Sample records for wake shield facility

  1. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  2. Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility

    NASA Image and Video Library

    1991-10-09

    Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.

  3. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    NASA Image and Video Library

    1991-10-09

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  4. Space ultra-vacuum facility and method of operation

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor)

    1988-01-01

    A wake shield space processing facility (10) for maintaining ultra-high levels of vacuum is described. The wake shield (12) is a truncated hemispherical section having a convex side (14) and a concave side (24). Material samples (68) to be processed are located on the convex side of the shield, which faces in the wake direction in operation in orbit. Necessary processing fixtures (20) and (22) are also located on the convex side. Support equipment including power supplies (40, 42), CMG package (46) and electronic control package (44) are located on the convex side (24) of the shield facing the ram direction. Prior to operation in orbit the wake shield is oriented in reverse with the convex side facing the ram direction to provide cleaning by exposure to ambient atomic oxygen. The shield is then baked-out by being pointed directed at the sun to obtain heating for a suitable period.

  5. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  6. High temperature metal purification using a compact portable rf heating and levitation system on the wake shield

    NASA Technical Reports Server (NTRS)

    Hahs, C. A.

    1990-01-01

    The Wake Shield Facility (WSF) can provide an ideal vacuum environment for the purification of high temperature metals in space. The Modular Electromagnetic Levitator (MEL), will provide the opportunity to study undercooling of metals in space and allow to determine material properties in space. The battery powered rf levitation and heating system developed for the MEL demonstrated efficiency of 36 percent. This system is being considered to purify metals at temperatures below 3000 C.

  7. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-07

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  9. Space ultra-vacuum facility and method of operation

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor)

    1986-01-01

    A wake shield facility providing an ultrahigh vacuum level for space processing is described. The facility is in the shape of a truncated, hollow hemispherical section, one side of the shield convex and the other concave. The shield surface is preferably made of material that has low out-gassing characteristics such as stainless steel. A material sample supporting fixture in the form of a carousel is disposed on the convex side of the shield at its apex. Movable arms, also on the convex side, are connected by the shield in proximity to the carousel, the arms supporting processing fixtures, and providing for movement of the fixtures to predetermined locations required for producing interations with material samples. For MBE processes a vapor jet projects a stream of vaporized material onto a sample surface. The fixtures are oriented to face the surface of the sample being processed when in their extended position, and when not in use they are retractable to a storage position. The concave side of the shield has a support structure including metal struts connected to the shield, extending radially inward. The struts are joined to an end plate disposed parallel to the outer edge of the shield. This system eliminates outgassing contamination.

  10. Great Lakes Regional Phase 3 Commercialization Conference, Held in Detroit, Michigan on May 23 - 25, 1994

    DTIC Science & Technology

    1994-05-25

    small highly efficient power systems to provide electricity for space applications. These converters are solar heated for near earth orbit applications...processing in NASA’s Wake Shield Facility. AMPS plans to complete product development in each of these specific technology areas utilizing SBIR...Corrosion: Crevice corrosion is a form of localized corrosion that occurs within crevices or shielded surfaces where stagnant solution is present

  11. Astronaut Ronald Sega in crew cabin

    NASA Image and Video Library

    1999-02-23

    STS060-57-033 (3-11 Feb 1994) --- Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principal investigator on the WSF project.

  12. Astronaut Ronald Sega in crew cabin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  13. STS-69 Liftoff across the water (landscape)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The fifth Space Shuttle flight of 1995 thunders aloft from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. On board the Space Shuttle Endeavour, making its ninth trip into space, are a crew of five, an assortment of experiments and two deployable scientific spacecraft: the Wake Shield Facility-2 (WSF-2) and the Spartan-201 free-flyer. The Wake Shield Facility-2 will fly free of the Shuttle for a period of time during the 11-day mission, during which it will generate an ultra-vacuum environment in space in which to grow thin semiconductor films for next- generation advanced electronics. The Spartan-201 free-flyer is a scientific research effort aimed at the investigation of the interaction between the sun and its outflowing wind of charged particles. Commanding the mission is David M. Walker; Kenneth D. Cockrell is the pilot; Michael L. Gernhardt and James H. Newman are mission specialists and James S. Voss is the payload commander. Also scheduled is an extravehicular activity, or spacewalk, by Voss and Gernhardt to rehearse space station activities as well as to evaluate space suit design modifications.

  14. Study of the ablative effects on tektites: Atmosphere entry of a swarm of tektites. [shielding by hypersonic wake

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.

    1977-01-01

    The large variety of ablation markings observed on recovered tektites lead to the previously proposed swarm wake model which states that the lead peripheral tektites bore the blunt of aerodynamic heating upon entry, and that the bulk of tektites in the wake enjoyed partial shielding at the expense of the leaders. Further considerations are presented in support of this model. Quantitative assessments indicate that wake shielding might indeed have provided for substantially less heating than would have been experienced by a tektite entering an undisturbed atmosphere along a similar trajectory. For the case of strong wake shielding it is even possible that the surface temperature of a falling tektite had barely reached its melting point. In the distribution of tektites, there is a size band (near R = 0.5 cm) which is least susceptible to melting.

  15. Use of space ultra-vacuum for high quality semiconductor thin film growth

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.; Sterling, M.; Sega, R. M.

    1992-01-01

    The utilization of space for materials processing is being expanded through a unique concept of epitaxial thin film growth in the ultra-vacuum of low earth orbit (LEO). This condition can be created in the wake of an orbiting space vehicle; and assuming that the vehicle itself does not pertub the environment, vacuum levels of better than 10 exp -14 torr can be attained. This vacuum environment has the capacity of greatly enhancing epitaxial thin film growth and will be the focus of experiments conducted aboard the Wake Shield Facility (WSF) currently being developed by the Space Vacuum Epitaxy Center (SVEC), Industry, and NASA.

  16. High-temperature metal purification using a compact, portable rf heating and levitation system on the wake shield

    NASA Technical Reports Server (NTRS)

    Hahs, C. A.

    1990-01-01

    The potential use of a compact, battery-operated rf levitator and heating system to purify high-temperature melting materials in space is described. The wake shield now being fabricated for the Space Vacuum Epitaxy Center will provide an Ultra-high vacuum (10(exp -14) Torr hydrogen, 10(exp -14) Torr helium, 10(exp -30) Torr oxygen). The use of the wake shield to purify Nb, Ti, W, Ir, and other metals to a purity level not achievable on earth is described.

  17. Cockrell and Rominger go through de-orbit preparations in the flight deck

    NASA Image and Video Library

    1996-12-06

    STS080-360-002 (19 Nov.-7 Dec. 1996) --- From the commander's station on the port side of the space shuttle Columbia's forward flight deck, astronaut Kenneth D. Cockrell prepares for a minor firing of Reaction Control System (RCS) engines during operations with the Wake Shield Facility (WSF). The activity was recorded with a 35mm camera on flight day seven. The commander is attired in a liquid-cooled biological garment.

  18. STS-69 Flight Day 9 Video File

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  19. STS-69 flight day 9 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  20. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-02

    These five NASA astronauts were the crew members for the STS-69 mission that launched aboard the Space Shuttle Endeavour September 7, 1995. Pictured on the front row (left to right) are David M. Walker, mission commander; and Kenneth D. Cockrell, pilot. On the back row (left to right) are Michael L. Gernhardt and James H. Newman, both mission specialists; and James S. Voss, payload commander. The mission’s two primary payloads included the Spartan 201-3 and Wake Shield Facility-2 (WSF-2).

  2. STS-69 Main Gear Touch Down at Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.

  3. Particle radiation near the orbit of the Vacuum Wake Shield

    NASA Technical Reports Server (NTRS)

    Bering, Edgar A., III; Ignatiev, Alex

    1990-01-01

    The particle populations that are expected to inflict the most damage on thin film materials grown on the vacuum Wake Shield Facility (WSF) are ions and energetic neutral atoms with energies in the range of 100 eV to 20 keV. The production of films that have an order of magnitude fewer defects than are now available requires that the 1-keV particle flux be kept lower than 1000 particles/(sq cm s sr keV) (assuming a reasonable spectral shape). WSF will be flown on orbits with an inclination of 28 deg at altitudes of 300-700 km. Because of the background counting rate produced by the about 100 MeV trapped protons in the inner belt, obtaining accurate measurements of the particles of interest is very difficult. The quiet-time background fluxes of the relevant particles are not presently known. At times of magnetic activity, fluxes of 0.1-17 keV O(+) ions as great as 10 million ions/(sq cm s sr keV) have been observed flowing out of the ionosphere at these latitudes. It appears that instrumentation for detailed assessment is essential for the proof-of-concept flight(s) and that real-time monitoring of low-energy ion and energetic neutral radiation will be required for the production flights.

  4. STS-69 Sideview of Shuttle Touch Down

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.

  5. STS-69 Parachute Deployed after Touch Down on Runway 33

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.

  6. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.

  7. Microgravity

    NASA Image and Video Library

    1999-11-10

    Space Vacuum Epitaxy Center works with industry and government laboratories to develop advanced thin film materials and devices by utilizing the most abundant free resource in orbit: the vacuum of space. SVEC, along with its affiliates, is developing semiconductor mid-IR lasers for environmental sensing and defense applications, high efficiency solar cells for space satellite applications, oxide thin films for computer memory applications, and ultra-hard thin film coatings for wear resistance in micro devices. Performance of these vacuum deposited thin film materials and devices can be enhanced by using the ultra-vacuum of space for which SVEC has developed the Wake Shield Facility---a free flying research platform dedicated to thin film materials development in space.

  8. Microgravity

    NASA Image and Video Library

    2000-11-10

    Space Vacuum Epitaxy Center works with industry and government laboratories to develop advanced thin film materials and devices by utilizing the most abundant free resource in orbit: the vacuum of space. SVEC, along with its affiliates, is developing semiconductor mid-IR lasers for environmental sensing and defense applications, high efficiency solar cells for space satellite applications, oxide thin films for computer memory applications, and ultra-hard thin film coatings for wear resistance in micro devices. Performance of these vacuum deposited thin film materials and devices can be enhanced by using the ultra-vacuum of space for which SVEC has developed the Wake Shield Facility---a free flying research platform dedicated to thin film materials development in space.

  9. Study of the ablative effects on tektites. [wake shielding during atmospheric entry

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.

    1976-01-01

    Equations are presented which provide approximate parameters describing surface heating and tektite deceleration during atmosphere passage. Numerical estimates of these parameters using typical initial and ambient conditions support the conclusion that the commonly assumed trajectories would not have produced some of the observed surface markings. It is suggested that tektites did not enter the atmosphere singly but rather in a swarm dense enough to afford wake shielding according to a shock envelope model which is proposed. A further aerodynamic mechanism is described which is compatible with hemispherical pits occurring on tektite surfaces.

  10. STS-80 Columbia, OV 102, liftoff from KSC Launch Pad 39B

    NASA Image and Video Library

    1996-11-19

    STS080-S-007 (19 Nov. 1996) --- One of the nearest remote camera stations to Launch Pad B captured this profile image of space shuttle Columbia's liftoff from the Kennedy Space Center's (KSC) Launch Complex 39 at 2:55:47 p.m. (EST), November 19, 1996. Onboard are astronauts Kenneth D. Cockrell, mission commander; Kent V. Rominger, pilot; along with Story Musgrave, Tamara E. Jernigan and Thomas D. Jones, all mission specialists. The two primary payloads for STS-80 stowed in Columbia?s cargo bay for later deployment and testing are the Wake Shield Facility (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) with its associated Shuttle Pallet Satellite (SPAS).

  11. Thin film microelectronics materials production in the vacuum of space

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Sterling, M.; Horton, C.; Freundlich, A.; Pei, S.; Hill, R.

    1997-01-01

    The international Space Station era will open up a new dimension in the use of one of the unique attributes of space, vacuum, for the production of advanced semiconductor materials and devices for microelectronics applications. Ultra-vacuum is required for the fabrication in thin film form of high quality semiconductors. This can be accomplished behind a free flying platform similar to the current Wake Shield Facility which is specifically designed to support in-space production. The platform will require apparatus for thin film growth, a robotics interface to allow for the change out of raw materials and the harvesting of finished product, and a servicing plant incorporating Space Station that will support long-term utilization of the platform.

  12. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  13. STS-80 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of STS-80, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave are seen performing pre-launch activities such as eating the traditional breakfast, being suited-up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including the countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRB) from the shuttle. The crew completes the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. The crew than begins final preparations for the release of Wake Shield. Jones powers up the shuttle's Canadian-built robot arm and grapples the satellite, while Jernigan powers up the Orbiter Space Vision System, which will be used to track precisely the Wake Shield's location. Cockrell places Columbia in a gravity gradient attitude to minimize disturbances during the release. Jones uses the robot arm to hold Wake Shield in position for a two-and-a-half hour cleansing by atomic oxygen molecules before moving the arm to the deploy position. The failure of the hatch to properly open causes the cancellation of all EVA's planned for this mission by Jernigan and Jones. The mission ends with the shuttle landing at the Kennedy Space Center.

  14. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  15. Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Horton, Patrick; Eaton, David

    2017-07-01

    Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.

  16. Transition and Turbulence Modeling for Blunt-Body Wake Flows

    NASA Technical Reports Server (NTRS)

    Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.

    1997-01-01

    Aerobraking has been proposed as an efficient means of decelerating spacecraft for planetary missions. Most current aerobrake designs feature a blunt forebody shielding the payload from the intense heat generated during atmospheric entry. Although this forebody will absorb the largest portion of the heat pulse, accurate prediction of heating in the near wake is of great importance, since large local heating values can occur at points of shear-layer impingement. In order to address the various issues associated with these blunt-body wake flowfields, the Advisory Group for Aerospace Research and Development (AGARD) formed Working Group 18 in 1992. One of the objectives of this activity was to examine real-gas effects in high-speed flow fields around a 70 deg. blunted cone. To date, many researchers have conducted experiments using this geometry in various facilities, such as the Large Energy National Shock (LENS) tunnel at Cubric/Calspan and the HEG shock tunnel at DLR-Goettingen. Several computational studies have also been conducted in concert with these tests. Many of the experimental results have indicated the possible presence of a transitional shear layer through a large increase in heat transfer downstream of the reattachment point. The presence of transition could in fact lead to much higher peak heating than if the separated flow is entirely laminar or turbulent. In the shock-tunnel tests, however, it is difficult to separate such viscous-flow phenomena from real-gas effects. In order to help make this distinction, Horvath et al. recently conducted a set of experiments in the NASA Langley 20-Inch Mach 6 Tunnel, and compared the results to laminar Navier-Stokes calculations. They found heat-transfer distributions similar to those obtained in the high-enthalpy facilities, with the measured peak heating along the sting support markedly greater than that predicted by the laminar computations. These trends point to the need to find transitional and turbulent computational solutions for these flowfields.

  17. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  18. Lightning and surge protection, grounding, bonding and shielding requirements for facilities and electronic equipment

    DOT National Transportation Integrated Search

    2002-08-09

    This document mandates standard lightning protection, transient protection, electrostatic discharge (ESD), grounding, bonding and shielding configurations and procedures for new facilities, facility modifications, facility up grades, new equipment in...

  19. Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, L. B.; Kolb, J. O.

    1970-01-01

    Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.

  20. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  1. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  2. LPT. Shield test facility (TAN645 and 646). Calibration lab shield ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Calibration lab shield door. Ralph M. Parsons 1229-17 ANP/GE-6-645-MS-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645-40-693-107369 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Analysis of the performance of the space ultravacuum research facility in attached and free-flyer mode

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1988-01-01

    The old concept of using the wake of a spacecraft to obtain an ultrahigh vacuum is revisited with a somewhat different emphasis. Since it is possible to configure a wake shield so that a surface of interest does not subtend any walls that could become contaminated, it appears that it should be possible to achieve a contamination-free, ultrahigh vacuum capability with infinite pumping speed even in the presence of high heat loads and moderate gas loads. With the new interest in developing thin films with precision controlled synthetic microstructures such as superlattices, mixed metal oxide high temperature superconductors, rare-earth magneto-optical devices, and nano-crystalline alloys, the ability to work with a variety of different materials without cross contamination should be of significance. This paper analyzes the performance of the conceptual design for a Space Ultravacuum Research Facility (SURF), both in a Shuttle-attached mode and as a free-flyer. It is shown that even in the Shuttle-attached mode, it should be possible to obtain vacuum levels equivalent to 10 to the -10 Torr with O and N2 as the primary constituents. This should be sufficient to demonstrate the feasibility of the concept, particularly the infinite pumping speed and virtual elimination of contamination aspects. As a free-flyer the SURF will be limited primarily by the gas load associated with the process being performed. For chemical beam epitaxy (CBE) it is shown that equivalent vacuum levels of 10 to the -14 Torr should be possible at 300 km.

  4. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less

  5. STS-69 flight day 6 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    After being awakened by the Beatles song, 'A Hard Days Night', the flightcrew of the STS-69 mission, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, began their sixth day in orbit by monitoring the free orbiting Wake Shield Facility (WSF). Later Cmdr. Walker conducted an interview with television reporters from Atlanta and Boston, answering questions about the mission and general questions about NASA's space program. The crew filmed a video fo themselves performing daily routines (eating, shaving, exercising), as well as some of the physiological experiments, and shuttle equipment maintenance and checkout. One of the secondary experiments included the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), which served as an incubator and experiment station for a variety of tests (agricultural, pharmaceutical, biomedical, and environmental). Earth views included some cloud cover, the Gulf of Mexico, Texas, and the Atlantic Ocean.

  6. STS-69 Flight Day 6 Highlights

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After being awakened by the Beatles song, 'A Hard Days Night', the flightcrew of the STS-69 mission, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, began their sixth day in orbit by monitoring the free orbiting Wake Shield Facility (WSF). Later Cmdr. Walker conducted an interview with television reporters from Atlanta and Boston, answering questions about the mission and general questions about NASA's space program. The crew filmed a video for themselves performing daily routines (eating, shaving, exercising), as well as some of the physiological experiments, and shuttle equipment maintenance and checkout. One of the secondary experiments included the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), which served as an incubator and experiment station for a variety of tests (agricultural, pharmaceutical, biomedical, and environmental). Earth views included some cloud cover, the Gulf of Mexico, Texas, and the Atlantic Ocean.

  7. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less

  8. 75 FR 1359 - Notice of Availability of Final Environmental Impact Statement for the Proposed Construction of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Environmental Impact Statement for the Proposed Construction of the Western Wake Regional Wastewater Management Facilities; Which Includes Regional Wastewater Pumping, Conveyance, Treatment, and Discharge Facilities To... Environmental Impact Statement for the proposed construction of the Western Wake Regional Wastewater Management...

  9. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  10. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  11. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  12. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less

  13. Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1991-01-01

    A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

  14. Flow field in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2015-02-01

    The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, , and width, , such that the aspect ratio, AR = H/ D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, , such that . Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.

  15. Au Foil Activation Measurement and Simulation of the Concrete Neutron Shielding Ability for the Proposed New SANRAD Facility

    NASA Astrophysics Data System (ADS)

    Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.

    The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.

  16. STS-69 launch view across water and trees (landscape)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  17. STS-69 launch view thru trees

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  18. STS-69 launch view with trees and birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  19. STS-69 postflight presentation

    NASA Astrophysics Data System (ADS)

    1995-10-01

    A postflight conference of the STS-69 mission is presented. The flightcrew ('The Dog Team') consisted of Cmdr. David Walker, Pilot Kenneth Cockrell, Payload Cmdr. James Voss, and Mission Specialists James Newman and Michael Gernhardt. The mission's primary objective was the deployment and retrieval of the SPARTAN-201 satellite, which investigated the interaction between the Sun and it's solar wind. Other secondary experiments and shuttle payloads included the Wake Shield Facility (WSF), which grew several layers of semiconductor films, the International Extreme Ultraviolet Hitchhiker (IEH-1), the Capillary Pumped Loop-2/Gas Bridge Assembly (CAPL-2/GBA), several Get Away Specials (GAS) experiments, the Electrolysis Performance Improvement Concept Study (EPICS), the Thermal Energy Storage (TES-2) experiment, the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), the National Institutes of Health-Cells 4 (NIH-C4) experiment, and the Biological Research in Canister-6 (BRIC-6) experiment. Earth views consisted of Saudi Arabia water wells, uncommon vortices over Oman, the Amazon River, the Bahamas, Somalia, a sunset over the Earth's horizon, and two hurricanes, Luis and Marilyn.

  20. LPT. Shield test facility (TAN645) interior. Mechanical equipment room with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645) interior. Mechanical equipment room with switchgear and control boards. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-858 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE BOXES IN OPERATING CORRIDOR (CPP-627). INL PHOTO NUMBER NRTS-55-1524. Unknown Photographer, 1955 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. LPT. Shield test facility (TAN645) interior. Mechanical equipment room with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645) interior. Mechanical equipment room with airwasher and refrigeration compressor. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-855 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Ford Motor Company NDE facility shielding design.

    PubMed

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  4. Shielding of medical imaging X-ray facilities: a simple and practical method.

    PubMed

    Bibbo, Giovanni

    2017-12-01

    The most widely accepted method for shielding design of X-ray facilities is that contained in the National Council on Radiation Protection and Measurements Report 147 whereby the computation of the barrier thickness for primary, secondary and leakage radiations is based on the knowledge of the distances from the radiation sources, the assumptions of the clinical workload, and usage and occupancy of adjacent areas. The shielding methodology used in this report is complex. With this methodology, the shielding designers need to make assumptions regarding the use of the X-ray room and the adjoining areas. Different shielding designers may make different assumptions resulting in different shielding requirements for a particular X-ray room. A more simple and practical method is to base the shielding design on the shielding principle used to shield X-ray tube housing to limit the leakage radiation from the X-ray tube. In this case, the shielding requirements of the X-ray room would depend only on the maximum radiation output of the X-ray equipment regardless of workload, usage or occupancy of the adjacent areas of the room. This shielding methodology, which has been used in South Australia since 1985, has proven to be practical and, to my knowledge, has not led to excess shielding of X-ray installations.

  5. PBF Cubicle 13. Shield wall details illustrate shielding technique of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cubicle 13. Shield wall details illustrate shielding technique of stepped penetrations and brick layout scheme for valve stem extension sleeve. Aerojet Nuclear Company. Date: May 1976. INEEL index no. 761-0620-00-400-195280 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs

    NASA Technical Reports Server (NTRS)

    Grosch, Donald J.

    1996-01-01

    This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.

  7. LPT. Shield test facility test building interior (TAN646). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. LPT. Shield test facility test building interior (TAN646). Camera points ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility test building interior (TAN-646). Camera points down into interior of north pool. Equipment on wall is electronical bus used for post-1970 experiment. Personnel ladder at right. INEEL negative no. HD-40-9-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. LPT. Shield test facility (TAN646) exterior, as modified for EBOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-646) exterior, as modified for EBOR. Camera facing northeast. Heat exchange fans, helium storage tanks, and completed EBOR perimeter road. Photographer: Page Comisky. Date: ca. August 20, 1965. INEEL negative no. 65-4328 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less

  11. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less

  12. Shielding and Activation Analyses for BTF Facility at SNS

    NASA Astrophysics Data System (ADS)

    Popova, Irina; Gallmeier, Franz X.

