Sample records for wakefield particle acceleration

  1. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  2. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Mo, M. Z.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-12-01

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  3. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson-Laborde, P. E., E-mail: paul-edouard.masson-laborde@cea.fr; Teychenné, D.; Mo, M. Z.

    2014-12-15

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its ownmore » wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.« less

  4. Demonstration of the hollow channel plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gessner, Spencer J.

    2016-09-17

    A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration ofmore » electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.« less

  5. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; /KIPAC, Menlo Park /Taiwan, Natl. Taiwan U.; Chang, Feng-Yin

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excitesmore » the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.« less

  6. GeV Electrons due to a Transition from Laser Wakefield Acceleration to Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Masson-Laborde, P.-E.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J.-C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-10-01

    The Laser Wakefield Acceleration (LWFA) experiments performed with the 200 TW laser system located at the Canadian Advanced Laser Light Source facility at INRS, Varennes (Québec) observed at relatively high plasma densities (1 × 1019cm-3) electron bunches of GeV energy gain, more than double of the predicted energy using Lu's scaling law. This energy boost phenomena can be attributed to a transition from LWFA regime to a plasma wakefield acceleration (PWFA) regime. In the first stage, the acceleration mechanism is dominated by the bubble created by the laser in the regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, where the laser pulse is depleted and it can no longer sustain the bubble anymore, the dense bunch of high energy electrons propagating inside the bubble will drive its own wakefield in the PWFA regime that can trap and accelerate a secondary population of electrons up to the GeV level. 3D particle-in-cell simulations support this analysis, and confirm the scenario.

  7. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  8. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less

  9. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGES

    Gessner, Spencer; Adli, Erik; Allen, James M.; ...

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m -1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  10. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  11. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  12. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  13. Radiation pressure injection in laser-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.

    2018-01-01

    We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.

  14. A preliminary design of the collinear dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  15. Hot spots and dark current in advanced plasma wakefield accelerators

    DOE PAGES

    Manahan, G. G.; Deng, A.; Karger, O.; ...

    2016-01-29

    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  16. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the

  17. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  18. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  19. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  20. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGES

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  1. Quasi-stable injection channels in a wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiltshire-Turkay, Mara; Farmer, John P.; Pukhov, Alexander

    2016-05-15

    The influence of initial position on the acceleration of externally injected electrons in a plasma wakefield is investigated. Test-particle simulations show previously unobserved complex structure in the parameter space, with quasi-stable injection channels forming for particles injected in narrow regions away from the wake centre. Particles injected into these channels remain in the wake for a considerable time after dephasing and as a result achieve significantly higher energy than their neighbours. The result is relevant to both the planning and optimisation of experiments making use of external injection.

  2. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2018-05-18

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  3. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  4. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  5. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, G.

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. Here in this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studiesmore » of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.« less

  6. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  7. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    DOE PAGES

    Stupakov, G.

    2018-04-02

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. Here in this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studiesmore » of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.« less

  8. Direct Laser Acceleration in Laser Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Shaw, J. L.; Froula, D. H.; Marsh, K. A.; Joshi, C.; Lemos, N.

    2017-10-01

    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) has been investigated. We show that when there is a significant overlap between the drive laser and the trapped electrons in a LWFA cavity, the accelerating electrons can gain energy from the DLA mechanism in addition to LWFA. The properties of the electron beams produced in a LWFA, where the electrons are injected by ionization injection, have been investigated using particle-in-cell (PIC) code simulations. Particle tracking was used to demonstrate the presence of DLA in LWFA. Further PIC simulations comparing LWFA with and without DLA show that the presence of DLA can lead to electron beams that have maximum energies that exceed the estimates given by the theory for the ideal blowout regime. The magnitude of the contribution of DLA to the energy gained by the electron was found to be on the order of the LWFA contribution. The presence of DLA in a LWFA can also lead to enhanced betatron oscillation amplitudes and increased divergence in the direction of the laser polarization. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield.

    PubMed

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lipkowitz, N; Litos, M; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V; Yocky, G

    2015-08-27

    Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.

  10. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojanmore » Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.« less

  11. Experimental signatures of direct-laser-acceleration-assisted laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shaw, J. L.; Lemos, N.; Marsh, K. A.; Froula, D. H.; Joshi, C.

    2018-04-01

    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) operating in the forced or quasi-blowout regimes has been investigated through experiment and simulation. When there is a significant overlap between the trapped electrons and the drive laser in a LWFA cavity, the resulting electrons can gain energy from both the LWFA and the DLA mechanisms. Experimental work investigates the properties of the electron beams produced in a LWFA with ionization injection by dispersing those beams in the direction perpendicular to the laser polarization. These electron beams show certain spectral features that are characteristic of DLA. These characteristic features are reproduced using particle-in-cell simulations, where particle tracking was used to elucidate the roles of LWFA and DLA to the energy gain of the electrons in this experimental regime and to demonstrate that such spectral features are definitive signatures of the presence of DLA in LWFA.

  12. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  13. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  14. Accurate modeling of the hose instability in plasma wakefield accelerators

    DOE PAGES

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; ...

    2018-05-20

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. Lastly, it paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  15. Accurate modeling of the hose instability in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; Martinez de la Ossa, A.; Osterhoff, J.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. It paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  16. Accurate modeling of the hose instability in plasma wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. Lastly, it paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  17. Plasma-based wakefield accelerators as sources of axion-like particles

    NASA Astrophysics Data System (ADS)

    Burton, David A.; Noble, Adam

    2018-03-01

    We estimate the average flux density of minimally-coupled axion-like particles (ALPs) generated by a laser-driven plasma wakefield propagating along a constant strong magnetic field. Our calculations suggest that a terrestrial source based on this approach could generate a pulse of ALPs whose flux density is comparable to that of solar ALPs at Earth. This mechanism is optimal for ALPs with mass in the range of interest of contemporary experiments designed to detect dark matter using microwave cavities.

  18. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhijun; Li, Wentao; Wang, Wentao

    2016-05-15

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, themore » e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.« less

  19. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  20. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    NASA Astrophysics Data System (ADS)

    Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  1. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less

  2. Trains of electron micro-bunches in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan

    2018-07-01

    Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.

  3. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  4. Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek

    By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.

  5. Enhancement of Electron Acceleration in Laser Wakefields by Random Fields

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.

    1999-11-01

    There is increasing evidence that intense laser pulses can accelerate electrons to high energies. The energy appears to increase with the distance over which the electrons are accelerated. This is difficult to explain by electron trapping in a single wakefield wave.^1 We demonstrate that enhanced electron acceleration can arise in inhomogeneous laser wakefields through the effects of spontaneously excited random fields. This acceleration mechanism is analogous to fast electron production by random fields near rf antennae in fusion devices and helicon plasma sources.^2 Electron acceleration in a transverse laser wave due to random field effects was recently found.^3 In the present study we solve numerically the governing equations of an ensemble of test electrons in a longitudinal electric wakefield perturbed by random fields. [1pt] Supported by the Czech grant IGA A1043701 and the U.S. DOE under grant No. DE-FG02-97ER54398. [1pt] 1. A. Pukhov and J. Meyer-ter-Vehn, in Superstrong Fields in Plasmas, AIP Conf. Proc. 426, p. 93 (1997). 2. V. Petržílka, J. A. Tataronis, et al., in Proc. Varenna - Lausanne Fusion Theory Workshop, p. 95 (1998). 3. J. Meyer-ter-Vehn and Z. M. Sheng, Phys. Plasmas 6, 641 (1999).

  6. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C. F.; Zhao, T. Z.; Behm, K.

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  7. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.

    2018-04-01

    Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.

  8. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE PAGES

    Dong, C. F.; Zhao, T. Z.; Behm, K.; ...

    2018-04-24

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  9. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  10. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.

    PubMed

    Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C

    2015-07-31

    Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10  pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

  11. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litos, M.; Adli, E.; Allen, J. M.

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m -1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energymore » gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  12. Energy boost in laser wakefield accelerators using sharp density transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Döpp, A.; Guillaume, E.; Thaury, C.

    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficultmore » to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.« less

  13. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.

    2018-06-01

    We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.

  14. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.

    PubMed

    Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J

    2018-04-13

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  15. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    NASA Astrophysics Data System (ADS)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  16. Plasma wakefield acceleration experiments at FACET II

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.

    2018-03-01

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.

  17. Plasma wakefield acceleration experiments at FACET II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, C.; Adli, E.; An, W.

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  18. Plasma wakefield acceleration experiments at FACET II

    DOE PAGES

    Joshi, C.; Adli, E.; An, W.; ...

    2018-01-12

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  19. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  20. Theory and measurements of emittance preservation in plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditionsmore » necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.« less

  1. Dynamics of electron injection in a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.

    2017-08-01

    The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.

  2. Sharp plasma pinnacle structure based on shockwave for an improved laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Zhang, Zhijun; Wang, Wentao; Liu, Jiansheng; Li, Ruxin

    2018-07-01

    We created a sharp plasma pinnacle structure for localized electron injection and controlled acceleration in a laser wakefield accelerator. The formation of this shockwave-based pinnacle structure was investigated using aerodynamic theory. Details and scaling laws for the shockwave angle, shock position, shock width, and density ratio were experimentally and theoretically presented. Such work is crucial to yielding an expected plasma density distribution in a laser–plasma experiment but has had little discussion in the literature. Compared with the commonly used shock downramp structure, the particle-in-cell simulations demonstrated that the e beam injected in the created pinnacle structure could be accelerated to higher energy with much smaller root-mean-square relative energy spread. Moreover, this study indicated that the beam charge and transverse emittance can be tuned by the shock angle.

  3. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  4. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGES

    Kuschel, S.; Hollatz, D.; Heinemann, T.; ...

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  5. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    DOE PAGES

    Lee, Patrick; Maynard, G.; Audet, T. L.; ...

    2016-11-16

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less

  6. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator.

    PubMed

    Lindstrøm, C A; Adli, E; Allen, J M; An, W; Beekman, C; Clarke, C I; Clayton, C E; Corde, S; Doche, A; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; O'Shea, B D; Vafaei-Najafabadi, N; Yakimenko, V

    2018-03-23

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

  7. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; An, W.; Beekman, C.; Clarke, C. I.; Clayton, C. E.; Corde, S.; Doche, A.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; O'Shea, B. D.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2018-03-01

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

  8. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, J.; Chen, M.; Wu, W. Y.

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  9. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE PAGES

    Luo, J.; Chen, M.; Wu, W. Y.; ...

    2018-04-10

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  10. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  11. Two-color hybrid laser wakefield and direct laser accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Khudik, V.; Bernstein, A.; Downer, M.; Shvets, G.

    2017-03-01

    We propose and investigate the concept of two-color laser wakefield and direct acceleration (LWDA) scheme in the regime of moderate (10 TW scale) laser powers. The concept utilizes two unequal frequency laser pulses: the leading long-wavelength (λ0 = 0.8 µm) wakefield laser pulse driving a nonlinear plasma wake, and a trailing short-wavelength (λDLA = λ0/2) DLA laser pulse. The combination of the large electric field, yet small ponderomotive pressure of the DLA pulse is shown to be advantageous for producing a higher energy and larger charge electron beam compared with the single frequency LWDA. The sensitivity of the dual-frequency LWDA to synchronization time jitter is also reduced.

  12. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    PubMed Central

    He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.

    2016-01-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086

  13. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    DOE PAGES

    He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...

    2016-11-08

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less

  14. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  15. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, C. A.; Adli, E.; Allen, J. M.

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, andmore » measured with another 20 GeV lower charge trailing positron probe bunch. Furthermore, the measurements are largely consistent with theory.« less

  16. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    DOE PAGES

    Lindstrom, C. A.; Adli, E.; Allen, J. M.; ...

    2018-03-23

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, andmore » measured with another 20 GeV lower charge trailing positron probe bunch. Furthermore, the measurements are largely consistent with theory.« less

  17. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  18. Plasma Wake-field Acceleration in the Blow-out Regime

    NASA Astrophysics Data System (ADS)

    Barov, Nikolai; Rosenzweig, James

    1999-11-01

    Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.

  19. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    NASA Astrophysics Data System (ADS)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  20. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    NASA Astrophysics Data System (ADS)

    Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Bruhwiler, D. L.; Cormier-Michel, E.; Cowan, B. M.; Cary, J. R.; Grote, D. P.

    2010-11-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference has been shown to produce up to three orders of magnitude speed-up in calculations from first principles of stages in the 100 MeV-10 GeV energy range. Maximum obtainable speedups calculated using linear theory predict that higher speedups are attainable, in the range of 4-6 orders of magnitude for stages in the energy range of 10 GeV-1 TeV respectively. Practical limitations have been reported and discussed which have prevented reaching these speedups so far, including a violent high frequency numerical instability. The limitations are briefly reviewed and discussed in this paper, as well as their mitigation. It is also reported that the high frequency numerical instability can be controlled effectively using novel numerical techniques that have been implemented in the Particle-In-Cell code Warp, and that 5 and 6 orders of magnitude speedups were demonstrated on 100 GeV and 1 TeV stages respectively, verifying the scaling of plasma accelerators to very high energies, and providing highly efficient tools for the detailed designs of experiments on new lasers such as BELLA.

  1. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  2. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming

    2017-09-01

    Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.

  3. Effects of Ionization in a Laser Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.

    2010-11-04

    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.

  4. Stability condition for the drive bunch in a collinear wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, S. S.; Zholents, A.

    The beam breakup instability of the drive bunch in the structure-based collinear wakefield accelerator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.

