996-05-01

    Control of trailing vortex wakes is an important challenges for both military and civilian applications. This paper summarizes an assessment of the feasibility of mitigating adverse vortex wake effects using control surfaces actuated via Shape Memory Alloy (SMA) technology. The assessment involved a combined computational/design analysis that identified methods for introducing small secondary vortices to promote the deintensification of vortex wakes of submarines and aircraft. Computational analyses of wake breakup using this `vortex leveraging' strategy were undertaken, and showed dramatic increases in the dissipation rate of concentrated vortex wakes. This paper briefly summarizes these results and describes the preliminary design of actuation mechanisms for the deflectable surfaces that effect the required time-varying wake perturbations. These surfaces, which build on the high-force, high- deflection capabilities of SMA materials, are shown to be well suited for the very low frequency actuation requirements of the wake deintensification mission. The paper outlines the assessment of device performance capabilities and describes the sizing studies undertaken for full-scale Vortex Leveraging Tabs (VLTs) designed for use in hydrodynamic and aerodynamic applications. Results obtained to date indicate that the proposed VLTs can accelerate wake breakup by over a factor of three and can be implemented using deflectable surfaces actuated using SMAs.

  12. Probes, Moons, and Kinetic Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  13. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study.

    PubMed

    Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika

    2016-02-10

    Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral

  14. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study

    PubMed Central

    Zant, Janneke C.; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T.; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V.; McCarley, Robert W.; Brown, Ritchie E.

    2016-01-01

    particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel “opto-dialysis” probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of “opto-dialysis” for dissecting the complex brain circuitry underlying behavior. PMID:26865627

  15. Dopaminergic Modulation of Sleep-Wake States.

    PubMed

    Herrera-Solis, Andrea; Herrera-Morales, Wendy; Nunez-Jaramillo, Luis; Arias-Carrion, Oscar

    2017-01-01

    The role of dopamine in sleep-wake regulation is considered as a wakefulness-promoting agent. For the clinical treatment of excessive daytime sleepiness, drugs have been commonly used to increase dopamine release. However, sleep disorders or lack of sleep are related to several dopaminerelated disorders. The effects of dopaminergic agents, nevertheless, are mediated by two families of dopamine receptors, D1 and D2-like receptors; the first family increases adenylyl cyclase activity and the second inhibits adenylyl cyclase. For this reason, the dopaminergic agonist effects on sleep-wake cycle are complex. Here, we review the state-of-the-art and discuss the different effects of dopaminergic agonists in sleep-wake states, and propose that these receptors account for the affinity, although not the specificity, of several effects on the sleep-wake cycle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  17. Effects of wake and shock passing on the heat transfer to a film cooled transonic turbine blade

    NASA Astrophysics Data System (ADS)

    Rigby, M. J.

    An attempt is made to further the understanding of film cooling process in an engine environment. The environment in a gas turbine is unsteady. A source of unsteadiness, the cutting of nozzle guide vane (NGV) wakes and shock waves by the rotor, was modeled experimentally. The influence of the unsteady wakes and shock waves on the heat transfer to a film cooled rotor blade was studied for five film cooling configurations using a rotating bar apparatus in front of a 2-D cascade. Heat transfer measurements were made using thin film gauges placed at the mid-span of the test blade. Schlieren photography was used to study the behavior of the coolant film and the movement of the unsteady shock waves and wakes. The effect of simulated NGV wake passing observed on the uncooled airfoil is to promote an intermittent transition of the suction surface. The effect of the wake on the turbulent pressure surface is small. With injection on the suction surface, the film acts as a boundary layer trip which offsets the rise in heat transfer due to the wake. The simulated NGV trailing edge shock wave had a dramatic effect on the suction surface heat transfer.

  18. Performance and wake conditions of a rotor located in the wake of an obstacle

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  19. Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness.

    PubMed

    Glos, Martin; Fietze, Ingo; Blau, Alexander; Baumann, Gert; Penzel, Thomas

    2014-02-10

    The autonomic nervous system (ANS) is modulated by sleep and wakefulness. Noninvasive assessment of cardiac ANS with heart rate variability (HRV) analysis is a window for monitoring malfunctioning of cardiovascular autonomic modulation due to sleep deprivation. This study represents the first investigation of dynamic ANS effects and of electrophysiological and subjective sleepiness, in parallel, during 40 h of prolonged wakefulness under constant routine (CR) conditions. In eleven young male healthy subjects, ECG, EEG, EOG, and EMG chin recordings were performed during baseline sleep, during 40 h of sleep deprivation, and during recovery sleep. After sleep deprivation, slow-wave sleep and sleep efficiency increased, whereas HRV - global variability and HRV sympathovagal balance - was reduced (all p<0.05). Sleep-stage-dependent analysis revealed reductions in the sympathovagal balance only for NREM sleep stages (all p<0.05). Comparison of the daytime pattern of CR day one (CR baseline) with that of CR day two (CR sleep deprivation) disclosed an increase in subjective sleepiness, in the amount of unintended sleep, and in HRV sympathovagal balance, with accompaniment by increased EEG alpha attenuation (all p<0.05). Circadian rhythm analysis revealed the strongest influence on heart rate, with less influence on HRV sympathovagal balance. Hour-by-hour analysis disclosed the difference between CR sleep deprivation and CR baseline for subjective sleepiness at almost every single hour and for unintended sleep particularly in the morning and afternoon (both p<0.05). These findings indicate that 40 h of prolonged wakefulness lead in the following night to sleep-stage-dependent reduction in cardiac autonomic modulation. During daytime, an increased occurrence of behavioral and physiological signs of sleepiness was accompanied by diminished cardiac autonomic modulation. The observed changes are an indicator of autonomic stress due to sleep deprivation - which, if chronic

  20. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    PubMed

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  1. Analysis of Hypersonic Vehicle Wakes

    DTIC Science & Technology

    2015-09-17

    factor used with viscous Jacobian matrix of left eigenvectors for A R specific gas constant Re Reynolds number Recell cell Reynolds number......focus was shifted to characterizing other wake phenomena. The aerothermal phenomena of interest in the wake include: gas properties, chemical species

  2. Influence of Hypoxia and Hypercapnia on Sleep State-Dependent Heart Rate Variability Behavior in Newborn Lambs

    PubMed Central

    Beuchée, Alain; Hernández, Alfredo I.; Duvareille, Charles; Daniel, David; Samson, Nathalie; Pladys, Patrick; Praud, Jean-Paul

    2012-01-01

    Study Objectives: Although hypercapnia and/or hypoxia are frequently present during chronic lung disease of infancy and have also been implicated in sudden infant death syndrome (SIDS), their effect on cardiac autonomic regulation remains unclear. The authors' goal is to test that hypercapnia and hypoxia alter sleep-wake cycle-dependent heart rate variability (HRV) in the neonatal period. Design: Experimental study measuring HRV during sleep states in lambs randomly exposed to hypercapnia, hypoxia, or air. Setting: University center for perinatal research in ovines (Sherbrooke, Canada). INSERM-university research unit for signal processing (Rennes, France). Participants: Six nonsedated, full-term lambs. Interventions: Each lamb underwent polysomnographic recordings while in a chamber flowed with either air or 21% O2 + 5% CO2 (hypercapnia) or 10% O2 + 0% CO2 (hypoxia) on day 3, 4, and 5 of postnatal age. Measurements and Results: Hypercapnia increased the time spent in wakefulness and hypoxia the time spent in quiet sleep (QS). The state of alertness was the major determinant of HRV characterized with linear or nonlinear methods. Compared with QS, active sleep (AS) was associated with an overall increase in HRV magnitude and short-term self-similarity and a decrease in entropy of cardiac cycle length in air. This AS-related HRV pattern persisted in hypercapnia and was even more pronounced in hypoxia. Conclusion: Enhancement of AS-related sympathovagal coactivation in hypoxia, together with increased heart rate regularity, may be evidence that AS + hypoxia represent a particularly vulnerable state in early life. This should be kept in mind when deciding the optimal arterial oxygenation target in newborns and when investigating the potential involvement of hypoxia in SIDS pathogenesis. Citation: Beuchée A; Hernández AI; Duvareille C; Daniel D; Samson N; Pladys P; Praud JP. Influence of hypoxia and hypercapnia on sleep state-dependent heart rate variability behavior

  3. Apparatus for Control of Stator Wakes

    DTIC Science & Technology

    2009-09-18

    wake deficit . This has the effect of reducing the blade rate tonal noise of the propulsion rotor. 11 o CN 6 ...upstream of propeller propulsors the sharp wake deficits behind the stators result in unsteady loading and distinguishable peaks in the noise spectra at...trailing edge of a stator blade in order to fill its mean wake deficit to reduce unsteady loading on the rotor blades . Interaction between

  4. Full-Scale Field Test of Wake Steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  5. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  6. Partner dependence and sexual risk behavior among STI clinic patients.

    PubMed

    Senn, Theresa E; Carey, Michael P; Vanable, Peter A; Coury-Doniger, Patricia

    2010-01-01

    To investigate the relation between partner dependence and sexual risk behavior in the context of the information-motivation-behavioral skills (IMB) model. STI clinic patients (n = 1432) completed a computerized interview assessing partner dependence, condom use, and IMB variables. Men had higher partner-dependence scores than women did. Patients reporting greater dependence reported less condom use. Gender did not moderate the partner dependence-condom-use relationship. Partner dependence did not moderate the relation between IMB constructs and condom use. Further research is needed to determine how partner dependence can be incorporated into conceptual models of safer sex behaviors.

  7. Numerical investigation of wake-collapse internal waves generated by a submerged moving body

    NASA Astrophysics Data System (ADS)

    Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia

    2017-07-01

    The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.

  8. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  9. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  10. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  11. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  12. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    PubMed

    Dewar, Michaela; Alber, Jessica; Cowan, Nelson; Della Sala, Sergio

    2014-01-01

    People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  13. The Wake Vortex Prediction and Monitoring System WSVBS

    NASA Astrophysics Data System (ADS)

    Gerz, T.; Holzäpfel, F.

    2009-09-01

    Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behaviour without compromising safety. The WSVBS consists of components that consider meteorological conditions, aircraft glide path adherence, aircraft parameter combinations representing aircraft weight categories, the resulting wake-vortex behaviour, the surrounding safety areas, wake vortex monitoring, and the integration of the predictions into the arrival manager. The WSVBS has been designed and applied to Frankfurt Airport. However, its components are generic and can well be adjusted to any runway system and or airport location. The prediction horizon is larger than 45 min (as required by air traffic control) and updated every 10 minutes. It predicts the concepts of operations and procedures established by DFS and it further predicts additional temporal separations for in-trail traffic. A specific feature of the WSVBS is the usage of both measured and predicted meteorological quantities as input to wake vortex prediction. In ground proximity where the probability to encounter wake vortices is highest, the wake predictor employs measured environmental parameters that yield superior prediction results. For the less critical part aloft, which can not be monitored completely by instrumentation, the meteorological parameters are taken from dedicated numerical terminal weather predictions. The wake vortex model predicts envelopes for vortex position and strength which implicitly consider the quality of the meteorological input data. This feature is achieved by a training procedure which employs statistics of measured and predicted meteorological parameters and the resulting wake vortex behaviour. The WSVBS combines various

  14. Diagnostic and Treatment Challenges of Sighted Non-24-Hour Sleep-Wake Disorder.

    PubMed

    Malkani, Roneil G; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2018-04-15

    To report the diagnostic and treatment challenges of sighted non-24-hour sleep-wake disorder (N24SWD). We report a series of seven sighted patients with N24SWD clinically evaluated by history and sleep diaries, and when available wrist actigraphy and salivary melatonin levels, and treated with timed melatonin and bright light therapy. Most patients had a history of a delayed sleep-wake pattern prior to developing N24SWD. The typical sleep-wake pattern of N24SWD was seen in the sleep diaries (and in actigraphy when available) in all patients with a daily delay in midpoint of sleep ranging 0.8 to 1.8 hours. Salivary dim light melatonin onset (DLMO) was evaluated in four patients but was missed in one. The estimated phase angle from DLMO to sleep onset ranged from 5.25 to 9 hours. All six patients who attempted timed melatonin and bright light therapy were able to entrain their sleep-wake schedules. Entrainment occurred at a late circadian phase, possibly related to the late timing of melatonin administration, though the patients often preferred late sleep times. Most did not continue treatment and continued to have a non-24-hour sleep-wake pattern. N24SWD is a chronic debilitating disorder that is often overlooked in sighted people and can be challenging to diagnose and treat. Tools to assess circadian pattern and timing can be effectively applied to aid the diagnosis. The progressive delay of the circadian rhythm poses a challenge for determining the most effective timing for melatonin and bright light therapies. Furthermore, once the circadian sleep-wake rhythm is entrained, long-term effectiveness is limited because of the behavioral and environmental structure that is required to maintain stable entrainment. © 2018 American Academy of Sleep Medicine.

  15. Turbulence Modelling in Wind Turbine Wakes =

    NASA Astrophysics Data System (ADS)

    Olivares Espinosa, Hugo

    With the expansion of the wind energy industry, wind parks have become a common appearance in our landscapes. Owing to restrictions of space or to economic reasons, wind turbines are located close to each other in wind farms. This causes interference problems which reduce the efficiency of the array. In particular, the wind turbine wakes increase the level of turbulence and cause a momentum defect that may lead to an increase of mechanical loads and to a reduction of power output. Thus, it is important for the wind energy industry to predict the characteristics of the turbulence field in the wakes with the purpose of increasing the efficiency of the power extraction. Since this is a phenomenon of intrinsically non-linear nature, it can only be accurately described by the full set of the Navier-Stokes equations. Furthermore, a proper characterization of turbulence cannot be made without resolving the turbulent motions, so neither linearized models nor the widely used Reynolds-Averaged Navier-Stokes model can be employed. Instead, Large-Eddy Simulations (LES) provide a feasible alternative, where the energy containing fluctuations of the velocity field are resolved and the effects of the smaller eddies are modelled through a sub-grid scale component. The objective of this work is the modelling of turbulence in wind turbine wakes in a homogeneous turbulence inflow. A methodology has been developed to fulfill this objective. Firstly, a synthetic turbulence field is introduced into a computational domain where LES are performed to simulate a decaying turbulence flow. Secondly, the Actuator Disk (AD) technique is employed to simulate the effect of a rotor in the incoming flow and produce a turbulent wake. The implementation is carried out in OpenFOAM, an open-source CFD platform, resembling a well documented procedure previously used for wake flow simulations. Results obtained with the proposed methodology are validated by comparing with values obtained from wind tunnel

  16. Unsteady inflow effects on the wake shed from a high-lift LPT blade subjected to boundary layer laminar separation

    NASA Astrophysics Data System (ADS)

    Satta, Francesca; Ubaldi, Marina; Zunino, Pietro

    2012-04-01

    An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.

  17. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO SCALE CENTERED ON BUILDING (12/30/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  18. Study of the near field wake of trips generating an artificially thick turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2015-11-01

    The properties of an artificially thick turbulent boundary layer are influenced by its formation mechanism. Previous work has shown that wake or wall-driven mechanisms dominate boundary layer development depending on the trips' aspect ratio. The current study characterizes these two formation mechanisms through the use of high-speed PIV in the near wake of obstacles arrays on a flat plate in a wind tunnel. The time resolved velocity field is studied using Optimal Mode Decomposition (OMD) generating a low order model which captures the representative motions. Results corroborate the original hypothesis and show that these mechanisms are divided in two families: (i) High aspect ratio trips (cylinders) generate vortices with a wall-normal axis which do not transfer information between the wall and the wake of the obstacle. In this case, the boundary layer growth is wall-driven entraining the low-momentum highly turbulent flow above it. (ii) Low aspect ratio trips generate spanwise vorticity increasing the influence of the obstacle's wake in the wall region (wake-driven mechanism). A high level of correlation with the velocity fluctuations at the wall is maintained in case (ii) for the whole wake while in case (i) the correlation vanishes for heights smaller than half obstacle.