    2017-09-01

    The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.

  13. Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers

    DTIC Science & Technology

    1989-12-01

    differences in the shedding angles between experiments. It might then be j,. Vortex shedding in the wake of a circular cylinder 583 suggested that these...sandwiched between cels of frequency fL. In I " :. - Vortex shedding in the wake of a circular cylinder 593 (a) (b) Fioru’ 6. Visualization of the different ...Iparticularly’ suitable (heck, because the water tank is at oistinctl ’ different facility from the wind tunnel. The vortex frequencies in the wakes

  14. FY17 Accomplishments - Testing Facilities and Capabilities at SWiFT, SNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles

    The Scaled Wind Farm Technologies (SWiFT) facility operated by Sandia National Laboratories (SNL) has, in support of the Atmosphere to electrons (A2e) research program, acquired measurements of wind turbine wake dynamics under various atmospheric conditions and while interacting with a downstream wind turbine. SNL researchers, in collaboration with National Renewable Energy Laboratory (NREL) researchers, installed a customized LIDAR system created by the Technical University of Denmark (DTU) in one of the SWiFT wind turbines (Figure 1) and operated that turbine with intentional yaw-versus-winddirection misalignment to study the behavior of the turbine wake under numerous combinations of atmospheric conditions and turbinemore » yaw offsets. The DTU-customized LIDAR provided detailed measurements of the wake’s shape and location at many distances downwind of the turbine (Figure 2). These measurements will benefit wind energy researchers looking to understand wind turbine wake behavior and improve modeling and simulation of wake dynamics, including the “wake steering” affect that is observed when turbine yaw offset is controlled. During the test campaign, two SWiFT wind turbines were operated at the same time to observe the influence of the turbines on each other as the wake of the upwind turbine was observed sweeping over and interacting with the downwind turbine.« less

  15. LPT. Aerial of low power test facility (TAN640 and 641) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test facility (TAN-640 and -641) and shield test facility (TAN-645 and -646). Camera facing south. Low power reactor cells at left, then one-story control building; diagonal fence; shield test control building, then (high-bay) pool room. In foreground are electrical pad, water tanks and guard house. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-987 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. LPT. Aerial of low power test (TAN640 and 641) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test (TAN-640 and -641) and shield test (TAN-645 and -646) facilities. Camera facing north west. Low power test facility at right. Shield test facility at left. Flight engine test area in background at center left of view. Administrative and A&M areas at right. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-991 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. LPT. Shield test facility assembly and test building (TAN646), south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility assembly and test building (TAN-646), south facade. Camera facing north. High-bay section is pool room. Single-story section at right is control building (TAN-645). Small metal building is post-1970 addition. INEEL negative no. HD-40-7-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. LPT. Shield test facility (TAN645 and 646). Floor plan and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Floor plan and room names. Ralph M. Parsons 1229-17 ANP/GE-6-645-A-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645/0646-00-693-107347 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. LPT. Shield test facility (TAN646). Sections and details of water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-646). Sections and details of water management areas. Ralph M. Parsons 1229-17 ANP/GE-6-646-P-3. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0646-51-693-107388 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Wang, Q.; Scholbrock, A.

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  1. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  2. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE PAGES

    Churchfield, M.; Wang, Q.; Scholbrock, A.; ...

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  3. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  4. Diminished tektite ablation in the wake of a swarm

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.; Okeefe, J. A.

    1981-01-01

    Observations of ablation markings on tektite surfaces reveal that a large variation in aerodynamic heating must have occurred among the members of a swarm during atmospheric entry. In a few cases, the existence of jagged features indicates that these tektite surfaces may have barely reached the melting temperature. Such an observation seems to be incompatible with the necessarily large heating rates suffered by other tektites which exhibit the ring wave melt flow. A reconciliation is proposed in the form of a wake shielding model which is a natural consequence of swarm entry. Calculations indicate that the observed ablation variations are actually possible for swarm entry at greater than escape velocity. This aerodynamic conclusion provides support for the arguments favoring extraterrestrial origin of tektites.

  5. 75 FR 2540 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Recreation Area, Humboldt-Toiyabe National Forest, Clark County, NV, Wait Period Ends: 02/16/2010, Contact.... 20090437, Final EIS, USACE, NC, Western Wake Regional Wastewater Management Facilities, Proposed... of Apex, Cary, Holly Springs and Morrisville, Research Triangle Park, Wake County, NC, Wait Period...

  6. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  7. Naphthalene Planar Laser-Induced Fluorescence Imaging of Orion Multi-Purpose Crew Vehicle Heat Shield Ablation Products

    NASA Astrophysics Data System (ADS)

    Combs, Christopher S.; Clemens, Noel T.; Danehy, Paul M.

    2013-11-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) calls for an ablative heat shield. In order to better design this heat shield and others that will undergo planetary entry, an improved understanding of the ablation process is required. Given that ablation is a multi-physics process involving heat and mass transfer, codes aiming to predict heat shield ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to visualize the transport of ablation products in a supersonic flow. Since ablation at reentry temperatures can be difficult to recreate in a laboratory setting it is desirable to create a limited physics problem and simulate the ablation process at relatively low temperature conditions using naphthalene. A scaled Orion MPCV model with a solid naphthalene heat shield has been tested in a Mach 5 wind tunnel at various angles of attack in the current work. PLIF images have shown high concentrations of scalar in the capsule wake region, intermittent turbulent structures on the heat shield surface, and interesting details of the capsule shear layer structure. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (NNX11AN55H).

  8. LPT. Shield test facility assembly and test building (TAN646), south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility assembly and test building (TAN-646), south end of EBOR helium wing. Camera facing north. Monorail protrudes from upper-level door. Rust marks on concrete wall are from stack. Metal shed is post-1970 addition. INEEL negative no. HD-40-8-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  9. LPT. Shield test facility (TAN645 and 646). Basement and subbasement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Basement and sub-basement plan. Stairway plans and details. Ralph M. Parsons 1229-17 ANP/GE-6-645-A-2. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645/0646-00-693-107348 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities.

    PubMed

    Glasgow, Glenn P

    2006-09-01

    Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities NCRP Report No. 151, 2005, 246 pp. (Hardcover $100). National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095. ISBN-10 0-0929600-87-8; http://www.NCRPonline.org. © 2006 American Association of Physicists in Medicine.

  11. Full-Scale Field Test of Wake Steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  12. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  13. Wake County Public School System Design Guidelines.

    ERIC Educational Resources Information Center

    Wake County Public School System, Raleigh, NC.

    The Wake County Public School System has published its guidelines for planning and design of functional, cost effective, and durable educational facilities that are attractive and enhance the students' educational experience. The guidelines present basic planning requirement and design criteria for the entire construction process, including: codes…

  14. Flight Test Results from Real-Time Relative Global Positioning System Flight Experiment on STS-69

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Brazzel, Jack P., Jr.; Carpenter, J. Russell; Hinkel, Heather D.; Newman, James H.

    1996-01-01

    A real-time global positioning system (GPS) Kalman filter has been developed to support automated rendezvous with the International Space Station (ISS). The filter is integrated with existing Shuttle rendezvous software running on a 486 laptop computer under Windows. In this work, we present real-time and postflight results achieved with the filter on STS-69. The experiment used GPS data from an Osborne/Jet propulsion Laboratory TurboRouge receiver carried on the Wake Shield Facility (WSF) free flyer and a Rockwell Collins 3M receiver carried on the Orbiter. Real time filter results, processed onboard the Shuttle and replayed in near-time on the ground, are based on single vehicle mode operation and on 5 to 20 minute snapshots of telemetry provided by WSF for dual-vehicle mode operation. The Orbiter and WSF state vectors calculated using our filter compare favorably with precise reference orbits determined by the University of Texas Center for Space Research. The lessons learned from this experiment will be used in conjunction with future experiments to mitigate the technology risk posed by automated rendezvous and docking to the ISS.

  15. KSC-96PC1289

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- Vividly framed by a tranquil Florida landscape, the Space Shuttle Columbia lifts off from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  16. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  17. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  18. Cost Assessment for Shielding of C3 Type. Facilities

    DTIC Science & Technology

    1980-03-01

    imperfections and on penetrations . Long-conductor penetrants are assumed to enter the building through a one-quarter-inch thick entry plate and a shielded...Effects 21 3.2.3 Currents from Penetrants 21 3.2.4 Numerical Examples 23 3.3 Design Approach 23 3.3.1 Design Assuming Linear Behavior of Shield 23...General 36 4.1.1 Envelope Shield 36 4.1.2 Penetrations 41 4.2 Condition I, New Construction, External Shield 46 4.3 Condition II, New

  19. Penn State axial flow turbine facility: Performance and nozzle flow field

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zaccaria, M.; Itoh, S.

    1991-01-01

    The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.

  20. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  1. LPT. Shield test facility (TAN645 and 646). Elevations show three ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Elevations show three types of siding: Asbestos cement, pumice block, concrete. Ralph M. Parsons 1229-17 ANP/GE-6-6445-A-3. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-06445/0646-00-693-107349 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. LPT. Shield test facility (TAN646). Floor plan for water treatment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-646). Floor plan for water treatment room on west facade, tank and filter locations in basement along service tunnel and in coupling station. Ralph M. Parsons 1229-17 ANP/GE-6-646-P-2. April 1957. INEEL Index code no. 037-0645/0646-51-693-107387 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  4. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014

  5. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  6. Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanami, T.; Hagiwara, M.; Iwase, H.

    2008-02-01

    The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energymore » range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target station in FNAL.« less

  7. Transport calculation of neutrons leaked to the surroundings of the facilities by the JCO criticality accident in Tokai-mura.

    PubMed

    Imanaka, T

    2001-09-01

    A transport calculation of the neutrons leaked to the environment by the JCO criticality accident was carried out based on three-dimensional geometrical models of the buildings within the JCO territory. Our work started from an initial step to simulate the leakage process of neutrons from the precipitation tank, and proceeded to a step to calculate the neutron propagation throughout the JCO facilities. The total fission number during the accident in the precipitation tank was evaluated to be 2.5 x 10(18) by comparing the calculated neutron-induced activities per 235U fission with the measured values in a stainless-steel net sample taken 2 m from the precipitation tank. Shield effects by various structures within the JCO facilities were evaluated by comparing the present results with a previous calculation using two-dimensional models which suppose a point source of the fission spectrum in the air above the ground without any shield structures. The shield effect by the precipitation tank, itself, was obtained to be a factor of 3. The shield factor by the conversion building varied between 1.1 and 2, depending on the direction from the building. The shield effect by the surrounding buildings within the JCO territory was between I and 5, also depending on the direction.

  8. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  9. Low-background Gamma Spectroscopy at Sanford Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson, Angela; Mei, Dongming

    2014-03-01

    Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.

  10. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart

    2014-01-01

    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  11. LPT. Shield test facility assembly and test building (TAN646). East ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. LPT. Shield test facility (TAN645 and 646). Sections show relationships ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Sections show relationships among control rooms, coupling station, counting rooms, pools, equipment rooms, data room and other areas. Ralph M. Parsons 1229-17 ANP/GE-6-645-A-4. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645/0646-00-693-107350 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. Methodology for worker neutron exposure evaluation in the PDCF facility design.

    PubMed

    Scherpelz, R I; Traub, R J; Pryor, K H

    2004-01-01

    A project headed by Washington Group International is meant to design the Pit Disassembly and Conversion Facility (PDCF) to convert the plutonium pits from excessed nuclear weapons into plutonium oxide for ultimate disposition. Battelle staff are performing the shielding calculations that will determine appropriate shielding so that the facility workers will not exceed target exposure levels. The target exposure levels for workers in the facility are 5 mSv y(-1) for the whole body and 100 mSv y(-1) for the extremity, which presents a significant challenge to the designers of a facility that will process tons of radioactive material. The design effort depended on shielding calculations to determine appropriate thickness and composition for glove box walls, and concrete wall thicknesses for storage vaults. Pacific Northwest National Laboratory (PNNL) staff used ORIGEN-S and SOURCES to generate gamma and neutron source terms, and Monte Carlo (computer code for) neutron photon (transport) (MCNP-4C) to calculate the radiation transport in the facility. The shielding calculations were performed by a team of four scientists, so it was necessary to develop a consistent methodology. There was also a requirement for the study to be cost-effective, so efficient methods of evaluation were required. The calculations were subject to rigorous scrutiny by internal and external reviewers, so acceptability was a major feature of the methodology. Some of the issues addressed in the development of the methodology included selecting appropriate dose factors, developing a method for handling extremity doses, adopting an efficient method for evaluating effective dose equivalent in a non-uniform radiation field, modelling the reinforcing steel in concrete, and modularising the geometry descriptions for efficiency. The relative importance of the neutron dose equivalent compared with the gamma dose equivalent varied substantially depending on the specific shielding conditions and lessons were learned from this effect. This paper addresses these issues and the resulting methodology.

  14. Radiation predictions and shielding calculations for RITS-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less

  15. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  16. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  17. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel.

    PubMed

    Hedenström, A; Rosén, M; Spedding, G R

    2006-04-22

    The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were exactly as previously measured for the thrush nightingale. A procedure that accounts for the disparate sources of circulation spread over the complex wake structure nevertheless can account for the vertical momentum flux required to support the weight, and an example calculation is given for estimating drag from the components of horizontal momentum flux (whose net value is zero). The measured circulations of the largest structures in the wake can be predicted quite well by simple models, and expressions are given to predict these and other measurable quantities in future bird flight experiments.

  18. High resolution wind turbine wake measurements with a scanning lidar

    NASA Astrophysics Data System (ADS)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.

    2017-05-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.

  19. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  20. 69. Commander's launch control console, east end, plexiglass shield up ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. Commander's launch control console, east end, plexiglass shield up - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  1. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    PubMed

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  2. Maintenance of contamination sensitive surfaces on board long-term space vehicles

    NASA Technical Reports Server (NTRS)

    Phillips, A.; Maag, C.

    1984-01-01

    In the current age, highly sensitive instruments are being flown on spacecraft, and questions of contamination have become important. The present investigation is concerned with the available approaches which can provide long-term protection for contamination sensitive surfaces. Aspects and sources of spacecraft contamination are examined, taking into account materials outgassing, particulates, propulsion system interaction, overboard venting, man-made and cosmic debris, and atomic oxygen/ambient atmosphere interaction. Suitable protection approaches provided by current technology are discussed, giving attention to aperture covers, a possibility for a retractable cover design, gaseous purges, options for prolonging the lifetime of the thermal control system, and plume shields. Some new possibilities considered are related to an early warning system for excessive amounts of contamination, a molecular/wake shield, and the use of atomic oxygen.

  3. 28 CFR 115.313 - Supervision and monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from internal or external oversight bodies; (5) All components of the facility's physical plant... juvenile facility shall maintain staff ratios of a minimum of 1:8 during resident waking hours and 1:16... fully documented. Only security staff shall be included in these ratios. Any facility that, as of the...

  4. 28 CFR 115.313 - Supervision and monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from internal or external oversight bodies; (5) All components of the facility's physical plant... juvenile facility shall maintain staff ratios of a minimum of 1:8 during resident waking hours and 1:16... fully documented. Only security staff shall be included in these ratios. Any facility that, as of the...

  5. 28 CFR 115.313 - Supervision and monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from internal or external oversight bodies; (5) All components of the facility's physical plant... juvenile facility shall maintain staff ratios of a minimum of 1:8 during resident waking hours and 1:16... fully documented. Only security staff shall be included in these ratios. Any facility that, as of the...

  6. BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)

  7. Review of blunt body wake flows at hypersonic low density conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. N.; Price, J. M.

    1996-01-01

    Recent results of experimental and computational studies concerning hypersonic flows about blunted cones including their near wake are reviewed. Attention is focused on conditions where rarefaction effects are present, particularly in the wake. The experiments have been performed for a common model configuration (70 deg spherically-blunted cone) in five hypersonic facilities that encompass a significant range of rarefaction and nonequilibrium effects. Computational studies using direct simulation Monte Carlo (DSMC) and Navier-Stokes solvers have been applied to selected experiments performed in each of the facilities. In addition, computations have been made for typical flight conditions in both Earth and Mars atmospheres, hence more energetic flows than produced in the ground-based tests. Also, comparisons of DSMC calculations and forebody measurements made for the Japanese Orbital Reentry Experiment (OREX) vehicle (a 50 deg spherically-blunted cone) are presented to bridge the spectrum of ground to flight conditions.

  8. Reusable shielding material for neutron- and gamma-radiation

    NASA Astrophysics Data System (ADS)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  9. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    PubMed

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  10. Validation of Shielding Analysis Capability of SuperMC with SINBAD

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Yang, Qi; Wu, Bin; Han, Yuncheng; Song, Jing

    2017-09-01

    Abstract: The shielding analysis capability of SuperMC was validated with the Shielding Integral Benchmark Archive Database (SINBAD). The SINBAD was compiled by RSICC and NEA, it includes numerous benchmark experiments performed with the D-T fusion neutron source facilities of OKTAVIAN, FNS, IPPE, etc. The results from SuperMC simulation were compared with experimental data and MCNP results. Very good agreement with deviation lower than 1% was achieved and it suggests that SuperMC is reliable in shielding calculation.

  11. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  12. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  13. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  14. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  15. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  16. Removal of the Plutonium Recycle Test Reactor - 13031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, C. Brad; Guercia, Rudolph; LaCome, Matt

    2013-07-01

    The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associatedmore » underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the core drill bit. A redesign is being completed to extract the 309 PRTR and entire Bio-Shield structure together as one monolith weighing 1100 Ton by cutting structural concrete supports. In addition, the PRTR has hundreds of contaminated process tubes and pipes that have to be severed to allow for a uniformly flush fit with a lower lifting frame. Thirty-two 50 mm (2 in) core drills must be connected with thirty-two wire saw cuts to allow for lifting columns to be inserted. Then eight primary saw cuts must be completed to severe the PRTR from the 309 Facility. Once the weight of the PRTR is transferred to the lifting frame, then the PRTR may be lifted out of the facility. The critical lift will be executed using four 450 Ton strand jacks mounted on a 9 m (30 LF) tall mobile lifting frame that will allow the PRTR to be transported by eight 600 mm (24 in) Slide Shoes. The PRTR will then be placed on a twenty-four line, double wide, self powered Goldhofer for transfer to the onsite CERCLA Disposal Cell (ERDF Facility), approximately 33 km (20 miles) away. (authors)« less

  17. Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas

    This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the referencesmore » titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.« less

  18. 70. Commander's launch control console, plexiglass shield down, looking southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Commander's launch control console, plexiglass shield down, looking southeast, filing cabinet in corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  19. Mars Science Laboratory Heat Shield Integration for Flight

    NASA Image and Video Library

    2011-11-10

    During final stacking of NASA Mars Science Laboratory spacecraft, the heat shield is positioned for integration with the rest of the spacecraft in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  20. SU-E-T-400: Evaluation of Shielding and Activation at Two Pencil Beam Scanning Proton Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N; Mundy, D; Classic, K

    2015-06-15

    Purpose: To verify acceptably low dose levels around two newly constructed identical pencil beam scanning proton therapy facilities and to evaluate accuracy of pre-construction shielding calculations. Methods: Dose measurements were taken at select points of interest using a WENDI-2 style wide-energy neutron detector. Measurements were compared to pre-construction shielding calculations. Radiation badges with neutron dose measurement capabilities were worn by personnel and also placed at points throughout the facilities. Seven neutron and gamma detectors were permanently installed throughout the facility, continuously logging data. Potential activation hazards have also been investigated. Dose rates near water tanks immediately after prolonged irradiation havemore » been measured. Equipment inside the treatment room and accelerator vault has been surveyed and/or wipe tested. Air filters from air handling units, sticky mats placed outside of the accelerator vault, and water samples from the magnet cooling water loops have also been tested. Results: All radiation badges have been returned with readings below the reporting minimum. Measurements of mats, air filters, cooling water, wipe tests and surveys of equipment that has not been placed in the beam have all come back at background levels. All survey measurements show the analytical shielding calculations to be conservative by at least a factor of 2. No anomalous events have been identified by the building radiation monitoring system. Measurements of dose rates close to scanning water tanks have shown dose rates of approximately 10 mrem/hr with a half-life less than 5 minutes. Measurements around the accelerator show some areas with dose rates slightly higher than 10 mrem/hr. Conclusion: The shielding design is shown to be adequate. Measured dose rates are below those predicted by shielding calculations. Activation hazards are minimal except in certain very well defined areas within the accelerator vault and for objects placed directly in the path of the beam.« less

  1. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.

  2. STS-69 crew on flight deck during Wake Shield retrieval

    NASA Image and Video Library

    1995-09-22

    STS069-355-023 (7-18 September 1995) --- Astronauts David M. Walker (right), mission commander, and Michael L. Gernhardt, mission specialist, busy themselves on Space Shuttle Endeavour’s flight deck during rendezvous operations involving one of two temporarily free-flying craft. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.

  3. When Disaster Strikes: How School Facilities Can Cope with the Unthinkable

    ERIC Educational Resources Information Center

    Dufresne, Ray

    2009-01-01

    In the wake of a major disaster, damage assessment can be particularly challenging for organizations with dozens or even hundreds of affected properties. Those with well-documented information about predisaster facility conditions can more readily pinpoint those facilities that are at the greatest risk of damage and to determine how to prioritize…

  4. SU-E-T-569: Neutron Shielding Calculation Using Analytical and Multi-Monte Carlo Method for Proton Therapy Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S; Shin, E H; Kim, J

    2015-06-15

    Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using themore » production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.« less

  5. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  6. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel

    PubMed Central

    Hedenström, A; Rosén, M; Spedding, G.R

    2005-01-01

    The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were exactly as previously measured for the thrush nightingale. A procedure that accounts for the disparate sources of circulation spread over the complex wake structure nevertheless can account for the vertical momentum flux required to support the weight, and an example calculation is given for estimating drag from the components of horizontal momentum flux (whose net value is zero). The measured circulations of the largest structures in the wake can be predicted quite well by simple models, and expressions are given to predict these and other measurable quantities in future bird flight experiments. PMID:16849236

  7. Inlet Guide Vane Wakes Including Rotor Effects

    NASA Astrophysics Data System (ADS)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  8. New mass-spectrometric facility for the analysis of highly radioactive samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warmack, R.J.; Landau, L.; Christie, W.H.

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.