  5. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  6. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  7. Betatron x-ray radiation in the self-modulated wakefield acceleration regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-05-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation in the self modulated regime of laser wakefield acceleration. We observed multi keV Betatron x-rays from a self-modulated laser wakefield accelerator. The experiment was performed at the Jupiter Laser Facility, LLNL, by focusing the Titan short pulse beam (4-150 J, 1 ps) onto the edge of a Helium gas jet at electronic densities around 1019 cm-3. For the first time on this laser system, we used a long focal length optic, which produced a laser normalized potential a0 in the range 1-3. Under these conditions, electrons are accelerated by the plasma wave created in the wake of the light pulse. As a result, intense Raman satellites, which measured shifts depend on the electron plasma density, were observed on the laser spectrum transmitted through the target. Electrons with energies up to 200 MeV, as well as Betatron x-rays with critical energies around 20 keV, were measured. OSIRIS 2D PIC simulations confirm that the electrons gain energy both from the plasma wave and from their interaction with the laser field.

  8. Towards Attosecond High-Energy Electron Bunches: Controlling Self-Injection in Laser-Wakefield Accelerators Through Plasma-Density Modulation

    NASA Astrophysics Data System (ADS)

    Tooley, M. P.; Ersfeld, B.; Yoffe, S. R.; Noble, A.; Brunetti, E.; Sheng, Z. M.; Islam, M. R.; Jaroszynski, D. A.

    2017-07-01

    Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.

  9. Plasma Accelerators Race to 10 GeV and Beyond

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom

    2005-10-01

    This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and

  10. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less

  11. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James; /UCLA; Travish, Gil

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal ofmore » demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.« less

  12. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    PubMed Central

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  13. A Stable High-Energy Electron Source from Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhao, Baozhen; Liu, Cheng; Yan, Wenchao; Golovin, Grigory; Banerjee, Sudeep; Chen, Shouyuan; Haden, Daniel; Fruhling, Colton; Umstadter, Donald

    2016-10-01

    The stability of the electron source from laser wake-field acceleration (LWFA) is essential for applications, such as novel x-ray sources and fundamental experiments in high field physics. To obtain such a stable source, we used an optimal laser pulse and a novel gas nozzle. The high-power laser pulse on target was focused to a diffraction-limited spot by the use of adaptive wavefront correction and the pulse duration was transform limited by the use of spectral feedback control. An innovative design for the nozzle led to a stable, flat-top profile with diameters of 4 mm and 8 mm with a high Mach-number ( 6). In experiments to generate high-energy electron beams by LWFA, we were able to obtain reproducible results with beam energy of 800 MeV and charge >10 pC. Higher charge but broader energy spectrum resulted when the plasma density was increased. These developments have resulted in a laser-driven wakefield accelerator that is stable and robust. With this device, we show that narrowband high-energy x-rays beams can be generated by the inverse-Compton scattering process. This accelerator has also been used in recent experiments to study nonlinear effects in the interaction of high-energy electron beams with ultraintense laser pulses. This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  14. Effect of pulse profile and chirp on a laser wakefield generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaomei; Shen Baifei; Ji Liangliang

    2012-05-15

    A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influencemore » of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.« less

  15. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  16. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  17. Transformer ratio saturation in a beam-driven wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J. P.; Martorelli, R.; Pukhov, A.

    We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.

  18. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  19. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  20. Self-modulated laser wakefield accelerators as x-ray sources

    DOE PAGES

    Lemos, N.; Martins, J. L.; Tsung, F. S.; ...

    2016-02-17

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0 = 1.5 and the other with an a 0 = 3. We find that in both cases direct laser acceleration (DLA) ismore » an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0 = 3 case and 180 MeV in the a 0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0 = 3 case and up to 12 keV for the a 0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. As a result, the full width at half maximum divergence angle of the x-rays was 62 × 1.9 mrad for a 0 = 3 and 77 × 3.8 mrad for a 0 = 1.5.« less

  1. Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields.

    PubMed

    An, Weiming; Lu, Wei; Huang, Chengkun; Xu, Xinlu; Hogan, Mark J; Joshi, Chan; Mori, Warren B

    2017-06-16

    Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of less than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. The underlying physics that leads to the lower than expected emittance growth is elucidated.

  2. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  3. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    PubMed Central

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  4. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  5. Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.

    PubMed

    Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A

    2011-04-01

    The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics

  6. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    DOE PAGES

    Andonian, G.; Barber, S.; O’Shea, F. H.; ...

    2017-02-03

    We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less

  7. Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Weiming; Lu, Wei; Huang, Chengkun

    2017-06-14

    Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of lessmore » than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. In conclusion, the underlying physics that leads to the lower than expected emittance growth is elucidated.« less

  8. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandi, F., E-mail: fernando.brandi@ino.it; Istituto Italiano di Tecnologia; Giammanco, F.

    2016-08-15

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gasmore » flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10{sup 19} cm{sup −3} range well suited for LWFA.« less

  9. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  10. Spatial Control of Laser Wakefield Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.

    2017-10-01

    The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.

  11. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front

    NASA Astrophysics Data System (ADS)

    Yu, Changhai; Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Qin, Zhiyong; Liu, Jiaqi; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Xu, Yi; Leng, Yuxin; Xia, Changquan; Li, Ruxin; Xu, Zhizhan

    2018-03-01

    We have experimentally realized a scheme to enhance betatron radiation by manipulating transverse oscillation of electrons in a laser-driven plasma wakefield with a tilted shock front (TSF). Very brilliant betatron x-rays have been produced with significant enhancement both in photon yield and peak energy but almost maintain the e-beam energy spread and charge. Particle-in-cell simulations indicate that the accelerated electron beam (e beam) can acquire a very large transverse oscillation amplitude with an increase in more than 10-fold, after being steered into the deflected wakefield due to the refraction of the driving laser at the TSF. Spectral broadening of betatron radiation can be suppressed owing to the small variation in the peak energy of the low-energy-spread e beam in a plasma wiggler regime. It is demonstrated that the e-beam generation, refracting, and wiggling can act as a whole to realize the concurrence of monoenergetic e beams and bright x-rays in a compact laser-wakefield accelerator.

  12. Stable electron beams from laser wakefield acceleration with few-terawatt driver using a supersonic air jet

    NASA Astrophysics Data System (ADS)

    Boháček, K.; Kozlová, M.; Nejdl, J.; Chaulagain, U.; Horný, V.; Krůs, M.; Ta Phuoc, K.

    2018-03-01

    The generation of stable electron beams produced by the laser wakefield acceleration mechanism with a few-terawatt laser system (600 mJ, 50 fs) in a supersonic synthetic air jet is reported and the requirements necessary to build such a stable electron source are experimentally investigated in conditions near the bubble regime threshold. The resulting electron beams have stable energies of (17.4 ± 1.1) MeV and an energy spread of (13.5 ± 1.5) MeV (FWHM), which has been achieved by optimizing the properties of the supersonic gas jet target for the given laser system. Due to the availability of few-terawatt laser systems in many laboratories around the world these stable electron beams open possibilities for applications of this type of particle source.

  13. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Yi, Sunghwan; Khudik, Vladimir; Shvets, Gennady

    2012-10-01

    We study self-injection into a plasma wakefield accelerator in the blowout (or bubble) regime, where the bubble evolves due to background density inhomogeneities. To explore trapping, we generalize an analytic model for the wakefields inside the bubble [1] to derive expressions for the fields outside. With this extended model, we show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We explore an injection mechanism where bubble growth due to a background density downramp causes reduction of the electron Hamiltonian in the co-moving frame, trapping the particle in the dynamically deepening potential well [2]. Model calculations agree quantitatively with PIC simulations on the bubble expansion rate required for trapping, as well as the range of impact parameters for which electrons are trapped. This is an improvement over our previous work [3] using a simplified spherical bubble model, which ignored the fields outside of the bubble and hence overestimated the expansion rate required for trapping. [4pt] [1] W. Lu et al., Phys. Plasmas 13, 056709 (2006).[0pt] [2] S. Kalmykov et al., Phys. Rev. Lett 103, 135004 (2009).[0pt] [3] S.A. Yi et al., Plasma Phys. Contr. Fus. 53, 014012 (2011).

  14. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    NASA Astrophysics Data System (ADS)

    Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2007-06-01

    The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a 30fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×1018cm-3 to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  15. Injection of externally produced kinetic electrons into a self-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Ralph, Joseph; Albert, Felicie; Shaw, Jessica; Clayton, Christopher; Marsh, Ken; Joshi, Chan; Mori, Warren; Kesler, Leigh; Mills, Sarah; Severson, Brian; Rigby, Alexandra; Glenzer, Siegfried

    2012-10-01

    A two-stage laser wakefield accelerator is being developed at the Lawrence Livermore National Laboratory using the Callisto laser system. The first stage is a high density (˜10^19 cm-3), 5 mm He gas jet plasma which is driven by 30 TW of 800 nm laser light focused to an a0˜ 2. The <100 MeV electrons produced in this stage are deflected by a 0.5 T dipole magnet onto the axis of the second stage, which is a low density (˜10^18 cm-3), 15 mm He gas cell driven by 200 TW of 800 nm light also focused to an a0˜ 2; no additional electrons are trapped in this stage. Electrons injected into the second stage can then be further accelerated to higher energy without increasing the energy spread. Measurements of the transmitted laser profile and spectrum from the second stage indicate that the laser pulse is self-guided throughout the gas cell and that a strong wake is driven. These results compare well with particle-in-cell (PIC) simulations performed with the code OSIRIS. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA-27344.

  16. Wakefield acceleration in planetary atmospheres: A possible source of MeV electrons. The collisionless case

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Cubero, D.; Montanya, J.; Seviour, R.; Trueba, J. L.

    2018-07-01

    Intense electromagnetic pulses interacting with a plasma can create a wake of plasma oscillations. Electrons trapped in such oscillations can be accelerated under certain conditions to very high energies. We study the optimal conditions for the wakefield acceleration to produce MeV electrons in planetary plasmas under collisionless conditions. The conditions for the optimal plasma densities can be found in the Earth atmosphere at higher altitudes than 10-15 km, which are the altitudes where lightning leaders can take place.

  17. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less

  18. Electron self-injection due to a plasma density downramp and gas ionization in a plasma wakefield accelerator in the blowout regime

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; D'Avignon, E. C.; Khudik, V.; Shvets, G.

    2010-11-01

    We study self-injection into a plasma wakefield accelerator (PWFA) in the blowout regime analytically and through particle-in-cell (PIC) simulations. We propose a new injection mechanism into a plasma wakefield accelerator, where growth of the blowout region is enabled through a slow decrease in background plasma density along the direction of propagation. Deepening of the potential well due to this growth causes a reduction of electron Hamiltonian in the co-moving frame. This reduction depends on the shape of the blowout region, its growth rate, and impact parameter of the electron. When the reduction is greater than mc^2 [1,2], the electron becomes trapped inside the bubble. We demonstrate this effect using analytic expressions for the bubble potentials [3], and estimate plasma density gradients, and beam charge and size required for injection. We also apply the injection criterion to electron trapping through gas ionization. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945. [1] S. Kalmykov, S.A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009). [2] S.A. Yi, V. Khudik, S. Kalmykov, and G. Shvets, Plasma Phys. Contr. Fus., in press. [3] W. Lu, C. Huang, M. Zhou, M. Tzoufras et al., Phys. Plasmas 13, 056709 (2006).

  19. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 <<λp studies. We present the 3d version of a PGC solver in the massively parallel, fully relativistic PIC code OSIRIS. Further, a discussion and characterization of the validity of the PGC solver for injection schemes on the plasma scale lengths, such as down-ramp injection, magnetic injection and ionization injection, through parametric studies, full PIC simulations and theoretical scaling, is presented. This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  20. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, M.; Schumaker, W.; He, Z.-H.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on themore » HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.« less

  1. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  2. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T.; McGuffey, C.; Dollar, F.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less

  3. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  4. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Sharma, B. S.; Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.

    2014-02-01

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃1019 W/cm2) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  5. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  6. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection

    NASA Astrophysics Data System (ADS)

    Irman, A.; Couperus, J. P.; Debus, A.; Köhler, A.; Krämer, J. M.; Pausch, R.; Zarini, O.; Schramm, U.

    2018-04-01

    We report on tailoring ionization-induced injection in laser wakefield acceleration so that the electron injection process is self-truncating following the evolution of the plasma bubble. Robust generation of high-quality electron beams with shot-to-shot fluctuations of the beam parameters better than 10% is presented in detail. As a novelty, the scheme was found to enable well-controlled yet simple tuning of the injected charge while preserving acceleration conditions and beam quality. Quasi-monoenergetic electron beams at several 100 MeV energy and 15% relative energy spread were routinely demonstrated with a total charge of the monoenergetic feature reaching 0.5 nC. Finally these unique beam parameters, suggesting unprecedented peak currents of several 10 kA, are systematically related to published data on alternative injection schemes.

  7. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  8. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C. J.; Hua, J. F.; Wan, Y.

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Sincemore » only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. Lastly, this method is demonstrated through particle-in-cell simulations and experiment.« less

  9. Self-consistent Simulation of Microparticle and Ion Wakefield Configuration

    NASA Astrophysics Data System (ADS)

    Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell

    2017-10-01

    In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.

  10. Transition from wakefield generation to soliton formation.

    PubMed

    Holkundkar, Amol R; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  11. Transition from wakefield generation to soliton formation

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  12. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  13. Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young-Min; Bishofberger, Kip; Carlsten, Bruce

    Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-rangemore » wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.« less

  14. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less

  15. Transverse oscillations in plasma wakefield experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; White, G. R.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-09-01

    We study transverse effects in a plasma wakefield accelerator. Experimental data from FACET with asymmetry in the beam-plasma system is presented. Energy dependent centroid oscillations are observed on the accelerated part of the charge. The experimental results are compared to PIC simulations and theoretical estimates.