  19. Ibogaine Acute Administration in Rats Promotes Wakefulness, Long-Lasting REM Sleep Suppression, and a Distinctive Motor Profile

    PubMed Central

    González, Joaquín; Prieto, José P.; Rodríguez, Paola; Cavelli, Matías; Benedetto, Luciana; Mondino, Alejandra; Pazos, Mariana; Seoane, Gustavo; Carrera, Ignacio; Scorza, Cecilia; Torterolo, Pablo

    2018-01-01

    Ibogaine is a potent psychedelic alkaloid that has been the focus of intense research because of its intriguing anti-addictive properties. According to anecdotic reports, ibogaine has been originally classified as an oneirogenic psychedelic; i.e., induces a dream-like cognitive activity while awake. However, the effects of ibogaine administration on wakefulness (W) and sleep have not been thoroughly assessed. The main aim of our study was to characterize the acute effects of ibogaine administration on W and sleep. For this purpose, polysomnographic recordings on chronically prepared rats were performed in the light phase during 6 h. Animals were treated with ibogaine (20 and 40 mg/kg) or vehicle, immediately before the beginning of the recordings. Furthermore, in order to evaluate associated motor behaviors during the W period, a different group of animals was tested for 2 h after ibogaine treatment on an open field with video-tracking software. Compared to control, animals treated with ibogaine showed an increase in time spent in W. This effect was accompanied by a decrease in slow wave sleep (SWS) and rapid-eye movements (REM) sleep time. REM sleep latency was significantly increased in animals treated with the higher ibogaine dose. While the effects on W and SWS were observed during the first 2 h of recordings, the decrement in REM sleep time was observed throughout the recording time. Accordingly, ibogaine treatment with the lower dose promoted an increase on locomotion, while tremor and flat body posture were observed only with the higher dose in a time-dependent manner. In contrast, head shake response, a behavior which has been associated in rats with the 5HT2A receptor activation by hallucinogens, was not modified. We conclude that ibogaine promotes a waking state that is accompanied by a robust and long-lasting REM sleep suppression. In addition, it produces a dose-dependent unusual motor profile along with other serotonin-related behaviors. Since ibogaine

  20. Wind turbine wake measurement in complex terrain

    NASA Astrophysics Data System (ADS)

    Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ

    2016-09-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.

  1. Partner Dependence and Sexual Risk Behavior Among STI Clinic Patients

    PubMed Central

    Senn, Theresa E.; Carey, Michael P.; Vanable, Peter A.; Coury-Doniger, Patricia

    2010-01-01

    Objectives To investigate the relation between partner dependence and sexual risk behavior in the context of the information-motivation-behavioral skills (IMB) model. Methods STI clinic patients (n = 1432) completed a computerized interview assessing partner dependence, condom use, and IMB variables. Results Men had higher partner-dependence scores than women did. Patients reporting greater dependence reported less condom use. Gender did not moderate the partner dependence-condom-use relationship. Partner dependence did not moderate the relation between IMB constructs and condom use. Conclusions Further research is needed to determine how partner dependence can be incorporated into conceptual models of safer sex behaviors. PMID:20001183

  2. Behavior-dependent activity patterns of GABAergic long-range projecting neurons in the rat hippocampus.

    PubMed

    Katona, Linda; Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A; Valenti, Ornella; Viney, Tim J; Kotzadimitriou, Dimitrios; Klausberger, Thomas; Somogyi, Peter

    2017-04-01

    Long-range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O-LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin-labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave-ripples, most projection cells, including a novel SOM+ GABAergic back-projecting cell, increased their activity similar to bistratified cells, but unlike O-LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O-LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior- and network state-dependent binding of neuronal assemblies amongst functionally-related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  3. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  4. Wakefulness delta waves increase after cortical plasticity induction.

    PubMed

    Assenza, G; Pellegrino, G; Tombini, M; Di Pino, G; Di Lazzaro, V

    2015-06-01

    Delta waves (DW) are present both during sleep and in wakefulness. In the first case, DW are considered effectors of synaptic plasticity, while in wakefulness, when they appear in the case of brain lesions, their functional meaning is not unanimously recognized. To throw light on the latter, we aimed to investigate the impact on DW exerted by the cortical plasticity-inducing protocol of intermittent theta burst stimulation (iTBS). Twenty healthy subjects underwent iTBS (11 real iTBS and nine sham iTBS) on the left primary motor cortex with the aim of inducing long-term potentiation (LTP)-like phenomena. Five-minute resting open-eye 32-channel EEG, right opponens pollicis motor-evoked potentials (MEPs), and alertness behavioral scales were collected before and up to 30 min after the iTBS. Power spectral density (PSD), interhemispheric coherence between homologous sensorimotor regions, and intrahemispheric coherence were calculated for the frequency bands ranging from delta to beta. Real iTBS induced a significant increase of both MEP amplitude and DW PSD lasting up to 30 min after stimulation, while sham iTBS did not. The DW increase was evident over frontal areas ipsilateral and close to the stimulated cortex (electrode F3). Neither real nor sham iTBS induced significant modifications in the PSD of theta, alpha, and beta bands and in the interhemispheric coherence. Behavioral visuo-analogic scales score did not demonstrate changes in alertness after stimulations. No correlations were found between MEP amplitude and PSD changes in the delta band. Our data showed that LTP induction in the motor cortex during wakefulness, by means of iTBS, is accompanied by a large and enduring increase of DW over the ipsilateral frontal cortex. The present results are strongly in favor of a prominent role of DW in the neural plasticity processes taking place during the awake state. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland

  5. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  6. The role of serotonin and norepinephrine in sleep-waking activity.

    PubMed

    Morgane, P J; Stern, W C

    1975-11-01

    A critical review of the evidences relating the biogenic amines serotonin and norepinephrine to the states of slow-wave and rapid eye movement (REM) sleep is presented. Various alternative explanations for specific chemical regulation of the individual sleep states, including the phasic events of REM sleep, are evaluated within the overall framework of the monoamine theory of sleep. Several critical neuropsychopharmacological studies relating to metabolsim of the amines in relation to sleep-waking behavior are presented. Models of the chemical neuronal circuitry involved in sleep-waking activity are derived and interactions between several brainstem nuclei, particularly the raphé complex and locus coeruleus, are discussed. Activity in these aminergic systems in relation to oscillations in the sleep-waking cycles is evaluated. In particular, the assessment of single cell activity in specific chemical systems in relations to chemical models of sleep is reviewed. Overall, it appears that the biogenic amines, especially serotonin and norepinephrine, play key roles in the generation and maintenance of the sleep states. These neurotransmitters participate in some manner in the "triggering" processes necessary for actuating each sleep phase and in regulating the transitions from sleep to waking activity. The biogenic amines are, however, probably not "sleep factors" or direct inducers of the sleep states. Rather, they appear to be components of a multiplicity of interacting chemical circuitry in the brain whose activity maintains various chemical balances in different brain regions. Shifts in these balances appear to be involved in the triggering and maintenance of the various states comprising the vigilance continuum.

  7. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers.

    PubMed

    Loprinzi, Paul D; Walker, Jerome F

    2015-03-01

    Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = -9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = -0.14, P = 0.003) than their less nicotine dependent counterparts. Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts.

  8. Wind-tunnel measurements in the wakes of structures

    NASA Technical Reports Server (NTRS)

    Woo, H. G. C.; Peterka, J. A.; Cermak, J. E.

    1977-01-01

    Detailed measurements of longitudinal mean velocity, turbulence intensity, space correlations, and spectra made in the wake of two rectangular scaled models in simulated atmospheric boundary-layer winds are presented. The model buildings were 1:50 scale models of two trailers. Results of a flow visualization study of the wake geometry are analyzed with some singular point theorems. Two hypothetical flow patterns of the detailed wake geometry are proposed. Some preliminary studies of the vortex wake, effects of the model size, model aspect ratios, and boundary layer characteristics on the decay rate and extent of the wake are also presented and discussed.

  9. Active Wake Redirection Control to Improve Energy Yield (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Fleming, P.; DeGeorge, E.

    Wake effects can dramatically reduce the efficiency of waked turbines relative to the unwaked turbines. Wakes can be deflected, or 'redirected,' by applying yaw misalignment to the turbines. Yaw misalignment causes part of the rotor thrust vector to be pointed in the cross-stream direction, deflecting the flow and the wake. Yaw misalignment reduces power production, but the global increase in wind plant power due to decreased wake effect creates a net increase in power production. It is also a fairly simple control idea to implement at existing or new wind plants. We performed high-fidelity computational fluid dynamics simulations of themore » wake flow of the proposed Fishermen's Atlantic City Windfarm (FACW) that predict that under certain waking conditions, wake redirection can increase plant efficiency by 10%. This means that by applying wake redirection control, for a given watersheet area, a wind plant can either produce more power, or the same amount of power can be produced with a smaller watersheet area. With the power increase may come increased loads, though, due to the yaw misalignment. If misalignment is applied properly, or if layered with individual blade pitch control, though, the load increase can be mitigated. In this talk we will discuss the concept of wake redirection through yaw misalignment and present our CFD results of the FACW project. We will also discuss the implications of wake redirection control on annual energy production, and finally we will discuss plans to implement wake redirection control at FACW when it is operational.« less

  10. Boosting Long-Term Memory via Wakeful Rest: Intentional Rehearsal Is Not Necessary, Consolidation Is Sufficient

    PubMed Central

    Dewar, Michaela; Alber, Jessica; Cowan, Nelson; Della Sala, Sergio

    2014-01-01

    People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition. PMID:25333957

  11. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.

    PubMed

    Netchiporouk, L; Shram, N; Salvert, D; Cespuglio, R

    2001-04-01

    In the present study, cortical extracellular levels of glucose were monitored for the first time throughout the sleep-wake states of the freely moving rat. For this purpose, polygraphic recordings (electroencephalogram of the fronto-occipital cortices and electromyogram of the neck muscles) were achieved in combination with differential normal pulse voltammetry (DNPV) using a specific glucose sensor. Data obtained reveal that the basal extracellular glucose concentration in the conscious rat is 0.59 +/- 0.3 m M while under chloral hydrate anaesthesia (0.4 g/kg, i.p.) it increases up to 180% of its basal concentration. Regarding the sleep-wake cycle, the existence of spontaneous significant variations in the mean glucose level during slow-wave sleep (SWS = +13%) and paradoxical sleep (PS = -11%) compared with the waking state (100%) is also reported. It is to be noticed that during long periods of active waking, glucose level tends towards a decrease that becomes significant after 15 min (active waking = -32%). On the contrary, during long episodes of slow-wave sleep, it tends towards an increase which becomes significant after 12 min (SWS = +28%). It is suggested that voltammetric techniques using enzymatic biosensors are useful tools allowing direct glucose measurements in the freely moving animal. On the whole, paradoxical sleep is pointed out as a state highly dependent on the availability of energy and slow-wave sleep as a period of energy saving.

  12. Wake Turbulence

    DOT National Transportation Integrated Search

    1997-07-06

    THIS IS A SAFETY NOTICE. The guidance contained herein supersedes : the guidance provided in the current edition of Order 7110.65, Air Traffic Control, relating to selected wake turbulence separations and aircraft weight classifications. This Notice ...

  13. Dreaming and waking: similarities and differences revisited.

    PubMed

    Kahan, Tracey L; LaBerge, Stephen P

    2011-09-01

    Dreaming is often characterized as lacking high-order cognitive (HOC) skills. In two studies, we test the alternative hypothesis that the dreaming mind is highly similar to the waking mind. Multiple experience samples were obtained from late-night REM sleep and waking, following a systematic protocol described in Kahan (2001). Results indicated that reported dreaming and waking experiences are surprisingly similar in their cognitive and sensory qualities. Concurrently, ratings of dreaming and waking experiences were markedly different on questions of general reality orientation and logical organization (e.g., the bizarreness or typicality of the events, actions, and locations). Consistent with other recent studies (e.g., Bulkeley & Kahan, 2008; Kozmová & Wolman, 2006), experiences sampled from dreaming and waking were more similar with respect to their process features than with respect to their structural features. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less

  15. Wake Vortex and Groundwind Meteorological Measurements

    DOT National Transportation Integrated Search

    1976-05-01

    Wake vortex groundwind and meteorological measurements obtained by DOT-TSC at John F. Kennedy (JKF) International Airport have been reduced, analyzed, and correlated with a theoretical vortex transport model. The predictive Wake Vortex Transport Mode...

  16. Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.

    2017-12-01

    We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.

  17. A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions

    NASA Astrophysics Data System (ADS)

    Xie, Shengbai; Archer, Cristina L.

    2017-10-01

    The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.

  18. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    NASA Astrophysics Data System (ADS)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  19. Sleep/Wake Patterns and Parental Perceptions of Sleep in Children Born Preterm

    PubMed Central

    Biggs, Sarah N.; Meltzer, Lisa J.; Tapia, Ignacio E.; Traylor, Joel; Nixon, Gillian M.; Horne, Rosemary S.C.; Doyle, Lex W.; Asztalos, Elizabeth; Mindell, Jodi A.; Marcus, Carole L.

    2016-01-01

    Study Objectives: To compare sleep/wake patterns in children born preterm in Australia vs Canada and determine cultural differences in the relationship between parental perception of sleep and actual sleep behaviors. Methods: Australian and Canadian children born preterm were recruited from the Caffeine for Apnea of Prematurity trial (n = 188, 5–12 y) and underwent 14 days actigraphy monitoring. Parents completed the National Sleep Foundation 2004 Sleep in America questionnaire. Cross-cultural differences in sleep characteristics assessed by actigraphy and parent-reported questionnaire were examined. Correlational analyses determined the associations between parental perceptions of child sleep need and sleep behavior. Results: Actigraphy showed preterm children obtained, on average, 8 h sleep/night, one hour less than population recommendations for their age. There was no difference in total sleep time (TST) between Australian and Canadian cohorts; however, bed and wake times were earlier in Australian children. Bedtimes and TST varied by 60 minutes from night to night in both cohorts. Parent-reported child TST on the National Sleep Foundation questionnaire was 90 minutes longer than recorded by actigraphy. Both bedtime and TST on weekdays and weekends were related to parental perception of child sleep need in the Australian cohort. Only TST on weekdays was related to parental perception of child sleep need in the Canadian cohort. Conclusions: This study suggests that short sleep duration and irregular sleep schedules are common in children born preterm. Cultural differences in the association between parental perception of child sleep need and actual sleep behaviors provide important targets for future sleep health education. Citation: Biggs SN, Meltzer LJ, Tapia IE, Traylor J, Nixon GM, Horne RS, Doyle LW, Asztalos E, Mindell JA, Marcus CL. Sleep/wake patterns and parental perceptions of sleep in children born preterm. J Clin Sleep Med 2016;12(5):711–717

  20. Detailed field test of yaw-based wake steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew

    This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less

  1. Detailed field test of yaw-based wake steering

    DOE PAGES

    Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew; ...

    2016-10-03

    This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less

  2. Impact of Wake Dispersion on Axial Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2017-01-01

    Detailed development of wakes and their impact on the performance of a low-speed one and half stage axial compressor are investigated with a large eddy simulation (LES). To investigate effects of wake mixing recovery and wake interaction with the boundary layer of the downstream blade, spacing between the rotor blade and the stator is varied. The calculated LES flow fields based on a fine computational grid are compared with related measurements and analyzed in detail at several radial locations. The current LES calculates the effects of wake recovery very well. The effects of wake recovery vary significantly in the radial direction. Loss generation is higher on the pressure side at the stator exit at both near design and near stall condition. The current investigation indicates that better management of wake development can be achieved for improved compressor performance.

  3. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse.

    PubMed

    Chazalon, Marine; Dumas, Sylvie; Bernard, Jean-François; Sahly, Iman; Tronche, François; de Kerchove d'Exaerde, Alban; Hamon, Michel; Adrien, Joëlle; Fabre, Véronique; Bonnavion, Patricia

    2018-06-13

    Serotonin (5-HT) neurons are involved in wake promotion and exert a strong inhibitory influence on rapid eye movement (REM) sleep. Such effects have been ascribed, at least in part to the action of 5-HT at post-synaptic 5-HT 1A receptors (5-HT 1A R) in the brainstem, a major wake/REM sleep regulatory center. However, the neuroanatomical substrate through which 5-HT 1A R influence sleep remains elusive. We therefore investigated whether a brainstem structure containing a high density of 5-HT 1A R mRNA, the GABAergic Gudden's dorsal tegmental nucleus (DTg), may contribute to 5-HT-mediated regulatory mechanisms of sleep-wake stages. We first found that bilateral lesions of the DTg promote wake at the expense of sleep. In addition, using local microinjections into the DTg in freely moving mice, we showed that local activation of 5-HT 1A R by the prototypical agonist 8-OH-DPAT enhances wake and reduces deeply REM sleep duration. The specific involvement of 5-HT 1A R in the latter effects was further demonstrated by ex vivo extracellular recordings showing that the selective 5-HT 1A R antagonist WAY 100635 prevented DTg neuron inhibition by 8-OH-DPAT. We next found that GABAergic neurons of the ventral DTg exclusively targets/connects glutamatergic neurons of the lateral mammillary nucleus (LM) in the posterior hypothalamus by means of anterograde and retrograde tracing techniques using cre driver mouse lines and a modified rabies virus. Altogether, our findings strongly support the idea that 5-HT-driven enhancement of wake results from 5-HT 1A R-mediated inhibition of DTg GABAergic neurons that would in turn disinhibit glutamatergic neurons in the mammillary bodies. We therefore propose a Raphe→DTg→LM pathway as a novel regulatory circuit underlying 5-HT modulation of arousal. Copyright © 2018. Published by Elsevier Ltd.