  9. KSC-96pc1287

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- A diversified mission of astronomy, commercial space research and International Space Station preparation gets under way as the Space Shuttle Columbia climbs skyward from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  10. KSC-96pc1286

    NASA Image and Video Library

    1996-11-19

    KENNEDY SPACE CENTER, FLA. -- A diversified mission of astronomy, commercial space research and International Space Station preparation gets under way as the Space Shuttle Columbia climbs skyward from Launch Pad 39B at 2:55:47 p.m. EST, Nov. 19, 1996. Leading the veteran crew of Mission STS-80 is Commander Kenneth D. Cockrell; Kent V. Rominger is the pilot and the three mission specialists are Tamara E. Jernigan, Story Musgrave and Thomas D. Jones. At age 61, Musgrave becomes the oldest person ever to fly in space; he also ties astronaut John Young’s record for most number of spaceflights by a human being, and in embarking on his sixth Shuttle flight Musgrave has logged the most flights ever aboard NASA’s reusable space vehicle. The two primary payloads for STS-80 are the Wake Shield Facility-3 (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II). Two spacewalks also will be performed during the nearly 16-day mission. Mission STS-80 closes out the Shuttle flight schedule for 1996; it marks the 21st flight for Columbia and the 80th in Shuttle program history.

  11. Team Update on North American Proton Facilities for Radiation Testing

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  12. Effectiveness of low-cost electromagnetic shielding using nail-together galvanized steel: Test results. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Kennedy, E.L.; McCormack, R.G.

    1992-09-01

    The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less

  13. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  14. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  15. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  16. Experimental characterization of the AFIT neutron facility. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessard, O.J.

    1993-09-01

    AFIT's Neutron Facility was characterized for room-return neutrons using a (252)Cf source and a Bonner sphere spectrometer with three experimental models, the shadow shield, the Eisenhauer, Schwartz, and Johnson (ESJ), and the polynomial models. The free-field fluences at one meter from the ESJ and polynomial models were compared to the equivalent value from the accepted experimental shadow shield model to determine the suitability of the models in the AFIT facility. The polynomial model behaved erratically, as expected, while the ESJ model compared to within 4.8% of the shadow shield model results for the four Bonner sphere calibration. The ratio ofmore » total fluence to free-field fluence at one meter for the ESJ model was then compared to the equivalent ratio obtained by a Monte Cario Neutron-Photon transport code (MCNP), an accepted computational model. The ESJ model compared to within 6.2% of the MCNP results. AFIT's fluence ratios were compared to equivalent ratios reported by three other neutron facilities which verified that AFIT's results fit previously published trends based on room volumes. The ESJ model appeared adequate for health physics applications and was chosen was chosen for calibration of the AFIT facility. Neutron Detector, Bonner Sphere, Neutron Dosimetry, Room Characterization.« less

  17. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  18. Interior of the Plum Brook Reactor Facility

    NASA Image and Video Library

    1961-02-21

    A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.

  19. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  20. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    NASA Astrophysics Data System (ADS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  1. Influence of gamma-ray skyshine on nuclear facilities design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, M.; Tsuji, M.; Kimura, Y.

    1986-01-01

    In safety analysis of nuclear facilities, skyshine dose rate at site boundary is one of the most important shielding design problems. For nuclear power stations in Japan, the skyshine dose rate at the site boundary has been specified not to exceed 5 mR/yr by the authorities, including total dose contribution from all structures on site, and this guide is commonly applied to other nuclear fuel cycle facilities. Therefore the design criterion dose of each structure on site is, considering plot planning, shielding condition, and so on, defined as a value <5 mR/yr. The purpose of this study is to investigatemore » how skyshine dose standards or other factors have an influence on the design of nuclear facilities, in a parametric survey of gamma-ray skyshine.« less

  2. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  3. Military Handbook. Grounding, Bonding, and Shielding for Electronic Equipments and Facilities. Volume 1. Basic Theory

    DTIC Science & Technology

    1987-12-29

    when the air or gas stream contains particulate matter. b. Pulverized materials passing through chutes or pneumatic conveyors . c. Nonconductive power...Hanover NH, 1971, AD 722 221. 146.Oakley, R.J., "Surface Transfer Impedance and Cable Shielding Design ," Wire Journal, Vol 4, No. 3, March 1971, pp...including considerations of grounding, bonding, and shielding in all phases of design , construction, operation, and maintenance of electronic equipment

  4. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  5. Unsteady design-point flow phenomena in transonic compressors

    NASA Technical Reports Server (NTRS)

    Gertz, J. B.; Epstein, A. H.

    1986-01-01

    High-frequency response probes which had previously been used exclusively in the MIT Blowndown Facility were successfully employed in two conventional steady state axial flow compressor facilities to investigate the unsteady flowfields of highly loaded transonic compressors at design point operation. Laser anemometry measurements taken simultaneously with the high response data were also analyzed. The time averaged high response data of static and total pressure agreed quite well with the conventional steady state instrumentation except for flow angle which showed a large spread in values at all radii regardless of the type of instrumentation used. In addition, the time resolved measurements confirmed earlier test results obtained in the MIT Blowdown Facility for the same compressor. The results of these tests have further revealed that the flowfields of highly loaded transonic compressors are heavily influenced by unsteady flow phenomena. The high response measurements exhibited large variations in the blade to blade flow and in the blade passage flow. The observed unsteadiness in the blade wakes is explained in terms of the rotor blades' shed vorticity in periodic vortex streets. The wakes were modeled as two-dimensional vortex streets with finite size cores. The model fit the data quite well as it was able to reproduce the average wake shape and bi-modal probability density distributions seen in the laser anemometry data. The presence of vortex streets in the blade wakes also explains the large blade to blade fluctuations seen by the high response probes which is simply due to the intermittent sampling of the vortex street as it is swept past a stationary probe.

  6. Accelerator shield design of KIPT neutron source facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Gohar, Y.

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less

  7. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  8. Experiences with a New Shielding Material

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Calzada, E.; Liu, S. Q.; Stöwer, W.; Kortmann, F.; Größlhuber, H.; von Gostomski, Ch. Lierse

    Recent modifications of the NECTAR facility included the set-up of a new beam dump. One of its main components is based on a reusable shielding material developed at TUM. The provided base material was characterized and its advantages and limitations were investigated by simulation studies and by measurements.

  9. Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1978-01-01

    An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.

  10. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  11. Numerical Simulations of Instabilities in Single-Hole Office Elements

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  12. LPT. Shield test control building (TAN645), north facade. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test control building (TAN-645), north facade. Camera facing south. Obsolete sign dating from post-1970 program says "Energy and Systems Technology Experimental Facility, INEL." INEEL negative no. HD-40-5-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. 13. VIEW OF THE HYDROFLUORINATOR AFTER INSTALLATION. SUPPLEMENTAL SHIELDING, WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE HYDROFLUORINATOR AFTER INSTALLATION. SUPPLEMENTAL SHIELDING, WHICH MOVES ALONG TRACKS IN THE FLOOR AND CEILING PROTECTS WORKERS FROM NEUTRON RADIATION EMISSIONS ASSOCIATED WITH THE PROCESS. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  14. ADEPT Heat Shield Testing

    NASA Image and Video Library

    2015-10-16

    NASA is developing the next generation of heat shield to enable astronauts to go to Mars and other deep space destinations. Called the Adaptive Deployable Entry and Placement Technology or ADEPT, the heat shield is mechanically deployable and uses a flexible woven carbon fabric as its skin. Recently, engineers successfully completed a series of tests in the Ames Arc Jet facility. Other tests conducted in wind tunnels at Ames demonstrated that the ADEPT materials and system perform well under planetary re-entry conditions.

  15. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    DOE PAGES

    Cherkashyna, Nataliia; Di Julio, Douglas D.; Panzner, Tobias; ...

    2015-08-09

    The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolithmore » wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS.« less

  16. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  17. Computer aided radiation analysis for manned spacecraft

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew H.; Griffin, Brand N.; Tanner, Ernest R., II; Pogue, William R.; Golightly, Michael J.

    1991-01-01

    In order to assist in the design of radiation shielding an analytical tool is presented that can be employed in combination with CAD facilities and NASA transport codes. The nature of radiation in space is described, and the operational requirements for protection are listed as background information for the use of the technique. The method is based on the Boeing radiation exposure model (BREM) for combining NASA radiation transport codes and CAD facilities, and the output is given as contour maps of the radiation-shield distribution so that dangerous areas can be identified. Computational models are used to solve the 1D Boltzmann transport equation and determine the shielding needs for the worst-case scenario. BREM can be employed directly with the radiation computations to assess radiation protection during all phases of design which saves time and ultimately spacecraft weight.

  18. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    NASA Astrophysics Data System (ADS)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  19. Effect of curing condition on the concrete moisture retention and its shielding implication for the design of fusion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, S.; Chang, J.; Amin, S.

    1981-01-01

    Teste were conducted to determine the moisture retention for the 0.5 wt% borated concrete under three curing conditions. The three curing conditions are (1) curing at 100% relative humidity for a 28-day period at 21/degree/C, (2) curing at 100% relative humidity for a 7-day period, then at air-dry 50% relative humidity for the remaining 28-day curing period at 21/degree/C, and (3) curing at 100% relative humidity for a period of 7 days and then curing at air-dry 20% relative humidity for the remaining curing period at 21/degree/C. The concrete shielding curves are presented for several mositure contents. The results shouldmore » be helpful to assist the design of a cost effective concrete shield for fusion facilities.« less

  20. Carbon phenolic heat shields for Jupiter/Saturn/Uranus entry probes

    NASA Technical Reports Server (NTRS)

    Mezines, S.

    1974-01-01

    Carbon phenolic heat shield technology is reviewed. Heat shield results from the outer planetary probe mission studies are summarized along with results of plasma jet testing of carbon phenolic conducted in a ten megawatt facility. Missile flight data is applied to planetary entry conditions. A carbon phenolic heat shield material is utilized and tailored to accommodate each of the probe missions. An integral heat shield approach is selected over in order to eliminate a high temperature interface problem and permit direct bonding of the carbon phenolic to the structural honeycomb sandwich. The sandwich is filled with a very fine powder to minimize degradation of its insulation properties by the high conductive hydrogen/helium gases during the long atmospheric descent phase.

  1. Time-averaged aerodynamic loads on the vane sets of the 40- by 80-foot and 80- by 120-foot wind tunnel complex

    NASA Technical Reports Server (NTRS)

    Aoyagi, Kiyoshi; Olson, Lawrence E.; Peterson, Randall L.; Yamauchi, Gloria K.; Ross, James C.; Norman, Thomas R.

    1987-01-01

    Time-averaged aerodynamic loads are estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). The methods used to compute global and local loads are presented. Experimental inputs used to calculate these loads are based primarily on data obtained from tests conducted in the NFAC 1/10-Scale Vane-Set Test Facility and from tests conducted in the NFAC 1/50-Scale Facility. For those vane sets located directly downstream of either the 40- by 80-ft test section or the 80- by 120-ft test section, aerodynamic loads caused by the impingement of model-generated wake vortices and model-generated jet and propeller wakes are also estimated.

  2. PBF Reactor Building (PER620) basement, inside cubicle 13. Lead bricks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement, inside cubicle 13. Lead bricks shield the fission product detection system (FPDS). The system detected fission products in pressure loop from in-pile tube. shielding was to prevent other radiation in cubicle from interfering. Assembly of bricks in foreground will slide back to enclose and shield equipment in the three chambers. Date: 1982. INEEL negative no. 82-6376 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. Experimental realization of open magnetic shielding

    NASA Astrophysics Data System (ADS)

    Gu, C.; Chen, S.; Pang, T.; Qu, T.-M.

    2017-05-01

    The detection of extremely low magnetic fields has various applications in the area of fundamental research, medical diagnosis, and industry. Extracting the valuable signals from noises often requires magnetic shielding facilities. We demonstrated directly from Maxwell's equations that specifically designed superconductor coils can exactly shield the magnetic field to an extremely low value. We experimentally confirmed this effect in the frequency spectrum of 0.01-10 000 Hz and improved the electromagnetic environment in a hospital, a leading hospital in magnetocardiograph study in China.

  4. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine.

    PubMed

    Silva, Paulo A S F; Oliveira, Taygoara F DE; Brasil, Antonio C P; Vaz, Jerson R P

    2016-01-01

    Over the years most studies on wake characteristics have been devoted to wind turbines, while few works are related to hydrokinetic turbines. Among studies applied to rivers, depth and width are important parameters for a suitable design. In this work, a numerical study of the wake in a horizontal-axis hydrokinetic turbine is performed, where the main objective is an investigation on the wake structure, which can be a constraining factor in rivers. The present paper uses the Reynolds Averaged Navier Stokes (RANS) flow simulation technique, in which the Shear-Stress Transport (SST) turbulent model is considered, in order to simulate a free hydrokinetic runner in a typical river flow. The NREL-PHASE VI wind turbine was used to validate the numerical approach. Simulations for a 3-bladed axial hydrokinetic turbine with 10 m diameter were carried out, depicting the expanded helical behavior of the wake. The axial velocity, in this case, is fully recovered at 12 diameters downstream in the wake. The results are compared with others available in the literature and also a study of the turbulence kinetic energy and mean axial velocity is presented so as to assess the influence of proximity of river surface from rotor in the wake geometry. Hence, even for a single turbine facility it is still necessary to consider the propagation of the wake over the spatial domain.

  5. Boeing CST-100 Heat Shield Testing

    NASA Image and Video Library

    2017-05-31

    A heat shield is used during separation test activities with Boeing's Starliner structural test article. The test article is undergoing rigorous qualification testing at the company's Huntington Beach Facility in California. Boeing’s CST-100 Starliner will launch on the Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  6. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or armor ground resistance measurements shall be made on completed lengths of copper cable and wire... measurement shall be made between the copper cable and wire shield and ground and between the fiber optic... instructions. (d) Applicable results. (1) For all new copper cable and wire facilities and all new fiber optic...

  7. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or armor ground resistance measurements shall be made on completed lengths of copper cable and wire... measurement shall be made between the copper cable and wire shield and ground and between the fiber optic... instructions. (d) Applicable results. (1) For all new copper cable and wire facilities and all new fiber optic...

  8. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or armor ground resistance measurements shall be made on completed lengths of copper cable and wire... measurement shall be made between the copper cable and wire shield and ground and between the fiber optic... instructions. (d) Applicable results. (1) For all new copper cable and wire facilities and all new fiber optic...

  9. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    PubMed

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  10. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-15

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenthmore » value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.« less

  11. Proceedings of the Aircraft Wake Vortices Conference, March 15-17, 1977, held at the Transportation Systems Center, Kendall Square, Cambridge, MA

    DTIC Science & Technology

    1977-06-01

    surrounding the antenna with a shield which Figure 7. Vortex sensor baseline at JFK Airport . is covered on the inside with sound- absorbing material...the NASA .20 t 0 ] ? Marshall Space Flight Center. It was used atVOkt[ RADIUS 1.1 the JFK Airport to detect, track, and mea- Figure 29. Vortex...4 +5 TIME IN SECONDS DISTANCE IN HUNDREDS OF FT Figure 30. Simultaneous vortx tracks from the two LDV systems at JFK Airport . 64 4I BURNHAM

  12. Navy nurse anesthetists at Fleet Hospital Five: the Desert Shield/Storm experience.

    PubMed

    Hrezo, Richard J

    2003-06-01

    In 1990, the United States Navy deployed its first operational fleet hospital: "Fleet Hospital Five" in support of Operation Desert Shield/Storm. Within 2 weeks of notification, the 900 medical providers assigned to this medical facility, which was capable of providing major trauma surgery and critical care, were on their way to Al Jabayl, Saudi Arabia. This article discusses the unique characteristics of this facility and introduces the crucial role that nurse anesthetists play. The article also introduces several innovative ideas that were developed and tested to expand the capabilities of the hospital.

  13. Neutron skyshine from intense 14-MeV neutron source facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T.; Hayashi, K.; Takahashi, A.

    1985-07-01

    The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with the high-efficiency rem counter, the multisphere spectrometer, and the NE-213 scintillator in the environment surrounding an intense 14-MeV neutron source facility. The dose distribution and the energy spectra of neutrons around the facility used as a skyshine source have also been measured to enable the absolute evaluation of the skyshine effect. The skyshine effect was analyzed by two multigroup Monte Carlo codes, NIMSAC and MMCR-2, by two discrete ordinates S /sub n/ codes, ANISN and DOT3.5, and by the shield structure designmore » code for skyshine, SKYSHINE-II. The calculated results show good agreement with the measured results in absolute values. These experimental results should be useful as benchmark data for shyshine analysis and for shielding design of fusion facilities.« less

  14. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.« less

  15. A new approach to complete aircraft landing gear noise prediction

    NASA Astrophysics Data System (ADS)

    Lopes, Leonard V.

    This thesis describes a new landing gear noise prediction system developed at The Pennsylvania State University, called Landing Gear Model and Acoustic Prediction code (LGMAP). LGMAP is used to predict the noise of an isolated or installed landing gear geometry. The predictions include several techniques to approximate the aeroacoustic and aerodynamic interactions of landing gear noise generation. These include (1) a method for approximating the shielding of noise caused by the landing gear geometry, (2) accounting for local flow variations due to the wing geometry, (3) the interaction of the landing gear wake with high-lift devices, and (4) a method for estimating the effect of gross landing gear design changes on local flow and acoustic radiation. The LGMAP aeroacoustic prediction system has been created to predict the noise generated by a given landing gear. The landing gear is modeled as a set of simple components that represent individual parts of the structure. Each component, ranging from large to small, is represented by a simple geometric shape and the unsteady flow on the component is modeled based on an individual characteristic length, local flow velocity, and the turbulent flow environment. A small set of universal models is developed and applied to a large range of similar components. These universal models, combined with the actual component geometry and local environment, give a unique loading spectrum and acoustic field for each component. Then, the sum of all the individual components in the complete configuration is used to model the high level of geometric complexity typical of current aircraft undercarriage designs. A line of sight shielding algorithm based on scattering by a two-dimensional cylinder approximates the effect of acoustic shielding caused by the landing gear. Using the scattering from a cylinder in two-dimensions at an observer position directly behind the cylinder, LGMAP is able to estimate the reduction in noise due to shielding by the landing gear geometry. This thesis compares predictions with data from a recent wind tunnel experiment conducted at NASA Langley Research Center, and demonstrates that including the acoustic scattering can improve the predictions by LGMAP at all observer positions. In this way, LGMAP provides more information about the actual noise propagation than simple empirical schemes. Two-dimensional FLUENT calculations of approximate wing cross-sections are used by LGMAP to compute the change in noise due to the change in local flow velocity in the vicinity of the landing gear due to circulation around the wing. By varying angle of attack and flap deflection angle in the CFD calculations, LGMAP is able to predict the noise level change due to the change in local flow velocity in the landing gear vicinity. A brief trade study is performed on the angle of attack of the wing and flap deflection angle of the flap system. It is shown that increasing the angle of attack or flap deflection angle reduces the flow velocity in the vicinity of the landing gear, and therefore the predicted noise. Predictions demonstrate the ability of the prediction system to quickly estimate the change in landing gear noise caused by a change in wing configuration. A three-dimensional immersed boundary CFD calculation of simplified landing gear geometries provides relatively quick estimates of the mean flow around the landing gear. The mean flow calculation provides the landing gear wake geometry for the prediction of trailing edge noise associated with the interaction of the landing gear wake with the high lift devices. Using wind tunnel experiments that relate turbulent intensity to wake size and the Ffowcs Williams and Hall trailing edge noise equation for the acoustic calculation, LGMAP is able to predict the landing gear wake generated trailing edge noise. In this manner, LGMAP includes the effect of the interaction of the landing gear's wake with the wing/flap system on the radiated noise. The final prediction technique implemented includes local flow calculations of a landing gear with various truck angles using the immersed boundary scheme. Using the mean flow calculation, LGMAP is able to predict noise changes caused by gross changes in landing gear design. Calculations of the mean flow around the landing gear show that the rear wheels of a six-wheel bogie experience significantly reduced mean flow velocity when the truck is placed in a toe-down configuration. This reduction in the mean flow results is a lower noise signature from the rear wheel. Since the noise from a six-wheel bogie at flyover observer positions is primarily composed of wheel noise, the reduced local flow velocity results in a reduced noise signature from the entire landing gear geometry. Comparisons with measurements show the accuracy of the predictions of landing gear noise levels and directivity. Airframe noise predictions for the landing gear of a complete aircraft are described including all of the above mentioned developments and prediction techniques. These show that the nose gear noise and the landing gear wake/flap interaction noise, while not significantly changing the overall shape of the radiated noise, do contribute to the overall noise from the installed landing gear.

  16. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less

  17. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  18. Installation Restoration Program. Phase 1. Records Search Wake Island Airfield

    DTIC Science & Technology

    1984-09-01

    serviced transient Air Force aircraft at Wake Island. Detachments of the 6486th Air Base Wing (predecessor organization *of the 15th Air Base Wing...following groups: " o Base Operations o Transportation Division o Civil Engineering Division . Air Force facilities were located east of the 1700...since these materials were shipped to the base on barges. The contrac- tors also took waste oil from the Air . Force for use in their vehicles and

  19. Rotor Aerodynamics in Ground Effect at Low Advance Ratios.

    DTIC Science & Technology

    1982-07-27

    the rotor wake flows entirely downstream. At test conditions were the recirculating flow or ground vortex is present there are marked departures...ILLUSTRATIONS Figure Page 1 Cross Section of Test Facilty 12 2 Overall View of Test Facility and Rotor Model 13 3 Flow Pattern in Ground Vortex Regime, (v...entirely flowing downstream splits and a portion of the rotor wake flows forward (upstream) and then recirculates through the rotor or forms a vortex or

  20. Facility target insert shielding assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less

  1. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    PubMed

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  2. Experimental study of the effect on span loading on aircraft wakes

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Rossow, V. J.; Ciffone, D. L.

    1975-01-01

    Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake.

  3. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jason

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safemore » operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.« less

  4. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    ScienceCinema

    Chou, Jason

    2018-02-13

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  5. ALF: a facility for x-ray lithography II--a progress report

    NASA Astrophysics Data System (ADS)

    Lesoine, L. G.; Kukkonen, Kenneth W.; Leavey, Jeffrey A.

    1992-07-01

    In our previous paper which we presented here two years ago, we described the ALF (Advanced Lithography Facility), IBM's new facility for X-ray lithography which was built as an addition to the Advanced Semiconductor Technology Center at IBM's semiconductor plant in Hopewell Jct., NY. At that time, we described the structure, its utilities, facilities and special features such as the radiation shielding, control room, clean room and vibration resistant design. The building has been completed and occupied. By the time this paper is presented the storage ring will be commissioned, the clean room occupied, and two beamlines with one stepper operational. In this paper we will review the successful completion of the facility with its associated hardware. The installation of the synchrotron will be described elsewhere. We will also discuss the first measurements of vibration, clean room cleanliness and the effectiveness of the radiation shielding. The ALF was completed on schedule and cost objectives were met. This is attributed to careful planning, close cooperation among all the parties involved from the technical team in IBM Research, the system vendor (Oxford Instruments of Oxford England) to the many contractors and subcontractors and to strong support from IBM senior management. All the planned building specifications were met and the facility has come on-line with a minimum of problems. Most important, the initial measurements show that the radiation shielding plan is sound and that with a few modifications the dose limit of 10% of background will be met. Any concerns about an electron accelerator and synchrotron in an industrial setting have been eliminated.