  16. Radially polarized, half-cycle, attosecond pulses from laser wakefields through coherent synchrotronlike radiation.

    PubMed

    Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J

    2014-10-01

    Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.

  17. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread inmore » momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques

  18. Numerical Calculations of Short-Range Wakefields of Collimators

    NASA Astrophysics Data System (ADS)

    Ng, C. K.

    2001-12-01

    The performance of future linear colliders are limited by the effect of short-range collimator wakefields on the beam. The beam quality is sensitive to the positioning of collimators at the end of the linac. The determination of collimator wakefields has been difficult, largely because of the scarcity of measurement data, and of the limitation of applicability of analytical results to realistic structures. In this paper, numerical methods using codes such as MAFIA are used to determine a series of tapered collimators with rectangular apertures that have been built for studies at SLAC (Stanford Linear Accelerator Center). We will study the dependences of the wakefield on the collimator taper angle, the collimator gap as well as the bunch length. Calculations are also compared with measurements.

  19. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young Min; Green, A.; Lumpkin, A. H.

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n 0 = ~ 10 20 – 10 23 cm -3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced andmore » the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single

  20. Multistage coupling of independent laser-plasma accelerators

    DOE PAGES

    Steinke, S.; van Tilborg, J.; Benedetti, C.; ...

    2016-02-01

    Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam.more » To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. In this work, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius-by a discharge capillary-based active plasma lens-into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.« less

  1. Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses

    NASA Astrophysics Data System (ADS)

    Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard

    2017-10-01

    We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.

  2. Laser Wakefield Accelerators: Next-Generation Light Sources

    DOE PAGES

    Albert, Felicie

    2018-01-01

    Here, a new breed of compact particle accelerators, capable of producing electron-beam energies in the GeV range, could soon bring some of the experimental power of synchrotrons and X-ray free-electron lasers to a tabletop near you.

  3. Laser Wakefield Accelerators: Next-Generation Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie

    Here, a new breed of compact particle accelerators, capable of producing electron-beam energies in the GeV range, could soon bring some of the experimental power of synchrotrons and X-ray free-electron lasers to a tabletop near you.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Fonseca, R. A.; Vieira, J.; Fiuza, F.; Davidson, A.; Tsung, F. S.; Mori, W. B.; Silva, L. O.

    2013-12-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ˜106 cores and sustained performance over ˜2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios.

  6. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Chen, Shi; Dan, Jia-Kun; Li, Jian-Feng; Peng, Qi-Xian

    2011-10-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  7. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  8. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time

  9. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  10. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  11. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less

  12. Excitation of wakefields in a relativistically hot plasma created by dying non-linear plasma wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, A. A.; Katsouleas, T. C.; Gessner, S.

    2012-12-21

    We study the various physical processes and their timescales involved in the excitation of wakefields in relativistically hot plasma. This has relevance to the design of a high repetition-rate plasma wakefield collider in which the plasma has not had time to cool between bunches in addition to understanding the physics of cosmic jets in relativistically hot astrophysical plasmas. When the plasma is relativistically hot (plasma temperature near m{sub e}c{sup 2}), the thermal pressure competes with the restoring force of ion space charge and can reduce or even eliminate the accelerating field of a wake. We will investigate explicitly the casemore » where the hot plasma is created by a preceding Wakefield drive bunch 10's of picoseconds to many nanoseconds ahead of the next drive bunch. The relativistically hot plasma is created when the excess energy (not coupled to the driven e{sup -} bunch) in the wake driven by the drive e{sup -} bunch is eventually converted into thermal energy on 10's of picosecond timescale. We will investigate the thermalization and diffusion processes of this non-equilibrium plasma on longer time scales, including the effects of ambi-polar diffusion of ions driven by hot electron expansion, possible Columbic explosion of ions producing higher ionization states and ionization of surrounding neutral atoms via collisions with hot electrons. Preliminary results of the transverse and longitudinal wakefields at different timescales of separation between a first and second bunch are presented and a possible experiment to study this topic at the FACET facility is described.« less

  13. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    NASA Astrophysics Data System (ADS)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  14. Compact particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes themore » particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.« less

  15. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  16. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  17. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  18. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  19. Piezoelectric particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  20. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  1. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  2. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  3. Photoinjector optimization using a derivative-free, model-based trust-region algorithm for the Argonne Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Neveu, N.; Larson, J.; Power, J. G.; Spentzouris, L.

    2017-07-01

    Model-based, derivative-free, trust-region algorithms are increasingly popular for optimizing computationally expensive numerical simulations. A strength of such methods is their efficient use of function evaluations. In this paper, we use one such algorithm to optimize the beam dynamics in two cases of interest at the Argonne Wakefield Accelerator (AWA) facility. First, we minimize the emittance of a 1 nC electron bunch produced by the AWA rf photocathode gun by adjusting three parameters: rf gun phase, solenoid strength, and laser radius. The algorithm converges to a set of parameters that yield an emittance of 1.08 μm. Second, we expand the number of optimization parameters to model the complete AWA rf photoinjector (the gun and six accelerating cavities) at 40 nC. The optimization algorithm is used in a Pareto study that compares the trade-off between emittance and bunch length for the AWA 70MeV photoinjector.

  4. A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE

    NASA Astrophysics Data System (ADS)

    Buttenschön, B.; Fahrenkamp, N.; Grulke, O.

    2018-07-01

    A plasma cell prototype for the plasma wakefield accelerator experiment AWAKE based on a helicon discharge is presented. In the 1 m long prototype module a multiple antenna helicon discharge with an rf power density of 100 MW m‑3 is established. Based on the helicon dispersion relation, a linear scaling of plasma density with magnetic field is observed for rf frequencies above the lower hybrid frequency, ω LH ≤ 0.8ω rf. Density profiles are highest on the device axis and show shallow radial gradients, thus providing a relatively constant plasma density in the center over a radial range of Δr ≈ 10 mm with less than 10% variation. Peak plasma densities up to 7 × 1020 m‑3 are transiently achieved with a reproducibility that is sufficient for AWAKE. The results are in good agreement with power balance calculations.

  5. Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Qin, Zhiyong; Li, Wentao; Liu, Jiansheng; Liu, Jiaqi; Yu, Changhai; Wang, Wentao; Qi, Rong; Zhang, Zhijun; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to ˜7.5-14.7 Torr and decreasing the discharge current to ˜70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide.

  6. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    The Laser and Plasma Accelerators Workshop 2009 was part of a very successful series of international workshops which were conceived at the 1985 Laser Acceleration of Particles Workshop in Malibu, California. Since its inception, the workshop has been held in Asia and in Europe (Kardamyli, Kyoto, Presqu'ile de Giens, Portovenere, Taipei and the Azores). The purpose of the workshops is to bring together the most recent results in laser wakefield acceleration, plasma wakefield acceleration, laser-driven ion acceleration, and radiation generation produced by plasma-based accelerator beams. The 2009 workshop was held on 22-26 June in Kardamyli, Greece, and brought together over 80 participants. (http://cfp.ist.utl.pt/lpaw09/). The workshop involved five main themes: • Laser plasma electron acceleration (experiment/theory/simulation) • Computational methods • Plasma wakefield acceleration (experiment/theory/simulation) • Laser-driven ion acceleration • Radiation generation and application. All of these themes are covered in this special issue of Plasma Physics and Controlled Fusion. The topic and application of plasma accelerators is one of the success stories in plasma physics, with laser wakefield acceleration of mono-energetic electrons to GeV energies, of ions to hundreds of MeV, and electron-beam-driven wakefield acceleration to 85 GeV. The accelerating electric field in the wake is of the order 1 GeV cm-1, or an accelerating gradient 1000 times greater than in conventional accelerators, possibly leading to an accelerator 1000 times smaller (and much more affordable) for the same energy. At the same time, the electron beams generated by laser wakefield accelerators have very good emittance with a correspondingly good energy spread of about a few percent. They also have the unique feature in being ultra-short in the femtosecond scale. This makes them attractive for a variety of applications, ranging from material science to ultra-fast time

  7. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  8. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  9. USPAS | U.S. Particle Accelerator School

    Science.gov Websites

    U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology Home About About University Credits Joint International Accelerator School University-Style Programs Symposium-Style Programs

  10. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  11. Generation, and applications of stable, 100-500-MeV, dark-current-free beams, from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Banerjee, Sudeep

    2011-10-01

    This talk will report the production of high energy, quasi-monoenergetic electron bunches without the low-energy electron background that is typically detected from self-injected laser-wakefield accelerators. These electron bunches are produced when the accelerator is operated in the blowout regime, and the laser and plasma parameters are optimized. High-contrast, high power (30-60 TW) and ultra-short-duration (30 fs) laser pulses are focused onto He-gas-jet targets. The high energy (300-400 MeV) monoenergetic (energy spread < 10%) beams are characterized by 1-4-mrad divergence, pointing stability of 1-2 mrad, and a few-percent shot-to-shot fluctuation of peak energy. The results are scalable: the beam energy can be tuned by appropriate choice of acceleration length, laser power and plasma density. Three-dimensional particle-in-cell simulations show that these electron beams are generated when the accelerator is operated near the self-injection threshold, which suppresses dark current (continuous injection in the first bucket). Suppression of dark current is required to minimize noise, improve the quality of secondary radiation sources, and minimize shielding requirements for high repetition-rate operation. Also reported, is the application of this novel electron-beam source to radiography of dense objects with sub-millimeter spatial resolution. In this case, the energetic electron beam is incident on a 2''-thick steel target with embedded voids, which are detected with image plates. Current progress on the generation of GeV energy electron beams with petawatt peak power laser pulses, from the upgraded DIOCLES laser system, will also be discussed. Work supported by U. S. DOE grants DEFG02-05ER15663, DE-FG02-08ER55000; DARPA grant FA9550-09-1-0009; DTRA grant HDTRA1-11-C-0001 and, DHS grant 2007-DN-007-ER0007-02. The laser is supported by AFOSR contracts FA 9550-08-1-0232, FA9550-07-1-0521.

  12. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less

  13. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    PubMed

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  14. Efficient particle acceleration in shocks

    NASA Astrophysics Data System (ADS)

    Heavens, A. F.

    1984-10-01

    A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.

  15. Generation of a wakefield undulator in plasma with transverse density gradient

    DOE PAGES

    Stupakov, Gennady V.

    2017-11-30

    Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.

  16. Generation of a wakefield undulator in plasma with transverse density gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady V.

    Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.

  17. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  18. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  19. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  20. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  1. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  2. Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.

    2018-05-01

    An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.

  3. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  4. Implementation of a hybrid particle code with a PIC description in r–z and a gridless description in ϕ into OSIRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, A., E-mail: davidsoa@physics.ucla.edu; Tableman, A., E-mail: Tableman@physics.ucla.edu; An, W., E-mail: anweiming@ucla.edu

    2015-01-15

    For many plasma physics problems, three-dimensional and kinetic effects are very important. However, such simulations are very computationally intensive. Fortunately, there is a class of problems for which there is nearly azimuthal symmetry and the dominant three-dimensional physics is captured by the inclusion of only a few azimuthal harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield acceleration, by expanding the fields and currents in azimuthal harmonics and truncating the expansion. The complex amplitudes of the fundamental and first harmonic for the fields were solved on an r–z grid and a procedure for calculating the complexmore » current amplitudes for each particle based on its motion in Cartesian geometry was presented using a Marder's correction to maintain the validity of Gauss's law. In this paper, we describe an implementation of this algorithm into OSIRIS using a rigorous charge conserving current deposition method to maintain the validity of Gauss's law. We show that this algorithm is a hybrid method which uses a particles-in-cell description in r–z and a gridless description in ϕ. We include the ability to keep an arbitrary number of harmonics and higher order particle shapes. Examples for laser wakefield acceleration, plasma wakefield acceleration, and beam loading are also presented and directions for future work are discussed.« less

  5. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less

  6. Optimization of the combined proton acceleration regime with a target composition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W. P.; Graduate School, China Academy of Engineering Physics, Beijing 100088; Li, B. W., E-mail: li-baiwen@iapcm.ac.cn

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CHmore » target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.« less

  7. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  8. Threshold for electron self-injection in a nonlinear laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2012-10-01

    The process of electron self-injection in the nonlinear bubble-wake generated by a short and intense laser pulse propagating in an uniform underdense plasma is investigated. A detailed analysis of particle orbit in the wakefield is performed by using reduced analytical models and numerical simulations carried out with the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO. In particular, we consider a wake generated by a frozen (non-evolving) laser driver traveling with a prescribed velocity, which then sets the properties of the wake, so the injection dynamics is decoupled from driver evolution but a realistic structure for the wakefield is retained. We investigate the dependence of the injection threshold on laser intensity, plasma temperature and wake velocity for a range of parameters of interest for current and future laser plasma accelerators. The phase-space properties of the injected particle bunch will also be discussed.

  9. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  10. Improving particle beam acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    C. de Sousa, M.; L. Caldas, I.

    2018-04-01

    The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.

  11. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  12. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  13. Formation of electrostatic structures by wakefield acceleration in ultrarelativistic plasma flows: Electron acceleration to cosmic ray energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.

    2006-06-15

    The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolutionmore » of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.« less

  14. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  15. Collisionless Shocks and Particle Acceleration.

    NASA Astrophysics Data System (ADS)

    Malkov, M.