  4. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    NASA Technical Reports Server (NTRS)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness

  5. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers

    PubMed Central

    Loprinzi, Paul D.; Walker, Jerome F.

    2015-01-01

    Background: Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. Aim: This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Materials and Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. Results: After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = −9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = −0.14, P = 0.003) than their less nicotine dependent counterparts. Conclusion: Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts. PMID:25839000

  6. Stability analysis of shallow wake flows

    NASA Astrophysics Data System (ADS)

    Kolyshkin, A. A.; Ghidaoui, M. S.

    2003-11-01

    Experimentally observed periodic structures in shallow (i.e. bounded) wake flows are believed to appear as a result of hydrodynamic instability. Previously published studies used linear stability analysis under the rigid-lid assumption to investigate the onset of instability of wakes in shallow water flows. The objectives of this paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid assumption; (ii) to investigate the influence of the shape of the base flow profile on the stability characteristics; (iii) to formulate the weakly nonlinear stability problem for shallow wake flows and show that the evolution of the instability is governed by the Ginzburg Landau equation; and (iv) to establish the connection between weakly nonlinear analysis and the observed flow patterns in shallow wake flows which are reported in the literature. It is found that the relative error in determining the critical value of the shallow wake stability parameter induced by the rigid-lid assumption is below 10% for the practical range of Froude number. In addition, it is shown that the shape of the velocity profile has a large influence on the stability characteristics of shallow wakes. Starting from the rigid-lid shallow-water equations and using the method of multiple scales, an amplitude evolution equation for the most unstable mode is derived. The resulting equation has complex coefficients and is of Ginzburg Landau type. An example calculation of the complex coefficients of the Ginzburg Landau equation confirms the existence of a finite equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle oscillation. This is consistent with flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found between the saturation amplitude obtained from the Ginzburg Landau equation under some simplifying assumptions and the numerical data of Grubi

  7. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For ReC = O(104), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Kármán vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and ReC = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195

  8. Wake states and forces associated with a cylinder rolling down an incline under gravity

    NASA Astrophysics Data System (ADS)

    Houdroge, Farah Yasmina; Thompson, Mark; Hourigan, Kerry; Leweke, Thomas

    2014-11-01

    The flow around a cylinder rolling along a wall at a constant velocity was recently investigated by Stewart et al. (JFM, 643, 648, 2010). They showed that the wake structure varies greatly as the Reynolds number was increased, and that the presence of the wall as well as the imposed motion of the body have a strong influence on the dominant wake structure and the wake transitions when the body is placed in free stream. In this work, attention is given to the flow dynamics and the fluid forces associated with a cylinder rolling down an incline under the influence of gravity. Increasing the inclination angle or the Reynolds number is shown to destabilize the wake flow. For a body close to neutrally buoyancy, the formation and shedding of vortices in its wake result in fluctuating forces and a final kinematic state in which the body's velocity is not constant. The non-dimensionalization of the main equations allows us to determine the essential parameters that govern the problem's dynamics. Furthermore, through numerical simulations we analyse in more detail the time-dependant fluid forces and the different structures of the wake in order to gain a better understanding of the physical mechanisms behind the motions of the fluid and the body. This research was supported by an Australian Research Council Discovery Project Grant DP130100822. We also acknowledge computing time support through National Computing Infrastructure projects D71 and N67.

  9. Secure Wake-Up Scheme for WBANs

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Wei; Ameen, Moshaddique Al; Kwak, Kyung-Sup

    Network life time and hence device life time is one of the fundamental metrics in wireless body area networks (WBAN). To prolong it, especially those of implanted sensors, each node must conserve its energy as much as possible. While a variety of wake-up/sleep mechanisms have been proposed, the wake-up radio potentially serves as a vehicle to introduce vulnerabilities and attacks to WBAN, eventually resulting in its malfunctions. In this paper, we propose a novel secure wake-up scheme, in which a wake-up authentication code (WAC) is employed to ensure that a BAN Node (BN) is woken up by the correct BAN Network Controller (BNC) rather than unintended users or malicious attackers. The scheme is thus particularly implemented by a two-radio architecture. We show that our scheme provides higher security while consuming less energy than the existing schemes.

  10. Quantitative three-dimensional low-speed wake surveys

    NASA Technical Reports Server (NTRS)

    Brune, G. W.

    1992-01-01

    Theoretical and practical aspects of conducting three-dimensional wake measurements in large wind tunnels are reviewed with emphasis on applications in low-speed aerodynamics. Such quantitative wake surveys furnish separate values for the components of drag, such as profile drag and induced drag, but also measure lift without the use of a balance. In addition to global data, details of the wake flowfield as well as spanwise distributions of lift and drag are obtained. The paper demonstrates the value of this measurement technique using data from wake measurements conducted by Boeing on a variety of low-speed configurations including the complex high-lift system of a transport aircraft.

  11. Direct Numerical Simulations of Transitional/Turbulent Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2011-01-01

    The interest in transitional/turbulent wakes spans the spectrum from an intellectual pursuit to understand the complex underlying physics to a critical need in aeronautical engineering and other disciplines to predict component/system performance and reliability. Cylinder wakes have been studied extensively over several decades to gain a better understanding of the basic flow phenomena that are encountered in such flows. Experimental, computational and theoretical means have been employed in this effort. While much has been accomplished there are many important issues that need to be resolved. The physics of the very near wake of the cylinder (less than three diameters downstream) is perhaps the most challenging of them all. This region comprises the two detached shear layers, the recirculation region and wake flow. The interaction amongst these three components is to some extent still a matter of conjecture. Experimental techniques have generated a large percentage of the data that have provided us with the current state of understanding of the subject. More recently computational techniques have been used to simulate cylinder wakes, and the data from such simulations are being used to both refine our understanding of such flows as well as provide new insights. A few large eddy and direct numerical simulations (LES and DNS) of cylinder wakes have appeared in the literature in the recent past. These investigations focus on the low Reynolds number range where the cylinder boundary layer is laminar (sub-critical range). However, from an engineering point of view, there is considerable interest in the situation where the upper and/or lower boundary layer of an airfoil is turbulent, and these turbulent boundary layers separate from the airfoil to contribute to the formation of the wake downstream. In the case of cylinders, this only occurs at relatively large unit Reynolds numbers. However, in the case of airfoils, the boundary layer has the opportunity to transition

  12. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  13. Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Ahmad, Jasim U.

    2012-01-01

    Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.

  14. Wake vortex separation standards : analysis methods

    DOT National Transportation Integrated Search

    1997-01-01

    Wake vortex separation standards are used to prevent hazardous wake vortex encounters. A "safe" separation model can be used to assess the safety of proposed changes in the standards. A safe separation model can be derived from an encounter hazard mo...

  15. Simulation of wind turbine wakes using the actuator line technique

    PubMed Central

    Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  16. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  17. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate

  18. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  19. GABA receptors, alcohol dependence and criminal behavior.

    PubMed

    Terranova, Claudio; Tucci, Marianna; Sartore, Daniela; Cavarzeran, Fabiano; Di Pietra, Laura; Barzon, Luisa; Palù, Giorgio; Ferrara, Santo D

    2013-09-01

    The aim of this study was to analyze the connection between alcohol dependence and criminal behavior by an integrated genetic-environmental approach. The research, structured as a case-control study, examined 186 alcohol-dependent males; group 1 (N = 47 convicted subjects) was compared with group 2 (N = 139 no previous criminal records). Genetic results were innovative, highlighting differences in genotype distribution (p = 0.0067) in group 1 for single-nucleotide polymorphism rs 3780428, located in the intronic region of subunit 2 of the GABA B receptor gene (GABBR2). Some environmental factors (e.g., grade repetition) were associated with criminal behavior; others (e.g., attendance at Alcoholics Anonymous) were inversely related to convictions. The concomitant presence of the genetic and environmental factors found to be associated with the condition of alcohol-dependent inmate showed a 4-fold increase in the risk of antisocial behavior. The results need to be replicated on a larger population to develop new preventive and therapeutic proposals. © 2013 American Academy of Forensic Sciences.

  20. Crossing the invisible line: De-differentiation of wake, sleep and dreaming may engender both creative insight and psychopathology.

    PubMed

    Llewellyn, Sue

    2016-11-01

    Writing about dreaming, the poet Raymond Carver said "I feel as if I've crossed some kind of invisible line". In creative people, the "line" between wake, dreaming and psychopathology may be porous, engendering a de-differentiated, super-critical, hybrid state. Evidence exists for a relationship between creativity and psychopathology but its nature has been elusive. De-differentiation between wake, sleep and dreaming may be the common substrate, as dream-like cognition pervades wake and wake-like neurophysiology suffuses sleep. Chaos theory posits brain states as inherently labile, transient and dynamically unstable. Over and above transient dissociations, an enduring and, sometimes, progressive, de-differentiation may be possible. Evidence indicates that sleep and dreaming facilitate creative insight. In consequence, a mild to moderate form of de-differentiation may enhance creativity but if wake-like neurobiology permeates sleep this may disrupt sleep-dependent memory processing and emotional regulation. If de-differentiation is progressive and enduring, various forms of psychopathology may result. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Higher order moments, structure functions and spectral ratios in near- and far-wakes of a wind turbine array

    NASA Astrophysics Data System (ADS)

    Ali, Naseem; Aseyev, A.; McCraney, J.; Vuppuluri, V.; Abbass, O.; Al Jubaree, T.; Melius, M.; Cal, R. B.

    2014-11-01

    Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze higher order statistics which include skewness, kurtosis as well as the ratios of structure functions and spectra. The ratios consist of wall-normal to streamwise components for both quantities. The aim is to understand the degree of anisotropy in the flow for the near- and far-wakes of the flow field where profiles at one diameter and five diameters are considered, respectively. The skewness at top tip for both wakes show a negative skewness while below the turbine canopy, this terms are positive. The kurtosis shows a Gaussian behavior in the near-wake immediately at hub-height. In addition, the effect due to the passage of the rotor in tandem with the shear layer at the top tip renders relatively high differences in the fourth order moment. The second order structure function and spectral ratios are found to exhibit anisotropic behavior at the top and bottom-tips for the large scales. Mixed structure functions and co-spectra are also considered in the context of isotropy.

  2. Application of laser velocimetry to aircraft wake-vortex measurements

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Orloff, K. L.

    1977-01-01

    The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

  3. Flow Phenomena in the Very Near Wake of a Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    The very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from a direct numerical simulation. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers, the evolution of rib-vortex induced localized regions of reverse flow that detach from the main body of reverse flow in the trailing edge region and convect downstream, and phaseaveraged velocity statistics in the very near wake. The detached shear layers are found to exhibit unstable behavior intermittently, including the development of shear layer vortices as in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layers undergo this instability, and form the initial shed vortices. Pressure spectra within the shear layers show a broadband peak at a multiple of shedding frequency. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity are compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.

  4. Wakes from submerged obstacles in an open channel flow

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard

    2015-11-01

    Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.

  5. Wake Vortex Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  6. Lidar-based wake tracking for closed-loop wind farm control

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  7. Simulation of wind turbine wakes using the actuator line technique.

    PubMed

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet.

    PubMed

    Luppi, Marco; Cerri, Matteo; Martelli, Davide; Tupone, Domenico; Del Vecchio, Flavia; Di Cristoforo, Alessia; Perez, Emanuele; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Sleep restriction leads to metabolism dysregulation and to weight gain, which is apparently the consequence of an excessive caloric intake. On the other hand, obesity is associated with excessive daytime sleepiness in humans and promotes sleep in different rodent models of obesity. Since no consistent data on the wake-sleep (WS) pattern in diet-induced obesity rats are available, in the present study the effects on the WS cycle of the prolonged delivery of a high-fat hypercaloric (HC) diet leading to obesity were studied in Sprague-Dawley rats. The main findings are that animals kept under a HC diet for either four or eight weeks showed an overall decrease of time spent in wakefulness (Wake) and a clear Wake fragmentation when compared to animals kept under a normocaloric diet. The development of obesity was also accompanied with the occurrence of a larger daily amount of REM sleep (REMS). However, the capacity of HC animals to respond to a "Continuous darkness" exposure condition (obtained by extending the Dark period of the Light-Dark cycle to the following Light period) with an increase of Sequential REMS was dampened. The results of the present study indicate that if, on one hand, sleep curtailment promotes an excess of energy accumulation; on the other hand an over-exceeding energy accumulation depresses Wake. Thus, processes underlying energy homeostasis possibly interact with those underlying WS behavior, in order to optimize energy storage. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  10. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  11. Separation of Lift-Generated Vortex Wakes Into Two Diverging Parts

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Brown, Anthony P.

    2010-01-01

    As part of an ongoing study of the spreading rate of lift-generated vortex wakes, the present investigation considers possible reasons as to why segments of lift-generated wakes sometimes depart from the main part of the wake to move rapidly in either an upward or downward direction. It is assumed that deficiencies or enhancements of the lift carry over across the fuselage-shrouded wing are the driving mechanism for departures of wake-segments. The computations presented first indicate that upwardly departing wake segments that were observed and photographed could have been produced by a deficiency in lift carryover across the fuselage-shrouded part of the wing. Computations made of idealized vortex wakes indicate that upward departure of a wake segment requires a centerline reduction in the span loading of 70% or more, whether the engines are at idle or robust thrust. Similarly, it was found that downward departure of wake segments is produced when the lift over the center part of the wing is enhanced. However, it was also found that downward departures do not occur without the presence of robust engine-exhaust streams (i.e., engines must NOT be at idle). In those cases, downward departures of a wake segment occurs when the centerline value of the loading is enhanced by any amount between about 10% to 100%. Observations of condensation trails indicate that downward departure of wake segments is rare. Upward departures of wake segments appears to be more common but still rare. A study to determine the part of the aircraft that causes wake departures has not been carried out. However, even though departures of wake segments rarely occur, some aircraft do regularly shed these wake structures. If aircraft safety is to be assured to a high degree of reliability, and a solution for eliminating them is not implemented, existing guidelines for the avoidance of vortex wakes [1,3] may need to be broadened to include possible increases in wake sizes caused by vertical

  12. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  13. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N.

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  14. Optimization Under Uncertainty for Wake Steering Strategies

    NASA Astrophysics Data System (ADS)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  15. Optimization Under Uncertainty for Wake Steering Strategies

    DOE PAGES

    Quick, Julian; Annoni, Jennifer; King, Ryan N.; ...

    2017-06-13

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  16. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  17. Dog EEG for wake-promotion studies.

    PubMed

    Parmentier, Régis; Bricout, Denis; Brousseau, Emmanuel; Giboulot, Thierry

    2006-10-01

    Described in this unit is a protocol for investigating the wake-promoting activity of new chemical entities (NCEs) in dog. The experimental approach is based on scoring of sleep/wake stages in animals implanted with a telemetry device for recording EMG and cortical EEG signals. A major advantage of this procedure is that it is conducted in nontethered animals, limiting possible bias and complications encountered with conventional recording systems. In this procedure, polygraphic recording is conducted using four implanted beagles. Results of studies with modafinil, a wake-promoting agent, are described to demonstrate the utility of this test procedure.

  18. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  19. Effects of moving-vehicle wakes on pollutant dispersion inside a highway road tunnel.

    PubMed

    Bhautmage, Utkarsh; Gokhale, Sharad

    2016-11-01

    This study investigates the pollutant dispersion in a highway road tunnel in the presence of moving-vehicle wakes by a relative-velocity approach using 3-D CFD (3-Dimensional Computational Fluid Dynamics). The turbulent behavior of airflow around different-shaped vehicles and its impact on the pollutant dispersion have been studied. The different-shaped vehicle geometries were extracted, and simplified and dimensioned basing the typical vehicles on Indian roads. The model has been verified with the literature data of static pressure around a moving vehicle body before applying to simulate concentrations, and validated with on-site data at two locations. The results showed that wakes varied with the size, shape and speed of vehicles. The mixed-traffic flow produced higher near-field wakes and accelerated the piston effect, pushing pollutants toward the tunnel roof and out of exit portal in short-time. The findings have particular significance in the studies related to dispersion inside the tunnels having a mixed traffic of different dimensions and shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sleep/Wake Physiology and Quantitative Electroencephalogram Analysis of the Neuroligin-3 Knockout Rat Model of Autism Spectrum Disorder.