  6. EVALUATION OF PROMPT DOSE ENVIRONMENT IN THE NATIONAL IGNITION FACILITY DURING D-D AND THD SHOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khater, H; Dauffy, L; Sitaraman, S

    2009-04-28

    Evaluation of the prompt dose environment expected in the National Ignition Facility (NIF) during Deuterium-Deuterium (D-D) and Tritium-Hydrogen-Deuterium (THD) shots have been completed. D-D shots resulting in the production of an annual fusion yield of up to 2.4 kJ (200 shots with 10{sup 13} neutrons per shot) are considered. During the THD shot campaign, shots generating a total of 2 x 10{sup 14} neutrons per shot are also planned. Monte Carlo simulations have been performed to estimate prompt dose values inside the facility as well as at different locations outside the facility shield walls. The Target Chamber shielding, along withmore » Target Bay and Switchyard walls, roofs, and shield doors (when needed) will reduce dose levels in occupied areas to acceptable values during these shot campaigns. The calculated dose values inside occupied areas are small, estimated at 25 and 85 {micro}rem per shot during the D-D and THD shots, respectively. Dose values outside the facility are insignificant. The nearest building to the NIF facility where co-located workers may reside is at a distance of about 100 m from the Target Chamber Center (TCC). The dose in such a building is estimated at a fraction of a ?rem during a D-D or a THD shot. Dose at the nearest site boundary location (350 m from TCC), is caused by skyshine and to a lesser extent by direct radiation. The maximum off-site dose during any of the shots considered is less than 10 nano rem.« less

  7. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  8. 30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  9. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1975-01-01

    The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.

  10. Study on the bearing capacity of embedded chute on shield tunnel segment

    NASA Astrophysics Data System (ADS)

    Fanzhen, Zhang; Jie, Bu; Zhibo, Su; Qigao, Hu

    2018-05-01

    The method of perforation and steel implantation is often used to fix and install pipeline, cables and other facilities in the shield tunnel, which would inevitably do damage to the precast segments. In order to reduce the damage and the resulting safety and durability problems, embedded chute was set at the equipment installation in one shield tunnel. Finite element models of segment concrete and steel are established in this paper. When water-soil pressure calculated separately and calculated together, the mechanical property of segment is studied. The bearing capacity and deformation of segment are analysed before and after embedding the chute. Research results provide a reference for similar shield tunnel segment engineering.

  11. Boeing CST-100 Starliner Base Heat Shield Installation

    NASA Image and Video Library

    2018-03-15

    On March 15, the base heat shield for Boeing’s CST-100 Starliner was freshly installed on the bottom of Spacecraft 1 in the High Bay of the Commercial Crew and Cargo Processing Facility at Kennedy Space Center. This is the spacecraft that will fly during the Pad Abort Test. The next step involves installation of the back shells and forward heat shield, and then the crew module will be mated to the service module for a fit check. Finally, the vehicle will head out to White Sands Missile Range in New Mexico for testing.

  12. Orion EFT-1 Heat Shield move from LASF to VAB for Ground Test Article Integration

    NASA Image and Video Library

    2017-04-26

    The heat shield for Exploration Flight Test-1 is transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations to be integrated with the Ground Test Article to be utilized for future Underway Recovery Testing. After transport from the Launch Abort System Facility (LASF) to the Vehicle Assembly Building (VAB), the heat shield is lifted off of the transport truck and placed onto foam pads (dunnage) for inspection in Highbay 2 of the VAB.

  13. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  14. An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1996-01-01

    A concept is presented for the development and implementation of a prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to use current and short-term predictions of the atmospheric state in approach and departure corridors to provide, to ATC facilities, dynamical weather dependent separation criteria with adequate stability and lead time for use in establishing arrival scheduling. The AVOSS will accomplish this task through a combination of wake vortex transport and decay predictions, weather state knowledge, defined aircraft operational procedures and corridors, and wake vortex safety sensors. Work is currently underway to address the critical disciplines and knowledge needs so as to implement and demonstrate a prototype AVOSS in the 1999/2000 time frame.

  15. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  16. Synthesis of mullite (3Al2O32SiO2) from local kaolin for radiation shielding

    NASA Astrophysics Data System (ADS)

    Ripin, Azuhar; Mohamed, Faizal; Aman, Asyraf

    2018-04-01

    Raw kaolin from Kota Tinggi, Johor was used in this study to produce ceramic mullite (3Al2O22SiO2) for radiation shielding materials. In this work, an attempt was made to study the potential of local minerals to be used as a shielding barrier for diagnostic radiology radiation facilities in hospitals and medical centers throughout Malaysia. The conventional ceramic processing route was employed in the study using different pressing strength and sintering time. The obtained samples were characterized using X-ray diffractometer (XRD) for phase identification of each of the samples. The lead equivalent (LE) test was carried out using 15.05 mCi Cobalt-57 with gamma energy of 122 keV to compute the abilities of the mullite ceramic samples to attenuate the radiation. XRD patterns of prepared ceramics revealed the presence of orthorhombic mullite, hexagonal quartz and orthorhombic sillimanite structures. Furthermore, the radiation test displayed the ability of ceramics to shield of 70 % of gamma radiation at the distance of 60 cm from the radiation source. The highest lead equivalent thickness is 1.0 mm Pb and the lowest is about 0.06 mm Pb. From the result, it is shown that the ceramic has the potential to use as a shielding barrier in diagnostic radiology facilities due to the ability of reducing the radiation dose up to 70 % from its initial value.

  17. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    PubMed

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  18. Radiological considerations for bulk shielding calculations of national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2011-12-01

    Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.

  19. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Mccolgan, C. J.; Ladden, R. M.; Klatte, R. J.

    1991-01-01

    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, and wing and boundary layer shielding are examined.

  20. 1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ON RIGHT OF VIEW IS PART OF EARTH/GRAVEL SHIELDING FOR BIN SET. AERIAL STRUCTURE MOUNTED ON POLES IS PNEUMATIC TRANSFER SYSTEM FOR DELIVERY OF SAMPLES BEING SENT FROM NEW WASTE CALCINING FACILITY TO THE CPP REMOTE ANALYTICAL LABORATORY. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  1. Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki L. H.; Myers, Theodore

    1997-01-01

    This report documents a high risk, high pay-off experiment with the objective of detecting, for the first time, the presence of aircraft wake vortices in clear air using X-band Doppler radar. Field experiments were conducted in January 1995 at the Wallops Flight Facility (WFF) to demonstrate the capability of the 9.33 GHz (I=3 cm) radar, which was assembled using an existing nine-meter parabolic antenna reflector at VVTT and the receiver/transmitter from the NASA Airborne Windshear Radar-Program. A C-130-aircraft, equipped with wingtip smoke generators, created visually marked wake vortices, which were recorded by video cameras. A C-band radar also observed the wake vortices during detection attempts with the X-band radar. Rawinsonde data was used to calculate vertical soundings of wake vortex decay time, cross aircraft bearing wind speed, and water vapor mixing ratio for aircraft passes over the radar measurement range. This experiment was a pathfinder in predicting, in real time, the location and persistence of C-130 vortices, and in setting the flight path of the aircraft to optimize X-band radar measurement of the wake vortex core in real time. This experiment was conducted in support of the NASA Aircraft Vortex Spacing System (AVOSS).

  2. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  3. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    NASA Astrophysics Data System (ADS)

    Christiansen, Eric L.; Crews, Jeanne Lee; Kerr, Justin H.; Chhabildas, Lalit C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel™ ceramic fabric and Kevlar™ high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ("hypervelocity launcher") and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at ˜11.5 km/s. The >10 km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel™/Kevlar™ shield provides superior protection performance compared to an all-aluminum shield alternative.

  4. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    PubMed Central

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578

  5. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  6. NASA Agricultural Aircraft Research Program in the Langley Vortex Research Facility and the Langley Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    The current status of aerial applications technology research at the Langley's Vortex Research Facility and Full-Scale Wind Tunnel is reviewed. Efforts have been directed mainly toward developing and validating the required experimental and theoretical research tools. A capability to simulate aerial dispersal of materials from agricultural airplanes with small-scale airplane models, numerical methods, and dynamically scaled test particles was demonstrated. Tests on wake modification concepts have proved the feasibility of tailoring wake properties aerodynamically to produce favorable changes in deposition and to provide drift control. An aerodynamic evaluation of the Thrush Commander 800 agricultural airplane with various dispersal systems installed is described. A number of modifications intended to provide system improvement to both airplane and dispersal system are examined, and a technique for documenting near-field spray characteristics is evaluated.

  7. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  8. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  9. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.

    2017-11-01

    The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.

  10. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  11. Shielding activated return water at the ESS

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; Muhrer, Günter; Carlsson, H.; Eriksson, Björn

    2018-06-01

    ESS utilises water both for moderating neutrons to thermal energies, as well as to cool beryllium- and steel reflectors, the shielding and plugs. This means that the water, in separate loops, will be subject to a significant proton and neutron irradiation causing the water to activate. After irradiation, the water is led to delay tanks situated inside the target building. Before returned to the target monolith ∼ 10% is led to the ion exchanger. This paper aims at determining the shielding required to ensure that the biological dose-rate requirements in the target building and neighbouring instrument halls are met during operation of facility.

  12. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila

    2002-01-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.

  13. An Analysis of Radiation Penetration through the U-Shaped Cast Concrete Joints of Concrete Shielding in the Multipurpose Gamma Irradiator of BATAN

    NASA Astrophysics Data System (ADS)

    Ardiyati, Tanti; Rozali, Bang; Kasmudin

    2018-02-01

    An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.

  14. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  15. Experimental investigation of the turbulent axisymmetric wake with rotation generated by a wind turbine

    NASA Astrophysics Data System (ADS)

    Dufresne, Nathaniel P.

    An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.

  16. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  17. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  18. Vortex dynamics and scalar transport in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2012-09-01

    The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.

  19. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  20. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.

  1. SU-E-T-264: New Concrete Designed and Evaluation for Megavoltage X Radiotherapy Facilities (CONTEK-RFH2).

    PubMed

    Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A

    2012-06-01

    The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.

  2. Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.

    PubMed

    Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther

    2012-05-01

    In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.

  3. 29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  4. TREE Simulation Facilities, Second Edition, Revision 2

    DTIC Science & Technology

    1979-01-01

    included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility

  5. Surface mesoscale features associated with leading convective line-trailing stratiform squall lines over the Gangetic West Bengal

    NASA Astrophysics Data System (ADS)

    Dawn, S.; Mandal, M.

    2014-08-01

    In this paper an attempt is made to identify the mesoscale features in surface pressure pattern, if any, associated with thunderstorm over the Gangetic West Bengal region in India. The study was conducted over Kharagpur and the adjoining area in the Gangetic West Bengal, frequently affected by thunderstorms during the pre-monsoon seasons of April-May. Observations recorded at 50 m instrumented micro-meteorological tower and upper air sounding at Kharagpur under nationally coordinated Severe Thunderstorm Observations and Regional Modeling (STORM) Programme are used to study the variation in surface pressure, wind speed and direction, temperature and relative humidity associated with the squall lines with trailing stratiform precipitation region. In the surface pressure variation, pre-squall mesolow, mesohigh and wake low are identified with the passage of the squall line at Kharagpur. It is observed that in the squall line with trailing stratiform precipitation shield, the mesohigh is associated with convective line and wake low exists at the rear of the storms. The position of the mesohigh is typically found in the vicinity of the heavy rain directly beneath the downdraft. The mesohigh seems to be initiated by the cooling due to evaporation of precipitation in the downdraft and intensified due to the non-hydrostatic effect because of the rainfall directly beneath the downdraft. It is also observed that the passage of trailing edges of the stratiform precipitation coincided with the wake low. Upper air sounding shows mid-tropospheric cooling and lower tropospheric warming. It may be possible due to the dominance of evaporative cooling in the mid-levels and dynamically forced descending motion leading to adiabatic warming in the low levels which may lead to the formation of the wake low.

  6. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard the ISS, the other is re-integrated on the ground with new experiments. When the cryogen of the facility in space are exhausted, it will be swapped with the other facility with the new experiment. A total of 20 science missions are envisioned over the next 20 years.

  7. An evaluation of NCRP report 151--radiation shielding design for radiotherapy facilities, and a feasibility study for 6 MV open-door treatments in an existing high-energy radiation therapy bunker

    NASA Astrophysics Data System (ADS)

    Kildea, John

    This thesis describes a study of shielding design techniques used for radiation therapy facilities that employ megavoltage linear accelerators. Specifically, an evaluation of the shielding design formalism described in NCRP report 151 was undertaken and a feasibility study for open-door 6 MV radiation therapy treatments in existing 6 MV, 18 MV treatment rooms at the Montreal General Hospital (MGH) was conducted. To evaluate the shielding design formalism of NCRP 151, barrier-attenuated equivalent doses were measured for several of the treatment rooms at the MGH and compared with expectations from NCRP 151 calculations. It was found that, while the insight and recommendations of NCRP 151 are very valuable, its dose predictions are not always correct. As such, the NCRP 151 methodology is best used in conjunction with physical measurements. The feasibility study for 6 MV open-door treatments made use of the NCRP 151 formalism, together with physical measurements for realistic 6 MV workloads. The results suggest that, dosimetrically, 6 MV open door treatments are feasible. A conservative estimate for the increased dose at the door arising from such treatments is 0.1 mSv, with a 1/8 occupancy factor, as recommended in NCRP 151, included.

  8. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy.

    PubMed

    Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E

    2011-10-30

    Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  10. The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2017-11-01

    Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.

  11. The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT

    NASA Technical Reports Server (NTRS)

    da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano

    2008-01-01

    The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.

  12. Visualization of Flow Separation Around an Atmospheric Entry Capsule at Low-Subsonic Mach Number Using Background-Oriented Schlieren (BOS)

    NASA Technical Reports Server (NTRS)

    Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.

    2014-01-01

    This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).

  13. Self-Shielding Analysis of the Zap-X System

    PubMed Central

    Schneider, M. Bret; Adler, John R.

    2017-01-01

    The Zap-X is a self-contained and first-of-its-kind self-shielded therapeutic radiation device dedicated to brain as well as head and neck stereotactic radiosurgery (SRS). By utilizing an S-band linear accelerator (linac) with a 2.7 megavolt (MV) accelerating potential and incorporating radiation-shielded mechanical structures, the Zap-X does not typically require a radiation bunker, thereby saving SRS facilities considerable cost. At the same time, the self-shielded features of the Zap-X are designed for more consistency of radiation protection, reducing the risk to radiation workers and others potentially exposed from a poorly designed or constructed radiotherapy vault. The hypothesis of the present study is that a radiosurgical system can be self-shielded such that it produces radiation exposure levels deemed safe to the public while operating under a full clinical workload. This study summarizes the Zap-X system shielding and found that the overall system radiation leakage values are reduced by a factor of 50 compared to the occupational radiation limit stipulated by the Nuclear Regulatory Commission (NRC) or agreement states. The goal of self-shielding is achieved under all but the most exceptional conditions for which additional room shielding or a larger restricted area in the vicinity of the Zap-X system would be required. PMID:29441251

  14. Spatial interpolation of gamma dose in radioactive waste storage facility

    NASA Astrophysics Data System (ADS)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  15. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    PubMed

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  16. Comparison of Stereo-PIV and Plenoptic-PIV Measurements on the Wake of a Cylinder in NASA Ground Test Facilities.

    NASA Technical Reports Server (NTRS)

    Fahringer, Timothy W.; Thurow, Brian S.; Humphreys, William M., Jr.; Bartram, Scott M.

    2017-01-01

    A series of comparison experiments have been performed using a single-camera plenoptic PIV measurement system to ascertain the systems performance capabilities in terms of suitability for use in NASA ground test facilities. A proof-of-concept demonstration was performed in the Langley Advanced Measurements and Data Systems Branch 13-inch (33- cm) Subsonic Tunnel to examine the wake of a series of cylinders at a Reynolds number of 2500. Accompanying the plenoptic-PIV measurements were an ensemble of complementary stereo-PIV measurements. The stereo-PIV measurements were used as a truth measurement to assess the ability of the plenoptic-PIV system to capture relevant 3D/3C flow field features in the cylinder wake. Six individual tests were conducted as part of the test campaign using three different cylinder diameters mounted in two orientations in the tunnel test section. This work presents a comparison of measurements with the cylinders mounted horizontally (generating a 2D flow field in the x-y plane). Results show that in general the plenoptic-PIV measurements match those produced by the stereo-PIV system. However, discrepancies were observed in extracted pro les of the fuctuating velocity components. It is speculated that spatial smoothing of the vector fields in the stereo-PIV system could account for the observed differences. Nevertheless, the plenoptic-PIV system performed extremely well at capturing the flow field features of interest and can be considered a viable alternative to traditional PIV systems in smaller NASA ground test facilities with limited optical access.

  17. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Joel Smith prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Joel Smith prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Nadine Phillips prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Nadine Phillips prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  19. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  20. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  1. Wind Farm Layout Optimization through a Crossover-Elitist Evolutionary Algorithm performed over a High Performing Analytical Wake Model

    NASA Astrophysics Data System (ADS)

    Kirchner-Bossi, Nicolas; Porté-Agel, Fernando

    2017-04-01

    Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.

  2. Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Stephens, Walter

    2005-01-01

    In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

  3. Experimental study of complex flow and turbulence structure around a turbomachine rotor blade operating behind a row of Inlet Guide Vanes (IGVS)

    NASA Astrophysics Data System (ADS)

    Soranna, Francesco

    The flow and turbulence around a rotor blade operating downstream of a row of Inlet Guide Vanes (IGV) are investigated experimentally in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. High resolution 2D and Stereoscopic PIV measurements are performed both at midspan and in the tip region of the rotor blade, focusing on effects of wake-blade, wake-boundary-layer and wake-wake interactions. We first examine the modification to the shape of an IGV-wake as well as to the spatial distribution of turbulence within it as the wake propagates along the rotor blade. Due to the spatially non-uniform velocity distribution, the IGV wake deforms through the rotor passage, expanding near the leading edge and shrinking near the trailing edge. The turbulence within this wake becomes spatially non-uniform and highly anisotropic as a result of interaction with the non-uniform strain rate field within the rotor passage. Several mechanisms, which are associated with rapid straining and highly non-uniform production rate (P), including negative production on the suction side of the blade, contribute to the observed trends. During IGV-wake impingement, the suction side boundary layer near the trailing edge becomes significantly thinner, with lower momentum thickness and more stable profile compared to other phases at the same location. Analysis of available terms in the integral momentum equation indicates that the phase-averaged unsteady term is the main contributor to the decrease in momentum thickness within the impinging wake. Thinning of the boundary/shear layer extends into the rotor near wake, making it narrower and increasing the phase averaged shear velocity gradients and associated production term just downstream of the trailing edge. Consequently, the turbulent kinetic energy (TKE) increases causing as much as 75% phase-dependent variations in peak TKE magnitude. Further away from the blade, the rotor wake is bent and contracted as a result of exposure to regions with high axial momentum ('jets') which fill the gaps between IGV-wakes. On the suction side of the rotor wake, contraction by the jet enhances the shear velocity gradients, and, with them, the shear production term, the dominant source of turbulence. Consequently, the Reynolds stresses and turbulent kinetic energy profiles become asymmetric across the rotor wake, with peak values located on the suction side, coinciding with the region of peak production. As the rotor wake propagates away from the blade, the process of bending and contraction by the jets continues, leading to formation of distinct wake-kinks containing regions of high turbulence, which we have coined turbulent 'hot spots'.

  4. Evaluating activation of the shielding walls of a treatment room using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.

    2018-05-01

    This study investigates the radiation activation process in a medical linear accelerator, which creates a photon beam with the energy acquired from accelerated electrons. The concrete shielding walls used in conjunction with a medical linear accelerator occupy the largest portion of facility decommissioning costs. Therefore, to evaluate the activation of the shielding wall, this study simulated the operation of a linear accelerator with high-energy photon beams (10, 15, and 20 MV). The results of the simulations showed that the high-energy photon beams produced a large number of neutrons in the areas around the linear accelerator head. Several radionuclides were identified, and their half-lives and radioactivity levels were calculated. Half-lives ranged from 2.62 hours to 3.68E+06 years, and the radioactivity levels of most of the radionuclides were found to satisfy their respective clearance requirements. These results indicate that photon beams of 15 MV or lower satisfy the clearance requirements for decommissioning a linear accelerator facility, whereas those of 20 MV or higher lie partially above the regulatory clearance levels.

  5. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  6. Turbulent axisymmetric swirling wake: equilibrium similarity solution and experiments with a wind turbine as wake generator

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Dufresne, Nathaniel

    2013-11-01

    An analytical and experimental investigation of the turbulent axisymmetric swirling wake was carried out. An equilibrium similarity theory was derived that obtained scaling functions from conditions for similarity from the equations of motion, leading to a new scaling function for the decay of the swirling velocity component. Axial and azimuthal (swirl) velocity fields were measured in the wake of a single 3-bladed model wind turbine with rotor diameter of 0.91 m, up to 20 diameters downstream, using X-wire constant temperature hot-wire anemometry. The turbine was positioned in the free stream, near the entrance of the UNH Flow Physics Facility, which has a test section of 6m × 2.7m cross section and 72m length. Measurements were conducted at different rotor loading conditions with blade tip-speed ratios up to 2.8. At U∞ = 7 m/s, the Reynolds number based on turbine diameter was approximately 5 ×105 . Both mean velocity deficit and mean swirl were found to persist beyond 20 diameters downstream. First evidence for a new scaling function for the mean swirl, Wmax ~Uo3 / 2 ~x-1 was found. The similarity solution thus predicts that in the axisymmetric swirling wake mean swirl decays faster with x-1 than mean velocity deficit with x - 2 / 3.

  7. Design of an Aircraft Vortex Spacing System for Airport Capacity Improvement

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations element at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS, in real-time operation, at a major airport. A wake vortex system test facility was established at the Dallas-Fort Worth International Airport (DFW) in 1997 and tested in 1998. Results from operation of the initial AVOSS system, plus advances in wake vortex prediction and near-term weather forecast models, "nowcast", have been integrated into a second-generation system. This AVOSS version is undergoing final checkout in preparation for a system demonstration in 2000. This paper describes the revised AVOSS system architecture, subsystem enhancements, and initial results with AVOSS version 2 from a deployment at DFW in the fall of 1999.

  8. Shielding evaluation and acceptance testing of a prefabricated, modular, temporary radiation therapy treatment facility

    PubMed Central

    Ezzell, Gary A.