    2016-12-01

    Collisionless shocks emerged in the 50s and 60s of the last century as an important branch of plasma physics and have remained ever since. New applications pose new challenges to our understanding of collisionless shock mechanisms. Particle acceleration in astrophysical settings, primarily studied concerning the putative origin of cosmic rays (CR) in supernova remnant (SNR) shocks, stands out with the collisionless shock mechanism being the key. Among recent laboratory applications, a laser-based tabletop proton accelerator is an affordable compact alternative to big synchrotron accelerators. The much-anticipated proof of cosmic ray (CR) acceleration in supernova remnants is hindered by our limited understanding of collisionless shock mechanisms. Over the last decade, dramatically improved observations were puzzling the theorists with unexpected discoveries. The difference between the helium/carbon and proton CR rigidity (momentum to charge ratio) spectra, seemingly inconsistent with the acceleration and propagation theories, and the perplexing positron excess in the 10-300 GeV range are just two recent examples. The latter is now also actively discussed in the particle physics and CR communities as a possible signature of decay or annihilation of hypothetical dark matter particles. By considering an initial (injection) phase of a diffusive shock acceleration mechanism, including particle reflection off the shock front - where an elemental similarity of particle dynamics does not apply - I will discuss recent suggestions of how to address the new data from the collisionless shock perspective. The backreaction of accelerated particles on the shock structure, its environment, and visibility across the electromagnetic spectrum from radio to gamma rays is another key aspect of collisionless shock that will be discussed.

  16. Understanding of Particle Acceleration by Foreshock Transients

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth's geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  17. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  18. Superconducting Magnets for Particle Accelerators

    DOE PAGES

    Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; ...

    2015-11-10

    In this study, we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  19. Superconducting Magnets for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Bottura, Luca; Gourlay, Stephen A.; Yamamoto, Akira; Zlobin, Alexander V.

    2016-04-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  20. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  1. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  2. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  3. Particle acceleration at a reconnecting magnetic separator

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  4. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  5. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the

  6. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  7. Understanding of Particle Acceleration by Foreshock Transients (invited)

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth.s geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  8. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  9. The acceleration of particles at propagating interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  10. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  11. Modeling laser-plasma acceleration in the laboratory frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame".

  12. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  13. Simulation of Ionization Effects for High-Density Positron Drivers in future Plasma Wakefield Experiments

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Esarey, E.; Leemans, W.

    2003-10-01

    Recent particle-in-cell simulations have shown [1] that the self-fields of an electron beam driver in a plasma wakefield accelerator can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly [2] from that of an electron driver. We will present particle- in-cell simulations, using the OOPIC [3] code, showing the effects of tunneling ionization on the plasma wake generated by high-density electron and positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the E-164 and E-164x experiments at SLAC will be considered. [1] D.L. Bruhwiler et al., Phys. Plasmas 10 (2003), p. 2022. [2] S. Lee et al., Phys. Rev. E 64, 045501(R) (2001). [3] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001).

  14. Particle acceleration in laser-driven magnetic reconnection

    DOE PAGES

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-03

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order ofmore » magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. Finally, these results open the way for novel experimental studies of particle acceleration induced by reconnection.« less

  15. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  16. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsouleas, Thomas C.; Sahai, Aakash A.

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of themore » laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.« less

  17. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  18. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less

  19. Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ling-yu; University of Chinese Academy of Sciences, Beijing 100049; Zhao, Xiao-ying

    A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contributionmore » to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases.« less

  20. Fermilab | Science | Particle Accelerators

    Science.gov Websites

    2,300 physicists from all over the world come to Fermilab to conduct experiments using particle particle physics to the next level, collaborating with scientists and laboratories around the world to help world leader in accelerator research, development and industrialization. Learn more about IARC. Fermilab

  1. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  2. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  3. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  4. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downer, Michael C.

    2014-04-30

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond

  5. Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouzjaei, Ali Shekari; Shokri, Babak

    In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, wemore » present the optimum pulse duration for such wakes.« less

  6. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    NASA Astrophysics Data System (ADS)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  7. Wakefield potentials of corrugated structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novokhatski, A.

    A corrugated structure, which is used in “dechirper” devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution ofmore » Maxwell’s equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC “dechirper.” We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. As a result, we find very good agreement with the experimental results.« less

  8. Wakefield potentials of corrugated structures

    DOE PAGES

    Novokhatski, A.

    2015-10-22

    A corrugated structure, which is used in “dechirper” devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution ofmore » Maxwell’s equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC “dechirper.” We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. As a result, we find very good agreement with the experimental results.« less

  9. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.

    2004-12-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [

    JETP Lett. 74, 371 (2001)JTPLA20021-364010.1134/1.1427124
    ;
    Phys. Rev. E 65, 046504 (2002)PLEEE81063-651X10.1103/PhysRevE.65.046504
    ]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1 μm long or a few femtoseconds in duration) relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  10. Naked singularities as particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energymore » of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.« less

  11. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  12. Computer modeling of test particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  13. Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles

    2015-04-01

    Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.

  14. A New Paradigm for Flare Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  15. Terahertz Frequency Electron Driven Dielectric Wakefield in Cartesian Symmetric and Photonic Structures

    NASA Astrophysics Data System (ADS)

    Hoang, Phuc Dinh

    Recent works have established that electron beam driven wakefield not only can serve as a viable source for coherent narrow band terahertz radiation but also as a future candidate for high gradient compact linear accelerators. It has also been pointed out that concentric cylindrical dielectric structures, while being very efficient in extracting the energy of the drive beam, which leads to GeV/m gradient level, are susceptible to excitation of transverse modes which give unwanted trajectory kicks and cause beam breakup instabilities. At the same time, temporary high field induced dielectric conductivity was observed in the same system where in response to high field, charge carriers were injected to the conduction band of the dielectric resulting in anomalous dissipation of the wake. Evidence of this point shall be presented in this thesis. First, in order to address the issue of deflection modes, a solution was proposed to use slab structures. Exploiting the Cartesian symmetry, and the wakefield response thereof, a dielectric wakefield system, where both the structure and the beam are flat, may achieve zero net transverse deflection forces. Second, in order to confine high field to the vacuum region away from the dielectric, thus avoiding all high field related problems, photonic band gap materials may be used. Also known as photonic crystals, these structures give rise to defect modes which are confined only to the defect (vacuum) region. Further shaping of the vacuum/dielectric interface, for example by periodic corrugation, not only reduces the field across the interface on the dielectric side by 1/epsilon as consequence of boundary condition, but also brings about further options of tailoring the field. Motivated by these issues, in this thesis, through a series of relevant analytic calculations, simulations, and experiments, the possibility of using Cartesian symmetric, photonic structures for dielectric wakefield will be assessed.

  16. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  17. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  18. The Role of Substorms in Storm-time Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Kamide, Yohsuke

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.

  19. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  20. Beam manipulation for resonant plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Chiadroni, E.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Bisesto, F. G.; Cardelli, F.; Castorina, G.; Cianchi, A.; Croia, M.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giribono, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Spataro, B.; Stella, A.; Vaccarezza, C.; Villa, F.

    2017-09-01

    Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some effort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented here.

  1. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  2. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  3. Acceleration of Particles Near Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2012-12-01

    Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).

  4. Kinetic Simulations of Particle Acceleration at Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprioli, Damiano; Guo, Fan

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shockmore » drift acceleration; and electron DSA is efficient at oblique shocks.« less

  5. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE PAGES

    Bettoni, S.; Craievich, P.; Lutman, A. A.; ...

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  6. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  7. Two-color ionization injection using a plasma beatwave accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  8. Two-color ionization injection using a plasma beatwave accelerator

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2018-01-10

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  9. Particle Acceleration at a Twin CME at 1 AU

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Li, G.

    2017-12-01

    We present results from both the Particle Acceleration and Transport in the Heliosphere (PATH) and Particle Acceleration at Multiple Shocks (PAMS) models for a twin CME scenario. The PATH model follows a CME using a numerical MHD module and solves the Parker transport equation at the shock yielding the accelerated particle spectrum, while PAMS solves the steady-state cosmic ray transport equation at an individual shock analytically to yield the diffusive shock acceleration (DSA) spectrum. We address the injection of an upstream particle distribution into the acceleration process for a two shock system at 1 AU. Only those particles that exceed a theoretically motivated prescribed injection energy, Einj, and up to a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) are injected. Results from PAMS are then compared to observations at 1 AU from the Advanced Composition Explorer (ACE) spacecraft. In addition, we test the concept of electron acceleration at low injection energies for a single and multiple shock system using the same method as in Neergaard Parker and Zank, 2012 and Neergaard Parker et al., 2014.

  10. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas; Anastasiadis, Anastasios

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1-2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker-Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  11. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1–2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker–Planckmore » (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.« less

  12. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  13. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  14. Modeling Two-Stage Bunch Compression With Wakefields: Macroscopic Properties And Microbunching Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, R.A.; Kleman, K.J.; /Wisconsin U., SRC

    2011-09-08

    In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in themore » bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.« less

  15. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  16. Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas

    DOE PAGES

    Fox, W.; Park, J.; Deng, W.; ...

    2017-08-11

    Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less

  17. Particle Accelerator Focus Automation

    NASA Astrophysics Data System (ADS)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  18. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  19. On the relationship between collisionless shock structure and energetic particle acceleration

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1983-01-01

    Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.

  20. Studying astrophysical particle acceleration with laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  1. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang

    2015-02-01

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle

  2. Jupiter radio bursts and particle acceleration

    NASA Technical Reports Server (NTRS)

    Desch, Michael D.

    1994-01-01

    Particle acceleration processes are important in understanding many of the Jovian radio and plasma wave emissions. However, except for the high-energy electrons that generate synchrotron emission following inward diffusion from the outer magnetosphere, acceleration processes in Jupiter's magnetosphere and between Jupiter and Io are poorly understood. We discuss very recent observations from the Ulysses spacecraft of two new Jovian radio and plamas wave emissions in which particle acceleration processes are important and have been addressed directly by complementary investigations. First, radio bursts known as quasi-periodic bursts have been observed in close association with a population of highly energetic electrons. Second, a population of much lower energy (keV range) electrons on auroral field lines can be shown to be responsible for the first observation of a Jovian plasma wave emission known as auroral hiss.

  3. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  4. The Solar Flare: A Strongly Turbulent Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Vlahos, L.; Krucker, S.; Cargill, P.

    The topics of explosive magnetic energy release on a large scale (a solar flare) and particle acceleration during such an event are rarely discussed together in the same article. Many discussions of magnetohydrodynamic (MHD) mod- eling of solar flares and/or CMEs have appeared (see [143] and references therein) and usually address large-scale destabilization of the coronal mag- netic field. Particle acceleration in solar flares has also been discussed exten- sively [74, 164, 116, 166, 87, 168, 95, 122, 35] with the main emphasis being on the actual mechanisms for acceleration (e.g., shocks, turbulence, DC electric fields) rather than the global magnetic context in which the acceleration takes place.

  5. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  6. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  7. Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Lynn, Jacob William

    We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no

  8. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  9. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUVmore » FELs.« less

  10. Quasi-static modeling of beam-plasma and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun

    Plasma wave wakefields excited by either laser or particle beams can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerators. They are promising for accelerating particles in short distances for applications such as future high-energy colliders, and medical and industrial accelerators. In a Plasma Wakefield Accelerator (PWFA) or a Laser Wakefield Accelerator (LWFA), an intense particle or laser beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the driver. This wakefield can then be used to accelerate part of the drive beam or a separate trailing beam. The interaction between the plasma and the driver is highly nonlinear and therefore a particle description is required for computer modeling. A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell code called QuickPIC for simulating plasma and laser wakefield acceleration has been developed. The model is based on the quasi-static or frozen field approximation, which assumes that the drive beam and/or the laser does not evolve during the time it takes for it to pass a plasma particle. The electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the driver using very large time steps. This algorithm reduces the computational time by at least 2 to 3 orders of magnitude. Comparison between the new algorithm and a fully explicit model (OSIRIS) are presented. The agreement is excellent for problems of interest. Direction for future work is also discussed. QuickPIC has been used to study the "afterburner" concept. In this concept a fraction of an existing high-energy beam is separated out and used as a trailing beam with the goal that the trailing beam acquires at least twice the energy of the drive beam. Several critical issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in

  11. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  12. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  13. Self focusing in a spatially modulated electrostatic field particle accelerator

    NASA Astrophysics Data System (ADS)

    Russman, F.; Marini, S.; Peter, E.; de Oliveira, G. I.; Rizzato, F. B.

    2018-02-01

    In the present analysis, we study the action of a three-dimensional (3D) modulated electrostatic wave over a charged particle. Meanwhile, the particle's velocity is smaller than the phase-velocity of the carrier, and the particle could be reflected by the potential or could pass through the potential with no significant change in the longitudinal velocity—and its dynamics could be described by a ponderomotive approximation. Otherwise, the particle is trapped by the potential and it is accelerated towards the speed of light, independently of the initial particle's phase—in this case, the ponderomotive approximation is no longer valid. During the acceleration process, numerical simulations show the particle is focused, simultaneously. These results suggest the accelerator proposed here is promising.

  14. Particle Acceleration at the Sun and in the Heliosphere

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample all these populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be "seen" only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone.

  15. Naked singularities as particle accelerators. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as themore » final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.« less

  16. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  17. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  18. Nonlinear theory of diffusive acceleration of particles by shock waves

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Drury, L. O'C.

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.

  19. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  20. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  1. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  2. Emittance preservation in plasma-based accelerators with ion motion

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; ...

    2017-11-01

    In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittancemore » preservation with ion motion.« less

  3. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  4. Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Grigsby, F.; Peng, D.; Downer, M. C.