    PubMed

    Thomas, Alexia M; Schwartz, Michael D; Saxe, Michael D; Kilduff, Thomas S

    2017-10-01

    Neuroligin-3 (NLGN3) is one of the many genes associated with autism spectrum disorder (ASD). Sleep dysfunction is highly prevalent in ASD, but has not been rigorously examined in ASD models. Here, we evaluated sleep/wake physiology and behavioral phenotypes of rats with genetic ablation of Nlgn3. Male Nlgn3 knockout (KO) and wild-type (WT) rats were assessed using a test battery for ASD-related behaviors and also implanted with telemeters to record the electroencephalogram (EEG), electromyogram, body temperature, and locomotor activity. 24-h EEG recordings were analyzed for sleep/wake states and spectral composition. Nlgn3 KO rats were hyperactive, exhibited excessive chewing behavior, and had impaired prepulse inhibition to an auditory startle stimulus. KO rats also spent less time in non-rapid eye movement (NREM) sleep, more time in rapid eye movement (REM) sleep, exhibited elevated theta power (4-9 Hz) during wakefulness and REM, and elevated delta power (0.5-4 Hz) during NREM. Beta (12-30 Hz) power and gamma (30-50 Hz) power were suppressed across all vigilance states. The sleep disruptions in Nlgn3 KO rats are consistent with observations of sleep disturbances in ASD patients. The EEG provides objective measures of brain function to complement rodent behavioral analyses and therefore may be a useful tool to study ASD. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. Discharge properties of upper airway motor units during wakefulness and sleep.

    PubMed

    Trinder, John; Jordan, Amy S; Nicholas, Christian L

    2014-01-01

    Upper airway muscle motoneurons, as assessed at the level of the motor unit, have a range of different discharge patterns, varying as to whether their activity is modulated in phase with the respiratory cycle, are predominantly inspiratory or expiratory, or are phasic as opposed to tonic. Two fundamental questions raised by this observation are: how are synaptic inputs from premotor neurons distributed over motoneurons to achieve these different discharge patterns; and how do different discharge patterns contribute to muscle function? We and others have studied the behavior of genioglossus (GG) and tensor palatini (TP) single motor units at transitions from wakefulness to sleep (sleep onset), from sleep to wakefulness (arousal from sleep), and during hypercapnia. Results indicate that decreases or increases in GG and TP muscle activity occur as a consequence of derecruitment or recruitment, respectively, of phasic and tonic inspiratory-modulated motoneurons, with only minor changes in rate coding. Further, sleep-wake state and chemical inputs to this "inspiratory system" appear to be mediated through the respiratory pattern generator. In contrast, phasic and tonic expiratory units and units with a purely tonic pattern, the "tonic system," are largely unaffected by sleep-wake state, and are only weakly influenced by chemical stimuli and the respiratory cycle. We speculate that the "inspiratory system" produces gross changes in upper airway muscle activity in response to changes in respiratory drive, while the "tonic system" fine tunes airway configuration with activity in this system being determined by local mechanical conditions. © 2014 Elsevier B.V. All rights reserved.

  2. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms

    PubMed Central

    Kubin, Leszek

    2017-01-01

    Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. PMID:27783860

  3. An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1996-01-01

    A concept is presented for the development and implementation of a prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to use current and short-term predictions of the atmospheric state in approach and departure corridors to provide, to ATC facilities, dynamical weather dependent separation criteria with adequate stability and lead time for use in establishing arrival scheduling. The AVOSS will accomplish this task through a combination of wake vortex transport and decay predictions, weather state knowledge, defined aircraft operational procedures and corridors, and wake vortex safety sensors. Work is currently underway to address the critical disciplines and knowledge needs so as to implement and demonstrate a prototype AVOSS in the 1999/2000 time frame.

  4. From Wake Steering to Flow Control

    DOE PAGES

    Fleming, Paul A.; Annoni, Jennifer; Churchfield, Matthew J.; ...

    2017-11-22

    In this article, we investigate the role of flow structures generated in wind farm control through yaw misalignment. A pair of counter-rotating vortices are shown to be important in deforming the shape of the wake and in explaining the asymmetry of wake steering in oppositely signed yaw angles. We motivate the development of new physics for control-oriented engineering models of wind farm control, which include the effects of these large-scale flow structures. Such a new model would improve the predictability of control-oriented models. Results presented in this paper indicate that wind farm control strategies, based on new control-oriented models withmore » new physics, that target total flow control over wake redirection may be different, and perhaps more effective, than current approaches. We propose that wind farm control and wake steering should be thought of as the generation of large-scale flow structures, which will aid in the improved performance of wind farms.« less

  5. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume I -- Wake Vortex Predictive System Study

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  6. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep

    PubMed Central

    Rodriguez, Alexander V.; Funk, Chadd M.; Vyazovskiy, Vladyslav V.; Nir, Yuval; Tononi, Giulio

    2016-01-01

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal “fatigue”: high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the “fatigue” accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced

  7. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    PubMed

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  8. First Lunar Wake Passage of ARTEMIS: Discrimination of Wake Effects and Solar Wind Fluctuations by 3D Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; hide

    2011-01-01

    The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.

  9. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response.

    PubMed

    Li, Yanpeng; Panossian, Lori A; Zhang, Jing; Zhu, Yan; Zhan, Guanxia; Chou, Yu-Ting; Fenik, Polina; Bhatnagar, Seema; Piel, David A; Beck, Sheryl G; Veasey, Sigrid

    2014-01-01

    Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P < 0.01 and shortened sleep bouts, P < 0.05, while total sleep/wake times and plasma corticosterone levels were unaffected. A multiple sleep latency test performed at the onset of the dark period showed a reduced latency to sleep in SF4wk mice (P < 0.05). The hypercapnic arousal latency was increased, Ct4wk 64 ± 5 sec vs. SF4wk 154 ± 6 sec, P < 0.001, and remained elevated after a 2 week recovery (101 ± 4 sec, P < 0.001). C-fos activation in noradrenergic, orexinergic, histaminergic, and cholinergic wake-active neurons was reduced in response to hypercapnia (P < 0.05-0.001). Catecholaminergic and orexinergic projections into the cingulate cortex were also reduced in SF4wk (P < 0.01). In addition, SF4wk resulted in impaired LC neuron excitability (P < 0.01). Four weeks of sleep fragmentation (SF4wk) impairs arousal responses to hypercapnia, reduces wake neuron projections and locus coeruleus neuronal excitability, supporting the concepts that some effects of sleep fragmentation may contribute to impaired arousal responses in sleep apnea, which may not reverse immediately with therapy.

  10. Direct Simulation and Theoretical Study of Sub- and Supersonic Wakes

    NASA Astrophysics Data System (ADS)

    Hickey, Jean-Pierre

    Wakes are constitutive components of engineering, aeronautical and geophysical flows. Despite their canonical nature, many fundamental questions surrounding wakes remain unanswered. The present work studies the nature of archetypal planar splitter-plate wakes in the sub- and supersonic regimes from a theoretical as well as a numerical perspective. A highly-parallelizable computational fluid dynamic solver was developed, from scratch, for the very-large scale direct numerical simulations of high-speed free shear flows. Wakes maintain a near indelible memory of their origins; thus, changes to the state of the flow on the generating body lead to multiple self-similar states in the far wake. To understand the source of the lack of universality, three distinct wake evolution scenarios are investigated in the incompressible limit: the Kelvin-Helmholtz transition, the bypass transition in an asymmetric wake and the initially turbulent wake. The multiplicity of self-similar states is the result of a plurality of far wake structural organizations, which maintains the memory of the flow. The structural organization is predicated on the presence or absence of near wake anti-symmetric perturbations (as a result of shedding, instability modes and/or trailing edge receptivity). The plurality of large-scale structural organization contrasts with the commonality observed in the mid-sized structures, which are dominated by inclined vortical rods, and not, as previously assumed, by horseshoe structures. The compressibility effects are a direct function of the maximal velocity defect in the wake and are therefore only important in the transitional region - the far wake having an essentially incompressible character. The compressibility simultaneously modifies the growth rate and wavelength of the primary instability mode with a concomitant effect on the emerging transitional structures. As a direct result, the spanwise rollers have an increasing ellipticity and cross-wake domain of

  11. Characterization of turbulent wake of wind turbine by coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Li, Rongzhong; Wang, Xitao; Feng, Changzhong; Zhuang, Quanfeng; Zhang, Kailin

    2014-11-01

    The indispensable access to real turbulent wake behavior is provided by the pulsed coherent Doppler Light Detection and Ranging (LIDAR) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. The Doppler shift in the frequency of the backscattered signal is analyzed to obtain the line-of-sight (LOS) velocity component of the air motion. From the LOS velocities the characteristic of the turbulent wake can be deduced. The Coherent Doppler LIDAR (CDL) is based on all-fiber laser technology and fast digital-signal-processing technology. The 1.5 µm eye-safe Doppler LIDAR system has a pulse length of 200ns and a pulse repetition frequency of 10 kHz. The speed measurement range is ±50m/s and the speed measurement uncertainty is 0.3 m/s. The 2-axis beam scanner and detection range of 3000m enable the system to monitor the whole wind farming filed. Because of the all-fiber structure adoption, the system is stable, reliable and high-integrated. The wake vortices of wind turbine blades with different spatial and temporal scales have been observed by LIDAR. In this paper, the authors discuss the possibility of using LIDAR measurements to characterize the complicated wind field, specifically wind velocity deficit and terrain effects.

  12. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  13. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  14. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  15. EEG power during waking and NREM sleep in primary insomnia.

    PubMed

    Wu, You Meme; Pietrone, Regina; Cashmere, J David; Begley, Amy; Miewald, Jean M; Germain, Anne; Buysse, Daniel J

    2013-10-15

    Pathophysiological models of insomnia invoke the concept of 24-hour hyperarousal, which could lead to symptoms and physiological findings during waking and sleep. We hypothesized that this arousal could be seen in the waking electroencephalogram (EEG) of individuals with primary insomnia (PI), and that waking EEG power would correlate with non-REM (NREM) EEG. Subjects included 50 PI and 32 good sleeper controls (GSC). Five minutes of eyes closed waking EEG were collected at subjects' usual bedtimes, followed by polysomnography (PSG) at habitual sleep times. An automated algorithm and visual editing were used to remove artifacts from waking and sleep EEGs, followed by power spectral analysis to estimate power from 0.5-32 Hz. We did not find significant differences in waking or NREM EEG spectral power of PI and GSC. Significant correlations between waking and NREM sleep power were observed across all frequency bands in the PI group and in most frequency bands in the GSC group. The absence of significant differences between groups in waking or NREM EEG power suggests that our sample was not characterized by a high degree of cortical arousal. The consistent correlations between waking and NREM EEG power suggest that, in samples with elevated NREM EEG beta activity, waking EEG power may show a similar pattern.

  16. Inlet Guide Vane Wakes Including Rotor Effects

    NASA Astrophysics Data System (ADS)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  17. Radar Reflectivity in Wingtip-Generated Wake Vortices

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki

    1997-01-01

    This report documents new predictive models of radar reflectivity, with meter-scale resolution, for aircraft wakes in clear air and fog. The models result from a radar design program to locate and quantify wake vortices from commercial aircraft in support of the NASA Aircraft Vortex Spacing System (AVOSS). The radar reflectivity model for clear air assumes: 1) turbulent eddies in the wake produce small discontinuities in radar refractive index; and 2) these turbulent eddies are in the 'inertial subrange' of turbulence. From these assumptions, the maximum radar frequency for detecting a particular aircraft wake, as well as the refractive index structure constant and radar volume reflectivity in the wake can be obtained from the NASA Terminal Area Simulation System (TASS) output. For fog conditions, an empirical relationship is used to calculate radar reflectivity factor from TASS output of bulk liquid water. Currently, two models exist: 1) Atlas-based on observations of liquid water and radar reflectivity factor in clouds; and 2) de Wolf- specifically tailored to a specific measured dataset (1992 Vandenberg Air Force Base).

  18. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle.

    PubMed

    Petit, J-M; Magistretti, P J

    2016-05-26

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in the firing rate such as during the sleep/wake transitions. Investigations into brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose (Gluc) consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, Gluc and lactate (Lac) with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolite regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and NMC in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the "local and use dependent" sleep hypothesis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Wake loss and energy spread factor of the LEReC Booster cavity caused by short range wake field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Binping; Blaskiewicz, Michael; Fedotov, Alexei

    LEReC project uses a DC photoemission gun with multi-alkali (CsK 2Sb or NaK 2Sb) cathode [1]. To get 24 mm “flat-top” distribution, 32 Gaussian laser bunches with 0.6 mm rms length are stacked together with 0.75 mm distance [2]. In this case one cannot simply use a 1 cm rms length Gaussian/step/delta bunch for short range wake field simulation since a 0.6 mm bunch contains frequency much higher than the 1 cm bunch. A short range wake field simulation was done using CST Particle Studio™ with 0.6 mm rms Gaussian bunch at the speed of light, and this result wasmore » compared with the result for 1 cm rms Gaussian bunch in Figure 1, from where one notice that the wake potential for the 0.6 mm bunch is ~10 times higher than that of the 1 cm bunch. The wake potential of the 0.6 mm bunch, as well as the charge distribution, was then “shift and stack” every 0.75 mm, the normalized results are shown in Figure 2. The wake loss factor (WLF) is the integration of the product of wake potential and normalized bunch charge, and the energy spread factor (ESF) is the rms deviation from the average energy loss. It is calculated by summing the weighted squares of the differences and taking the square root of the sum. These two factors were then divided by β 2 for 1.6 MV beam energy. The wake loss factor is at 0.86 V/pC and energy spread factor is at 0.54 V/pC rms. With 100 pC electron bunch, the energy spread inter-bunch is 54 V rms.« less

  20. Effect of a rotor wake on heat transfer from a circular cylinder

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Morehouse, K. A.; Vanfossen, G. J.; Behning, F. P.

    1984-01-01

    The effect of a rotor wake on heat transfer to a downstream stator was investigated. The rotor was modeled with a spoked wheel of 24 circular pins 1.59 mm in diameter. One of the stator pins was electrically heated in the midspan region and circumferentially averaged heat transfer coefficients were obtained. The experiment was run in an annular flow wind tunnel using air at ambient temperature and pressure. Reynolds numbers based on stator cylinder diameter ranged from .001 to .00001. Rotor blade passing frequencies ranged from zero to 2500 Hz. Stationary grids were used to vary the rotor inlet turbulence from one to four percent. The rotor-stator spacings were one and two stator pin diameters. In addition to the heat transfer coefficients, turbulence spectra and ensemble averaged wake profiles were measured. At the higher Reynolds numbers, which is the primary range of interest for turbulent heat transfer, the rotor wakes increased Nusselt number from 10 to 45 percent depending on conditions. At lower Reynolds numbers the effect was as much as a factor of two.

  1. Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rutishauser, David (Technical Monitor)

    2003-01-01

    Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.

  2. Solar-wind proton access deep into the near-Moon wake

    NASA Astrophysics Data System (ADS)

    Nishino, M. N.; Fujimoto, M.; Maezawa, K.; Saito, Y.; Yokota, S.; Asamura, K.; Tanaka, T.; Tsunakawa, H.; Matsushima, M.; Takahashi, F.; Terasawa, T.; Shibuya, H.; Shimizu, H.

    2009-08-01

    We study solar wind (SW) entry deep into the near-Moon wake using SELENE (KAGUYA) data. It has been known that SW protons flowing around the Moon access the central region of the distant lunar wake, while their intrusion deep into the near-Moon wake has never been expected. We show that SW protons sneak into the deepest lunar wake (anti-subsolar region at ˜100 km altitude), and that the entry yields strong asymmetry of the near-Moon wake environment. Particle trajectory calculations demonstrate that these SW protons are once scattered at the lunar dayside surface, picked-up by the SW motional electric field, and finally sneak into the deepest wake. Our results mean that the SW protons scattered at the lunar dayside surface and coming into the night side region are crucial for plasma environment in the wake, suggesting absorption of ambient SW electrons into the wake to maintain quasi-neutrality.

  3. On the investigation of cascade and turbomachinery rotor wake characteristics

    NASA Technical Reports Server (NTRS)

    Raj, R.; Lakshminarayana, B.

    1975-01-01

    The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.