    2004-01-01

    We have recently commissioned a temporary radiation therapy facility that is novel in two aspects: it was constructed using modular components, and the LINAC was installed in one of the modular sections before it was lifted into position. Additional steel and granular fill was added to the modular sections on‐site during construction. The building will be disassembled and removed when no longer needed. This paper describes the radiation shielding specifications and survey of the facility, as well as the ramifications for acceptance testing occasioned by the novel installation procedure. The LINAC is a Varian 21EX operating at 6 MV and 18 MV. The radiation levels outside the vault satisfied the design criteria, and no anomalous leakage was detected along the joints of the modular structure. At 18 MV and 600 monitor units (MU) per minute, the radiation level outside the primary barrier walls was 8.5μSv/h of photons; there were no detectable neutrons. Outside the direct‐shielded door, the levels were 0.4μSv/h of photons and 3.0μSv/h of neutrons. The isocentricity of the accelerator met the acceptance criteria and was not affected by its preinstallation into an integrated baseframe and subsequent transport to the building site. PACS numbers: 87.52.Df, 87.52.Ga PMID:15738926

  9. Simulation of the hohlraum for a laser facility of Megajoule scale

    NASA Astrophysics Data System (ADS)

    Chizhkov, M. N.; Kozmanov, M. Y. U.; Lebedev, S. N.; Lykov, V. A.; Rykovanova, V. V.; Seleznev, V. N.; Selezneva, K. I.; Stryakhnina, O. V.; Shestakov, A. A.; Vronskiy, A. V.

    2010-08-01

    2D calculations of the promising laser hohlraums were performed with using of the Sinara computer code. These hohlraums are intended for achievement of indirectly-driven thermonuclear ignition at laser energy above 1 MJ. Two calculation variants of the laser assembly with the form close to a rugby ball were carried out: with laser entrance hole shields and without shields. Time dependent hohlraum radiation temperature and x-ray flux asymmetry on a target were obtained.

  10. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  11. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  13. Evaluation of RayXpert® for shielding design of medical facilities

    NASA Astrophysics Data System (ADS)

    Derreumaux, Sylvie; Vecchiola, Sophie; Geoffray, Thomas; Etard, Cécile

    2017-09-01

    In a context of growing demands for expert evaluation concerning medical, industrial and research facilities, the French Institute for radiation protection and nuclear safety (IRSN) considered necessary to acquire new software for efficient dimensioning calculations. The selected software is RayXpert®. Before using this software in routine, exposure and transmission calculations for some basic configurations were validated. The validation was performed by the calculation of gamma dose constants and tenth value layers (TVL) for usual shielding materials and for radioisotopes most used in therapy (Ir-192, Co-60 and I-131). Calculated values were compared with results obtained using MCNPX as a reference code and with published values. The impact of different calculation parameters, such as the source emission rays considered for calculation and the use of biasing techniques, was evaluated.

  14. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  15. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Boomsma, Aaron; Barone, Matthew; Sotiropoulos, Fotis

    2014-06-01

    The University of Minnesota Virtual Wind Simulator (VWiS) code is employed to simulate turbine/atmosphere interactions in the Scaled Wind Farm Technology (SWiFT) facility developed by Sandia National Laboratories in Lubbock, TX, USA. The facility presently consists of three turbines and the simulations consider the case of wind blowing from South such that two turbines are in the free stream and the third turbine in the direct wake of one upstream turbine with separation of 5 rotor diameters. Large-eddy simulation (LES) on two successively finer grids is carried out to examine the sensitivity of the computed solutions to grid refinement. It is found that the details of the break-up of the tip vortices into small-scale turbulence structures can only be resolved on the finer grid. It is also shown that the power coefficient CP of the downwind turbine predicted on the coarse grid is somewhat higher than that obtained on the fine mesh. On the other hand, the rms (root-mean-square) of the CP fluctuations are nearly the same on both grids, although more small-scale turbulence structures are resolved upwind of the downwind turbine on the finer grid.

  16. Investigation of three-dimensional flow field in a turbine including rotor/stator interaction. I - Design development and performance of the research facility

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Camci, C.; Halliwell, I.; Zaccaria, M.

    1992-01-01

    A description of the Axial Flow Turbine Research Facility (AFTRF) installed at the Turbomachinery Laboratory of the Pennsylvania State University is presented in this paper. The facility diameter is 91.66 cm (3 feet) and the hub-to-tip ratio of the blading is 0.73. The flow path consists of turbulence generating grid, 23 nozzle vane and 29 rotor blades followed by outlet guide vanes. The blading design, carried out by General Electric Company personnel, embody modern HP turbine design philosophy, loading and flow coefficient, reaction, aspect ratio, and blade turning angles; all within the current aircraft engine design turbine practice. State-of-the-art quasi-3D blade design techniques were used to design the vane and the blade shapes. The vanes and blades are heavily instrumented with fast response pressure, shear stress, and velocity probes and have provision for flow visualization and laser Doppler anemometer measurement. Furthermore, provision has been made for detailed nozzle wake, rotor wake and boundary layer surveys. A 150 channel slip ring unit is used for transmitting the rotor data to a stationary instrumentation system. All the design objectives have been met.

  17. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  18. International Space Station (ISS) Meteoroid/Orbital Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    1999-01-01

    Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.

  19. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures.

    PubMed

    Dickson, E D; Hamby, D M

    2014-03-01

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building's radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology.

  20. Experimental Study of the Effects of Periodic Unsteady Wakes on Flow Separation in Low Pressure Turbines

    NASA Technical Reports Server (NTRS)

    Ozturk, Burak; Schobeiri, Meinhard T.

    2009-01-01

    The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.

  1. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  2. Plasma wakefield acceleration experiments at FACET II

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.

    2018-03-01

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.

  3. Plasma wakefield acceleration experiments at FACET II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, C.; Adli, E.; An, W.

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  4. Plasma wakefield acceleration experiments at FACET II

    DOE PAGES

    Joshi, C.; Adli, E.; An, W.; ...

    2018-01-12

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  5. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  6. Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission

    PubMed Central

    Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther

    2012-01-01

    Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685

  7. Evaluation of the concrete shield compositions from the 2010 criticality accident alarm system benchmark experiments at the CEA Valduc SILENE facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Celik, Cihangir; Dunn, Michael E

    In October 2010, a series of benchmark experiments were conducted at the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE facility. These experiments were a joint effort between the United States Department of Energy Nuclear Criticality Safety Program and the CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems. This series of experiments consisted of three single-pulsed experiments with the SILENE reactor. For the first experiment, the reactor was bare (unshielded), whereasmore » in the second and third experiments, it was shielded by lead and polyethylene, respectively. The polyethylene shield of the third experiment had a cadmium liner on its internal and external surfaces, which vertically was located near the fuel region of SILENE. During each experiment, several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor. Nearly half of the foils and TLDs had additional high-density magnetite concrete, high-density barite concrete, standard concrete, and/or BoroBond shields. CEA Saclay provided all the concrete, and the US Y-12 National Security Complex provided the BoroBond. Measurement data from the experiments were published at the 2011 International Conference on Nuclear Criticality (ICNC 2011) and the 2013 Nuclear Criticality Safety Division (NCSD 2013) topical meeting. Preliminary computational results for the first experiment were presented in the ICNC 2011 paper, which showed poor agreement between the computational results and the measured values of the foils shielded by concrete. Recently the hydrogen content, boron content, and density of these concrete shields were further investigated within the constraints of the previously available data. New computational results for the first experiment are now available that show much better agreement with the measured values.« less

  8. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively mitigating discharge channel erosion as a life-limiting mechanism.

  9. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline

    NASA Astrophysics Data System (ADS)

    Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.

    2016-10-01

    Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.

  10. LPT. Plot plan and site layout. Includes shield test pool/EBOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Plot plan and site layout. Includes shield test pool/EBOR facility. (TAN-645 and -646) low power test building (TAN-640 and -641), water storage tanks, guard house (TAN-642), pump house (TAN-644), driveways, well, chlorination building (TAN-643), septic system. Ralph M. Parsons 1229-12 ANP/GE-7-102. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0102-00-693-107261 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Unshielded and Shielded Facility Nondestructive Inspection (NDI) Radiation Protection Survey for F.S. Gabreski ANGB, NY

    DTIC Science & Technology

    2013-11-06

    safety regulations to include a review of worker radiation dosimetry and radiation safety training records was completed. c. Survey Personnel...that is based upon T.O. 33B-1-1, 10 CFR 20, and AFMAN 48-125, Personnel Ionizing Radiation Dosimetry . (1) Verify unshielded/shielded NDI safety...rope barriers marked with appropriate signage as required by T.O. 33B-1-1. (4) Verify x-ray shot and personal radiation dosimetry logs were properly

  12. SPERTI Reactor Pit Building (PER605). Earth shielding protect adjacent Instrument ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Reactor Pit Building (PER-605). Earth shielding protect adjacent Instrument Cell (PER-606). Security fencing surrounds complex, to which gate entry is provided next to Guard House (PER-607). Note gravel road leading to control area. Earth-covered conduit leads from instrument cell to terminal building out of view. Photographer: R.G. Larsen. Date: June 22, 1955. INEEL negative no. 55-1701 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. Initial measurement of site boundary neutron dose and comparison with calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Degtyarenko; D. Dotson; R. May

    1996-10-01

    For most accelerators adequate side shielding can be provided at minimal cost to meet the most aggressive radiation protection regulations and, further, the likely requirement to increase shielding thickness still more at a later date can be done usually by heaping more earth or applying local shielding at minimal expense and inconvenience. This moderately happy state of affairs does not unfortunately hold true with roof shielding. The cost of roof shielding is largely predicated on the roof span and the necessary structural engineering requirements for its support. These measures can be extremely expensive and where one is dealing with themore » rather extensive unsupported spans typical of experimental halls devoted to experiments with high energy electron beams; it is necessary to specify the roof thickness as carefully as possible with the constant concern that adding more earth later is not likely to be possible without rebuilding the hall. Because of the nature of roof skyshine, and for most high energy accelerator facilities neutron skyshine, the effect of the radiation is likely to extend to the facility fence-line where one is concerned about the exposure of the general population. Very properly the dose limit for the general population is set at a rather low value (1 mSv y{sup {minus}1}) and in order for the Jefferson Lab (JLab) to ensure strict compliance with this limit they have a design goal for the fence line of 0.1 mSv y{sup {minus}1}. However, because natural neutron backgrounds are low (30--40 {micro}Sv y{sup {minus}1}) and the methods of detection and measurement permit rejection of background interference from photons, they can measure the JLab produced neutron radiation with good sensitivity and precision.« less

  14. Measurement And Calculation of High-Energy Neutron Spectra Behind Shielding at the CERF 120-GeV/C Hadron Beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, N.; /SLAC; Taniguchi, S.

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeVmore » and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.« less

  15. Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Manha, D.

    The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less

  16. Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Manha, D.; ...

    2017-03-16

    The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less

  17. Participatory Programming of a Campus Child Development Facility.

    ERIC Educational Resources Information Center

    Sanoff, Henry; Sanoff, Joan

    The process of designing Wake Technical College's campus child development center involved a team of college administrators, early childhood program staff, and an architectural consultant. The design process included a needs assessment, an interest survey, center visitations, team formation, goal refinement and clarification in brainstorming…

  18. Plasma Wake-field Acceleration in the Blow-out Regime

    NASA Astrophysics Data System (ADS)

    Barov, Nikolai; Rosenzweig, James

    1999-11-01

    Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.

  19. Design of the LBNF Beamline Target Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tariq, S.; Ammigan, K.; Anderson, K.

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less

  20. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  1. The Effect of Wake Passing on Turbine Blade Film Cooling

    NASA Technical Reports Server (NTRS)

    Heidmann, James David

    1996-01-01

    The effect of upstream blade row wake passing on the showerhead film cooling performance of a downstream turbine blade has been investigated through a combination of experimental and computational studies. The experiments were performed in a steady-flow annular turbine cascade facility equipped with an upstream rotating row of cylindrical rods to produce a periodic wake field similar to that found in an actual turbine. Spanwise, chordwise, and temporal resolution of the blade surface temperature were achieved through the use of an array of nickel thin-film surface gauges covering one unit cell of showerhead film hole pattern. Film effectiveness and Nusselt number values were determined for a test matrix of various injectants, injectant blowing ratios, and wake Strouhal numbers. Results indicated a demonstratable reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated well by a chordwise-constant decrement of 0.094-St. Measurable spanwise film effectiveness variations were found near the showerhead region, but meaningful unsteady variations and downstream spanwise variations were not found. Nusselt numbers were less sensitive to wake and injection changes. Computations were performed using a three-dimensional turbulent Navier-Stokes code which was modified to model wake passing and film cooling. Unsteady computations were found to agree well with steady computations provided the proper time-average blowing ratio and pressure/suction surface flow split are matched. The remaining differences were isolated to be due to the enhanced mixing in the unsteady solution caused by the wake sweeping normally on the pressure surface. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict experimental film effectiveness values. This is likely due to the inability to match actual hole exit velocity profiles and the absence of a credible turbulence model for film cooling.

  2. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  3. 18. View southeast, west end of spillway, shows cribbing and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View southeast, west end of spillway, shows cribbing and metal ice shield - Sewall's Falls Hydroelectric Facility, East end of Second Street spanning Merrimack River, Concord, Merrimack County, NH

  4. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  5. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump, Part II: Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roesler, Stefan

    2002-09-19

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code.more » The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.« less

  6. Concepts and strategies for lunar base radiation protection - Prefabricated versus in-situ materials

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.

    1992-01-01

    The most recently accepted environment data are used as inputs for the Langley nucleon and heavy-ion transport codes, BRYNTRN and HZETRN, to examine the shield effectiveness of lunar regolith in comparison with commercially-used shield materials in nuclear facilities. Several of the fabricated materials categorized as neutron absorbers exhibit favorable characteristics for space radiation protection. In particular, polyethylene with additive boron is analyzed with regard to response to the predicted lunar galactic cosmic ray and solar proton flare environment during the course of a complete solar cycle. Although this effort is not intended to be a definitive trade study for specific shielding recommendations, attention is given to several factors that warrant consideration in such trade studies. For example, the transporting of bulk shield material to the lunar site as opposed to regolith-moving and processing equipment is assessed on the basis of recent scenario studies. The transporting of shield material from Earth may also be a viable alternative to the use of regolith from standpoints of cost-effectiveness, EVA time required, and risk factor.

  7. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  8. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  9. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  10. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  11. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; hide

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  12. OPTIMIZATION OF EXPERIMENTAL DESIGNS BY INCORPORATING NIF FACILITY IMPACTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Whitman, P K; Koniges, A E

    2005-08-31

    For experimental campaigns on the National Ignition Facility (NIF) to be successful, they must obtain useful data without causing unacceptable impact on the facility. Of particular concern is excessive damage to optics and diagnostic components. There are 192 fused silica main debris shields (MDS) exposed to the potentially hostile target chamber environment on each shot. Damage in these optics results either from the interaction of laser light with contamination and pre-existing imperfections on the optic surface or from the impact of shrapnel fragments. Mitigation of this second damage source is possible by identifying shrapnel sources and shielding optics from them.more » It was recently demonstrated that the addition of 1.1-mm thick borosilicate disposable debris shields (DDS) block the majority of debris and shrapnel fragments from reaching the relatively expensive MDS's. However, DDS's cannot stop large, faster moving fragments. We have experimentally demonstrated one shrapnel mitigation technique showing that it is possible to direct fast moving fragments by changing the source orientation, in this case a Ta pinhole array. Another mitigation method is to change the source material to one that produces smaller fragments. Simulations and validating experiments are necessary to determine which fragments can penetrate or break 1-3 mm thick DDS's. Three-dimensional modeling of complex target-diagnostic configurations is necessary to predict the size, velocity, and spatial distribution of shrapnel fragments. The tools we are developing will be used to set the allowed level of debris and shrapnel generation for all NIF experimental campaigns.« less

  13. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene.

    PubMed

    Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling

    2017-10-04

    Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

  14. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  15. New radiation protection calibration facility at CERN.

    PubMed

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Characterization Of Nutrients And Fecal Indicator Bacteria At A Concentrated Swine Feeding Operation In Wake County, North Carolina, 2009-2011

    EPA Science Inventory

    Hydrologic and water-quality data were collected during October 2009 - January 2011 to characterize nutrient and bacteria concentrations in stormwater runoff from agricultural fields that receive wastewater originating at a swine facility at North CarolinaState University's Lake ...

  17. Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Huang, Hai

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanismsmore » of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.« less

  18. KSC-02pd1091

    NASA Image and Video Library

    2002-06-28

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  19. KSC-02pd1092

    NASA Image and Video Library

    2002-06-28

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  20. Laser velocimeter measurements of the flow downstream of the Space Shuttle Main Engine high pressure oxidizer turbopump first-stage turbine nozzle

    NASA Technical Reports Server (NTRS)

    Ferguson, T. V.; Havskjold, G. L.; Rojas, L.

    1988-01-01

    A laser two-focus velocimeter was used in an open-loop water test facility in order to map the flowfield downstream of the SSME's high-pressure oxidizer turbopump first-stage turbine nozzle; attention was given to the effects of the upstream strut-downstream nozzle configuration on the flow at the rotor inlet, in order to estimate dynamic loads on the first-stage rotor blades. Velocity and flow angles were plotted as a function of circumferential position, and were found to clearly display the periodic behavior of the wake flow field. The influence of the upstream centerbody-supporting struts on the vane nozzle wake pattern was evident.

  1. Noise in animal facilities: why it matters.

    PubMed

    Turner, Jeremy G; Bauer, Carol A; Rybak, Leonard P

    2007-01-01

    Environmental noise can alter endocrine, reproductive and cardiovascular function, disturb sleep/wake cycles, and can mask normal communication between animals. These outcomes indicate that noise in the animal facility might have wide-ranging affects on animals, making what laboratory animals hear of consequence for all those who use animals in research, not just the hearing researcher. Given the wide-ranging effects of noise on laboratory animals, routine monitoring of noise in animal facilities would provide important information on the nature and stability of the animal environment. This special issue will highlight the need for more thorough monitoring and will serve as an introduction to noise and its various effects on animals.

  2. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  3. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  4. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  5. Preparing the Phoenix Lander for Mars

    NASA Image and Video Library

    2005-06-01

    The Phoenix lander, housed in a 100,000-class clean room at Lockheed Martin Space Systems facilities near Denver, Colo. Shown here, the lander is contained inside the backshell portion of the aeroshell with the heat shield removed.

  6. Experimental Shielding Evaluation of the Radiation Protection Provided by Residential Structures

    NASA Astrophysics Data System (ADS)

    Dickson, Elijah D.

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment has been a public and regulatory concern since the early development of nuclear technology and researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to research and develop the technical basis for contemporary building shielding factors for the U.S. housing stock. Building shielding factors quantify the protection a certain building-type provides from ionizing radiation. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950's era suburbia and is no longer applicable to the densely populated urban environments seen today. To analyze a building's radiation shielding properties, the ideal approach would be to subject a variety of building-types to various radioactive materials and measure the radiation levels in and around the building. While this is not entirely practicable, this research uniquely analyzes the shielding effectiveness of a variety of likely U.S. residential buildings from a realistic source term in a laboratory setting. Results produced in the investigation provide a comparison between theory and experiment behind building shielding factor methodology by applying laboratory measurements to detailed computational models. These models are used to develop a series of validated building shielding factors for generic residential housing units using the computational code MCNP5. For these building shielding factors to be useful in radiologic consequence assessments and emergency response planning, two types of shielding factors have been developed for; (1) the shielding effectiveness of each structure within a semi-infinite cloud of radioactive material, and (2) the shielding effectiveness of each structure from contaminant deposition on the roof and surrounding surfaces. For example, results from this investigation estimate the building shielding factors from a semi-infinite plume between comparable two-story models with a basement constructed with either brick-and-mortar or vinyl siding composing the exterior wall weather and a typical single-wide manufactured home with vinyl siding to be 0.36, 0.65, and 0.82 respectively.

  7. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule.

    PubMed

    Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi

    2010-03-01

    Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.

  8. Wake Survey of a Marine Current Turbine Under Steady Conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  9. ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Military Handbook. Grounding, Bonding, and Shielding for Electronic Equipments and Facilities. Volume 2. Applications

    DTIC Science & Technology

    1987-12-29

    EMC, San Francisco CA, 16-18 July 1974, 76-84. 1-13. E. R. Uhlig, "Developmnent of Criteria for Protection ef NIKE -X Power Plant and Facilities...Interference Reduction and Electronic Compatibility, Armour Research Foundation of Illinois Institute of Technology (now IITRI), Chicago IL, October...Measuring Systems Susceptibility," Proceedings of the Eighth Tri-Service Conference on Electromagnetic Compatibility, Armour Research Foundation of

  11. Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.

    1979-08-01

    The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less

  12. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less

  13. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  14. Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekar, Kursat B.; Ibrahim, Ahmad M.

    2017-05-01

    This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less

  15. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Datte, P.; ...

    2016-07-21

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  16. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2005-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.

  17. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2003-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.

  18. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    NASA Astrophysics Data System (ADS)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  19. Preparing Campus Facilities for the Future.

    ERIC Educational Resources Information Center

    Gracie, Larry W.; Griffith, Ross A.

    The recent experiences of North Carolina State University and Wake Forest University in the planning and construction of campus buildings are described as illustrations of the planning of space to meet the goals and needs of the institution in the future. At North Carolina State University, 780 additional acres were received from the state, and a…

  20. Experimental analyses of trailing edge flows

    NASA Technical Reports Server (NTRS)

    Petrie, S. L.; Emmer, D. S.

    1984-01-01

    An experimental study of several of the trailing edge and wake turbulence properties for a NACA 64A010 airfoil section was completed. The experiment was conducted at the Ohio State University Aeronautical and Astronautical Research Laboratory in the 6 inch X 22 inch transonic wind tunnel facility. The data were obtained at a free stream Mach number of 0.80 and a flow Reynolds number (based on chord length) of 5 million. The principle diagnostic tool was a dual-component laser Doppler velocimeter. The experimental data included surface static pressures, chordwise and vertical mean velocities, RMS turbulence intensities, local flow angles, and a determination of turbulence kinetic energy in the wake. Two angles of attack (0 and 2 degrees) were investigated. At these incidence angles, four flow field surveys were obtained ranging in position from the surface of the airfoil, between the transonic shock and the trailing edge, to the far-wake. At both angles of attack, the turbulence intensities and turbulence kinetic energy were observed to decay in the streamwise direction. In the far wake, for the non-lifting case, the turbulence intensities were nearly isotropic. For the two degree case, the horizontal component of the turbulence intensity was observed to be substantially higher than the vertical component.