    2004-12-01

    By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.

  5. On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations

    NASA Astrophysics Data System (ADS)

    van Marle, Allard Jan; Casse, Fabien; Marcowith, Alexandre

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and suprathermal particles. Such interaction is depicted by combining a grid-based magnetohydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of suprathermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvénic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger time-scales than in the parallel case. We show that in our simulations, the suprathermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  6. Laser wakefield accelerated electron beam monitoring and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, J. K.; Mori, M.; Kotaki, H.

    2016-03-25

    We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10   m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.

  7. Signatures of particle acceleration at SN 1987A

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice K.

    1989-01-01

    At least eight experiments are currently monitoring SN 1987A for photons or neutrinos with energies in the TeV range or higher. Observation of such signals would indicate that the supernova is the site of acceleration of charged particles to even higher energies. The way that the acceleration might occur is discussed, and the prospects for detection of such signals in light of current limits on power in the supernova from sources other than the nickel-cobalt-iron decay chain are evaluated. It is pointed out that signals of particle acceleration may show up in continuum MeV gamma rays as well as in the 100 MeV range.

  8. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  9. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  10. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE PAGES

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; ...

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  11. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  12. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  13. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shuta J.; Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include themore » energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.« less

  14. Effects of the quadrupole wakefields in a passive streaker

    DOE PAGES

    Craievich, Paolo; Lutman, Alberto A.

    2016-10-05

    A novel method based on transverse wakefields has been recently proposed to characterize the temporal profile of a relativistic electron bunch. The electron bunch is streaked by the interaction with the transverse wakefield excited when the electrons travel off-axis in a device called the passive streaker. Furthermore, for the large transverse off-axis offsets required to effectively streak the electron bunch, higher order modes can be excited. The time-dependent quadrupole wakefield of the dielectric-lined structure can cause a significant enlargement of the transverse profile at the screen. Consequently, the measurement resolution is decreased also at the bunch tail. We report onmore » how the temporal profile can be effectively reconstructed also including the defocusing effect for a given transverse beam distribution at the passive streaker.« less

  15. Particle acceleration in relativistic magnetic flux-merging events

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  16. High-energy particle acceleration in the shell of a supernova remnant.

    PubMed

    Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2004-11-04

    A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.

  17. Modeling Particle Acceleration and Transport at a 2-D CME-Driven Shock

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Ao, Xianzhi; Zank, Gary P.; Verkhoglyadova, Olga

    2017-11-01

    We extend our earlier Particle Acceleration and Transport in the Heliosphere (PATH) model to study particle acceleration and transport at a coronal mass ejection (CME)-driven shock. We model the propagation of a CME-driven shock in the ecliptic plane using the ZEUS-3D code from 20 solar radii to 2 AU. As in the previous PATH model, the initiation of the CME-driven shock is simplified and modeled as a disturbance at the inner boundary. Different from the earlier PATH model, the disturbance is now longitudinally dependent. Particles are accelerated at the 2-D shock via the diffusive shock acceleration mechanism. The acceleration depends on both the parallel and perpendicular diffusion coefficients κ|| and κ⊥ and is therefore shock-obliquity dependent. Following the procedure used in Li, Shalchi, et al. (k href="#jgra53857-bib-0045"/>), we obtain the particle injection energy, the maximum energy, and the accelerated particle spectra at the shock front. Once accelerated, particles diffuse and convect in the shock complex. The diffusion and convection of these particles are treated using a refined 2-D shell model in an approach similar to Zank et al. (k href="#jgra53857-bib-0089"/>). When particles escape from the shock, they propagate along and across the interplanetary magnetic field. The propagation is modeled using a focused transport equation with the addition of perpendicular diffusion. We solve the transport equation using a backward stochastic differential equation method where adiabatic cooling, focusing, pitch angle scattering, and cross-field diffusion effects are all included. Time intensity profiles and instantaneous particle spectra as well as particle pitch angle distributions are shown for two example CME shocks.

  18. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  19. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  20. Consequences of the Breakout Model for Particle Acceleration in CMEs and Flares

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Karpen, J. T.; DeVore, C. R.

    2011-01-01

    The largest and most efficient particle accelerators in the solar system are the giant events consisting of a fast coronal mass ejection (CME) and an intense X-class solar flare. Both flares and CMEs can produce l0(exp 32) ergs or more in nonthermal particles. Two general processes are believed to be responsible: particle acceleration at the strong shock ahead of the CME, and reconnection-driven acceleration in the flare current sheet. Although shock acceleration is relatively well understood, the mechanism by which flare reconnection produces nonthermal particles is still an issue of great debate. We address the question of CME/flare particle acceleration in the context of the breakout model using 2.5D MHD simulations with adaptive mesh refinement (AMR). The AMR capability allows us to achieve ultra-high numerical resolution and, thereby, determine the detailed structure and dynamics of the flare reconnection region. Furthermore, we employ newly developed numerical analysis tools for identifying and characterizing magnetic nulls, so that we can quantify accurately the number and location of magnetic islands during reconnection. Our calculations show that flare reconnection is dominated by the formation of magnetic islands. In agreement with many other studies, we find that the number of islands scales with the effective Lundquist number. This result supports the recent work by Drake and co-workers that postulates particle acceleration by magnetic islands. On the other hand, our calculations also show that the flare reconnection region is populated by numerous shocks and other indicators of strong turbulence, which can also accelerate particles. We discuss the implications of our calculations for the flare particle acceleration mechanism and for observational tests of the models.

  1. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  2. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  3. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  4. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  5. Physics of the saturation of particle acceleration in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2018-05-01

    We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations σ. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at γ ≈ 4σ, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analysing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is γ ≈ 5σ, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power-law spectrum in reconnection is ≤40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrow-band flares observed in the Crab nebula but has difficulty producing the softer broad-band prompt gamma-ray burst emission.

  6. Seventy Five Years of Particle Accelerators

    ScienceCinema

    Sessler, Andy

    2017-12-09

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  7. Extreme particle acceleration in the microquasar Cygnus X-3.

    PubMed

    Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L

    2009-12-03

    Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.

  8. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; hide

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Acceleration and propagation of energetic charged particles in the inner heliosphere.

    NASA Astrophysics Data System (ADS)

    Kallenrode, M. B.

    1995-02-01

    Both particle propagation and acceleration are intimately related to the strength of scattering. The author reviews some developments in our understanding of interplanetary propagation, in particular the dawn of a solution of the well-known discrepancy problem between mean free paths derived from quasi-linear theory and from fits to observational data. With this much improved understanding of particle scattering one can re-evaluate the understanding of particle acceleration at interplanetary shocks. Special attention is paid to the model of coupled hydrodynamic wave excitation and ion acceleration at shocks.

  10. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  11. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  12. Staging of laser-plasma accelerators

    DOE PAGES

    Steinke, S.; van Tilborg, J.; Benedetti, C.; ...

    2016-05-02

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller thanmore » the transverse wake size at the entrance of the second stage. Furthermore, this permitted electron beam trapping, verified by a 100 MeV energy gain.« less

  13. Scale-by-scale contributions to Lagrangian particle acceleration

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  14. Hawking radiation of scalar particles from accelerating and rotating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  15. Mary Wakefield: Health Resources and Services Administrator. Interview.

    PubMed

    Wakefield, Mary

    2014-06-01

    Dr. Mary Wakefield is the administrator of the Health Resources and Services Administration. She came from the University of North Dakota, where she directed the Center for Rural Health. She has served as director of the Center for Health Policy, Research and Ethics at George Mason University and has worked with the World Health Organization's Global Programme on AIDS in Geneva, Switzerland. She is a fellow in the American Academy of Nursing and was elected to the Institute of Medicine of the National Academies. A native of North Dakota, Wakefield holds a doctoral degree in nursing from the University of Texas.

  16. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org

    2011-12-10

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less

  17. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less

  18. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  19. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  20. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  1. GPU accelerated particle visualization with Splotch

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Gheller, C.; Dykes, T.; Krokos, M.; Dolag, K.

    2014-07-01

    Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organization and classification of particles. We deploy a reference cosmological simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimizations and exploitation of hybrid systems and emerging accelerators.

  2. Better Particle Accelerators with SRF Technology

    ScienceCinema

    Padamsee, Hasan; Martinello, Martina; Ross, Marc; Peskin, Michael; Yamamoto, Akira

    2018-01-16

    The use of superconducting radio frequency (SRF) technology is a driving force in the development of particle accelerators. Scientists from around the globe are working together to develop the newest materials and techniques to improve the quality and efficiency of the SRF cavities that are essential for this technology.

  3. Better Particle Accelerators with SRF Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padamsee, Hasan; Martinello, Martina; Ross, Marc

    2017-02-20

    The use of superconducting radio frequency (SRF) technology is a driving force in the development of particle accelerators. Scientists from around the globe are working together to develop the newest materials and techniques to improve the quality and efficiency of the SRF cavities that are essential for this technology.

  4. Shock and statistical acceleration of energetic particles in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Valdes-Galicia, J. F.; Moussas, X.; Quenby, J. J.; Neubauer, F. M.; Schwenn, R.

    1985-01-01

    Definite evidence for particle acceleration in the solar wind came around a decade ago. Two likely sources are known to exist: particles may be accelerated by the turbulence resulting from the superposition of Alfven and Magnetosonic waves (Statistical Acceleration) or they may be accelerated directly at shock fronts formed by the interaction of fast and slow solar wind (CIR's) or by traveling shocks due to sporadic coronal mass ejections. Naurally both mechanisms may be operative. In this work the acceleration problem was tackled numerically using Helios 1 and 2 data to create a realistic representation of the Heliospheric plasma. Two 24 hour samples were used: one where there are only wave like fluctuations of the field (Day 90 Helios 1) and another with a shock present in it (Day 92 of Helios 2) both in 1976 during the STIP 2 interval. Transport coefficients in energy space have been calculated for particles injected in each sample and the effect of the shock studied in detail.

  5. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  6. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  7. Acceleration mechanisms for energetic particles in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Schiferl, S.; Fan, C. Y.; Hsieh, K. C.; Erickson, K. N.; Gloeckler, G.

    1982-01-01

    By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, signatures of different acceleration mechanisms for these particles were searched for. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 earth radii while ATS-6 was located at local midnight at a distance of 6.6 earth radii. Although the flux variations as observed on the two spacecraft both showed 1.5 min periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the x-point located at about 10 earth radii.

  8. Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    NASA Astrophysics Data System (ADS)

    Cowan, B. M.; Kalmykov, S. Y.; Beck, A.; Davoine, X.; Bunkers, K.; Lifschitz, A. F.; Lefebvre, E.; Bruhwiler, D. L.; Shadwick, B. A.; Umstadter, D. P.; Umstadter

    2012-08-01

    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz, A. F. et al. 2009 Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys. 228(5), 1803-1814) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of two simulations indicates that these are free of numerical artefacts. Both approaches thus retrieve the physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver.

  9. Acceleration and Transport of Solar Energetic Particles in 'Semi-transparent' Shocks

    NASA Astrophysics Data System (ADS)

    Kocharov, L. G.

    2013-12-01

    Production of solar energetic particles in major events typically comprises two stages: (i) an initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind (e.g., Figure 1 of Kocharov et al., 2012, ApJ, 753, 87). As far as the second stage production is ascribed to interplanetary shocks, the first stage production should be attributed to coronal sources. Coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour (Figures 4-6 of Kocharov et al, 2010, ApJ, 725, 2262). The coronal particles are not shielded by the CME-bow shock in solar wind and have a prompt access to particle detectors at 1 AU. On non-exceptional occasion of two successive solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay (Al-Sawad et al., 2009, Astron. & Astrophys., 497, L1), which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path in the shock is small. A small mean free path (high turbulence level), however, implies that energetic particles from the solar corona could not penetrate through the interplanetary shock and could not escape to its far upstream region. If so, they could not produce a prompt event at 1 AU. However, solar high-energy particle events are observed very far from the shocks. The theoretical difficulty can be obviated in the framework of the new model of a "semi-transparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an

  10. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  11. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE PAGES

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio; ...

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  12. Laser-Induced Linear-Field Particle Acceleration in Free Space.

    PubMed

    Wong, Liang Jie; Hong, Kyung-Han; Carbajo, Sergio; Fallahi, Arya; Piot, Philippe; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computational experiment. The formalism includes exact treatment of Maxwell's equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the field amplitude. For example, 30 keV electrons (2.5% energy spread) are accelerated to 61 MeV (0.5% spread) and to 205 MeV (0.25% spread) using 250 mJ and 2.5 J lasers respectively. These findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.

  13. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  14. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  15. Quasars in miniature: new insights into particle acceleration from X-ray binaries

    NASA Astrophysics Data System (ADS)

    Markoff, Sera

    2013-04-01

    A variety of astronomical objects routinely accelerate particles to high energy, with the maximum possible energy per particle typically limited by the size of the system and magnetic field strength. For that reason, much attention has focused on the massive jets of relativistic plasma ejected from supermassive black holes in Active Galactic Nuclei (AGN), which are at least theoretically capable of producing particles (cosmic rays) up to a whopping 10{20 }eV. However neither how these jets are formed or function, nor how exactly they accelerate particles, is well understood. While we do not expect the mechanisms for particle acceleration in stellar remnant black holes within X-ray binaries (XRBs) to be particularly different than in other sources, XRBs do offer some unique insights. Primarily, jets very similar to those in AGN come and go on timescales of weeks to months, while often monitored simultaneously across the entire electromagnetic spectrum. Through such observations we have been able to probe the processes by which jets not only build up dynamically, but also at what point the jets begin to accelerate particles, providing hints about the necessary conditions and efficiencies. Because the physics of accretion-driven processes such as jets seems to scale predictably with black hole mass, we can also potentially apply what we are learning in these smaller systems to the same phenomena AGN, giving us a new handle on several longstanding questions. I will review our current understanding of particle acceleration in XRBs, as well as the increasing body of evidence suggesting that XRBs indeed seem to represent scaled-down (and thus handily faster evolving) versions of the much more powerful AGN. I will also touch on how accelerated particles from XRBs may contribute significantly to the low-energy Galactic cosmic ray distribution, with local impact on gas chemistry and star formation.