  4. Asymptotic expansions for 2D symmetrical laminar wakes

    NASA Astrophysics Data System (ADS)

    Belan, Marco; Tordella, Daniela

    1999-11-01

    An extension of the well known asymptotic representation of the 2D laminar incompressible wake past a symmetrical body is presented. Using the thin free shear layer approximation we determined solutions in terms of infinite asymptotic expansions. These are power series of the streamwise space variable with fractional negative coefficients. The general n-th order term has been analytically established. Through analysis of the behaviour of the same expansions inserted into the Navier-Stokes equations, we verified the self-consistency of the approximation showing that at the third order the correction due to pressure variations identically vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of the transversal diffusion, depending on Re. When the procedure is applied to the Navier-Stokes equations, we showed that further mathematical difficulties do not arise. Where opportune one may thus easily shift to the complete model. Through a spatial multiscaling approach, a brief account on the stability properties of these expansions as representing the non parallel basic flow of 2D wakes will be given.

  5. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  6. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  7. Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy.

    PubMed

    Patel, Mainak; Rangan, Aaditya

    2017-08-07

    Infant rats randomly cycle between the sleeping and waking states, which are tightly correlated with the activity of mutually inhibitory brainstem sleep and wake populations. Bouts of sleep and wakefulness are random; from P2-P10, sleep and wake bout lengths are exponentially distributed with increasing means, while during P10-P21, the sleep bout distribution remains exponential while the distribution of wake bouts gradually transforms to power law. The locus coeruleus (LC), via an undeciphered interaction with sleep and wake populations, has been shown experimentally to be responsible for the exponential to power law transition. Concurrently during P10-P21, the LC undergoes striking physiological changes - the LC exhibits strong global 0.3 Hz oscillations up to P10, but the oscillation frequency gradually rises and synchrony diminishes from P10-P21, with oscillations and synchrony vanishing at P21 and beyond. In this work, we construct a biologically plausible Wilson Cowan-style model consisting of the LC along with sleep and wake populations. We show that external noise and strong reciprocal inhibition can lead to switching between sleep and wake populations and exponentially distributed sleep and wake bout durations as during P2-P10, with the parameters of inhibition between the sleep and wake populations controlling mean bout lengths. Furthermore, we show that the changing physiology of the LC from P10-P21, coupled with reciprocal excitation between the LC and wake population, can explain the shift from exponential to power law of the wake bout distribution. To our knowledge, this is the first study that proposes a plausible biological mechanism, which incorporates the known changing physiology of the LC, for tying the developing sleep-wake circuit and its interaction with the LC to the transformation of sleep and wake bout dynamics from P2-P21. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  9. Evolution of plasma wakes in density up- and down-ramps

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Joshi, C.; Xu, X. L.; Mori, W. B.; Li, F.; Wan, Y.; Hua, J. F.; Pai, C. H.; Wang, J.; Lu, W.

    2018-02-01

    The time evolution of plasma wakes in density up- and down-ramps is examined through theory and particle-in-cell simulations. Motivated by observation of the reversal of a linear plasma wake in a plasma density upramp in a recent experiment (Zhang et al 2017 Phys. Rev. Lett. 119 064801) we have examined the behaviour of wakes in plasma ramps that always accompany any plasma source used for plasma-based acceleration. In the up-ramp case it is found that, after the passage of the drive pulse, the wavnumber/wavelength of the wake starts to decrease/increase with time until it eventually tends to zero/infinity, then the wake reverses its propagation direction and the wavenunber/wavelength of the wake begins to increase/shrink. The evolutions of the wavenumber and the phase velocity of the wake as functions of time are shown to be significantly different in the up-ramp and the down-ramp cases. In the latter case the wavenumber of the wake at a particular position in the ramp increases until the wake is eventually damped. It is also shown that the waveform of the wake at a particular time after being excited can be precisely controlled by tuning the initial plasma density profile, which may enable a new type of plasma-based ultrafast optics.

  10. Shining Light on Wakefulness and Arousal

    PubMed Central

    de Lecea, Luis; Carter, Matthew E.; Adamantidis, Antoine

    2013-01-01

    Alterations in arousal states are associated with multiple neuropsychiatric disorders including generalized anxiety disorders, addiction, schizophrenia, and depression. Therefore, elucidating the neurobiological mechanisms controlling the boundaries between arousal, hyperarousal, and hypoarousal is a crucial endeavor in biological psychiatry. Substantial research over several decades has identified distinct arousal-promoting neural populations in the brain; however, how these nuclei act individually and collectively to promote and maintain wakefulness and various arousal states is unknown. We have recently applied optogenetic technology to the repertoire of techniques used to study arousal. Here, we discuss the recent results of these experiments and propose future use of this approach as a way to understand the complex dynamics of neural circuits controlling arousal and arousal-related behaviors. PMID:22440618

  11. Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop

    NASA Technical Reports Server (NTRS)

    Creduer, Leonard (Editor); Perry, R. Brad (Editor)

    1997-01-01

    A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

  12. Cavitation and Wake Structure of Unsteady Tip Vortex Flows

    DTIC Science & Technology

    1992-12-10

    wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex

  13. Stability Impact on Wake Development in Moderately Complex Terrain

    NASA Astrophysics Data System (ADS)

    Infield, D.; Zorzi, G.

    2017-05-01

    This paper uses a year of SCADA data from Whitelee Wind Farm near Glasgow to investigate wind turbine wake development in moderately complex terrain. Atmospheric stability measurements in terms of Richardson number from a met mast at an adjoining site have been obtained and used to assess the impact of stability on wake development. Considerable filtering of these data has been undertaken to ensure that all turbines are working normally and are well aligned with the wind direction. A group of six wind turbines, more or less in a line, have been selected for analysis, and winds within a 2 degree direction sector about this line are used to ensure, as far as possible, that all the turbines investigated are fully immersed in the wake/s of the upstream turbine/s. Results show how the terrain effects combine with the wake effects, with both being of comparable importance for the site in question. Comparison has been made with results from two commercial CFD codes for neutral stability, and reasonable agreement is demonstrated. Richardson number has been plotted against wind shear and turbulence intensity at a met mast on the wind farm that for the selected wind direction is not in the wake of any turbines. Good correlations are found indicating that the Richardson numbers obtained are reliable. The filtered data used for wake analysis were split according to Richardson number into two groups representing slightly stable to neutral, and unstable conditions. Very little difference in wake development is apparent. A greater difference can be observed when the data are separated simply by turbulence intensity, suggesting that, although turbulence intensity is correlated with stability, of the two it is the parameter that most directly impacts on wake development through mixing of ambient and wake flows.

  14. The sleep-wake-cycle: basic mechanisms.

    PubMed

    Jones, B E

    1989-11-01

    The physiologic characteristics of the sleep-wake states have been well defined and some of the chemical and neuron systems that participate in the cyclic generation and maintenance of these states have been identified. The actual dynamic process by which these systems interact to generate the basic sleep-wake cycle, however, remains a mystery.

  15. Feasibility of a Cognitive-Behavioral and Environmental Intervention for Sleep-Wake Difficulties in Community-Dwelling Cancer Patients Receiving Palliative Care.

    PubMed

    Bernatchez, Marie Solange; Savard, Josée; Savard, Marie-Hélène; Aubin, Michèle

    2018-05-14

    High rates of sleep-wake difficulties have been found in patients with cancer receiving palliative care. Pharmacotherapy is the most frequently used treatment option to manage these difficulties despite numerous adverse effects and the absence of empirical evidence of its efficacy and innocuity in palliative care. This pilot study aimed to assess the feasibility and acceptability of a cognitive-behavioral and environmental intervention (CBT-E) to improve insomnia and hypersomnolence in patients with a poor functioning level and to collect preliminary data on its effects. Six patients with cancer receiving palliative care (Eastern Cooperative Oncology Group score 2-3), who had insomnia and/or hypersomnolence, received 1 CBT-E individual session at home. They applied the strategies for 3 weeks. Patients completed the Insomnia Severity Index, the Epworth Sleepiness Scale, a daily sleep diary, and a 24-hour actigraphic recording (7 days) at pretreatment and posttreatment, in addition to a semistructured interview (posttreatment). Participants found strategies easy to apply most of the time, and none was rated as impossible to use because of their health condition. However, their adherence and satisfaction toward CBT-E were highly variable. Results on the effects of CBT-E were heterogeneous, but improvements were observed in patients with a persistent insomnia disorder. The CBT-E protocol tested among this highly selected sample was fairly well received and suggested positive outcomes in some patients, particularly those with an insomnia complaint alone. Efforts should be pursued to adapt CBT-E and develop other nonpharmacological interventions, in order to provide an alternative to pharmacotherapy for sleep-wake difficulties in this population.

  16. Acoustic imaging of aircraft wake vortex dynamics

    DOT National Transportation Integrated Search

    2005-06-01

    The experience in utilizing a phased microphone array to passively image aircraft wake : vortices is highlighted. It is demonstrated that the array can provide visualization of wake : dynamics similar to smoke release or natural condensation of vorti...

  17. Effects of Chronic Sleep Fragmentation on Wake-Active Neurons and the Hypercapnic Arousal Response

    PubMed Central

    Li, Yanpeng; Panossian, Lori A.; Zhang, Jing; Zhu, Yan; Zhan, Guanxia; Chou, Yu-Ting; Fenik, Polina; Bhatnagar, Seema; Piel, David A.; Beck, Sheryl G.; Veasey, Sigrid

    2014-01-01

    Study Objectives: Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. Design: Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. Measurements and Results: SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P < 0.01 and shortened sleep bouts, P < 0.05, while total sleep/wake times and plasma corticosterone levels were unaffected. A multiple sleep latency test performed at the onset of the dark period showed a reduced latency to sleep in SF4wk mice (P < 0.05). The hypercapnic arousal latency was increased, Ct4wk 64 ± 5 sec vs. SF4wk 154 ± 6 sec, P < 0.001, and remained elevated after a 2 week recovery (101 ± 4 sec, P < 0.001). C-fos activation in noradrenergic, orexinergic, histaminergic, and cholinergic wake-active neurons was reduced in response to hypercapnia (P < 0.05-0.001). Catecholaminergic and orexinergic projections into the cingulate cortex were also reduced in SF4wk (P < 0.01). In addition, SF4wk resulted in impaired LC neuron excitability (P < 0.01). Conclusions: Four weeks of sleep fragmentation (SF4wk) impairs arousal responses to hypercapnia, reduces wake neuron projections and locus coeruleus neuronal excitability, supporting the concepts that some effects of sleep fragmentation may contribute to impaired arousal responses in sleep apnea, which may not reverse immediately with therapy. Citation: Li Y; Panossian LA; Zhang J; Zhu Y; Zhan G; Chou YT; Fenik P; Bhatnagar S; Piel

  18. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    PubMed

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Aircraft Wake Vortices : An Assessment of the Current Situation

    DOT National Transportation Integrated Search

    1991-01-01

    The state of knowledge about aircraft wake vortices in the summer of 1990 is summarized. With the advent of a new FAA wake vortex program, the current situation was assessed by answering five questions: (1) What do we know about wake vortices, (2) wh...

  20. Consciousness in waking and dreaming: the roles of neuronal oscillation and neuromodulation in determining similarities and differences.

    PubMed

    Kahn, D; Pace-Schott, E F; Hobson, J A

    1997-05-01

    State-dependent aspects of consciousness are explored with particular attention to waking and dreaming. First, those phenomenological differences between waking and dreaming that have been established through subjective reports are reviewed. These differences are robustly expressed in most aspects of consciousness including perception, attention, memory, emotion, orientation, and thought. Next, the roles of high frequency neuronal oscillation and neuromodulation are explored in waking and rapid eye movement sleep, the stage of sleep with which the most intense dreaming is associated. The high frequency neuronal oscillations serve similar functions in the wake and rapid eye movement states sleep but neuromodulation is very different in the two states. The collective high frequency oscillatory activity gives coherence to spatially separate neurons but, because of the different neuromodulation, the binding of sensory input in the wake state is very different from the binding of internally perceived input during rapid eye movement sleep. An explanatory model is presented which states that neuromodulation, as well as input source and brain activation level differentiate states of the brain, while the self-organized collective neuronal oscillations unify consciousness via long range correlations.

  1. Nicotine dependence and psychiatric disorders.

    PubMed

    Salín-Pascual, Rafael J; Alcocer-Castillejos, Natasha V; Alejo-Galarza, Gabriel

    2003-01-01

    Nicotine addiction is the single largest preventable cause of morbidity and mortality in the Western World. Smoking is not any more just a bad habit, but a substance addiction problem. The pharmacological aspects of nicotine show that this substance has a broad distribution in the different body compartnents, due mainly to its lipophilic characteristic. There are nicotinic receptors as members of cholinergic receptors' family. They are located in neuromuscular junction and in the central nervous system (CNS). Although they are similar, pentameric structure with an ionic channel to sodium, there are some differences in the protein chains characteristics. Repeated administration of nicotine in rats, results in the sensitization phenomenon, which produces increase in the behavioral locomotor activity response. It has been found that most psychostimulants-induced behavioral sensitization through a nicotine receptor activation. Nicotine receptors in CNS are located mainly in presynaptic membrane and in that way they regulated the release of several neurotransmitters, among them acetylcholine, dopamine, serotonin, and norepinephrine. In some activities like sleep-wake cycle, nicotine receptors have a functional significance. Nicotine receptor stimulation promotes wake time, reduces both, total sleep time and rapid eye movement sleep (REMS). About nicotine dependence, this substance full fills all the criteria for dependence and withdrawal syndrome. There are some people that have more vulnerability for to become nicotine dependent, those are psychiatric patients. Among them schizophrenia, major depression, anxiety disorders and attention deficit disorder, represent the best example in this area. Nicotine may have some beneficial effects, among them are some neuroprotective effects in disorders like Parkinson's disease, and Gilles de la Tourette' syndrome. Also there are several evidences that support the role of nicotine in cognitive improvement functions like attention

  2. Within-Breath Control of Genioglossal Muscle Activation in Humans: Effect of Sleep-Wake State

    PubMed Central

    Fogel, Robert B; Trinder, John; Malhotra, Atul; Stanchina, Michael; Edwards, Jill K; Schory, Karen E; White, David P

    2003-01-01

    Pharyngeal dilator muscles are clearly important in the pathogenesis of obstructive sleep apnoea syndrome. Substantial data support the role of a local negative pressure reflex in modifying genioglossal activation across inspiration during wakefulness. Using a model of passive negative pressure ventilation, we have previously reported a tight relationship between varying intrapharyngeal negative pressures and genioglossal muscle activation (GGEMG) during wakefulness. In this study, we used this model to examine the slope of the relationship between epiglottic pressure (Pepi) and GGEMG, during stable NREM sleep and the transition from wakefulness to sleep. We found that there was a constant relationship between negative epiglottic pressure and GGEMG during both basal breathing (BB) and negative pressure ventilation (NPV) during wakefulness (slope GGEMG/Pepi 1.86 ± 0.3 vs. 1.79 ± 0.3 arbitrary units (a.u.) cmH2O−1). However, while this relationship remained stable during NREM sleep during BB, it was markedly reduced during NPV during sleep (2.27 ± 0.4 vs. 0.58 ± 0.1 a.u. cmH2O−1). This was associated with a markedly higher pharyngeal airflow resistance during sleep during NPV. At the transition from wakefulness to sleep there was also a greater reduction in peak GGEMG seen during NPV than during BB. These data suggest that while the negative pressure reflex is able to maintain GGEMG during passive NPV during wakefulness, this reflex is unable to do so during sleep. The loss of this protective mechanism during sleep suggests that an airway dependent upon such mechanisms (as in the patient with sleep apnoea) will be prone to collapse during sleep. PMID:12807995

  3. Long-term oscillations in the sleep/wake cycle of infants

    NASA Astrophysics Data System (ADS)

    Diambra, L.; Malta, C. P.; Capurro, A.

    2009-11-01

    The development of circadian sleep-wakefulness rhythm was investigated by a longitudinal study of six normal infants. We propose an entropy based measure for the sleep/wake cycle fragmentation. Our results confirm that the sleep/wake cycle fragmentation and the sleep/wake ratio decrease, while the circadian power increases during the maturation process of infants. In addition to these expected linear trends in the variables devised to quantify sleep consolidation, circadian power and sleep/wake ratio, we found that they present infradian rhythms in the monthly range.

  4. Awakening is not a metaphor: the effects of Buddhist meditation practices on basic wakefulness

    PubMed Central

    Britton, Willoughby B.; Lindahl, Jared R.; Cahn, B. Rael; Davis, Jake H.; Goldman, Roberta E.