  1. Tomo-PIV measurements of the flow field in the wake of a sphere

    NASA Astrophysics Data System (ADS)

    Eshbal, Lior; David, Tom; Rinsky, Vladislav; van Hout, Rene; Greenblatt, David

    2017-11-01

    A sphere can be considered as a prototypical 3D bluff body. In order to improve our understanding of its 3D wake flow, a combination of time-resolved planar particle image velocimetry (PIV) and tomographic PIV (tomo-PIV) was implemented. Experiments were performed in a closed-loop water channel facility and sphere Reynolds numbers ReD = UD/ ν = 400, 800, 1200 and 2000, where U is the free-stream velocity, ν the kinematic viscosity and D the sphere diameter. The measurement volume (Height x Length x Width, 5 x 5 x 1.5 D3) comprised the sphere and the downstream wake. Tomo-PIV snap-shots were correlated with the time-resolved PIV such that the 3D temporal evolution of the shed vortices became clear. At ReD = 400, this procedure revealed shed hairpin vortices having a vertical plane of symmetry in agreement with many dye visualization studies. However, the measurements also revealed weaker induced hairpins resulting from the interaction of the near-wake flow and the surrounding free stream. These induced vortices were not visible in previous dye and smoke visualizations and have only been observed in simulations. Data processing of the data at higher ReD is currently ongoing. Israel Science Foundation Grant No. 1596/14.

  2. JASMIN: Japanese-American study of muon interactions and neutron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroshi; /JAEA, Ibaraki; Mokhov, N.V.

    Experimental studies of shielding and radiation effects at Fermi National Accelerator Laboratory (FNAL) have been carried out under collaboration between FNAL and Japan, aiming at benchmarking of simulation codes and study of irradiation effects for upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (1) acquisition of shielding data in a proton beam energy domain above 100GeV; (2) further evaluation of predictive accuracy of the PHITS and MARS codes; (3) modification of physics models and data in these codes if needed; (4) establishment of irradiation field for radiation effect tests; and (5) development of amore » code module for improved description of radiation effects. A series of experiments has been performed at the Pbar target station and NuMI facility, using irradiation of targets with 120 GeV protons for antiproton and neutrino production, as well as the M-test beam line (M-test) for measuring nuclear data and detector responses. Various nuclear and shielding data have been measured by activation methods with chemical separation techniques as well as by other detectors such as a Bonner ball counter. Analyses with the experimental data are in progress for benchmarking the PHITS and MARS15 codes. In this presentation recent activities and results are reviewed.« less

  3. Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization.

    PubMed

    Theis, Thomas; Truong, Milton L; Coffey, Aaron M; Shchepin, Roman V; Waddell, Kevin W; Shi, Fan; Goodson, Boyd M; Warren, Warren S; Chekmenev, Eduard Y

    2015-02-04

    Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed "SABRE in shield enables alignment transfer to heteronuclei" or "SABRE-SHEATH", promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species.

  4. Microtesla SABRE Enables 10% Nitrogen-15 Nuclear Spin Polarization

    PubMed Central

    2016-01-01

    Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B3 amide) by conducting “signal amplification by reversible exchange” (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the 15N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed “SABRE in shield enables alignment transfer to heteronuclei” or “SABRE-SHEATH”, promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species. PMID:25583142

  5. A Photofission Delayed γ-ray Spectra Calculation Tool for the Conception of a Nuclear Material Characterization Facility

    NASA Astrophysics Data System (ADS)

    Bernard, D.; Serot, O.; Simon, E.; Boucher, L.; Plumeri, S.

    2018-01-01

    The photon interrogation analysis is a nondestructive technique allowing to identify and quantify fissile materials in nuclear waste packages. This paper details an automatic procedure which has been developed to simulate the delayed γ-ray spectra for several actinide photofissions. This calculation tool will be helpful for the fine conception (collimation, shielding, noise background optimizations, etc.) and for the on-line analysis of such a facility.

  6. Welding Emissions in Shipbuilding and Repair (Briefing Charts)

    DTIC Science & Technology

    2009-09-03

    not just about Hexavalent Chromium • http://www.weldinglawsuits.com/ 5 Naval Facilities Engineering Command/ Engineering Service Center Driving...Regulations ( the Dry Stuff) • OSHA 1910.1026 – Hexavalent Chromium Regulation • OSHA 1910.1000 – Limits for Air Contaminants – e.g. Manganese, Nickel...gas – GTAW –uses shield gas, but low emissions –aka TIG – SAW – lowest rate, solid wire weld covered with flux material 7 Naval Facilities

  7. PBF Reactor Building (PER620) basement. Workers wearing protective gear work ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement. Workers wearing protective gear work inside cubicle 13 on the fission product detection system. Man on left is atop shielded box shown in previous photo. Posture of second man illustrates waist-high height of shielding box. His hand rests on the access panel, which has been filled with lead bricks and which has been slid shut to enclose detection instruments within box. Photographer: John Capek. Date: January 24, 1983. INEEL negative no. 83-41-3-5 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. Sleep Shelters Verbal Memory from Different Kinds of Interference

    PubMed Central

    Sheth, Bhavin R.; Varghese, Reni; Truong, Thuy

    2012-01-01

    Study Objectives: Studies have shown that sleep shelters old verbal memories from associative interference arising from new, more recently acquired memories. Our objective is to extend the forms of interference for which sleep provides a sheltering benefit to non-associative and prospective interference, and to examine experimental conditions and memory strengths for which sleep before or after learning particularly affects verbal memory consolidation. Design: Acquiring paired word associates, retention across intervening sleep and wake, training on new, interfering word associates, and test recall of both sets. Setting: University laboratory. Participants: Healthy volunteers. Interventions: N/A. Measurements and Results: Comparing recall before and after intervening periods of sleep versus wake, we found that: (i) Sleep preferentially shields weakly encoded verbal memories from retroactive interference. (ii) Sleep immediately following learning helps shelter memory from associative and non-associative forms of retroactive interference. (iii) Sleep protects new verbal memories from prospective interference. (iv) Word associations acquired for the first time in the evening after a day spent in the wake state are encoded more strongly than word associations acquired in the morning following a night of sleep. Conclusions: The findings extend the known sleep protection from interference to non-associative as well as prospective interference, and limit the protection to weakly encoded word associations. Combined, our results suggest that sleep immediately after verbal learning isolates newly formed memory traces and renders them inaccessible, except by specific contextual cues. Memory isolation in sleep is a passive mechanism that can reasonably account for several experimental findings. Citation: Sheth BR; Varghese R; Truong T. Sleep shelters verbal memory from different kinds of interference. SLEEP 2012;35(7):985-996. PMID:22754045

  9. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    PubMed

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.

  10. Shift work, age, and performance : investigation of the 2-2-1 shift schedule used in air traffic control facilities. I., The sleep/wake cycle.

    DOT National Transportation Integrated Search

    1995-05-01

    Air Traffic Control Specialists (ATCS) work rotating shift schedules for most of their careers. Specifically, many work a counterclockwise rotating shift schedule, called the 2-2-1, or some variation of the schedule. The 2-2-1 involves rotating from ...

  11. Rebuilding Schools after the Wenchuan Earthquake: China Visits OECD, Italy and Turkey

    ERIC Educational Resources Information Center

    CELE Exchange, 2009

    2009-01-01

    As the reconstruction efforts continue in China in the wake of the Great Wenchuan earthquake in May 2008, the China Development Research Foundation, with the support of the OECD Centre for Effective Learning Environments, organised an International Training Programme on the Post-Earthquake Reconstruction of Public Facilities from 1 to 11 December…

  12. Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    An aerothermodynamic database has been generated through both experimental testing and computational fluid dynamics simulations for a 70 deg sphere-cone configuration based on the NASA Mars Pathfinder entry vehicle. The aerothermodynamics of several related parametric configurations were also investigated. Experimental heat-transfer data were obtained at hypersonic test conditions in both a perfect gas air wind tunnel and in a hypervelocity, high-enthalpy expansion tube in which both air and carbon dioxide were employed as test gases. In these facilities, measurements were made with thin-film temperature-resistance gages on both the entry vehicle models and on the support stings of the models. Computational results for freestream conditions equivalent to those of the test facilities were generated using an axisymmetric/2D laminar Navier-Stokes solver with both perfect-gas and nonequilibrium thermochemical models. Forebody computational and experimental heating distributions agreed to within the experimental uncertainty for both the perfect-gas and high-enthalpy test conditions. In the wake, quantitative differences between experimental and computational heating distributions for the perfect-gas conditions indicated transition of the free shear layer near the reattachment point on the sting. For the high enthalpy cases, agreement to within, or slightly greater than, the experimental uncertainty was achieved in the wake except within the recirculation region, where further grid resolution appeared to be required. Comparisons between the perfect-gas and high-enthalpy results indicated that the wake remained laminar at the high-enthalpy test conditions, for which the Reynolds number was significantly lower than that of the perfect-gas conditions.

  13. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive

    NASA Astrophysics Data System (ADS)

    Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen

    2016-10-01

    Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.

  14. Book Review

    PubMed Central

    Smathers, James. B.

    2006-01-01

    Structural Shielding Design and Evaluation for Megavoltage X‐ and Gamma Ray Radiotherapy Facilities; National Council on Radiation Protection and Measurements (NCRP Report 151); Issued December 2005, ISBN‐13: 987‐0‐29600‐87‐1; Price $100 USD (hard copy), $80 (down loadable PDF), $170 (combined package)

  15. A magnetic field cloak for charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less

  16. A magnetic field cloak for charged particle beams

    NASA Astrophysics Data System (ADS)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  17. A magnetic field cloak for charged particle beams

    DOE PAGES

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; ...

    2017-10-02

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less

  18. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding.

    PubMed

    Papagiannis, P; Baltas, D; Granero, D; Pérez-Calatayud, J; Gimeno, J; Ballester, F; Venselaar, J L M

    2008-11-01

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for 60Co, 137CS, 198Au, 192Ir 169Yb, 170Tm, 131Cs, 125I, and 103pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  19. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications

    NASA Astrophysics Data System (ADS)

    Montes, Carlos; Broussard, Kaylin; Gongre, Matthew; Simicevic, Neven; Mejia, Johanna; Tham, Jessica; Allouche, Erez; Davis, Gabrielle

    2015-09-01

    Future manned missions to the moon will require the ability to build structures using the moon's natural resources. The geopolymer binder described in this paper (Lunamer) is a construction material that consists of up to 98% lunar regolith, drastically reducing the amount of material that must be carried from Earth in the event of lunar construction. This material could be used to fabricate structural panels and interlocking blocks that have radiation shielding and thermal insulation characteristics. These panels and blocks could be used to construct living quarters and storage facilities on the lunar surface, or as shielding panels to be installed on crafts launched from the moon surface to deep-space destinations. Lunamer specimens were manufactured in the laboratory and compressive strength results of up to 16 MPa when cast with conventional methods and 37 MPa when cast using uniaxial pressing were obtained. Simulation results have shown that the mechanical and chemical properties of Lunamer allow for adequate radiation shielding for a crew inside the lunar living quarters without additional requirements.

  20. MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE

    PubMed Central

    Pothupitiya Gamage, Sudesh Jayashantha; Yang, Kihun; Braveenth, Ramanaskanda; Raagulan, Kanthasamy; Kim, Hyun Suk; Lee, Yun Seon; Yang, Cheol-Min; Moon, Jai Jung; Chai, Kyu Yun

    2017-01-01

    A series of multi-walled carbon nanotube (MWCNT) coated carbon fabrics was fabricated using a facile dip coating process, and their performance in electrical conductivity, thermal stability, tensile strength, electromagnetic interference (EMI) and shielding effectiveness (SE) was investigated. A solution of MWCNT oxide and sodium dodecyl sulfate (SDS) in water was used in the coating process. MWCNTs were observed to coat the surfaces of carbon fibers and to fill the pores in the carbon fabric. Electrical conductivity of the composites was 16.42 S cm−1. An EMI shielding effectiveness of 37 dB at 2 GHz was achieved with a single layer of C/C composites, whereas the double layers resulted in 68 dB EMI SE at 2.7 GHz. Fabricated composites had a specific SE of 486.54 dB cm3 g−1 and an absolute SE of approximately 35,000 dB cm2 g−1. According to the above results, MWCNT coated C/C composites have the potential to be used in advanced shielding applications such as aerospace and auto mobile electronic devices.

  1. Credit PSR. This image depicts the southwest and southeast facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This image depicts the southwest and southeast facades as seen when looking north. The concrete block lean-to in the foreground is the facility control room. Between this room and the X-ray room is a four foot thick concrete wall (which can be seen as a "step" between the lowest and highest roof planes) intended as X-ray shielding for operators. The X-ray chamber faces away from the JPL Edwards Facility toward a fenced desert area - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA

  2. Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow.

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Pascheke, F.

    2010-09-01

    A second programme of work is about to commence as part of a further four years of funding for the UK-EPSRC SUPERGEN-Wind large-wind-farm consortium. The first part of the initial programme at Surrey was to establish and set up appropriate techniques for both on- and off-shore boundary layers (though with an emphasis on the latter) at a suitable scale, and to build suitable rotating model wind turbines. The EnFlo wind tunnel, a UK-NCAS special facility, is capable of creating scaled neutral, stable and unstable boundary layers in its 20m long working section. The model turbines are 1/300-scale of 5MW-size, speed controlled with phase-lock measurement capability, and the blade design takes into account low Reynolds-number effects. Velocity measurements are primarily made using two-component LDA, combined with a ‘cold-wire' probe in order to measure the local turbulent heat flux. Simulation of off-shore wakes is particularly constrained because i) at wind tunnel scale the inherently low surface roughness can be below that for fully rough conditions, ii) the power required to stratify the flow varies as the square of the flow speed, and could easily be impractically large, iii) low blade Reynolds number. The boundary layer simulations, set up to give near-equilibrium conditions in terms of streamwise development, and the model turbines have been designed against these constraints, but not all constraints can be always met simultaneously in practice. Most measurements so far have been made behind just one or two turbines in neutral off- and on-shore boundary layers, at stations up to 12 disk diameters downstream. These show how, for example, the wake of a turbine affects the development of the wake of a downwind turbine that is laterally off-set by say half or one diameter, and how the unaffected part from the first turbine merges with the affected wake of the second. As expected a lower level of atmospheric turbulence causes the wakes to develop and fill-in more slowly compared with the on-shore case. A turbine can also suppress the level of atmospheric turbulence below hub height. In neutral flow, the wakes grow in width and height. However, even in mild stable stratification the vertical development of the wake deficit can be completely inhibited; at least some reduction would be expected arising from the stabilizing influence on vertical fluctuations. The width in contrast develops at about the same rate. As anticipated, the wake development is slower still in the stable case because of the lower level ambient turbulence. The maximum deficit is at a lower height than it is for neutral flow. Various aspects of the turbulence in the wake have been investigated. Second-phase work will examine a larger number of wake-turbine and wake-wake interactions, make a more detailed study of how turbines alter the atmospheric turbulence, and examine more cases of stratification. Work is also in hand related to turbines in or near forested regions, and it is expected that aspects of the physics will have links with the effect a large wind farm will have on the ABL and on the wind resource for a downwind farm. The work will produce a series of test cases to assist in the development of better wake and wind resource prediction models as well as a better understanding of wake physics.

  3. Estimation of Time Scales in Unsteady Flows in a Turbomachinery Rig

    NASA Technical Reports Server (NTRS)

    Lewalle, Jacques; Ashpis, David E.

    2004-01-01

    Time scales in turbulent and transitional flow provide a link between experimental data and modeling, both in terms of physical content and for quantitative assessment. The problem of interest here is the definition of time scales in an unsteady flow. Using representative samples of data from GEAE low pressure turbine experiment in low speed research turbine facility with wake-induced transition, we document several methods to extract dominant frequencies, and compare the results. We show that conventional methods of time scale evaluation (based on autocorrelation functions and on Fourier spectra) and wavelet-based methods provide similar information when applied to stationary signals. We also show the greater flexibility of the wavelet-based methods when dealing with intermittent or strongly modulated data, as are encountered in transitioning boundary layers and in flows with unsteady forcing associated with wake passing. We define phase-averaged dominant frequencies that characterize the turbulence associated with freestream conditions and with the passing wakes downstream of a rotor. The relevance of these results for modeling is discussed in the paper.

  4. Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder

    NASA Technical Reports Server (NTRS)

    Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm

    1996-01-01

    This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed well. Approximately 70 percent of the thermocouples yielded good data.

  5. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    PubMed

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  6. Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang W., E-mail: lxwluck@gmail.co; Devaraju, M.K.; Yin, Shu

    2010-07-15

    Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidationmore » catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.« less

  7. Environmental Compliance Assessment and Management Program (ECAMP)

    DTIC Science & Technology

    1994-06-01

    square yard mg milligram yr year mi mile Chemicals CO carbon monoxide NO 2 nitrogen dioxide CO2 carbon dioxide NOx nitrogen oxides Hg mercury SO2 sulfur...installation intentionally shielded themselves from information which would have revealed a leak. (!)(3X)5)(7)(8) A.77. Facilities on Verify that facilities...released from the largest tank within the diked area, assuming a fuel tank. Verify that walls of diked areas are of earth , concrete, steel, or solid

  8. STS-60 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).

  9. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  10. SU-E-T-132: Assess the Shielding of Secondary Neutrons From Patient Collimator in Proton Therapy Considering Secondary Photons Generated in the Shielding Process with Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, M; Takashina, M; Kurosu, K

    Purpose: In this study we present Monte Carlo based evaluation of the shielding effect for secondary neutrons from patient collimator, and secondary photons emitted in the process of neutron shielding by combination of moderator and boron-10 placed around patient collimator. Methods: The PHITS Monte Carlo Simulation radiation transport code was used to simulate the proton beam (Ep = 64 to 93 MeV) from a proton therapy facility. In this study, moderators (water, polyethylene and paraffin) and boron (pure {sup 10}B) were placed around patient collimator in this order. The rate of moderator and boron thicknesses was changed fixing the totalmore » thickness at 3cm. The secondary neutron and photons doses were evaluated as the ambient dose equivalent per absorbed dose [H*(10)/D]. Results: The secondary neutrons are shielded more effectively by combination moderators and boron. The most effective combination of shielding neutrons is the polyethylene of 2.4 cm thick and the boron of 0.6 cm thick and the maximum reduction rate is 47.3 %. The H*(10)/D of secondary photons in the control case is less than that of neutrons by two orders of magnitude and the maximum increase of secondary photons is 1.0 µSv/Gy with the polyethylene of 2.8 cm thick and the boron of 0.2 cm thick. Conclusion: The combination of moderators and boron is beneficial for shielding secondary neutrons. Both the secondary photons of control and those emitted in the shielding neutrons are very lower than the secondary neutrons and photon has low RBE in comparison with neutron. Therefore the secondary photons can be ignored in the shielding neutrons.This work was supported by JSPS Core-to-Core Program (No.23003). This work was supported by JSPS Core-to-Core Program (No.23003)« less

  11. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  12. A cargo inspection system based on pulsed fast neutron analysis (PFNA).

    PubMed

    Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J

    2005-01-01

    A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described.

  13. Radiation shielding of the Fermilab 16 GeV proton driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolai V. Mokhov, Alexander I. Drozhdin and Oleg E. Krivosheev

    2001-07-12

    The radiation transport analysis in the proposed Fermi-lab 1.2 MWProton Driver (PD) [1] is fundamentally important because of the impact on machine performance, conventional facility design, maintenance operations, and related costs. The strategy adopted in the PD design is that the beam losses in the machine are localized and controlled as much as possible via the dedicated beam collimation system, with a high loss rate localized in that section and drastically lower uncontrolled beam loss rate in the rest of the lattice. Results of thorough Monte Carlo calculations of prompt and residual radiation in and around the PD components aremore » presented for realistic assumptions and geometry under normal operation and accidental conditions. This allowed one to conduct shielding design and analysis to meet regulatory requirements [2] for external shielding, hands-on maintenance and ground-water activation.« less

  14. Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.

    PubMed

    Wroe, Andrew J

    2016-02-01

    To evaluate the scattered and secondary radiation fields present in and around a passive proton treatment nozzle. In addition, based on these initial tests and system reliability analysis, to develop, install, and evaluate a radiation shielding structure to protect sensitive electronics against single-event effects (SEE) and improve system reliability. Landauer Luxel+ dosimeters were used to evaluate the radiation field around one of the gantry-mounted passive proton delivery nozzles at Loma Linda University Medical Center's James M Slater, MD Proton Treatment and Research Center. These detectors use optically stimulated luminescence technology in conjunction with CR-39 to measure doses from X-ray, gamma, proton, beta, fast neutron, and thermal neutron radiation. The dosimeters were stationed at various positions around the gantry pit and attached to racks on the gantry itself to evaluate the dose to electronics. Wax shielding was also employed on some detectors to evaluate the usefulness of this material as a dose moderator. To create the scattered and secondary radiation field in the gantry enclosure, a polystyrene phantom was placed at isocenter and irradiated with 250 MeV protons to a dose of 1.3 kGy over 16 hours. Using the collected data as a baseline, a composite shielding structure was created and installed to shield electronics associated with the precision patient positioner. The effectiveness of this shielding structure was evaluated with Landauer Luxel+ dosimeters and the results correlated against system uptime. The measured dose equivalent ranged from 1 to 60 mSv, with proton/photon, thermal neutron, fast neutron, and overall dose equivalent evaluated. The position of the detector/electronics relative to both isocenter and also neutron-producing devices, such as the collimators and first and second scatterers, definitely had a bearing on the dose received. The addition of 1-inch-thick wax shielding decreased the fast neutron component by almost 50%, yet this yielded a corresponding average increase in thermal neutron dose of 150% as there was no Boron-10 component to capture thermal neutrons. Using these data as a reference, a shielding structure was designed and installed to minimize radiation to electronics associated with the patient positioner. The installed shielding reduced the total dose experienced by these electronics by a factor of 5 while additionally reducing the fast and thermal neutron doses by a factor of 7 and 14, respectively. The reduction in radiation dose corresponded with a reduction of SEE-related downtime of this equipment from 16.5 hours to 2.5 hours over a 6-month reporting period. The data obtained in this study provided a baseline for radiation exposures experienced by gantry- and pit-mounted electronic systems. It also demonstrated and evaluated a shielding structure design that can be retrofitted to existing electronic system installations. It is expected that this study will benefit future upgrades and facility designs by identifying mechanisms that may minimize radiation dose to installed electronics, thus improving facility uptime. © The Author(s) 2015.