  16. Detecting chaos in particle accelerators through the frequency map analysis method.

    PubMed

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  17. A new mechanism for relativistic particle acceleration via wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Markidis, Stefano; Marocchino, Alberto

    2006-10-01

    Often in laboratory, space and astrophysical plasma, high energy populations are observed. Two puzzling factors still defy our understanding. First, such populations of high energy particles produce power law distributions that are not only ubiquitous but also persistent in time. Such persistence is in direct contradiction to the H theorem that states the ineluctable transition of physical systems towards thermodynamic equilibrium, and ergo Maxwellian distributions. Second, such high energy populations are efficiently produced, much more efficiently than processes that we know can produce. A classic example of such a situation is cosmic rays where power alws extend up to tremendolus energy ranges. In the present work, we identify a new mechanism for particle acceleration via wave-particle interaction. The mechanism is peculiar to special relativity and has no classical equivalent. That explains why it is not observed in most simulation studies of plasma processes, based on classical physics. The mechanism is likely to be active in systems undergoing streaming instabilities and in particular shocked systems. The new mechanism can produce energy increases vastly superior to previously known mechanisms (such as Fermi acceleration) and can hold the promise of explaining at least some of the observed power laws.

  18. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  19. Observation of Wakefields and Resonances in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, T. E.; Vogt, J. M.; Wurtz, W. A.; Warnock, R.; Bizzozero, D. A.; Kramer, S.

    2015-05-01

    We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wave number intervals of 0.074 cm-1 , and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well-defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by rf diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multibend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.

  20. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  1. Particle acceleration and turbulence in cosmic Ray shocks: possible pathways beyond the Bohm limit

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Diamond, P. H.

    2007-08-01

    Diffusive shock acceleration is discussed in terms of its potential to accelerate cosmic rays (CR) to 1018 eV (beyond the ``knee,'' as observations suggest) and in terms of the related observational signatures (spectral features). One idea to reach this energy is to resonantly generate a turbulent magnetic field via accelerated particles much in excess of the background field. We identify difficulties with this scenario and suggest two separate mechanisms that can work in concert with one another leading to a significant acceleration enhancement. The first mechanism is based on a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to some specific (knee) momentum. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path. The velocity gradient is set by the knee-particles. The acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The knee (spectrum steepening) forms because particles above it are effectively confined to the shock only if they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This also maintains the steep velocity gradient and high acceleration rate. The second mechanism is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves.

  2. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less

  3. The charged particle accelerators subsystems modeling

    NASA Astrophysics Data System (ADS)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  4. The acceleration of charged particles in interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Decker, R. B.; Armstrong, T. P.

    1982-01-01

    Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.

  5. Turbulence Evolution and Shock Acceleration of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Chee, Ng K.

    2007-01-01

    We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.

  6. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  7. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  8. Multi-species first-principles simulations of particle acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    Astrophysical shocks are known to be prominent sources of non-thermal particles and emission. In particular, strong shocks at supernova remnant blast waves are thought to accelerate Galactic cosmic rays (CRs) up to about 10^17eV via diffusive shock acceleration (DSA). The chemical composition of Galactic CRs, now measured with great accuracy by payloads and satellites, is reminiscent of that of the typical interstellar medium, although with some significant deviations. Observations reveal: 1) an electron/proton ratio of about 1% at about 10 GeV, (2) a general enhancement of the refractory elements relative to the volatile ones, (3) among the volatile elements, an enhancement of the heavier elements relative to the lighter ones, and (4) a discrepant hardening of CR nuclei heavier than hydrogen. Such peculiar trends contain precious information about the dependence of the acceleration process on the particle mass/charge ratio, a trend that has no theoretical counterpart in the DSA theory, yet. Building on our recent successes in modeling electron and proton DSA at non-relativistic astrophysical shocks via first-principles kinetic simulations, we will perform multispecies particle-in-cells simulations of such systems also including nuclei heavier than hydrogen, in order to investigate thermalization, injection, and acceleration of species with different mass/charge ratio. We will also analyze how the simulation outputs compare with the observed CR abundances, in order to build a model for DSA that accounts for the relative acceleration efficiency of energetic electrons, protons, and heavier ions. Finally, we will assess the possible contribution of accelerated heavy ions, especially helium, to the generation of magnetic turbulence via CR-driven instabilities - crucial to foster rapid particle energgization- and to the hadronic gamma-ray emission from young supernova remnants.

  9. Proceedings of: 2005 Particle Acceleration Confence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Stuart

    2006-01-01

    The 21st Particle Accelerator Conference, PAC05, took place at the Knoxville Convention Center (KCC) from Monday through Friday, May 16-20, 2005. Sponsored by the American Physical Society (APS), the Institute of Electrics and Electronics Engineers (IEEE) with its subdivision of Nuclear and Plasma Sciences Society (NPSS), the conference was hosted by the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) Project and Thomas Jefferson National Accelerator Facility (JLab). The conference was chaired by Norbert Holtkamp, and the Local Organizing Committee was made up of staff from the ORNL SNS Project under the chairmanship of Stuart Henderson. The conference welcomedmore » over 1400 delegates from the United States, Europe, Asia, the Middle East, South America and from as far away as Australia. Almost 1400 papers where processed during the conference and will be published on the Joint Accelerator Conferences Website (JACoW) page.« less

  10. Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.

    1989-01-01

    Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.

  11. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  12. Particle Acceleration via Reconnection Processes in the Supersonic Solar Wind

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = -(3 + MA )/2, where MA is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index -3(1 + τ c /(8τdiff)), where τ c /τdiff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τdiff/τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c -5 (c particle speed) spectra observed by Fisk & Gloeckler and Mewaldt et

  13. The converter mechanism of particle acceleration and the maximum energy of cosmic rays

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vl. V.; Aharonian, F. A.; Derishev, E. V.; Kocharovsky, V. V.

    We consider the fundamental limits on the energy of particles accelerated by electromagnetic forces in various astrophysical objects [1]. We show that accelerator's parameters are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion) but also by the curvature and other types of radiative losses of accelerated particles. Optimization of these requirements in terms of accelerator's size and the magnetic field strength results in the ultimate lower limit on the overall source energy budget, which scales as the fifth power of attainable particle energy. It is demonstrated that the curvature gamma-rays accompanying the acceleration gives further restrictions for potential acceleration sites. We compare different acceleration mechanisms and show, that the converter mechanism, which we suggested earlier [2], is the least sensitive to the geometry of the magnetic field in accelerators and allows to reach cosmic-ray energies close to the fundamental limit. The converter mechanism works most efficiently in relativistic shocks or shear flows. It utilizes multiple conversions of charged particles into neutral ones (protons to neutrons and electrons/positrons to photons) and back by means of photon-induced reactions or inelastic nucleon- nucleon collisions. We discuss the properties of gamma-ray radiation, which accompanies acceleration of cosmic rays via the converter mechanism and can provide an evidence for the latter. 1. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 66, 023005 (2002). 2. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 68, 043003 (2003).

  14. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinpour, M., E-mail: hosseinpour@tabrizu.ac.ir; Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as highmore » as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.« less

  15. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  16. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  17. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  18. Accelerators for charged particle therapy: PAMELA and related issues

    NASA Astrophysics Data System (ADS)

    Peach, Ken

    2014-05-01

    Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaLApplications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

  19. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  20. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  1. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  2. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Chan; Mori, W.

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasksmore » listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.« less

  3. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  4. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, Igor A., E-mail: igor.andriyash@gmail.com; LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex; Lehe, Remi

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas.more » The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.« less

  5. Microwaves and particle accelerators: a fundamental link

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Swapan

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of themore » twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society

  6. Particle acceleration by quasi-parallel shocks in the solar wind

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2008-11-01

    The theoretical study of proton acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. The dynamics of ion acceleration by the November 11-12, 1978 interplanetary traveling shock was investigated and compared with the observations [2] as well as with solution obtained using the so-called convection-diffusion equation for distribution function of accelerated particles [3]. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007. [2] Kennel, C.F., F.W. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, K.P. Wenzel, and M. Scholer, J. Geophys. Res. 91, 11,917, 1986. [3] Gordon B.E., M.A. Lee, E. Mobius, and K.J. Trattner, J. Geophys. Res., 104, 28,263, 1990.

  7. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang

    2016-08-20

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less

  8. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  9. Accurate and efficient spin integration for particle accelerators

    DOE PAGES

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; ...

    2015-02-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations.We evaluate their performance and accuracy in quantitative detail for individual elements as well as formore » the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.« less

  10. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  11. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  12. Behavioural responses to infrasonic particle acceleration in cuttlefish.

    PubMed

    Wilson, Maria; Haga, Jens Ådne Rekkedal; Karlsen, Hans Erik

    2018-01-11

    Attacks by aquatic predators generate frontal water disturbances characterised by low-frequency gradients in pressure and particle motion. Low-frequency hearing is highly developed in cephalopods. Thus, we examined behavioural responses in juvenile cuttlefish to infrasonic accelerations mimicking main aspects of the hydrodynamic signals created by predators. In the experimental set-up, animals and their surrounding water moved as a unit to minimise lateral line activation and to allow examination of the contribution by the inner ear. Behavioural responses were tested in light versus darkness and after food deprivation following a 'simulated' hunting opportunity. At low acceleration levels, colour change threshold at 3, 5 and 9 Hz was 0.028, 0.038 and 0.035 m s -2 , respectively. At higher stimulus levels, jet-propulsed escape responses thresholds in daylight were 0.043, 0.065 and 0.069 m s -2 at 3, 5 and 9 Hz, respectively, and not significantly different from the corresponding darkness thresholds of 0.043, 0.071 and 0.064 m s -2 In a simulated hunting mode, escape thresholds were significantly higher at 3 Hz (0.118 m s -2 ) but not at 9 Hz (0.134 m s -2 ). Escape responses were directional, and overall followed the direction of the initial particle acceleration, with mean escape angles from 313 to 33 deg for all three experiments. Thus, in the wild, particle acceleration might cause escape responses directed away from striking predators but towards suction-feeding predators. We suggest that cuttlefish jet-propulsed escape behaviour has evolved to be elicited by the early hydrodynamic disturbances generated during predator encounters, and that the inner ear plays an essential role in the acoustic escape responses. © 2018. Published by The Company of Biologists Ltd.

  13. Further studies of particle acceleration in cassiopeia A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, R.A.; Oegerle, W.R.; Scott, J.S.

    We have further investigated models for statistical particle acceleration in the supernova remnant Cas A. Simple (three-parameter) models involving continuous second order Fermi acceleration and variable relativistic particle injection can reproduce the observed radio properties of Cas A, including the low-frequency flux anomaly first noted by Erickson and Perley. Models dominated by adiabatic expansion losses are preferable to those dominated by particle escape. The gain time determined from these models agrees well with that predicted from the hydrodynamic situation in Cas A. A model predicting the high-frequency nonthermal spectrum of Cas A indicates that the spectrum turns down in themore » optical regime due to synchrotron losses. The maximum relativistic particle energy content of Cas A was probably about several times 10/sup 49/-10/sup 50/ ergs, which can be compared with an estimated initial kinetic energy in the range 0.24 to 1.0 x 10/sup 52/ ergs. If relativistic particles can escape from Cas A, their spectra will have certain characteristics: the electron spectrum will have a turnover due to synchrotron losses and the proton spectrum will have a cutoff due to the particle gyroradii becoming larger than the sizes of the magnetic scattering centers. The observed bend in the galactic cosmic ray spectrum could be due to energy losses within the source remnant itself instead of losses incurred during propagation through the Galaxy. We also comment on other models for the relativistic electron content of Cas A.« less

  14. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  15. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    NASA Astrophysics Data System (ADS)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  16. Particle acceleration via reconnection processes in the supersonic solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced bymore » quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c

  17. Particle acceleration in the dynamic magnetotail: Orbits in self-consistent three-dimensional MHD fields

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Hesse, Michael

    1994-01-01

    The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.

  18. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  19. Stochastic particle acceleration at shocks in the presence of braided magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1996-10-01

    The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.

  20. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the acceleratorsmore » are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.« less

  1. Radiation reaction effect on laser driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particlemore » which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.« less

  2. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  3. Micro-bubbles and Micro-particles are Not Faithful Tracers of Turbulent Acceleration

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Mathai, Varghese; Calzavarini, Enrico; Brons, Jon; Lohse, Detlef

    2016-11-01

    We report on the Lagrangian statistics of acceleration of small (sub-Kolmogorov) bubbles and tracer particles with Stokes number St <<1 in turbulent flow. At decreasing Reynolds number, the bubble accelerations show deviations from that of tracer particles, i.e. they deviate from the Heisenberg-Yaglom prediction and show a quicker decorrelation despite their small size and minute St. Using direct numerical simulations, we show that these effects arise due the drift of these particles through the turbulent flow. We theoretically predict this gravity-driven effect for developed isotropic turbulence, with the ratio of Stokes to Froude number or equivalently the particle drift-velocity governing the enhancement of acceleration variance and the reductions in correlation time and intermittency. Our predictions are in good agreement with experimental and numerical results. The present findings are relevant to a range of scenarios encompassing tiny bubbles and droplets that drift through the turbulent oceans and the atmosphere.