    2014-01-01

    Buddhist meditation practices have become a topic of widespread interest in both science and medicine. Traditional Buddhist formulations describe meditation as a state of relaxed alertness that must guard against both excessive hyperarousal (restlessness) and excessive hypoarousal (drowsiness, sleep). Modern applications of meditation have emphasized the hypoarousing and relaxing effects without as much emphasis on the arousing or alertness-promoting effects. In an attempt to counterbalance the plethora of data demonstrating the relaxing and hypoarousing effects of Buddhist meditation, this interdisciplinary review aims to provide evidence of meditation’s arousing or wake-promoting effects by drawing both from Buddhist textual sources and from scientific studies, including subjective, behavioral, and neuroimaging studies during wakefulness, meditation, and sleep. Factors that may influence whether meditation increases or decreases arousal are discussed, with particular emphasis on dose, expertise, and contemplative trajectory. The course of meditative progress suggests a nonlinear multiphasic trajectory such that early phases that are more effortful may produce more fatigue and sleep propensity, while later stages produce greater wakefulness as a result of neuroplastic changes and more efficient processing. PMID:24372471

  5. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    NASA Astrophysics Data System (ADS)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  6. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE PAGES

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-14

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  7. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  8. Brief wakeful resting can eliminate directed forgetting.

    PubMed

    Schlichting, Andreas; Bäuml, Karl-Heinz T

    2017-02-01

    When cued to intentionally forget previously encoded memories, participants typically show reduced recall of the memories on a later recall test. We examined how such directed forgetting is affected by a brief period of wakeful resting between encoding and test. Encoding was followed by a "passive" wakeful resting period in which subjects heard emotionally neutral music or perceived neutral pictures, or it was followed by an "active" distraction period in which subjects were engaged in counting or calculation tasks. Whereas typical directed forgetting was present after active distraction, the forgetting was absent after wakeful resting. The findings indicate that the degree to which people can intentionally forget memories is influenced by the cognitive activity that people engage in shortly after learning takes place. The results provide first evidence on the interplay between wakeful resting and intentional forgetting.

  9. Sleep-wake disturbances after traumatic brain injury.

    PubMed

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  11. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  12. Spectral Analysis of the Wake behind a Helicopter Rotor Hub

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Reich, David; Schmitz, Sven; Elbing, Brian

    2016-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48" Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. LDV and PIV measurements in the far-wake consistently showed a six-per-revolution flow structure, in addition to stronger two- and four-per-revolution structures. These six-per-revolution structures persisted into the far-field, and have no direct geometric counterpart on the hub model. The current study will examine the Reynolds number dependence of these structures and present higher-order statistics of the turbulence within the wake. In addition, current activity using the EFPL Large Water Tunnel at Oklahoma State University will be presented. This effort uses a more canonical configuration to identify the source for these six-per-revolution structures, which are assumed to be a non-linear interaction between the two- and four-per-revolution structures.

  13. Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness.

    PubMed

    Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Ruby, Perrine

    2014-05-01

    The neurophysiological correlates of dreaming remain unclear. According to the "arousal-retrieval" model, dream encoding depends on intrasleep wakefulness. Consistent with this model, subjects with high and low dream recall frequency (DRF) report differences in intrasleep awakenings. This suggests a possible neurophysiological trait difference between the 2 groups. To test this hypothesis, we compared the brain reactivity (evoked potentials) of subjects with high (HR, N = 18) and low (LR, N = 18) DRF during wakefulness and sleep. During data acquisition, the subjects were presented with sounds to be ignored (first names randomly presented among pure tones) while they were watching a silent movie or sleeping. Brain responses to first names dramatically differed between the 2 groups during both sleep and wakefulness. During wakefulness, the attention-orienting brain response (P3a) and a late parietal response were larger in HR than in LR. During sleep, we also observed between-group differences at the latency of the P3a during N2 and at later latencies during all sleep stages. Our results demonstrate differences in the brain reactivity of HR and LR during both sleep and wakefulness. These results suggest that the ability to recall dreaming is associated with a particular cerebral functional organization, regardless of the state of vigilance.

  14. International Survey on the Management of Wake-Up Stroke.

    PubMed

    de Castro-Afonso, Luís Henrique; Nakiri, Guilherme Seizem; Pontes-Neto, Octávio Marques; dos Santos, Antônio Carlos; Abud, Daniel Giansante

    2016-01-01

    Patients who wake up having experienced a stroke while asleep represent around 20% of acute stroke admissions. According to international guidelines for the management of acute stroke, patients presenting with wake-up stroke are not currently eligible to receive revascularization treatments. In this study, we aimed to assess the opinions of stroke experts about the management of patients with wake-up stroke by using an international multicenter electronic survey. This study consisted of 8 questions on wake-up stroke treatment. Two hundred invitations to participate in the survey were sent by e-mail. Fifty-nine participants started the survey, 4 dropped out before completing it, and 55 completed the full questionnaire. We had 55 participants from 22 countries. In this study, most stroke experts recommended a recanalization treatment for wake-up stroke. However, there was considerable disagreement among experts regarding the best brain imaging method and the best recanalization treatment. The results of ongoing randomized trials on wake-up stroke are urgently needed.

  15. Experimental testing of axial induction based control strategies for wake control and wind farm optimization

    NASA Astrophysics Data System (ADS)

    Bartl, J.; Sætran, L.

    2016-09-01

    In state-of-the-art wind farms each turbine is controlled individually aiming for optimum turbine power not considering wake effects on downstream turbines. Wind farm control concepts aim for optimizing the overall power output of the farm taking wake interactions between the individual turbines into account. This experimental wind tunnel study investigates axial induction based control concepts. It is examined how the total array efficiency of two in-line model turbines is affected when the upstream turbine's tip speed ratio (λcontrol) or blade pitch angle (β-control) is modified. The focus is particularly directed on how the wake flow behind the upstream rotor is affected when its axial induction is reduced in order to leave more kinetic energy in the wake to be recovered by a downstream turbine. It is shown that the radial distribution of kinetic energy in the wake area can be controlled by modifying the upstream turbine's tip speed ratio. By pitching out the upstream turbine's blades, however, the available kinetic energy in the wake is increased at an equal rate over the entire blade span. Furthermore, the total array efficiency of the two turbine setup is mapped depending on the upstream turbines tip speed ratio and pitch angle. For a small turbine separation distance of x/D=3 the downstream turbine is able to recover the major part of the power lost on the upstream turbine. However, no significant increase in the two-turbine array efficiency is achieved by altering the upstream turbine's operation point away from its optimum.

  16. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  17. Abnormal Sleep/Wake Dynamics in Orexin Knockout Mice

    PubMed Central

    Diniz Behn, Cecilia G.; Klerman, Elizabeth B.; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E.

    2010-01-01

    Study Objectives: Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. Design: We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. Measurements and Results: OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. Conclusions: State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders. Citation: Diniz Behn CG; Klerman EB; Mochizuki T; Lin S; Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. SLEEP 2010;33(3):297-306. PMID:20337187

  18. An Investigation of Candidate Sensor-Observable Wake Vortex Strength Parameters for the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Tatnall, Chistopher R.

    1998-01-01

    The counter-rotating pair of wake vortices shed by flying aircraft can pose a threat to ensuing aircraft, particularly on landing approach. To allow adequate time for the vortices to disperse/decay, landing aircraft are required to maintain certain fixed separation distances. The Aircraft Vortex Spacing System (AVOSS), under development at NASA, is designed to prescribe safe aircraft landing approach separation distances appropriate to the ambient weather conditions. A key component of the AVOSS is a ground sensor, to ensure, safety by making wake observations to verify predicted behavior. This task requires knowledge of a flowfield strength metric which gauges the severity of disturbance an encountering aircraft could potentially experience. Several proposed strength metric concepts are defined and evaluated for various combinations of metric parameters and sensor line-of-sight elevation angles. Representative populations of generating and following aircraft types are selected, and their associated wake flowfields are modeled using various wake geometry definitions. Strength metric candidates are then rated and compared based on the correspondence of their computed values to associated aircraft response values, using basic statistical analyses.

  19. Experimental study on wake structure of single rising clean bubble

    NASA Astrophysics Data System (ADS)

    Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao

    2007-11-01

    Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.

  20. Automated determination of wakefulness and sleep in rats based on non-invasively acquired measures of movement and respiratory activity

    PubMed Central

    Zeng, Tao; Mott, Christopher; Mollicone, Daniel; Sanford, Larry D.

    2012-01-01

    The current standard for monitoring sleep in rats requires labor intensive surgical procedures and the implantation of chronic electrodes which have the potential to impact behavior and sleep. With the goal of developing a non-invasive method to determine sleep and wakefulness, we constructed a non-contact monitoring system to measure movement and respiratory activity using signals acquired with pulse Doppler radar and from digitized video analysis. A set of 23 frequency and time-domain features were derived from these signals and were calculated in 10 s epochs. Based on these features, a classification method for automated scoring of wakefulness, non-rapid eye movement sleep (NREM) and REM in rats was developed using a support vector machine (SVM). We then assessed the utility of the automated scoring system in discriminating wakefulness and sleep by comparing the results to standard scoring of wakefulness and sleep based on concurrently recorded EEG and EMG. Agreement between SVM automated scoring based on selected features and visual scores based on EEG and EMG were approximately 91% for wakefulness, 84% for NREM and 70% for REM. The results indicate that automated scoring based on non-invasively acquired movement and respiratory activity will be useful for studies requiring discrimination of wakefulness and sleep. However, additional information or signals will be needed to improve discrimination of NREM and REM episodes within sleep. PMID:22178621

  1. Optimization Under Uncertainty for Wake Steering Strategies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presencemore » of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  2. Visualization of the wake behind a sliding bubble

    NASA Astrophysics Data System (ADS)

    O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.

    2017-10-01

    In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.

  3. Sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Landolt, H-P; Glatzel, M; Blättler, T; Achermann, P; Roth, C; Mathis, J; Weis, J; Tobler, I; Aguzzi, A; Bassetti, C L

    2006-05-09

    The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.

  4. Wind Wake Watcher v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Shawn

    This software enables the user to produce Google Earth visualizations of turbine wake effects for wind farms. The visualizations are based on computations of statistical quantities that vary with wind direction and help quantify the effects on power production of upwind turbines on turbines in their wakes. The results of the software are plot images and kml files that can be loaded into Google Earth. The statistics computed are described in greater detail in the paper: S. Martin, C. H. Westergaard, and J. White (2016), Visualizing Wind Farm Wakes Using SCADA Data, in Wither Turbulence and Big Data in themore » 21st Century? Eds. A. Pollard, L. Castillo, L. Danaila, and M. Glauser. Springer, pgs. 231-254.« less

  5. Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.

    2000-01-01

    The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.

  6. Rotor wake characteristics of a transonic axial flow fan

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Gertz, J.; Epstein, A.; Strazisar, A. J.

    1985-01-01

    State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.

  7. An overview of a Lagrangian method for analysis of animal wake dynamics.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-01-01

    The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid dynamics studies where velocity field calculations are available.

  8. Evaluation of Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.

    2009-01-01

    Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

  9. Vitamin B12 treatment for sleep-wake rhythm disorders.

    PubMed

    Okawa, M; Mishima, K; Nanami, T; Shimizu, T; Iijima, S; Hishikawa, Y; Takahashi, K

    1990-02-01

    Vitamin B12 (VB12) was administered to two patients suffering for many years from different sleep-wake rhythm disorders. One patient was a 15-year-old blind girl suffering from a free-running sleep-wake rhythm (hypernychthemeral syndrome) with a period of about 25 h. In spite of repeated trials to entrain her sleep-wake cycle to the environmental 24-h rhythm, her free-running rhythm persisted for about 13 years. When she was 14 years old, administration of VB12 per os was started at the daily dose of 1.5 mg t.i.d. Shortly thereafter, her sleep-wake rhythm was entrained to the environmental 24-h rhythm, and her 24-h sleep-wake rhythm was maintained while she was on the medication. Within 2 months of the withholding of VB12, her free-running sleep-wake rhythm reappeared. The VB12 level in the serum was within the normal range both before and after treatment. The other patient was a 55-year-old man suffering from delayed sleep phase syndrome since 18 years of age. After administration of VB12 at the daily doses of 1.5 mg, his sleep-wake rhythm disorder was improved. The good therapeutic effect lasted for more than 6 months while he was on the medication.

  10. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  11. Aircraft Vortex Wake Descent and Decay under Real Atmospheric Effects

    DOT National Transportation Integrated Search

    1973-10-01

    Aircraft vortex wake descent and decay in a real atmosphere is studied analytically. Factors relating to encounter hazard, wake generation, wake descent and stability, and atmospheric dynamics are considered. Operational equations for encounter hazar...

  12. Abnormal sleep/wake dynamics in orexin knockout mice.

    PubMed

    Diniz Behn, Cecilia G; Klerman, Elizabeth B; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E

    2010-03-01

    Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders.

  13. Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Humphreys, William M., Jr.

    2005-01-01

    Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.

  14. Measurements in an axisymmetric turbulent wake with rotation downstream of a model wind turbine

    NASA Astrophysics Data System (ADS)

    Dufresne, Nathaniel; Wosnik, Martin

    2012-11-01

    Energy production data from several of the existing offshore wind farms indicate that turbine arrays may enter a stall condition which can cause an overall energy production shortfall (which can exceed 10%). This deep array stall is (presumably) due to the wakes generated by turbines upstream interacting with turbine rotors downstream. It is hypothesized that there is a critical array spacing at which this stall occurs, but that this spacing is dependent on rotor thrust cT (which is determined by tip-speed ratio λ and power coefficient cP of the rotor), Reynolds number, upstream conditions, and possibly wall roughness. An experimental investigation of the axial and azimuthal velocity field measurements in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted. The turbine was positioned in the free stream, near the entrance of the 6m × 2.5m test section of the UNH FPF, which can achieve test section velocities of up to 15 m/s and Reynolds numbers δ+ = δuτ / ν ~ 30 , 000 . Hot-wire anemometry was used to obtain velocity field measurements. The data obtained will be used to examine similarity scaling functions for velocity, wake growth, and turbulence derived from an equilibrium similarity analysis of the far wake.

  15. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    NASA Technical Reports Server (NTRS)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  16. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Wake illumination light. 707.10 Section 707.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY NAVIGATION SPECIAL RULES WITH... display a white spot light located near the stern to illuminate the wake. ...

  17. Some wake-related operational limitations of rotorcraft

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1980-01-01

    Wind tunnel measurements show that the wake of a rotor, except at near hovering speeds, is not like that of a propeller. The wake is more like that of a wing except that, because of the slow speeds, the wake velocities may be much greater. The helicopter can produce a wake hazard to following light aircraft that is disproportionately great compared to an equivalent fixed wing aircraft. This hazard should be recognized by both pilots and airport controllers when operating in congested areas. Ground effect is generally counted as a blessing since it allows overloaded takeoffs; however, it also introduces additional operation problems. These problems include premature blade stall in hover, settling in forward transition, shuddering in approach to touchdown and complicatons with yaw control. Some of these problems were treated analytically in an approximate manner and reasonable experiment agreement was obtained. An awareness of these effects can prepare the user for their appearance and their consequences.

  18. Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W)

    NASA Astrophysics Data System (ADS)

    Kumer, V. M.; Reuder, J.; Svardal, B.; Eecen, P.

    2014-12-01

    WINTWEX-W is a cooperative wake measurement campaign conducted by the Norwegian Centre of Offshore Wind Energy (Norcowe) and the Energy Research Centre of the Netherlands (ECN). A scanning, four static Windcubes as well as a downstream looking nacelle LiDAR were placed for half a year downstream of one of five research wind turbines in ECNs' wind turbine test farm Wieringermeer. In order to capture wake characteristics under different weather conditions we scanned a 60˚ sector at three different elevations and two vertical cross-sections every minute. Windcubes v1 measured wind profiles every second at 2, 5 and 12 rotor diameter downstream distances. Another static Windcube, a forward-looking nacelle LiDAR and three Sonics were placed upstream to measure the undisturbed approaching flow field. The aim of the campaign is a qualitative and quantitative description of single wind turbine wake propagation and persistency, as well as to improve CFD wake models by delivering a detailed data set of several real atmospheric conditions.

  19. Wake coupling to full potential rotor analysis code

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.

    1990-01-01

    The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.

  20. A Study of Wake Development and Structure in Constant Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng

    2000-01-01

    Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.