  15. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim

    2007-04-15

    X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less

  16. Scaled Eagle Nebula Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  17. The development of a containment vessel and Dewar for the particle astrophysics magnet facility (ASTROMAG)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The ASTROMAG facility is the heart of a large charged particle detection and resolution system. ASTROMAG utilizes a superconducting magnet consisting of a large superconducting magnet coil with a stored magnetic energy of approximately 15 MJ. The active coil will have a mass of 1200 kg. This magnet will be cooled by a cryostat using a liquid helium Dewar for storage. The cryostat will have a series of gas-cooled shields with an external guard vacuum shield and an internal Dewar. The magnet and cryostat will be designed for shuttle or Delta launch and will be designed to withstand the internal pressure of expanded helium under full quench conditions when venting is prevented. The external guard vacuum shell is required to maintain a vacuum for Earth based testing and for cold launch of the cryostat and magnet. The magnet is designed to operate at 4.4 K with a peak field of 7.0 tesla. The superconducting material within the magnet is niobium titanium in a conductive matrix.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Chris Moore repairs tile on the forward area of the orbiter Discovery. The vehicle has undergone Orbiter Major Modifications in the past year, which includes tile check and repair. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Chris Moore repairs tile on the forward area of the orbiter Discovery. The vehicle has undergone Orbiter Major Modifications in the past year, which includes tile check and repair. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  19. Modeling and simulation of high-speed wake flows

    NASA Astrophysics Data System (ADS)

    Barnhardt, Michael Daniel

    High-speed, unsteady flows represent a unique challenge in computational hypersonics research. They are found in nearly all applications of interest, including the wakes of reentry vehicles, RCS jet interactions, and scramjet combustors. In each of these examples, accurate modeling of the flow dynamics plays a critical role in design performance. Nevertheless, literature surveys reveal that very little modern research effort has been made toward understanding these problems. The objective of this work is to synthesize current computational methods for high-speed flows with ideas commonly used to model low-speed, turbulent flows in order to create a framework by which we may reliably predict unsteady, hypersonic flows. In particular, we wish to validate the new methodology for the case of a turbulent wake flow at reentry conditions. Currently, heat shield designs incur significant mass penalties due to the large margins applied to vehicle afterbodies in lieu of a thorough understanding of the wake aerothermodynamics. Comprehensive validation studies are required to accurately quantify these modeling uncertainties. To this end, we select three candidate experiments against which we evaluate the accuracy of our methodology. The first set of experiments concern the Mars Science Laboratory (MSL) parachute system and serve to demonstrate that our implementation produces results consistent with prior studies at supersonic conditions. Second, we use the Reentry-F flight test to expand the application envelope to realistic flight conditions. Finally, in the last set of experiments, we examine a spherical capsule wind tunnel configuration in order to perform a more detailed analysis of a realistic flight geometry. In each case, we find that current 1st order in time, 2nd order in space upwind numerical methods are sufficiently accurate to predict statistical measurements: mean, RMS, standard deviation, and so forth. Further potential gains in numerical accuracy are demonstrated using a new class of flux evaluation schemes in combination with 2nd order dual-time stepping. For cases with transitional or turbulent Reynolds numbers, we show that the detached eddy simulation (DES) method holds clear advantage over heritage RANS methods. From this, we conclude that the current methodology is sufficient to predict heating of external, reentry-type applications within experimental uncertainty.

  20. Measured Changes in C-Band Radar Reflectivity of Clear Air Caused by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1997-01-01

    Wake vortices from a C-130 airplane were observed at the NASA Wallops Flight Facility with a ground-based, monostatic C-band radar and an antenna-mounted boresight video camera. The airplane wake was viewed from a distance of approximately 1 km, and radar scanning was adjusted to cross a pair of marker smoke trails generated by the C-130. For each airplane pass, changes in radar reflectivity were calculated by subtracting the signal magnitudes during an initial clutter scan from the signal magnitudes during vortex-plus-clutter scans. The results showed both increases and decreases in reflectivity on and near the smoke trails in a characteristic sinusoidal pattern of heightened reflectivity in the center and lessened reflectivity at the sides. Reflectivity changes in either direction varied from -131 to -102 dBm(exp -1); the vortex-plus-clutter to noise ratio varied from 20 to 41 dB. The radar recordings lasted 2.5 min each; evidence of wake vortices was found for up to 2 min after the passage of the airplane. Ground and aircraft clutter were eliminated as possible sources of the disturbance by noting the occurrence of vortex signatures at different positions relative to the ground and the airplane. This work supports the feasibility of vortex detection by radar, and it is recommended that future radar vortex detection be done with Doppler systems.

  1. A Cherenkov-emission Microwave Source*

    NASA Astrophysics Data System (ADS)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian1, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity vf of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities vf 2 c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately wc/wp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately wp. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. *Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. 1Now at Hughes Research Laboratories, Malibu, CA 90265

  2. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  3. Some folded issues related to over-shielded and unplanned rooms for medical linear accelerators - A case study

    NASA Astrophysics Data System (ADS)

    Muhammad, Wazir; Ullah, Asad; Hussain, Amjad; Ali, Nawab; Alam, Khan; Khan, Gulzar; Matiullah; Maeng, Seongjin; Lee, Sang Hoon

    2015-08-01

    A medical linear accelerator (LINAC) room must be properly shielded to limit the outside radiation exposure to an acceptable safe level defined by individual state and international regulations. However, along with this prime objective, some additional issues are also important. The current case-study was designed to unfold the issues related to over-shielded and unplanned treatment rooms for LINACs. In this connection, an apparently unplanned and over-shielded treatment room of 610 × 610 cm2 in size was compared with a properly designed treatment room of 762 × 762 cm2 in size ( i.e., by following the procedures and recommendations of the IAEA Safety Reports Series No. 47 and NCRP 151). Evaluation of the unplanned room indicated that it was over-shielded and that its size was not suitable for total body irradiation (TBI), although the license for such a treatment facility had been acquired for the installed machine. An overall 14.96% reduction in the total shielding volume ( i.e., concrete) for an optimally planned room as compared to a non-planned room was estimated. Furthermore, the inner room's dimensions were increased by 25%, in order to accommodate TBI patients. These results show that planning and design of the treatment rooms are imperative to avoid extra financial burden to the hospitals and to provide enough space for easy and safe handling of the patients. A spacious room is ideal for storing treatment accessories and facilitates TBI treatment.

  4. Validation of PHITS Spallation Models from the Perspective of the Shielding Design of Transmutation Experimental Facility

    NASA Astrophysics Data System (ADS)

    Iwamoto, Hiroki; Meigo, Shin-ichiro

    2017-09-01

    The impact of different spallation models implemented in the particle transport code PHITS on the shielding design of Transmutation Experimental Facility is investigated. For 400-MeV proton incident on a lead-bismuth eutectic target, an effective dose rate at the end of a thick radiation shield (3-m-thick iron and 3-m-thick concrete) calculated by the Liège intranuclear cascade (INC) model version 4.6 (INCL4.6) coupled with the GEMcode (INCL4.6/GEM) yields about twice as high as the Bertini INC model (Bertini/GEM). A comparison with experimental data for 500-MeV proton incident on a thick lead target suggest that the prediction accuracy of INCL4.6/GEM would be better than that of Bertini/GEM. In contrast, it is found that the dose rates in beam ducts in front of targets calculated by the INCL4.6/GEMare lower than those by the Bertini/GEM. Since both models underestimate the experimental results for neutron-production doubledifferential cross sections at 180° for 140-MeV proton incident on carbon, iron, and gold targets, it is concluded that it is necessary to allow a margin for uncertainty caused by the spallation models, which is a factor of two, in estimating the dose rate induced by neutron streaming through a beam duct.

  5. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  6. Phoenix Spacecraft Heat Shield Deployment Test

    NASA Image and Video Library

    2007-05-16

    In the Payload Hazardous Servicing Facility, a worker monitors the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  7. Phoenix Spacecraft Heat Shield Deployment Test

    NASA Image and Video Library

    2007-05-16

    In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  8. KSC-2011-1402

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician is replacing a heat shield tile under space shuttle Atlantis. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  9. Developing a Data Set and Processing Methodology for Fluid/Structure Interaction Code Validation

    DTIC Science & Technology

    2007-06-01

    50 29. 9-Probe Wake Survey Rake Configurations...structural stability and fatigue in test article components and, in general, in facility support structures and rotating machinery blading . Both T&E... blade analysis and simulations. To ensure the accuracy of the U of CO technology, validation using flight-test data and test data from a wind tunnel

  10. You and the Law: Oops! Analysis of a Slip and Fall Hazard

    ERIC Educational Resources Information Center

    Belt, Drake E.; Young, Sarah J.

    2017-01-01

    In December 2009, Janette Ferguson traveled to Corpus Christi, Texas, to participate in the Harbor Lights Festival boat parade. The day prior to the festival, Ferguson spent the night on her family's sailboat that was kept in a slip on the city marina's C pier. Upon waking the following morning, Ferguson walked to the marina's bathroom facility to…

  11. A Need For Correction: Reforming New York's Juvenile Justice System. Child Welfare Watch. Vol. 18, Fall 2009

    ERIC Educational Resources Information Center

    White, Andrew; Hemphill, Clara; Hurley, Kendra

    2009-01-01

    In the wake of a U.S. Justice Department investigation that found widespread use of excessive force by staff at upstate psychiatric care facilities for mentally ill children, this new edition of Child Welfare Watch identifies shortcomings in mental health services and explores possible solutions, including the expansion of alternatives to…

  12. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and

  13. Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H.

    2013-01-01

    As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided quantification of the aeroacoustic installation effects for a wide range of open rotor and airframe configurations and can be used with data processing methods to evaluate the aeroacoustic installation effects for open rotors with modern blade designs.

  14. PBF (PER620) interior, first basement. Detail of valves and other ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, first basement. Detail of valves and other penetrations along wall. Bricks are made of high density shielding materials. Date: March 2004. INEEL negative no. HD-41-4-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKAmore » and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.« less

  16. Design and construction of shoulder recesses into the beam aperture shields for improved patient positioning at the FiR 1 BNCT facility.

    PubMed

    Auterinen, I; Kotiluoto, P; Hippeläinen, E; Kortesniemi, M; Seppälä, T; Serén, T; Mannila, V; Pöyry, P; Kankaanranta, L; Collan, J; Kouri, M; Joensuu, H; Savolainen, S

    2004-11-01

    Improvements have been made at the FiR 1 BNCT facility to ease the positioning of the patient with a tumor in the head and neck region into a lateral neutron beam. Shoulder recesses were constructed horizontally on both sides of the beam aperture. When shoulder recesses are not needed, they are filled with neutron attenuating filling blocks. MCNP simulations using an anthropomorphic human model BOMAB phantom showed that the main contribution to the increase in the effective dose to the patient's body due to the shoulder recesses was from the neutron dose of the arm. In a position when one arm is inside the shoulder recess, the maximal effective dose of the patient was estimated to be 0.7Sv/h. Dose measurements using the twin ionization chamber technique showed that the neutron dose increased on the sides as predicted by the MCNP model but there was no noticeable change in the gamma doses. When making the recesses into the lithium containing neutron shield material tritium contamination was confined using an underpressurized glove box and machine tools with local exhaust. The shoulder recesses give space for more flexible patient positioning and can be considered as a significant improvement of the Finnish BNCT facility.

  17. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, Manuel

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.« less

  18. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.

    PubMed

    Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin

    2018-05-30

    Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  20. Will new IUD debate lower Dalkon Shield settlements?

    PubMed

    1991-07-01

    A recent study challenging the risk associated with the use of IUDs will have little impact on the settlements of claims against the maker of the Dalkon Shield, an IUD believed to have caused pelvic inflammatory disease (PID) and other medical problems among its users. Recently, Richard Kronmal, a biostatistician from the University of Washington in Seattle, questioned the data from the Women's Health Study, an investigation sponsored by the National Institutes of Health, which found that the relative risk of PID among IUD users is 1.6. According to Kronmal, the actual relative risk is only 1.2. While other scientists came to the defense of the Women's Health Study, the press reported that Kronmal's report would lead to lower damage settlements for former Dalkon Shield users who have filed a claim against A.H. Robins Corp., the maker of the IUD. But according to Georgene Vairo, chair of the trust for the Dalkon Shield Claims Resolution Facility, the Kronmal study will have no impact on the settlements. Vairo says that the settlements will continue to be based on past offers, which range anywhere from %725 to 6-figure settlements, depending the amount of documentation and proof of injury. So far, the trust has settled some 137,000 claims. Furthermore, Vairo says that the trust still has $2.3 billion with which to settle claims, and has no incentive to reduce payments. The trust was set up by American Home Products Co., which acquired A.H. Robins after the maker of the Dalkon Shield filed for bankruptcy following increasing litigation claims from former Dalkon Shield users.

  1. Aerothermodynamic Analysis of Commercial Experiment Transporter (COMET) Reentry Capsule

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Gnoffo, Peter A.; Rault, Didier F. G.

    1996-01-01

    An aerothermodynamic analysis of the Commercial Experiment Transporter (COMET) reentry capsule has been performed using the laminar thin-layer Navier-Stokes solver Langley Aerothermodynamic Upwind Relaxation Algorithm. Flowfield solutions were obtained at Mach numbers 1.5, 2, 5, 10, 15, 20, 25, and 27.5. Axisymmetric and 5, 10, and 20 degree angles of attack were considered across the Mach-number range, with the Mach 25 conditions taken to 90 degrees angle of attack and the Mach 27.5 cases taken to 60 degrees angle of attack. Detailed surface heat-transfer rates were computed at Mach 20 and 25, revealing that heating rates on the heat-shield shoulder ,can exceed the stagnation-point heating by 230 percent. Finite-rate chemistry solutions were performed above Mach 10, otherwise perfect gas computations were made. Drag, lift, and pitching moment coefficients are computed and details of a wake flow are presented. The effect of including the wake in the solution domain was investigated and base pressure corrections to forebody drag coefficients were numerically determined for the lower Mach numbers. Pitching moment comparisons are made with direct simulation Monte Carlo results in the more rarefied flow at the highest Mach numbers, showing agreement within two-percent. Thin-layer Navier-Stokes computations of the axial force are found to be 15 percent higher across the speed range than the empirical/Newtonian based results used during the initial trajectory analyses.

  2. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.

  3. A New Light Weight Structural Material for Nuclear Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiei, Afsaneh

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable.more » Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0mCi 60Co, 1.8mCi 137Cs, 13.5mCi 241Am, and 5.0mCi 133Ba were used for gamma-ray attenuation analysis. The evaluations of neutron transmission measurements were conducted at the Neutron Powder Diffractometer beam facility at North Carolina State University. The experimental results were verified theoretically through XCOM and Monte Carlo Z-particle Transport Code (MCNP). A mechanical investigation was performed by means of quasi-static compressive testing. Thermal characterizations were carried out through effective thermal conductivity and thermal expansion analyses in terms of high temperature guarded-comparative-longitudinal heat flow technique and thermomechanical analyzer (TMA), respectively. The experimental results were compared with analytical results obtained from, respectively, Brailsford and Major’s model and modified Turner’s model for verification. Flame test was performed in accordance with United States Nuclear Regulatory Commission (USNRC) standard. CMF sample and a 304L stainless steel control sample were subjected to a fully engulfing fire with an average flame temperature of 800°C for a period of 30 minutes. Finite Element Analysis was conducted to secure the credibility of the experimental results. This research indicates the potential of utilizing the light-weight close-cell CMFs and open-cell Al foam with fillers as shielding material replacing current heavy structures with additional advantage of high-energy absorption and excellent thermal characteristics.« less

  4. Water supply facility damage and water resource operation at disaster base hospitals in miyagi prefecture in the wake of the Great East Japan Earthquake.

    PubMed

    Matsumura, Takashi; Osaki, Shizuka; Kudo, Daisuke; Furukawa, Hajime; Nakagawa, Atsuhiro; Abe, Yoshiko; Yamanouchi, Satoshi; Egawa, Shinichi; Tominaga, Teiji; Kushimoto, Shigeki

    2015-04-01

    The aim of this study was to shed light on damage to water supply facilities and the state of water resource operation at disaster base hospitals in Miyagi Prefecture (Japan) in the wake of the Great East Japan Earthquake (2011), in order to identify issues concerning the operational continuity of hospitals in the event of a disaster. In addition to interview and written questionnaire surveys to 14 disaster base hospitals in Miyagi Prefecture, a number of key elements relating to the damage done to water supply facilities and the operation of water resources were identified from the chronological record of events following the Great East Japan Earthquake. Nine of the 14 hospitals experienced cuts to their water supplies, with a median value of three days (range=one to 20 days) for service recovery time. The hospitals that could utilize well water during the time that water supply was interrupted were able to obtain water in quantities similar to their normal volumes. Hospitals that could not use well water during the period of interruption, and hospitals whose water supply facilities were damaged, experienced significant disruption to dialysis, sterilization equipment, meal services, sanitation, and outpatient care services, though the extent of disruption varied considerably among hospitals. None of the hospitals had determined the amount of water used for different purposes during normal service or formulated a plan for allocation of limited water in the event of a disaster. The present survey showed that it is possible to minimize the disruption and reduction of hospital functions in the event of a disaster by proper maintenance of water supply facilities and by ensuring alternative water resources, such as well water. It is also clear that it is desirable to conclude water supply agreements and formulate strategic water allocation plans in preparation for the eventuality of a long-term interruption to water services.

  5. Safety analysis, 200 Area, Savannah River Plant: Separations area operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, W.C.; Lee, R.; Allen, P.M.

    1991-07-01

    The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutoniummore » Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.« less

  6. The dynamic interaction of a marine hydrokinetic turbine with its environment

    NASA Astrophysics Data System (ADS)

    Kolekar, Nitin; Banerjee, Arindam

    2014-11-01

    Unlike wind turbines, marine hydrokinetic and tidal turbines operate in a bounded flow environment where flow is constrained between deformable free surface and fixed river/sea bed. The proximity to free surface modifies the wake dynamics behind the turbine. Further, size & shape of this wake is not constant but depends on multiple factors like flow speed, turbine blade geometry, and rotational speed. In addition, the turbulence characteristics of incoming flow also affects the flow field and hence the performance. The current work aims at understanding the dynamic interaction of a hydrokinetic turbine (HkT) with free surface and flow turbulence through experimental investigations. Results will be presented from experimental study carried out in an open channel test facility at Lehigh University with a three bladed, constant chord, zero twist HkT under various operating conditions. Froude number (ratio of characteristic flow velocity to gravitational wave velocity) is used to characterize the effect of free surface proximity on turbine performance. Experimental results will be compared with analytical models based on blade element momentum theory. Characterization of wake meandering and flow around turbine will be performed using a stereo-Particle Image Velocimetry technique.

  7. A Cherenkov-emission Microwave Source.*

    NASA Astrophysics Data System (ADS)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity ν_φ of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities ν_φ <= c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately ωc / ωp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately ω_p. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. ^1Now at Hughes Research Laboratories, Malibu, CA 90265.

  8. A technique for measurement of instantaneous heat transfer in steady-flow ambient-temperature facilities

    NASA Technical Reports Server (NTRS)

    O'Brien, James E.

    1990-01-01

    An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.

  9. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  10. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeo; Murata, Isao; Nakagawa, Tsutomu; Saito, Isao

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  11. Results of tests on a specimen of the SRB aft skirt heat shield curtain in the MSFC LRLF

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1980-01-01

    A full scale segment of the actual Solid Rocket Booster aft skirt heat shield curtain was tested in the Large Radiant Lamp Facility (LRLF) at Marshall Space Flight Center. The curtain was mounted in the horizontal position in the same manner as it is to be mounted on the SRB. A shaker rig was designed and used to provide a motion of the curtain, simulating that to be caused in flight by vehicle acoustics. Thermocouples were used to monitor curtain materials temperatures. Both ascent and reentry heat loads were applied to the test specimen. All aspects of the test setup performed as expected, and the test was declared successful.

  12. Optical ablation/temperature gage (COTA)

    NASA Astrophysics Data System (ADS)

    Cassaing, J.; Balageas, D.

    ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.

  13. KSC-2011-1400

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician prepares the surface under space shuttle Atlantis before installing a heat shield tile. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  14. KSC-2011-1399

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician is ready to work on replacing some of space shuttle Atlantis' heat shield tiles. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  15. KSC-2011-1403

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician secures a newly installed heat shield tile in place under space shuttle Atlantis. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  16. KSC-2011-1401

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician prepares the surface under space shuttle Atlantis before installing a heat shield tile. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  17. X-ray diffraction diagnostic design for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  18. Observations of the SAA radiation distribution by Liulin-E094 instrument on ISS

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Atwell, William; Semones, Edward; Tomov, Borislav; Reddell, Brandon

    Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Units (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during the time period May 11-July 26, 2001. In the time span 11-27 May 2001 four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the shielding differences generated by different geometry between the predominating eastward drifting protons and the orientation and placement of the MDUs within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton incident spectra inside of ISS were calculated using calibration curve of MDU obtained during the tests with protons at the Louvain-la-Neuve cyclotron facility. The energy of incident spectra maximums were analyzed against L value for the individual passes through the South Atlantic Anomaly.

  19. GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.

    2015-01-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.

  20. The LZ Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Bernard, Ethan; LZ Collaboration

    2013-10-01

    Astrophysical and cosmological observations show that dark matter is concentrated in halos around galaxies and is approximately five times more abundant than baryonic matter. Dark matter has evaded direct detection despite a series of increasingly sensitive experiments. The LZ (LUX-ZEPLIN) experiment will use a two-phase liquid-xenon time projection chamber to search for elastic scattering of xenon nuclei by WIMP (weakly interactive massive particle) dark matter. The detector will contain seven tons of liquid xenon shielded by an active organic scintillator veto and a water tank within the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector scales up the demonstrated light-sensing, cryogenic, radiopurity and shielding technologies of the LUX experiment. Active shielding, position fiducialization, radiopurity control and signal discrimination will reduce backgrounds to levels subdominant to solar neutrino scattering. This experiment will reach a sensitivity to the WIMP-nucleon spin-independent cross section approaching ~ 2 .10-48 cm2 for a 50 GeV WIMP mass, which is about three orders of magnitude smaller than current limits.

  1. Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Jiao, Yue; Qiang, Tiangang; Li, Jian

    2017-01-20

    We describe a rapid and facile chemical precipitation method to grow goethite (α-FeOOH) nanoneedles and nanoflowers on the carbon aerogels which was obtained from the pyrolysis of cellulose aerogels. When evaluated as electromagnetic interference (EMI) shielding materials, the α-FeOOH/cellulose-derived carbon aerogels composite displays the highest SE total value of 34.0dB at the Fe 3+ /Fe 2+ concentration of 0.01M, which is about 4.8 times higher than that of the individual α-FeOOH (5.9dB). When the higher or lower Fe 3+ /Fe 2+ concentrations were used, the EMI shielding performance deterioration occurred. The integration of α-FeOOH with the carbon aerogels transforms the reflection-dominant mechanism for α-FeOOH into the adsorption-dominant mechanism for the composite. The adsorption-dominant mechanism undoubtedly makes contribution to alleviating secondary radiation, which is regarded as more attractive alternative for developing electromagnetic radiation protection products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  3. Evaluation of protective shielding thickness for diagnostic radiology rooms: theory and computer simulation.