  4. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  5. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  6. Single particles accelerate final stages of capillary break-up

    NASA Astrophysics Data System (ADS)

    Lindner, Anke; Fiscina, Jorge Eduardo; Wagner, Christian

    2015-06-01

    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite-time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well-known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  7. Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS

    DTIC Science & Technology

    2017-05-17

    order reaction mechanism, the best acceleration was 6.1 times. For a larger, more chemically detailed mechanism, the best acceleration exceeded 60 times...simulations at previously inaccessible scales. A principle feature of DPD-RX is its ability to model chemical reactions within each CG particle. The...change in composition due to chemical reactions is described by a system of ordinary differential equations (ODEs) that are evaluated at each DPD time

  8. Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Zhang, Guobo; Li, Song; Gao, Kai; Li, Guangyu; Ain, Quratul; Hafz, Nasr A. M.

    2018-04-01

    By using 25-45 TW ultra-short (30 fs) laser pulses, we report on the effect of the injection gas concentration on the quality of electron beams generated by a laser-driven plasma wakefield acceleration employing the ionization-injection. For a plasma formed from helium-nitrogen gas mixture and depending on the concentration of the nitrogen gas, we could distinguish a clear trend for the quality of the generated electron beams in terms of their peak energy, energy-spread, divergence angle, and beam charge. The results clearly showed that the lower the nitrogen concentration, the better the quality (higher peak energy, smaller energy spread, and smaller emittance) of the generated electron beams. The results are in reasonable agreement with two-dimensional particle-in-cell simulations.

  9. Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks

    NASA Astrophysics Data System (ADS)

    Takeuchi, Satoshi

    2018-02-01

    A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.

  10. The United States Particle Accelerator School: Educating the Next Generation of Accelerator Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2009-03-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator/beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  11. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  12. Gravitationally influenced particle creation models and late-time cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Kumar Pal, Barun; Pramanik, Souvik

    In this work, we focus on the gravitationally influenced adiabatic particle creation process, a mechanism that does not need any dark energy or modified gravity models to explain the current accelerating phase of the universe. Introducing some particle creation models that generalize some previous models in the literature, we constrain the cosmological scenarios using the latest compilation of the Type Ia Supernovae data only, the first indicator of the accelerating universe. Aside from the observational constraints on the models, we examine the models using two model independent diagnoses, namely the cosmography and Om. Further, we establish the general conditions to test the thermodynamic viabilities of any particle creation model. Our analysis shows that at late-time, the models have close resemblance to that of the ΛCDM cosmology, and the models always satisfy the generalized second law of thermodynamics under certain conditions.

  13. Particle acceleration at shocks in the presence of a braided magnetic field

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1997-05-01

    The theory of first order Fermi acceleration at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion ( ~ t^1/2) on short time scales. We investigate this process analytically, using a propagator approach, and numerically, with a Monte-Carlo simulation. It is found that, in contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream which is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f ~ p^-s, we find s =s_diff [1 + 1/(2rho_c)], where rho_c is the compression ratio of the shock front and s_diff is the standard result of diffusive acceleration:s_diff = 3rho_c/(rho_c - 1).

  14. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  15. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C. K.; Bane, K. L.F.

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters longmore » in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.« less

  16. Unsteady forces on a spherical particle accelerating or decelerating in an initially stagnant fluid

    NASA Astrophysics Data System (ADS)

    Keshav, Yashas Mudlapur Phaneesh

    Flows with particles play an important role in a number of engineering applications. These include trajectories of droplets in sprays in fuel-injected-reciprocating-piston and gas-turbine engines, erosion of materials due to particle impact on a surface, and deposition of materials on surfaces by impinging droplets or particles that could solidify or bond on impact. For these applications, it is important to understand the forces that act on the particles so that their trajectories could be predicted. Considerable work has been done on understanding the forces acting on spherical particles, where the Reynolds numbers (Rep) based on the particle diameter and the relative speed between the particle and the fluid is less than unity. When Rep is larger than unity and when the particle is accelerating or decelerating, the added-mass effect and the Basset forces are not well understood. In this study, time-accurate numerical simulations were performed to study laminar incompressible flow induced by a single non-rotating rigid spherical particle that is accelerated or decelerated at a constant rate in an initially stagnant fluid, where the unsteady flow about the spherical particle is resolved. The Rep studied range from 0.01 to 100, and the acceleration number (Ac), where A c is the square of the relative velocity between the particle and the fluid divided by the acceleration times the particle diameter studied was in the range 2.13x-7 < |Ac |< 21337. Results obtained show the added mass effect for Rep up to 100 has the same functional form as those based on potential theory where the Rep is infinite and creeping flow where Rep is less than unity. The Basset force, however, differs considerably from those under creeping flow conditions and depends on Rep and the acceleration number (Ac). A model was developed to provide the magnitude of the added-mass effect and the Basset force in the range of Rep and Ac studied. Results obtained also show the effect of unsteadiness to

  17. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  18. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.

    2018-05-01

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.

  19. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less

  20. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; ...

    2018-03-13

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less

  1. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  2. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  3. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  4. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  5. Neutron Source from Laser Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn

    2016-10-01

    Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.

  6. Interdisciplinary glossary — particle accelerators and medicine

    NASA Astrophysics Data System (ADS)

    Dmitrieva, V. V.; Dyubkov, V. S.; Nikitaev, V. G.; Ulin, S. E.

    2016-02-01

    A general concept of a new interdisciplinary glossary, which includes particle accelerator terminology used in medicine, as well as relevant medical concepts, is presented. Its structure and usage rules are described. An example, illustrating the quickly searching technique of relevant information in this Glossary, is considered. A website address, where one can get an access to the Glossary, is specified. Glossary can be refined and supplemented.

  7. On magnetic field amplification and particle acceleration near non-relativistic collisionless shocks: Particles in MHD Cells simulations

    NASA Astrophysics Data System (ADS)

    Casse, F.; van Marle, A. J.; Marcowith, A.

    2018-01-01

    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle-in-cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider non-relativistic super-Alfénic shocks with various magnetic field obliquity. We recover all the features from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell and hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our oblique shock simulations the streaming of supra-thermal particles induces a corrugation of the shock front. Such oscillations of both the shock front and the magnetic field then locally helps the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  8. Characteristics of Energetic Particle Acceleration in Hot Flow Anomalies Observed by MMS

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Schwartz, S. J.; Wilson, L. B., III; Liu, T. Z.; Osmane, A.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Goodrich, K.; Mauk, B.; Gershman, D. J.; Avanov, L. A.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.; Leonard, T. W.

    2017-12-01

    During its orbital transits with apogees on Earth's dayside, NASA's Magnetospheric Multiscale (MMS) mission captured high resolution observations from several transient ion foreshock phenomena, including multiple hot flow anomalies (HFAs). With MMS' four identically instrumented spacecraft, those events offer unprecedented multipoint observations and resolution of plasma, energetic particles, and electric and magnetic fields and waves within and around HFAs. In this presentation, we compare and contrast the geometries and characteristics of fully-developed HFAs observed by MMS in the interest of determining which HFAs are most efficient at accelerating energetic particles (i.e. >1 to 100s of keV electrons, protons, and heavy ions) and how those HFAs may do so. In particular, we focus on: 1) the orientation of the fast magnetosonic shocks and wave activity that form at the upstream edge of HFAs and 2) how the unique structures and activity characteristic of HFAs may result in enhanced acceleration of energetic particles via shock acceleration processes and shock-shock interactions between the HFA shock and Earth's bow shock. The results of this study are of interest to previous studies of foreshock transients from missions such as THEMIS and Cluster, are relevant to the dayside science objectives of the MMS extended mission, and may have implications for energetic particle acceleration at other astrophysical shocks throughout the Universe.

  9. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  10. Relativistic particle acceleration in plerions

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1994-01-01

    We discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized -- the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put approximately 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) varies as E(exp -2), where N(E)dE is the number of particles with energy between E and E+dE. The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be gamma(sub +/-)m(sub +/-)c squared = m(sub i)c squared gamma(sub 1)/Z(sub i), where gamma(sub 1) is the Lorentz factor of the upstream flow and Z(sub i) is the atomic number of the ions. The shock's spatial structure is shown to contain a series of 'overshoots' in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the 'wisps

  11. The Particle Accelerator Simulation Code PyORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less

  12. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses

    DOE PAGES

    Albert, F.; Lemos, N.; Shaw, J. L.; ...

    2017-03-31

    We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ~ 5 × 1 0 18 W / cm 2 are focused into plasmas with electron densities of ~ 1 × 1 0 19 cm - 3 , they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10–20 keV, and 2D particle-in-cell simulations were used to modelmore » the acceleration and radiation of the electrons in our experimental conditions« less

  13. Influence of Ionization and Beam Quality on Interaction of TW-Peak CO2 Laser with Hydrogen Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman

    3D numerical simulations of the interaction of a powerful CO2 laser with hydrogen jets demonstrating the role of ionization and laser beam quality are presented. Simulations are performed in support of the plasma wakefield accelerator experiments being conducted at the BNL Accelerator Test Facility (ATF). The CO2 laser at BNL ATF has several potential advantages for laser wakefield acceleration compared to widely used solid-state lasers. SPACE, a parallel relativistic Particle-in-Cell code, developed at SBU and BNL, has been used in these studies. A novelty of the code is its set of efficient atomic physics algorithms that compute ionization and recombinationmore » rates on the grid and transfer them to particles. The primary goal of the initial BNL experiments was to characterize the plasma density by measuring the sidebands in the spectrum of the probe laser. Simulations, that resolve hydrogen ionization and laser spectra, help explain several trends that were observed in the experiments.« less

  14. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Burch, J. L.; Fuselier, S. A.; Genestreti, K. J.; Torbert, R. B.; Ergun, R.; Russell, C.; Wei, H.; Phan, T.; Giles, B. L.; Chen, L. J.; Mauk, B.

    2016-12-01

    Collisionless shocks are a major producer of suprathermal and energetic particles throughout space and astrophysical plasma environments. Theoretical studies combined with in-situ observations during the space age have significantly advanced our understanding of how such shocks are formed, the manner in which they evolve and dissipate their energy, and the physical mechanisms by which they heat the local plasma and accelerate the energetic particles. Launched in March 2015, NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft separated between 10-40 km and equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. Serendipitously, during Phase 1a, the MMS mission also encountered and crossed the Earth's bow shock more than 300 times. In this paper, we combine and analyze the highest available time resolution MMS burst data during 140 bow shock crossings from October 2015 through December 31, 2015 to shed new light on key open questions regarding the formation, evolution, dissipation, and particle injection and energization at collisionless shocks. In particular, we compare and contrast the differences in shock dissipation and particle acceleration mechanisms at quasi-parallel and quasi-perpendicular shocks.

  15. Acceleration of charged particles by crossed cyclotron waves, Resonant Moments Method

    NASA Astrophysics Data System (ADS)

    Ponomarjov, M.; Carati, D.

    A mechanism for enhanced acceleration of charged particles in crossing radio frequency or micro waves propagating at different angles with respect to an external magnetic field is investigated. This mechanism consists in introducing low amplitude secondary waves in order to improve the parallel momentum transfer from the high amplitude primary wave to charged particles. The use of two parallel counter-propagating waves has recently been considered (Gell and Nakach, 1999) and numerical tests (Louies et al, 2001) have shown that the two-wave scheme may lead to higher averaged parallel velocity. On the other hand, it has been concluded that it may be more effective to accelerate electrons when the waves propagate obliquely to the external magnetic field (Karimabadi and Angelopoulos 1989, Cohen et al 1991). The idea considered here is similar although no constraint is imposed on the refraction indices of the primary and the secondary waves. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which moments of the velocity distribution are computed by using an averages over the resonant layers (RL)i only instead of a complete phase-space average. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered. The fraction of charged particles that are close to the resonance conditions, that correspond to the RL, becomes then as important as the time these particles remain resonant. The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations for a populations of 105 relativistic electrons. The secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles

  16. Time-dependent diffusive acceleration of test particles at shocks

    NASA Astrophysics Data System (ADS)

    Drury, L. O'C.

    1991-07-01

    A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.

  17. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    DOE PAGES

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; ...

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B 2 / (4πn em ec 2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplishedmore » by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1) -p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less

  18. Milky Way's Super-efficient Particle Accelerators Caught in The Act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays - extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it

  19. Quasi-monoenergetic multi-GeV electron acceleration by optimizing the spatial and spectral phases of PW laser pulses

    NASA Astrophysics Data System (ADS)

    Shin, Junghun; Kim, Hyung Taek; Pathak, V. B.; Hojbota, Calin; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Yoon, Jin Woo; Jeon, Cheonha; Nakajima, Kazuhisa; Sylla, F.; Lifschitz, A.; Guillaume, E.; Thaury, C.; Malka, V.; Nam, Chang Hee

    2018-06-01

    Generation of high-quality electron beams from laser wakefield acceleration requires optimization of initial experimental parameters. We present here the dependence of accelerated electron beams on the temporal profile of a driving PW laser, the density, and length of an interacting medium. We have optimized the initial parameters to obtain 2.8 GeV quasi-monoenergetic electrons which can be applied further to the development of compact electron accelerators and radiations sources.

  20. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  1. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  2. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  3. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  4. Directionality of Flare-Accelerated Particles from γ -ray Lines

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.