  1. Modeling the effects of caffeine on the sleep/ wake cycle.

    PubMed

    Daniello, Allison; Fievisohn, Elizabeth; Gregory, T Stan

    2012-01-01

    Caffeine is present in many products consumed daily, including coffee, soda, and chocolate, and is known to delay the onset of sleepiness and cause sleep disturbances. It is an adenosine antagonist, inhibiting some hormones that promote sleep, and therefore promoting wakefulness. This paper proposes a model to incorporate the effects of caffeine on the sleep/wake cycle. The “flip-flop” model was used to model the sleep cycle, where switching between a sleep state and a wake state was nearly instantaneous. Sleep patterns were modeled based on the circadian rhythm and homeostatic drive, as was done by Rempe et al. (2010). The model demonstrated how the homeostatic drive and circadian rhythm interact to cause sleep and wakefulness. The effects of caffeine were incorporated to have a masking effect on the homeostatic drive, promoting wakefulness. Preliminary results showed that caffeine intake late in the evening caused the switch from wake to sleep to occur later than if no caffeine was present in the system. Additionally, the switch from wake to sleep was increasingly delayed with increased caffeine intake at the same time. This model is not yet validated, though potential studies for validation are proposed. This model presents an interesting method for incorporating the effects of caffeine on the sleep/wake cycle.

  2. Observations of the trade wind wakes of Kauai and Oahu

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jian; Xie, Shang-Ping

    2008-02-01

    The Hawaiian islands of Kauai and Oahu stand in the path of the east-northeasterly trade winds, creating wakes in the lee. For the first time, the structure of the wakes and their diurnal cycle were observed on a cruise during 18-20 December 2006. The dynamic wakes, characterized by reduced trades, extend about 1 km in height with strong wind shear at the top. Thermal forcing of these small islands also affects the wake circulations. Sea breezes develop in the afternoon turning the winds into westerly near the shore in the wakes. At night, land breezes advect cool air from the islands, creating a shallow cool layer between the sea surface and a capping inversion. The warming in the wake in the afternoon extends much deeper (1.4 km) than the cool layer (0.5 km) at night. The effect of diurnal changes on cloud formation in the wakes is discussed, and the sharp variations in wind velocity lee of the islands may affect ocean currents, waves and mixing.

  3. Proteomic profiling of the rat cerebral cortex in sleep and waking.

    PubMed

    Cirelli, C; Pfister-Genskow, M; McCarthy, D; Woodbury, R; Tononi, G

    2009-09-01

    Transcriptomic studies have shown that hundreds of genes change their expression levels across the sleep/waking cycle, and found that waking-related and sleep-related mRNAs belong to different functional categories. Proteins, however, rather than DNA or RNA, carry out most of the cellular functions, and direct measurements of protein levels and activity are required to assess the effects of behavioral states on the overall functional state of the cell. Here we used surface-enhanced laser desorption-ionization (SELDI), followed by time-of-flight mass spectrometry, to obtain a large-scale profiling of the proteins in the rat cerebral cortex whose expression is affected by sleep, spontaneous waking, short (6 hours) and long (7 days) sleep deprivation. Each of the 94 cortical samples was profiled in duplicate on 4 different ProteinChip Array surfaces using 2 different matrix molecules. Overall, 1055 protein peaks were consistently detected in cortical samples and 15 candidate biomarkers were selected for identification based on significant changes in multiple conditions (conjunction analysis): 8 "sleep" peaks, 4 "waking" peaks, and 4 "long sleep deprivation" peaks. Four candidate biomarkers were purified and positively identified. The 3353 Da candidate sleep marker was identified as the 30 amino acid C-terminal fragment of rat histone H4. This region encompasses the osteogenic growth peptide, but a possible link between sleep and this peptide remains highly speculative. Two peaks associated with short and long sleep deprivation were identified as hemoglobin alpha1/2 and beta, respectively, while another peak associated with long sleep deprivation was identified as cytochrome C. The upregulation of hemoglobins and cytochrome C may be part of a cellular stress response triggered by even short periods of sleep loss.

  4. American time use survey: sleep time and its relationship to waking activities.

    PubMed

    Basner, Mathias; Fomberstein, Kenneth M; Razavi, Farid M; Banks, Siobhan; William, Jeffrey H; Rosa, Roger R; Dinges, David F

    2007-09-01

    To gain some insight into how various behavioral (lifestyle) factors influence sleep duration, by investigation of the relationship of sleep time to waking activities using the American Time Use Survey (ATUS). Cross-sectional data from ATUS, an annual telephone survey of a population sample of US citizens who are interviewed regarding how they spent their time during a 24-hour period between 04:00 on the previous day and 04:00 on the interview day. Data were pooled from the 2003, 2004, and 2005 ATUS databases involving N=47,731 respondents older than 14 years of age. N/A. Adjusted multiple linear regression models showed that the largest reciprocal relationship to sleep was found for work time, followed by travel time, which included commute time. Only shorter than average sleepers (<7.5 h) spent more time socializing, relaxing, and engaging in leisure activities, while both short (<5.5 h) and long sleepers (> or =8.5 h) watched more TV than the average sleeper. The extent to which sleep time was exchanged for waking activities was also shown to depend on age and gender. Sleep time was minimal while work time was maximal in the age group 45-54 yr, and sleep time increased both with lower and higher age. Work time, travel time, and time for socializing, relaxing, and leisure are the primary activities reciprocally related to sleep time among Americans. These activities may be confounding the frequently observed association between short and long sleep on one hand and morbidity and mortality on the other hand and should be controlled for in future studies.

  5. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, Matthew J; Sirnivas, Senu

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less

  6. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance

    NASA Technical Reports Server (NTRS)

    Van Dongen, Hans P A.; Dinges, David F.

    2003-01-01

    The two-process model of sleep regulation has been applied successfully to describe, predict, and understand sleep-wake regulation in a variety of experimental protocols such as sleep deprivation and forced desynchrony. A non-linear interaction between the homeostatic and circadian processes was reported when the model was applied to describe alertness and performance data obtained during forced desynchrony. This non-linear interaction could also be due to intrinsic non-linearity in the metrics used to measure alertness and performance, however. Distinguishing these possibilities would be of theoretical interest, but could also have important implications for the design and interpretation of experiments placing sleep at different circadian phases or varying the duration of sleep and/or wakefulness. Although to date no resolution to this controversy has been found, here we show that the issue can be addressed with existing data sets. The interaction between the homeostatic and circadian processes of sleep-wake regulation was investigated using neurobehavioural performance data from a laboratory experiment involving total sleep deprivation. The results provided evidence of an actual non-linear interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.

  7. Effect of wakes on land-atmosphere fluxes

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.

    2011-12-01

    Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.

  8. A late wake time phase delays the human dim light melatonin rhythm.

    PubMed

    Burgess, Helen J; Eastman, Charmane I

    2006-03-13

    Short sleep/dark durations, due to late bedtimes or early wake times or both, are common in modern society. We have previously shown that a series of days with a late bedtime phase delays the human dim light melatonin rhythm, as compared to a series of days with an early bedtime, despite a fixed wake time. Here we compared the effect of an early versus late wake time with a fixed bedtime on the human dim light melatonin rhythm. Fourteen healthy subjects experienced 2 weeks of short 6h nights with an early wake time fixed at their habitual weekday wake time and 2 weeks of long 9 h nights with a wake time that occurred 3h later than the early wake time, in counterbalanced order. We found that after 2 weeks with the late wake time, the dim light melatonin onset delayed by 2.4 h and the dim light melatonin offset delayed by 2.6 h (both p < 0.001), as compared to after 2 weeks with the early wake time. These results highlight the substantial influence that wake time, likely via the associated morning light exposure, has on the timing of the human circadian clock. Furthermore, the results suggest that when people truncate their sleep by waking early their circadian clocks phase advance and when people wake late their circadian clocks phase delay.

  9. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  10. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity.

    PubMed

    Blume, Shannon R; Nam, Hannah; Luz, Sandra; Bangasser, Debra A; Bhatnagar, Seema

    2018-06-15

    Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Changes in the waking-sleeping behavior after albumin or $gamma$ globulin injection to lethally irradiated rats (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maigrot, J.C.; Cier, A.; Riotte, M.

    1973-01-01

    Studies were performed on chronically implanted rats. These rats were subjected to whole-body irradiations of 950 rads (LD 100% 6 days). The following reproducible changes were observed: serious nonreversible disturbances in the waking-sleeping behavior, manifested principally by an almost complete disappearance of paradoxical sleep 4 days after the exposure. The intraperitioneal administration, 4 to 5 days after irradiation of one or several 250mg doses of gamma -globulin enabled the rats to recover both quantitatively and qualitatively a paradoxical sleep identical to that observed with nonirradiated animals during 2 to 3 days. On the other hand when gamma globulins are injectedmore » into nonirradiated animals, the PS level does not alter in any significant way. In addition, injections of human albumin serum carried out under the same experimental conditions, appear to modify EEG parameters, which have been disturbed by irradiation as well as producing a significant improvement in the general state of the irradiated animal, this being confirmed by the prolonged survival time observed. (FR)« less

  12. Comparison and validation of wake vortex characteristics collected at different airports by different scanning lidar sensors

    NASA Astrophysics Data System (ADS)

    Thobois, Ludovic; Cariou, Jean-Pierre; Cappellazzo, Valerio; Musson, Christian; Treve, Vincent

    2018-04-01

    Today, the demand for increasing airport capacity is high, in particular for increasing runway throughput from an ATM perspective. Runway capacity is often directly linked with the minima longitudinal separation between aircraft on approach phase or between aircraft on departure. The separation minima are based on surveillance capabilities and on wake turbulence (WT) in order to mitigate respectively collision risk and WT-induced accidents, therefore WT hazard becomes a major concern for ATM. For ten years, many research LIDAR systems have been used for better understanding wake vortices behaviors in the operational environment within large range of wind and turbulence conditions. All these studies[1][2] helped to design new concepts of wake separations between aircrafts thanks to the proven capabilities of LIDAR systems to assess the risks of wake vortex (WV) encounters through the circulation retrievals. The re-categorization project, called RECAT [8], has been launched by a joint EUROCONTROL - FAA initiative in order to renew and optimize the out-of-date currently applied ICAO regulations on distance separation. Nowadays, the first phase of regional RECAT projects, which consists in defining new distance separation matrices composed of six/seven static aircraft categories instead of three, entered the operational phase and is deployed in several airports in United States and Europe. In addition, other concepts like Time-Based Separation have also been studied and deployed in London Heathrow. The airports where these solutions have been deployed obtained significant benefits as increased runway throughput and improved resilience to disruptions. For implementing such new WT solutions at an airport, a local safety assessment before the implementation and a risk monitoring after are usually needed. Before implementation, it may be required to determine for the targeted airport the relative variations of risk of wake vortex encounters, given the local ATM rules, the

  13. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  14. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  15. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis

    PubMed Central

    Seke-Etet, Paul F.; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Bentivoglio, Marina

    2017-01-01

    Background Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. Methodology/Principal findings The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. Conclusions/Significance The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional

  16. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    PubMed

    Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina

    2017-08-01

    Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.

  17. Use of Plasma Actuators as a Moving-Wake Generator

    NASA Technical Reports Server (NTRS)

    Corke, Thomas C.; Thomas, Flint O.; Klapetzky Michael J.

    2007-01-01

    The work documented in this report tests the concept of using plasma actuators as a simple and easy way to generate a simulated moving-wake and the disturbances associated with it in turbines. This wake is caused by the blades of the upstream stages of the turbine. Two types of devices, one constructed of arrays of NACA 0018 airfoils, and the one constructed of flat plates were studied. The airfoils or plates were equipped with surface mounted dielectric barrier discharge (DBD) plasma actuators, which were used to generate flow disturbances resembling moving-wakes. CTA hot-wire anemometry and flow visualization using a smoke-wire were used to investigate the wake independence at various spacings and downstream locations. The flat plates were found to produce better results than the airfoils in creating large velocity fluctuations in the free-stream flow. Different dielectric materials, plasma actuator locations, leading edge contours, angles of attack and plate spacings were investigated, some with positive results. The magnitudes of the velocity fluctuations were found to be comparable to existing mechanical moving-wake generators, thus proving the feasibility of using plasma actuators as a moving-wake generator.

  18. Surface Characteristics of Green Island Wakes from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  19. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  20. Aircraft wake vortex measurements at Denver International Airport

    DOT National Transportation Integrated Search

    2004-05-10

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic...

  1. Linear instability of supersonic plane wakes

    NASA Technical Reports Server (NTRS)

    Papageorgiou, D. T.

    1989-01-01

    In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.

  2. Assessment of a wake vortex flight test program

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Dillenius, M. F. E.; Schwind, R. G.; Nielsen, J. N.

    1974-01-01

    A proposed flight test program to measure the characteristics of wake vortices behind a T-33 aircraft was investigated. A number of facets of the flight tests were examined to define the parameters to be measured, the anticipated vortex characteristics, the mutual interference between the probe aircraft and the wake, the response of certain instruments to be used in obtaining measurements, the effect of condensation on the wake vortices, and methods of data reduction. Recommendations made as a result of the investigation are presented.

  3. Wakes and differential charging of large bodies in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1985-01-01

    Highlights of earlier results using the Inside-Out WAKE code on wake structures of LEO spacecraft are reviewed. For conducting bodies of radius large compared with the Debye length, a high Mach number wake develops a negative potential well. Quasineutrality is violated in the very near wake region, and the wake is relatively empty for a distance downstream of about one half of a Mach number of radii. There is also a suggestion of a core of high density along the axis. A comparison of rigorous numerical solutions with in situ wake data from the AE-C satellite suggests that the so called neutral approximation for ions (straight line trajectories, independent of fields) may be a reasonable approximation except near the center of the near wake. This approximation is adopted for very large bodies. Work concerned with the wake point potential of very large nonconducting bodies such as the shuttle orbiter is described. Using a cylindrical model for bodies of this size or larger in LEO (body radius up to 10 to the 5th power Debye lengths), approximate solutions are presented based on the neutral approximation (but with rigorous trajectory calculations for surface current balance). There is a negative potential well if the body is conducting, and no well if the body is nonconducting. In the latter case the wake surface itself becomes highly negative. The wake point potential is governed by the ion drift energy.

  4. Passive propulsion in vortex wakes

    NASA Astrophysics Data System (ADS)

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V.

    A dead fish is propelled upstream when its flexible body resonates with oncoming vortices formed in the wake of a bluff cylinder, despite being well outside the suction region of the cylinder. Within this passive propulsion mode, the body of the fish extracts sufficient energy from the oncoming vortices to develop thrust to overcome its own drag. In a similar turbulent wake and at roughly the same distance behind a bluff cylinder, a passively mounted high-aspect-ratio foil is also shown to propel itself upstream employing a similar flow energy extraction mechanism. In this case, mechanical energy is extracted from the flow at the same time that thrust is produced. These results prove experimentally that, under proper conditions, a body can follow at a distance or even catch up to another upstream body without expending any energy of its own. This observation is also significant in the development of low-drag energy harvesting devices, and in the energetics of fish dwelling in flowing water and swimming behind wake-forming obstacles.

  5. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  6. Wind Turbine Wake-Redirection Control at the Fishermen's Atlantic City Windfarm: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Fleming, P.; Bulder, B.

    2015-05-06

    In this paper, we will present our work towards designing a control strategy to mitigate wind turbine wake effects by redirecting the wakes, specifically applied to the Fishermen’s Atlantic City Windfarm (FACW), proposed for deployment off the shore of Atlantic City, New Jersey. As wind turbines extract energy from the air, they create low-speed wakes that extend behind them. Full wake recovery Full wake recovery to the undisturbed wind speed takes a significant distance. In a wind energy plant the wakes of upstream turbines may travel downstream to the next row of turbines, effectively subjecting them to lower wind speeds,more » meaning these waked turbines will produce less power.« less

  7. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  8. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Stefan, Heinz; Porté-Agel, Fernando

    2014-05-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ~O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 35-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is 35 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity vector near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  9. Wake characteristics of wind turbines in utility-scale wind farms

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  10. Large-eddy simulation of propeller wake at design operating conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Mahesh, Krishnan

    2016-11-01

    Understanding the propeller wake is crucial for efficient design and optimized performance. The dynamics of the propeller wake are also central to physical phenomena such as cavitation and acoustics. Large-eddy simulation is used to study the evolution of the wake of a five-bladed marine propeller from near to far field at design operating condition. The computed mean loads and phase-averaged flow field show good agreement with experiments. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual induction mechanism of instability where instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. Phase-averaged and ensemble-averaged flow fields are analyzed to explain the flow physics. This work is supported by ONR.

  11. Acoustic characterization of wake vortices in ground effect

    DOT National Transportation Integrated Search

    2005-01-01

    The experience and findings of an exploratory effort to characterize the sound emitted by : aircraft wake vortices near the ground are presented. A line array of four directional : microphones was deployed and recorded the wakes of several commercial...

  12. Controlled Wake of a Moving Axisymmetric Bluff Body

    NASA Astrophysics Data System (ADS)

    Lee, E.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.

  13. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  14. Reversible and Irreversible Time-Dependent Behavior of GRCop-84

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.

    2017-01-01

    A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.