    PubMed

    Costa, Paulo R; Caldas, Linda V E

    2002-01-01

    This work presents the development and evaluation using modern techniques to calculate radiation protection barriers in clinical radiographic facilities. Our methodology uses realistic primary and scattered spectra. The primary spectra were computer simulated using a waveform generalization and a semiempirical model (the Tucker-Barnes-Chakraborty model). The scattered spectra were obtained from published data. An analytical function was used to produce attenuation curves from polychromatic radiation for specified kVp, waveform, and filtration. The results of this analytical function are given in ambient dose equivalent units. The attenuation curves were obtained by application of Archer's model to computer simulation data. The parameters for the best fit to the model using primary and secondary radiation data from different radiographic procedures were determined. They resulted in an optimized model for shielding calculation for any radiographic room. The shielding costs were about 50% lower than those calculated using the traditional method based on Report No. 49 of the National Council on Radiation Protection and Measurements.

  4. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  5. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  6. Arc Furnace Mercury Capsule

    NASA Image and Video Library

    1959-08-20

    A hot jet research facility, used extensively in the design and development of the reentry heat shield on the Project Mercury spacecraft. The electrically-heated arc jet simulates the friction heating encountered by a space vehicle as it returns to the earth's atmosphere at high velocities. The arc jet was located in Langley's Structures Research Laboratory. It was capable of heating the air stream to about 9,000 degrees F. -- Published in Taken from an October 5, 1961 press release entitled: Hot Jet Research Facility used in Reentry Studies will be demonstrated at NASA Open House, October 7.

  7. Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    NASA Technical Reports Server (NTRS)

    Sheppard, Albert P.; Wood, Joan M.

    1976-01-01

    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

  8. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  9. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  10. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  11. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  12. 10 CFR 36.57 - Radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation surveys. 36.57 Section 36.57 Energy NUCLEAR... § 36.57 Radiation surveys. (a) A radiation survey of the area outside the shielding of the radiation... facility starts to operate. A radiation survey of the area above the pool of pool irradiators must be...

  13. Bright ideas. Some rules of thumb for interior lighting design and selection.

    PubMed

    Hunter, Claudia M

    2002-07-01

    Interior lighting design and selection can be a demanding assignment for a health facilities manager or department head. It requires a balance between conflicting needs, such as providing good task lighting for a nursing station while also shielding luminaires that are visible from patients' rooms to avoid glare.

  14. PBF Reactor Building (PER620). Cubicle 10 detail. Camera facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 detail. Camera facing west toward brick shield wall. Valve stems against wall penetrate through east wall of cubicle. Photographer: John Capek. Date: August 19, 1970. INEEL negative no. 70-3469 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Work hours and sleep/wake behavior of Australian hospital doctors.

    PubMed

    Ferguson, Sally A; Thomas, Matthew J W; Dorrian, Jillian; Jay, Sarah M; Weissenfeld, Adrian; Dawson, Drew

    2010-07-01

    The objective of the study was to describe the work and sleep patterns of doctors working in Australian hospitals. Specifically, the aim was to examine the influence of work-related factors, such as hospital type, seniority, and specialty on work hours and their impact on sleep. A total of 635 work periods from 78 doctors were analyzed together with associated sleep history. Work and sleep diary information was validated against an objective measure of sleep/wake activity to provide the first comprehensive database linking work and sleep for individual hospital doctors in Australia. Doctors in large and small facilities had fewer days without work than those doctors working in medium-sized facilities. There were no significant differences in the total hours worked across these three categories of seniority; however, mid-career and senior doctors worked more overnight and weekend on-call periods than junior doctors. With respect to sleep, although higher work hours were related to less sleep, short sleeps (< 5 h in the 24 h prior to starting work) were observed at all levels of prior work history (including no work). In this population of Australian hospital doctors, total hours worked do impact sleep, but the pattern of work, together with other nonwork factors are also important mediators.

  17. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  18. Neutron Deep Penetration Calculations in Light Water with Monte Carlo TRIPOLI-4® Variance Reduction Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Kang

    2017-09-01

    Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.

  19. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2012-07-01

    To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.

  20. Preliminary results of radiation measurements on EURECA

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.

  1. Aerodynamic design of the National Rotor Testbed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbinemore » in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.« less

  2. Experimental Studies in Helicopter Vertical Climb Performance

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1996-01-01

    Data and analysis from an experimental program to measure vertical climb performance on an eight-foot model rotor are presented. The rotor testing was performed using a unique moving-model facility capable of accurately simulating the flow conditions during axial flight, and was conducted from July 9, 1992 to July 16, 1992 at the Dynamic Model Track, or 'Long Track,' just prior to its demolition in August of 1992. Data collected during this brief test program included force and moment time histories from a sting-mounted strain gauge balance, support carriage velocity, and rotor rpm pulses. In addition, limited video footage (of marginal use) was recorded from smoke flow studies for both simulated vertical climb and descent trajectories. Analytical comparisons with these data include a series of progressively more detailed calculations ranging from simple momentum theory, a prescribed wake method, and a free-wake prediction.

  3. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance.

    PubMed

    Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele

    2017-01-11

    A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding ability.

  4. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  5. KSC-07pd2008

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach a crane to the heat shield for the Phoenix Mars Lander spacecraft. The crane will lift and move the heat shield for installation over the lander within the cruise stage. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  6. KSC-2011-1405

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician has secured a newly installed heat shield tile in place under space shuttle Atlantis with a pressure fitting to ensure a tight bond. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  7. KSC-2011-1404

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician has secured a newly installed heat shield tile in place under space shuttle Atlantis with a pressure fitting to ensure a tight bond. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  8. PBF Reactor Building (PER620). Cubicle 10 area in basement. Highdensity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 area in basement. High-density shielding bricks will protect personnel from radiation coming from in-pile-tube coolant and blowdown tank. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-348 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Multifunctional Nanocomposites for Improved Sustainability and Protection of Facilities

    DTIC Science & Technology

    2015-05-01

    ballistic panels. In addition, the team’s work tested various options for adding self - healing , CNT reinforcement, EMI shielding, and self ...and functional- ization methods; introducing a self - healing agent directly to the matrix or contained in embedded hollow glass fibers; using layers...using CNT sheet reinforcement ...................... 23 5 Ballistic Testing of Self - Healing GFRP Panel

  10. PBF Cooling Tower (PER720), and Auxiliary Building (PER624). Camera faces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720), and Auxiliary Building (PER-624). Camera faces north to show south facades. Oblong vertical structure at left of center is weather shield for stairway. Date: August 2003. INEEL negative no. HD-35-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. NASA Facts. An Educational Publication of the National Aeronautics and Space Administration: Space Shuttle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The versatility of space shuttle, its heat shieldings, principal components, and facilities for various operations are described as well as the accomodations for the spacecrew and experiments. The capabilities of an improved space suit and a personal rescue enclosure containing life support and communication systems are highlighted. A typical mission is described.

  12. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  13. Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur

    NASA Technical Reports Server (NTRS)

    Dew, Michael; Allwein, Kirk; Kutter, Bernard; Ware, Joanne; Lin, John; Madlangbayan, Albert; Willey, Cliff; Pitchford, Brian; O'Neil, Gary

    2008-01-01

    The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the future plans leading up to a flight test in the 2011 time frame.

  14. Final Report for the “WSU Neutron Capture Therapy Facility Support”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald E. Tripard; Keith G. Fox

    2006-08-24

    The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and tested. The resulting epithermal beam of 1 x 10{sup 9} n/sec-cm{sup 2} was measured by Idaho National Laboratory with assistance from WSU's Neutron Activation Analysis Group. The beam is as good as our initial proposals for the project had predicted. In addition to all of the design, construction and insertion of the hardware, shielding, electronics and radiation monitoring systems there was considerable manpower and effort put into changes in the Technical Specifications of the reactor and implementing procedures for use of the new facility. This staff involvement is one of the reasons we requested special facility support from the DOE. Once the facility was competed and all of the recalibrations and measurements made to characterize the differences between this reactor core and the previous core we began to assist INL in making their beam measurements with foils and phantoms. Although we proposed support for only one additional staff position to support this new NCT facility the staff support provided by the WSU Nuclear Radiation Center was greater than had been anticipated by our initial proposal. INL was also assisted in the testing of a heavy water (deuterated water) bladder that can be inserted into the collimator in order to produce an intense, external thermal neutron beam. The external epithermal and/or thermal neutron beam capability remains available for use, if funding becomes available for future research projects.« less

  15. Radiation shielding design of a new tomotherapy facility.

    PubMed

    Zacarias, Albert; Balog, John; Mills, Michael

    2006-10-01

    It is expected that intensity modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) will replace a large portion of radiation therapy treatments currently performed with conventional MLC-based 3D conformal techniques. IGRT may become the standard of treatment in the future for prostate and head and neck cancer. Many established facilities may convert existing vaults to perform this treatment method using new or upgraded equipment. In the future, more facilities undoubtedly will be considering de novo designs for their treatment vaults. A reevaluation of the design principles used in conventional vault design is of benefit to those considering this approach with a new tomotherapy facility. This is made more imperative as the design of the TomoTherapy system is unique in several aspects and does not fit well into the formalism of NCRP 49 for a conventional linear accelerator.

  16. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations - results

    NASA Astrophysics Data System (ADS)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  17. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors.

    PubMed

    Kagawa, Masayuki; Suzumura, Kazuki; Matsui, Takemi

    2016-08-01

    Disturbed sleep has become more common in recent years. To improve the quality of sleep, undergoing sleep observation has gained interest as a means to resolve possible problems. In this paper, we evaluate a non-restrictive and non-contact method for classifying real-time sleep stages and report on its potential applications. The proposed system measures heart rate (HR), heart rate variability (HRV), body movements, and respiratory signals of a sleeping person using two 24-GHz microwave radars placed beneath the mattress. We introduce a method that dynamically selects the window width of the moving average filter to extract the pulse waves from the radar output signals. The Pearson correlation coefficient between two HR measurements derived from the radars overnight, and the reference polysomnography was the average of 88.3% and the correlation coefficient for HRV parameters was the average of 71.2%. For identifying wake and sleep periods, the body-movement index reached sensitivity of 76.0%, and a specificity of 77.0% with 10 participants. Low-frequency (LF) components of HRV and the LF/HF ratio had a high degree of contribution and differed significantly across the three sleep stages (REM, LIGHT, and DEEP; p <; 0.01). In contrast, high-frequency (HF) components of HRV were not significantly different across the three sleep stages (p > 0.05). We applied a canonical discriminant analysis to identify wake or sleep periods and to classify the three sleep stages with leave-one-out cross validation. Classification accuracy was 66.4% for simply identifying wake and sleep, 57.1% for three stages (wake, REM, and NREM) and 34% for four stages (wake, REM, LIGHT, and DEEP). This is a novel system for measuring HRs, HRV, body movements, and respiratory intervals and for measuring high sensitivity pulse waves using two radar signals. It simplifies measurement of sleep stages and may be employed at nursing care facilities or by the general public to improve sleep quality.

  18. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  19. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  20. Gas turbine blade film cooling and blade tip heat transfer

    NASA Astrophysics Data System (ADS)

    Teng, Shuye

    The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.

  1. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance

    PubMed Central

    Collet, Tinh-Hai; van der Klaauw, Agatha A.; Henning, Elana; Keogh, Julia M.; Suddaby, Diane; Dachi, Sekesai V.; Dunbar, Síle; Kelway, Sarah; Dickson, Suzanne L.; Farooqi, I. Sadaf; Schmid, Sebastian M.

    2016-01-01

    Study Objectives: The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However, the potential mechanisms linking energy balance and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating energy balance on the sleep/wake cycle. Methods: Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline, after energy balance was disrupted by 2 days of caloric restriction to 10% of energy requirements, and after energy balance was restored by 2 days of ad libitum/free feeding. Sleep architecture, duration of sleep stages, and sleep-associated respiratory parameters were measured by polysomnography. Results: Two days of caloric restriction significantly increased the duration of deep (stage 4) sleep (16.8% to 21.7% of total sleep time; P = 0.03); an effect which was entirely reversed upon free feeding (P = 0.01). Although the apnea-hypopnea index stayed within the reference range (< 5 events per hour), it decreased significantly from caloric restriction to free feeding (P = 0.03). Caloric restriction was associated with a marked fall in leptin (P < 0.001) and insulin levels (P = 0.002). The fall in orexin levels from baseline to caloric restriction correlated positively with duration of stage 4 sleep (Spearman rho = 0.83, P = 0.01) and negatively with the number of awakenings in caloric restriction (Spearman rho = -0.79, P = 0.01). Conclusions: We demonstrate that changes in energy homeostasis directly and reversibly impact on the sleep/wake cycle. These findings provide a mechanistic framework for investigating the association between sleep duration and obesity risk. Citation: Collet TH, van der Klaauw AA, Henning E, Keogh JM, Suddaby D, Dachi SV, Dunbar S, Kelway S, Dickson SL, Farooqi IS, Schmid SM. The sleep/ wake cycle is directly modulated by changes in energy balance. SLEEP 2016;39(9):1691–1700. PMID:27306267

  2. Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate. Part 3

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; Radke, R. E.

    1996-01-01

    Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.

  3. POD Analysis of Jet-Plume/Afterbody-Wake Interaction

    NASA Astrophysics Data System (ADS)

    Murray, Nathan E.; Seiner, John M.; Jansen, Bernard J.; Gui, Lichuan; Sockwell, Shuan; Joachim, Matthew

    2009-11-01

    The understanding of the flow physics in the base region of a powered rocket is one of the keys to designing the next generation of reusable launchers. The base flow features affect the aerodynamics and the heat loading at the base of the vehicle. Recent efforts at the National Center for Physical Acoustics at the University of Mississippi have refurbished two models for studying jet-plume/afterbody-wake interactions in the NCPA's 1-foot Tri-Sonic Wind Tunnel Facility. Both models have a 2.5 inch outer diameter with a nominally 0.5 inch diameter centered exhaust nozzle. One of the models is capable of being powered with gaseous H2 and O2 to study the base flow in a fully combusting senario. The second model uses hi-pressure air to drive the exhaust providing an unheated representative flow field. This unheated model was used to acquire PIV data of the base flow. Subsequently, a POD analysis was performed to provide a first look at the large-scale structures present for the interaction between an axisymmetric jet and an axisymmetric afterbody wake. PIV and Schlieren data are presented for a single jet-exhaust to free-stream flow velocity along with the POD analysis of the base flow field.

  4. Recovery, Transportation and Acceptance to the Curation Facility of the Hayabusa Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Abe, M.; Fujimura, A.; Yano, H.; Okamoto, C.; Okada, T.; Yada, T.; Ishibashi, Y.; Shirai, K.; Nakamura, T.; Noguchi, T.; hide

    2011-01-01

    The "Hayabusa" re-entry capsule was safely carried into the clean room of Sagamihara Planetary Sample Curation Facility in JAXA on June 18, 2010. After executing computed tomographic (CT) scanning, removal of heat shield, and surface cleaning of sample container, the sample container was enclosed into the clean chamber. After opening the sample container and residual gas sampling in the clean chamber, optical observation, sample recovery, sample separation for initial analysis will be performed. This curation work is continuing for several manths with some selected member of Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). We report here on the 'Hayabusa' capsule recovery operation, and transportation and acceptance at the curation facility of the Hayabusa re-entry capsule.

  5. Radiobiological studies using gamma and x rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  6. Evaluation of seals and lubricants used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1994-01-01

    This report described results from testing and analysis of seals and lubricants subsequent to the 69-month low-earth-orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF). Results show that if the materials were shielded from exposure to LDEF's external environment, the 69-month exposure to LEO resulted in minimal changes to material properties. However, if the materials were exposed to LDEF's exterior environments (atomic oxygen, solar radiation, meteoroids, and/or space debris), a variety of events occurred, ranging from no material change, to changes in properties, to significant erosion of the material.

  7. KSC-00pp0503

    NASA Image and Video Library

    2000-04-14

    Center Director Roy Bridges (left) dons protective apron, gloves and face shield before the "ribbon-breaking" to open the new Cryogenic Testbed Facility. Part of the normal ceremonial ribbon was replaced with plastic tubing and frozen in liquid nitrogen for the event. Bridges hit the tubing with a small hammer to break it. The Cryogenics Testbed was built to provide cryogenics engineering development and testing services to meet the needs of industry. It will also support commercial, government and academic customers for technology development initiatives on the field of cryogenics. The facility is jointly managed by NASA and Dynacs Engineering Co. , NASA/SC's Engineering Development contractor

  8. KSC-00pp0504

    NASA Image and Video Library

    2000-04-14

    Center Director Roy Bridges (left), wearing protective apron, gloves and face shield, watches as liquid nitrogen is poured into a container to freeze the plastic tubing for a special "ribbon-breaking" to open the new Cryogenic Testbed Facility. Bridges hit the section of tubing with a small hammer to break it. The Cryogenics Testbed was built to provide cryogenics engineering development and testing services to meet the needs of industry. It will also support commercial, government and academic customers for technology development initiatives on the field of cryogenics. The facility is jointly managed by NASA and Dynacs Engineering Co. , NASA/SC's Engineering Development contractor

  9. High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.

    1997-01-01

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near equilibrium temperature of 2072 K was achieved. The aperture shield sustained no visible damage as a result of the exposures. This paper describes the aperture shield thermal-vacuum qualification test program including the test article, test facility, procedures, data collection, test success criteria, results and conclusions.

  10. a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.

    NASA Astrophysics Data System (ADS)

    Brooks, George Alfred

    Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1.5 (+OR-) 0.5) day('-1). Improved statistics from 1976 gave (1.48 (+OR-) 0.34) day('-1). If this number could be further reduced--by additional shielding, for example--then the experiment would be easier. However, data taken in 1975 with varying thicknesses of Pb on top of the sandwich detector and in 1976 with an additional 1' of Fe on the roof showed that there is no significant advantage to having more Pb or Fe in those areas. The accelerator may also be a source of background. When the accelerator is operating, neutrons from the beam stop can penetrate the Fe shielding to produce an excessive trigger rate (energetic neutrons) or on excessive dead time (thermal neutrons), especially in the more massive ANTI required for the full scale experiment. However, data taken in 1974 with 10(mu)A accelerator current and 4m Fe as beam stop shielding, and in 1976 with 100 (mu)A and 5m Fe, showed that the neutron flux was well under control. The ultimate configuration requires much higher beam currents, but also calls for additional Fe so that neutrons will not be a problem. In both 1974 and 1976 there were no electron events remaining in the accelerator data following subtraction of cosmic ray background. This fact can be used to set an upper limit on the elastic scattering cross section for (nu)(,e):. (sigma)(,exp) < 38 (sigma)(,V-A) with 90% confidence. The results of these studies determined the amount of shielding required for a full scale neutrino experiment, established the need for a very efficient active anticoincidence, and aided the design of a 14.4 metric ton sandwich detector of flash chamber modules and plastic scintillator slabs. Developmental work for the full scale detector system began in 1977, and some of the subsequent construction work is still in progress. However, the Neutrino Facility has been prepared, and portions of the sandwich detector have been installed. The first information on neutrino -electron elastic scattering could be available by the middle of 1982.

  11. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  12. Radiation protection for an intra-operative X-ray device

    PubMed Central

    Eaton, D J; Gonzalez, R; Duck, S; Keshtgar, M

    2011-01-01

    Objectives Therapeutic partial breast irradiation can be delivered intra-operatively using the Intrabeam 50 kVp compact X-ray device. Spherical applicators are added to the source to give an isotropic radiation dose. The low energy of this unit leads to rapid attenuation with distance, but dose rates are much greater than for diagnostic procedures. Methods To investigate the shielding requirements for this unit, attenuation measurements were carried out with manufacturer-provided tungsten–rubber sheets, lead, plasterboard and bricks. A prospective environmental dose rate survey was also conducted in the designated theatre. Results As a result of isotropic geometry, the scattered dose around shielding can be 1% of primary and thus often dominates measured dose rates compared with transmission. The absorbed dose rate of the unshielded source at 1 m was 11.6 mGy h−1 but this was reduced by 95% with the shielding sheets. Measured values for the common shielding materials were similar to reference data for the attenuation of a 50 kVp diagnostic X-ray beam. Two lead screens were constructed to shield operators remaining in the theatre and an air vent into a service corridor. A lead apron would also provide suitable attenuation, although a screen allows greater flexibility for treatment operators. With these measures, staff doses were reduced to negligible quantities. Survey measurements taken during patient treatments confirmed no additional measures were required, but the theatre should be a controlled area and access restricted. Conclusion Results from this study and reference data can be used for planning other facilities. PMID:21304003

  13. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xinhua; Zhang Da; Liu, Bob

    2012-07-15

    Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less

  14. KSC-2011-2396

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  15. KSC-2011-2421

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  16. KSC-2011-2397

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  17. KSC-2011-2420

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  18. KSC-2011-2394

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  19. KSC-2011-2401

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  20. KSC-2011-2398

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  1. KSC-2011-2415

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  2. KSC-2011-2418

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  3. KSC-2011-2417

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  4. KSC-2011-2416

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  5. KSC-2011-2399

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  6. KSC-2011-2413

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  7. KSC-2011-2393

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  8. KSC-2011-2414

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  9. KSC-2011-2395

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  10. KSC-2011-2400

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  11. KSC-2011-2419

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Kim Shiflett

  12. KSC-2011-2392

    NASA Image and Video Library

    2011-03-21

    CAPE CANAVERAL, Fla. - Crews in Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida remove space shuttle Discovery's right-hand inner heat shield from engine No. 1. The removal is part of Discovery's transition and retirement processing. Work performed on Discovery is expected to help rocket designers build next-generation spacecraft and prepare the shuttle for future public display.Photo credit: NASA/Jack Pfaller

  13. The Economics of Applying Suppressive Shielding to the M483A1 Improved Conventional Munition Loading, Assembling, and Packing Facility

    DTIC Science & Technology

    1977-01-01

    trays are placed on a cart (206-pound net explosive). These carts are moved by driverless tractor to an 8-hour hold in a nearby building while quality...by driverless tractor to a 40-hour hold for quality assurance inspection. After inspection, the grenades are returned to the loading, assembling, and

  14. Credit WCT. Original 4" x 5" black and white negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4" x 5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows the original furnace for burning scrap propellant, the surrounding incinerator pit, and the earth mound personnel shield (JPL negative no. 381-2737, 11 February 1963) - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA

  15. Increase of radiation resistance of a soil microflora exposed to long-term gamma irradiation. [/sup 60/Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, W.H.; Emborg, C.

    1978-10-01

    Soil microflora were exposed to long-term (18 months) gamma irradiation in an open-air facility at three different doses, 15, 150, and 1500 krads/18 months. The radiation resistance increased at all doses when compared with the radiation resistance of the microflora from soil shielded from the irradiation with a lead wall.

  16. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.

    2015-09-01

    Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 countsmore » per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.« less

  18. Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.

    2008-05-01

    At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.

  19. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR, SEP, and neutrons.

  20. Evaluation of near field atmospheric dispersion around nuclear facilities using a Lorentzian distribution methodology.

    PubMed

    Hawkley, Gavin

    2014-12-01

    Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.

Top