  15. Noise generated by a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Propeller performance and noise were measured on two model scale propellers operating in an anechoic flow environment with and without a wake. Wake thickness of one and three propeller chords were generated by an airfoil which spanned the full diameter of the propeller. Noise measurements were made in the relative near field of the propeller at three streamwise and three azimuthal positions. The data show that as much as 10 dB increase in the OASPL results when a wake is introduced into an operating propeller. Performance data are also presented for completeness.

  16. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  17. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  18. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. © 2015 International Society for Neurochemistry.

  19. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    PubMed Central

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  20. Ship heading and velocity analysis by wake detection in SAR images

    NASA Astrophysics Data System (ADS)

    Graziano, Maria Daniela; D'Errico, Marco; Rufino, Giancarlo

    2016-11-01

    With the aim of ship-route estimation, a wake detection method is developed and applied to COSMO/SkyMed and TerraSAR-X Stripmap SAR images over the Gulf of Naples, Italy. In order to mitigate the intrinsic limitations of the threshold logic, the algorithm identifies the wake features according to the hydrodynamic theory. A post-detection validation phase is performed to classify the features as real wake structures by means of merit indexes defined in the intensity domain. After wake reconstruction, ship heading is evaluated on the basis of turbulent wake direction and ship velocity is estimated by both techniques of azimuth shift and Kelvin pattern wavelength. The method is tested over 34 ship wakes identified by visual inspection in both HH and VV images at different incidence angles. For all wakes, no missed detections are reported and at least the turbulent and one narrow-V wakes are correctly identified, with ship heading successfully estimated. Also, the azimuth shift method is applied to estimate velocity for the 10 ships having route with sufficient angular separation from the satellite ground track. In one case ship velocity is successfully estimated with both methods, showing agreement within 14%.

  1. Measuremants in the wake of an infinite swept airfoil

    NASA Technical Reports Server (NTRS)

    Novak, C. J.; Ramaprian, B. R.

    1982-01-01

    This is a report of the measurements in the trailing edge region as well as in the report of the developing wake behind a swept NACA 0012 airfoil at zero incidence and a sweep angle of 30 degrees. The measurements include both the mean and turbulent flow properties. The mean flow velocities, flow inclination and static pressure are measured using a calibrated three-hole yaw probe. The measurements of all the relevant Reynolds stress components in the wake are made using a tri-axial hot-wire probe and a digital data processing technique developed by the authors. The development of the three dimensional near-wake into a nearly two dimensional far-wake is discussed in the light of the experimental data. A complete set of wake data along with the data on the initial boundary layer in the trailing edge region of the airfoil are tabulated in an appendix to the report.

  2. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Rotating Wheel Wake

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  4. Canopy-wake dynamics: the failure of the constant flux layer

    NASA Astrophysics Data System (ADS)

    Stefan, H. G.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) was investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the data interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35 - 100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest to a clearing or lake is proposed.

  5. Comparative study on the wake deflection behind yawed wind turbine models

    NASA Astrophysics Data System (ADS)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  6. The wake of hovering flight in bats

    PubMed Central

    Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L. Christoffer

    2015-01-01

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990

  7. Mesoscale wake clouds in Skylab pictures.

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Tecson, J. J.

    1974-01-01

    The recognition of cloud patterns formed in the wake of orographic obstacles was investigated using pictures from Skylab, for the purpose of estimating atmospheric motions. The existence of ship-wake-type wave clouds in contrast to vortex sheets were revealed during examination of the pictures, and an attempt was made to characterize the pattern of waves as well as the transition between waves and vortices. Examples of mesoscale cloud patterns which were analyzed photogrammetrically and meteorologically are presented.

  8. Measurements of Aircraft Wake Vortex Separation at High Arrival Rates and a Proposed New Wake Vortex Separation Philosophy

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Donohue, George L.; Haynie, Rudolph C.

    2003-01-01

    This paper presents data and a proposed new aircraft wake vortex separation standard that argues for a fundamental re-thinking of international practice. The current static standard, under certain atmospheric conditions, presents an unnecessary restriction on system capacity. A new approach, that decreases aircraft separation when atmospheric conditions dictate, is proposed based upon the availability of new instrumentation and a better understanding of wake physics.

  9. Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    NASA Technical Reports Server (NTRS)

    Gray, R. B.; Pierce, G. A.

    1972-01-01

    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity.

  10. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    NASA Astrophysics Data System (ADS)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    meandering. The results also suggest that the magnitude of wake meandering does not depend on turbine-operating conditions. Finally, the suitability of the proper orthogonal decomposition for studying wake meandering is examined.

  11. Sleep/Wake Patterns and Parental Perceptions of Sleep in Children Born Preterm.

    PubMed

    Biggs, Sarah N; Meltzer, Lisa J; Tapia, Ignacio E; Traylor, Joel; Nixon, Gillian M; Horne, Rosemary S C; Doyle, Lex W; Asztalos, Elizabeth; Mindell, Jodi A; Marcus, Carole L

    2016-05-15

    To compare sleep/wake patterns in children born preterm in Australia vs Canada and determine cultural differences in the relationship between parental perception of sleep and actual sleep behaviors. Australian and Canadian children born preterm were recruited from the Caffeine for Apnea of Prematurity trial (n = 188, 5-12 y) and underwent 14 days actigraphy monitoring. Parents completed the National Sleep Foundation 2004 Sleep in America questionnaire. Cross-cultural differences in sleep characteristics assessed by actigraphy and parent-reported questionnaire were examined. Correlational analyses determined the associations between parental perceptions of child sleep need and sleep behavior. Actigraphy showed preterm children obtained, on average, 8 h sleep/night, one hour less than population recommendations for their age. There was no difference in total sleep time (TST) between Australian and Canadian cohorts; however, bed and wake times were earlier in Australian children. Bedtimes and TST varied by 60 minutes from night to night in both cohorts. Parent-reported child TST on the National Sleep Foundation questionnaire was 90 minutes longer than recorded by actigraphy. Both bedtime and TST on weekdays and weekends were related to parental perception of child sleep need in the Australian cohort. Only TST on weekdays was related to parental perception of child sleep need in the Canadian cohort. This study suggests that short sleep duration and irregular sleep schedules are common in children born preterm. Cultural differences in the association between parental perception of child sleep need and actual sleep behaviors provide important targets for future sleep health education. © 2016 American Academy of Sleep Medicine.

  12. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke

    2018-04-01

    The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.

  13. Comparative analysis of biological effect of corannulene and graphene on developmental and sleep/wake profile of zebrafish larvae.

    PubMed

    Li, Xiang; Zhang, Yuan; Li, Xu; Feng, DaoFu; Zhang, ShuHui; Zhao, Xin; Chen, DongYan; Zhang, ZhiXiang; Feng, XiZeng

    2017-06-01

    Little is known about the biological effect of non-planar polycyclic aromatic hydrocarbons (PAH) such as corannulene on organisms. In this study, we compared the effect of corannulene (non-planar PAH) and graphene (planar PAH) on embryonic development and sleep/wake behaviors of larval zebrafish. First, the toxicity of graded doses of corannulene (1, 10, and 50μg/mL) was tested in developing zebrafish embryos. Corannulene showed minimal developmental toxicity only induced an epiboly delay. Further, a significant decrease in locomotion/increase in sleep was observed in larvae treated with the highest dose (50μg/mL) of corannulene while no significant locomotion alterations were induced by graphene. Finally, the effect of corannulene or graphene on the hypocretin (hcrt) system and sleep/wake regulators such as hcrt, hcrt G-protein coupled receptor (hcrtr), and arylalkylamine N-acetyltransferase-2 (aanat2) was evaluated. Corannulene increased sleep and reduced locomotor activity and the expression of hcrt and hcrtr mRNA while graphene did not obviously disturb the sleep behavior and gene expression patterns. These results suggest that the corannulene has the potential to cause hypnosis-like behavior in larvae and provides a fundamental comparative understanding of the effects of corannulene and graphene on biology systems. Little is known about the biological effect of non-planar polycyclic aromatic hydrocarbons (PAH) such as corannulene on organisms. Here, we compare the effect of corannulene (no-planar PAH) and graphene (planar PAH) on embryonic development and sleep/wake behaviors of larval zebrafish. And we aim to investigate the effect of curvature on biological system. First, toxicity of corannulene over the range of doses (1μg/mL, 10μg/mL and 50μg/mL) was tested in developing zebrafish embryos. Corannulene has minimal developmental toxicity, only incurred epiboly delay. Subsequently, a significant decrease in locomotion/increase in sleep at the highest

  14. Consciousness across Sleep and Wake: Discontinuity and Continuity of Memory Experiences As a Reflection of Consolidation Processes

    PubMed Central

    Horton, Caroline L.

    2017-01-01

    The continuity hypothesis (1) posits that there is continuity, of some form, between waking and dreaming mentation. A recent body of work has provided convincing evidence for different aspects of continuity, for instance that some salient experiences from waking life seem to feature in dreams over others, with a particular role for emotional arousal as accompanying these experiences, both during waking and while asleep. However, discontinuities have been somewhat dismissed as being either a product of activation-synthesis, an error within the consciousness binding process during sleep, a methodological anomaly, or simply as yet unexplained. This paper presents an overview of discontinuity within dreaming and waking cognition, arguing that disruptions of consciousness are as common a feature of waking cognition as of dreaming cognition, and that processes of sleep-dependent memory consolidation of autobiographical experiences can in part account for some of the discontinuities of sleeping cognition in a functional way. By drawing upon evidence of the incorporation, fragmentation, and reorganization of memories within dreams, this paper proposes a model of discontinuity whereby the fragmentation of autobiographical and episodic memories during sleep, as part of the consolidation process, render salient aspects of those memories subsequently available for retrieval in isolation from their contextual features. As such discontinuity of consciousness in sleep is functional and normal. PMID:28936183

  15. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, Matthew J; Sirnivas, Senu

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less

  16. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Rimmer, D. W.; Czeisler, C. A.

    2001-01-01

    The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.

  17. Wake meandering of a model wind turbine operating in two different regimes

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  18. CFD three dimensional wake analysis in complex terrain

    NASA Astrophysics Data System (ADS)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  19. Lagrangian coherent structure analysis in the three-dimensional wake of a bio-inspired trapezoidal pitching panel

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; King, Justin; Green, Melissa

    2017-11-01

    Three-dimensional Lagrangian analysis using the finite-time Lyapunov exponent (FTLE) field has been carried out on experimentally captured wake downstream of an oscillating trapezoidal panel. The trapezoidal geometry of the panel served as a simple model of a fish caudal fin. Three-dimensional FTLE isosurface appears as a shell wrapped around the wake vortex structures. A slice through the isosurfaces results in the familiar two-dimensional FTLE ridges. The attracting ridges (nFTLE) and the repelling ridges (pFTLE) are near-material lines and their intersections are analogous to topological saddle points in the flow field. A vortex-ring-based wake structure induces a streamwise momentum jet, evolution of which appears to be related to the timing of saddle point generation and behavior at the trailing edge. The time of release of these saddles at the trailing edge inside a pitching period appears to coincide with thrust extrema in similar experimental and numerical studies on foils and fins published in the literature. The merger of a pair of saddles from two consecutively shed vortices at a downstream location coincides with the occurrence of wake breakdown and precedes the formation of interconnected vortex loops and beginning of momentum-deficit zone in the time-averaged sense. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  20. Scale-dependent behavior of scale equations.

    PubMed

    Kim, Pilwon

    2009-09-01

    We propose a new mathematical framework to formulate scale structures of general systems. Stack equations characterize a system in terms of accumulative scales. Their behavior at each scale level is determined independently without referring to other levels. Most standard geometries in mathematics can be reformulated in such stack equations. By involving interaction between scales, we generalize stack equations into scale equations. Scale equations are capable to accommodate various behaviors at different scale levels into one integrated solution. On contrary to standard geometries, such solutions often reveal eccentric scale-dependent figures, providing a clue to understand multiscale nature of the real world. Especially, it is suggested that the Gaussian noise stems from nonlinear scale interactions.

  1. Capacity and Wake Vortices

    DOT National Transportation Integrated Search

    2002-09-08

    Aircraft wake vortices can pose a threat, especially in the terminal environment where aircraft operate in close proximity. Vortex separation standards preclude hazardous encounters, but are oftentimes very conservative. A key to increasing airport c...

  2. Radiative Forcing Over Ocean by Ship Wakes

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  3. Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies

    PubMed Central

    2017-01-01

    Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms. PMID:28933749

  4. Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies.

    PubMed

    Kumberg, Timo; Schindelhauer, Christian; Reindl, Leonhard

    2017-07-26

    Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms.

  5. Flow Structures within a Helicopter Rotor Hub Wake

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  6. Dynamics of sleep/wake determination--Normal and abnormal

    NASA Astrophysics Data System (ADS)

    Mahowald, Mark W.; Schenck, Carlos H.; O'Connor, Kevin A.

    1991-10-01

    Virtually all members of the animal kingdom experience a relentless and powerful cycling of states of being: wakefulness, rapid eye movement sleep, and nonrapid eye movement sleep. Each of these states is composed of a number of physiologic variables generated in a variety of neural structures. The predictable oscillations of these states are driven by presumed neural pacemakers which are entrained to the 24 h geophysical environment by the light/dark cycle. Experiments in nature have indicated that wake/sleep rhythm perturbations may occur either involving desynchronization of the basic 24 h wake/sleep cycle within the geophysical 24 h cycle (circadian rhythm disturbances) or involving the rapid oscillation or incomplete declaration of state (such as narcolepsy). The use of phase spaces to describe states of being may be of interest in the description of state determination in both illness and health. Some fascinating clinical and experimental phenomena may represent bifurcations in the sleep/wake control system.

  7. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  8. LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment

    NASA Astrophysics Data System (ADS)

    Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire

    2017-11-01

    Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.

  9. Rotor Wake/Stator Interaction Noise Prediction Code Technical Documentation and User's Manual

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Mathews, Douglas C.

    2010-01-01

    This report documents the improvements and enhancements made by Pratt & Whitney to two NASA programs which together will calculate noise from a rotor wake/stator interaction. The code is a combination of subroutines from two NASA programs with many new features added by Pratt & Whitney. To do a calculation V072 first uses a semi-empirical wake prediction to calculate the rotor wake characteristics at the stator leading edge. Results from the wake model are then automatically input into a rotor wake/stator interaction analytical noise prediction routine which calculates inlet aft sound power levels for the blade-passage-frequency tones and their harmonics, along with the complex radial mode amplitudes. The code allows for a noise calculation to be performed for a compressor rotor wake/stator interaction, a fan wake/FEGV interaction, or a fan wake/core stator interaction. This report is split into two parts, the first part discusses the technical documentation of the program as improved by Pratt & Whitney. The second part is a user's manual which describes how input files are created and how the code is run.

  10. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  11. A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake

    PubMed Central

    Fulcher, Ben D.; Phillips, Andrew J. K.; Postnova, Svetlana; Robinson, Peter A.

    2014-01-01

    The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia. PMID

  12. Numerical study on wake characteristics of high-speed trains

    NASA Astrophysics Data System (ADS)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  13. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.

    PubMed

    Zhang, Hao; Wheat, Heather; Wang, Peter; Jiang, Sha; Baghdoyan, Helen A; Neubig, Richard R; Shi, X Y; Lydic, Ralph

    2016-02-01

    This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep. © 2016 Associated Professional Sleep Societies, LLC.

  14. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

  15. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  16. Performance and Near-Wake Flow field of A Marine Hydrokinetic Turbine Operating in Free surface Proximity

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Kolekar, Nitin

    2015-11-01

    The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.

  17. Influence of short rear end tapers on the wake of a simplified square-back vehicle: wake topology and rear drag

    NASA Astrophysics Data System (ADS)

    Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin

    2016-11-01

    As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.

  18. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle

    PubMed Central

    Shestopalov, Valery I.; Panchin, Yuri; Tarasova, Olga S.; Gaynullina, Dina; Kovalzon, Vladimir M.

    2017-01-01

    During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1−/− mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx) in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle. PMID:28769767

  19. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle.

    PubMed

    Shestopalov, Valery I; Panchin, Yuri; Tarasova, Olga S; Gaynullina, Dina; Kovalzon, Vladimir M

    2017-01-01

    During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1 -/- mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx) in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.

  20. Atmospheric Turbulence Effects on Near-Ground Wake Vortex Demise

    DOT National Transportation Integrated Search

    2008-01-20

    The Federal Aviation Administration (FAA) and National Aeronautics and Space Administration (NASA) have been working jointly on a phased approach to implement wake avoidance solutions designed to safely reduce wake turbulence separation standards in ...