    2000-05-01

    The energies and widths of γ -ray lines emitted by ambient nuclei excited by flare-accelerated protons and α -particles provide information on their directionality, spectra, and on the uniformity of the interaction region. For example, the γ -rays observed from a downward beam of particles impacting at 0o heliocentric angle would exhibit a clear Doppler red-shift and some broadening, dependent on the spectrum of the particles. In contrast, γ -rays observed from the same beam of particles impacting at 90o would be neither observably shifted nor broadened. We have studied the energies and widths of strong lines from de-excitations of 20Ne, 12C, and 16O in solar flares as a function of heliocentric angle. We use spectra from 21 flares observed with NASA's Solar Maximum Mission/GRS and Compton Observatory/OSSE experiments. The line energies of all three nuclei exhibit ~0.9% red-shifts from their laboratory values for flares observed at heliocentric angles <40o. In contrast, the energies are not significantly shifted for flares observed at angles >80o. The lines at all heliocentric angles are broadened between ~2.5% to 4%. These results are suggestive of a broad downward distribution of accelerated particles in flares or an isotropic distribution in a medium that has a significant density gradient. Detailed comparisons of these data with results from the gamma-ray production code (Ramaty, et al. 1979, ApJS, 40, 487; Murphy, et al. 1991, ApJ, 371, 793) are required in order to place constraints on the angular distributions of particles. This research has been supported by NASA grant W-18995.

  5. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  6. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems

    NASA Astrophysics Data System (ADS)

    Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.

    2018-05-01

    A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.

  7. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue thatmore » holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wentao; Liu, Jiansheng, E-mail: michaeljs-liu@siom.ac.cn; Wang, Wentao

    An electron beam with the maximum energy extending up to 1.8 GeV, much higher than the dephasing limit, is experimentally obtained in the laser wakefield acceleration with the plasma density of 3.5 × 10{sup 18} cm{sup −3}. With particle in cell simulations and theoretical analysis, we find that the laser intensity evolution plays a major role in the enhancement of the electron energy gain. While the bubble length decreases due to the intensity-decay of the laser pulse, the phase of the electron beam in the wakefield can be locked, which contributes to the overcoming of the dephasing. Moreover, the laser intensity evolution is describedmore » for the phase-lock acceleration of electrons in the uniform plasma, confirmed with our own simulation. Since the decaying of the intensity is unavoidable in the long distance propagation due to the pump depletion, the energy gain of the high energy laser wakefield accelerator can be greatly enhanced if the current process is exploited.« less

  9. Theoretical and Experimental Studies in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James

    This report describes research supported by the US Dept. of Energy Office of High Energy Physics (OHEP), performed by the UCLA Particle Beam Physics Laboratory (PBPL). The UCLA PBPL has, over the last two decades-plus, played a critical role in the development of advanced accelerators, fundamental beam physics, and new applications enabled by these thrusts, such as new types of accelerator-based light sources. As the PBPL mission is broad it is natural that it has been grown within the context of the accelerator science and technology stewardship of the OHEP. Indeed, steady OHEP support for the program has always beenmore » central to the success of the PBPL; it has provided stability, and above all has set the over-arching themes for our research directions, which have producing over 500 publications (>120 in high level journals). While other agency support has grown notably in recent years, permitting more vigorous pursuit of the program, it is transient by comparison. Beyond permitting program growth in a time of flat OHEP budgets, the influence of other agency missions is found in push to adapt advanced accelerator methods to applications, in light of the success the field has had in proof-of-principle experiments supported first by the DoE OHEP. This three-pronged PBPL program — advanced accelerators, fundamental beam physics and technology, and revolutionary applications — has produced a generation of students that have had a profound affect on the US accelerator physics community. PBPL graduates, numbering 28 in total, form a significant population group in the accelerator community, playing key roles as university faculty, scientific leaders in national labs (two have been named Panofsky Fellows at SLAC), and vigorous proponents of industrial application of accelerators. Indeed, the development of advanced RF, optical and magnet technology at the PBPL has led directly to the spin-off company, RadiaBeam Technologies, now a leading industrial

  10. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  11. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  12. Understanding Sgr A* with PIC Simulations of Particle Acceleration in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ozel, Feryal

    2017-09-01

    Sgr A* has been the subject of intense observational studies with Chandra. In the proposed work, we will investigate magnetic reconnection and particle acceleration in low-luminosity black hole accretion flows using a combination of GRMHD and particle-in-cell (PIC) simulations. We will use the PIC simulations to understand how particles are accelerated when magnetic energy is dissipated and quantify the resulting electron energy distributions. Incorporating the results of the microphysical studies into the global simulations of Sgr A*, we will investigate the origin of the intense X-ray flares observed with Chandra. We will also study how these processes affect the 1.3 mm image size in preparation for the upcoming simultaneous Chandra and EHT observations of Sgr A*.

  13. MAGNETIC-ISLAND CONTRACTION AND PARTICLE ACCELERATION IN SIMULATED ERUPTIVE SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gainsmore » in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.« less

  14. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Technical Reports Server (NTRS)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  15. Bunch modulation in LWFA blowout regime

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Vieira, Jorge; Korn, Georg

    2015-05-01

    Laser wakefield acceleration (LWFA) is able to produce high quality electron bunches interesting for many applications ranging from coherent light sources to high energy physics. The blow-out regime of LWFA provides excellent accelerating structure able to maintain small transverse emittance and energy spread of the accelerating electron beam if combined with localised injection. A modulation of the back of a self-injected electron bunch in the blowout regime of Laser Wakefield Acceleration appears 3D Particle-in-Cell simulations with the code OSIRIS. The shape of the modulation is connected to the polarization of the driving laser pulse, although the wavelength of the modulation is longer than that of the pulse. Nevertheless a circularly polarized laser pulse leads to a corkscrew-like modulation, while in the case of linear polarization, the modulation lies in the polarization plane.

  16. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  17. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  18. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the

  19. Implementation of a 3D version of ponderomotive guiding center solver in particle-in-cell code OSIRIS

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2016-10-01

    Laser-driven accelerators gained an increased attention over the past decades. Typical modeling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) simulations. PIC simulations, however, are very computationally expensive due to the disparity of the relevant scales ranging from the laser wavelength, in the micrometer range, to the acceleration length, currently beyond the ten centimeter range. To minimize the gap between these despair scales the ponderomotive guiding center (PGC) algorithm is a promising approach. By describing the evolution of the laser pulse envelope separately, only the scales larger than the plasma wavelength are required to be resolved in the PGC algorithm, leading to speedups in several orders of magnitude. Previous work was limited to two dimensions. Here we present the implementation of the 3D version of a PGC solver into the massively parallel, fully relativistic PIC code OSIRIS. We extended the solver to include periodic boundary conditions and parallelization in all spatial dimensions. We present benchmarks for distributed and shared memory parallelization. We also discuss the stability of the PGC solver.

  20. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema

    Sessler, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-12-09

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  1. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; /LBL, Berkeley; Bane, K.L.F.

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  2. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  3. New applications of particle accelerators in medicine, materials science, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

  4. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, S.; /UCLA; Bane, K.L.F.

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELAmore » and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.« less

  5. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  6. Wavefront-sensor-based electron density measurements for laser-plasma accelerators.

    PubMed

    Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P

    2010-03-01

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.

  7. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  8. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R.J.; /SLAC; Colby, E.R.

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  9. Particle acceleration in solar active regions being in the state of self-organized criticality.

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  10. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  11. Origin of accelerated and hindered sedimentation of two particles in wet foam.

    PubMed

    Jing, Zefeng; Feng, Chenchen; Wang, Shuzhong; Xu, Donghai

    2018-03-20

    To explore the origin of interactional settling behaviors of multi-particles in wet foam, the sedimentation of two particles placed one above the other as well as placed side by side is studied. According to the average settling velocity in experiment and the average settling drag force of the two particles in numerical simulation, we show that the particles display accelerated sedimentation as placed one above the other while they display hindered sedimentation in the case of the ones positioned side by side. Furthermore, the evolution of structure and force parameters of the bubbles, such as T1 topological events, displacement vector and principal stress fields, shows that the reciprocal action between the foam and the settling particles placed side by side is more significant. The different levels of interplay for these two settling cases also give rise to the diverse changes of bubble pressure response. The bubble pressure component of the average drag force is higher for the particles placed side by side. Especially, for the first time, it reveals that these interactional sedimentation behaviors in the foam are mainly attributed to the changed pressure of bubbles caused by these settling particles at the mesoscopic level. The present results may suggest potential explanations to the cause of the complex accelerated or hindered sedimentation of more particles in wet foam.

  12. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  13. Using field-particle correlations to study auroral electron acceleration in the LAPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2017-10-01

    Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.

  14. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorzetti, Silvia

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less

  15. Particle acceleration and magnetic field generation in SNR shocks

    NASA Astrophysics Data System (ADS)

    Suslov, M.; Diamond, P. H.; Malkov, M. A.

    2006-04-01

    We discuss the diffusive acceleration mechanism in SNR shocks in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We analyze some problems of this scenario and suggest a different mechanism, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.

  16. Observational Study of Particle Acceleration in the 2006 December 13 Flare

    NASA Astrophysics Data System (ADS)

    Minoshima, T.; Morimoto, T.; Kawate, T.; Imada, S.; Koshiishi, H.; Masuda, S.; Kubo, M.; Inoue, S.; Isobe, H.; Krucker, S.; Yokoyama, T.

    2008-12-01

    We study the particle acceleration in a flare on 2006 December 13, by using the Hinode, RHESSI, Nobeyama Radio Polarimeters (NoRP) and Nobeyama Radioheliograph (NoRH) observations. For technical reasons, both RHESSI and NoRH have a problem in imaging in this flare. Since we have succeeded in solving the problem, it is now possible to discuss the particle acceleration mechanism from an image analysis. This flare shows very long-lasting (1 hour) non-thermal emissions, consisting of many spikes. We focus on the second major spike at 02:29 UT, because the RHESSI image is available only in this period. The RHESSI 35-100 keV HXR image shows double sources located at the footpoints of the western soft X-ray (SXR) loop seen by the Hinode/XRT. The non-linear force-free (NLFF) modeling based on a magnetogram data by Inoue et al. shows the NLFF to potential magnetic transition of the loop, which would induce the electric field and then accelerate particles. Overlaying the HXR image on the photospheric three-dimensional magnetic field map taken by the Hinode Spectro-Polarimeter, we find that the HXR sources are located at the region where the horizontal magnetic fields invert. The NoRH 34 GHz microwave images show the loop structure connecting the HXR sources. The microwave peaks do not located at the top of the loop but between the loop top and the footpoints. The NoRP microwave spectrum shows the soft-hard-soft pattern in the period, same as the HXR spectrum (Ning 2008). From these observational results we suggest that the electrons were accelerated parallel to the magnetic field line near the magnetic separatrix.

  17. Calculation of longitudinal and transverse wake-field effects in dielectric structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, W.

    1989-01-01

    The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs.

  18. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  19. Diaphragm flange and method for lowering particle beam impedance at connected beam tubes of a particle accelerator

    DOEpatents

    Biallas, George Herman

    2017-07-04

    A diaphragm flange for connecting the tubes in a particle accelerator while minimizing beamline impedance. The diaphragm flange includes an outer flange and a thin diaphragm integral with the outer flange. Bolt holes in the outer flange provide a means for bolting the diaphragm flange to an adjacent flange or beam tube having a mating bolt-hole pattern. The diaphragm flange includes a first surface for connection to the tube of a particle accelerator beamline and a second surface for connection to a CF flange. The second surface includes a recessed surface therein and a knife-edge on the recessed surface. The diaphragm includes a thickness that enables flexing of the integral diaphragm during assembly of beamline components. The knife-edge enables compression of a soft metal gasket to provide a leak-tight seal.

  20. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  1. Non-perturbative aspects of particle acceleration in non-linear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, David A.; Flood, Stephen P.; Wen, Haibao

    2015-04-15

    We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

  2. Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion

    NASA Technical Reports Server (NTRS)

    Baring, M. G.; Ellison, D. C.; Jones, F. C.

    1995-01-01

    The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.

  3. Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R. J.; Frederico, J.; Hogan, M. J.

    2010-11-04

    High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.

  4. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  5. Signatures of particle acceleration at SN1987a

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice

    1988-01-01

    Young SNRs may be bright sources of energetic photons and neutrinos generated by the collisions of particles accelerated within the remnant. Due to the large opacity of the shell at these early times, a photon signal may be suppressed; at later times, due to adiabatic losses of the magnetically-trapped particles in the expanding envelope, both neutron and neutrino signals will begin to decrease. There is therefore a window during which the secondary photon signal will be at its maximum. It is presently noted that if the observed decline of the optical light curve of SN1987a is due to Ni-56, Co-56 decay, this may place upper limits on such other sources of light as a central pulsar.

  6. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machicoane, Nathanaël; Volk, Romain

    We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less

  7. Transport, Acceleration and Spatial Access of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Effenberger, F.; Jin, M.; Gombosi, T. I.

    2017-12-01

    Solar Energetic Particles (SEPs) are a major branch of space weather. Often driven by Coronal Mass Ejections (CMEs), SEPs have a very high destructive potential, which includes but is not limited to disrupting communication systems on Earth, inflicting harmful and potentially fatal radiation doses to crew members onboard spacecraft and, in extreme cases, to people aboard high altitude flights. However, currently the research community lacks efficient tools to predict such hazardous SEP events. Such a tool would serve as the first step towards improving humanity's preparedness for SEP events and ultimately its ability to mitigate their effects. The main goal of the presented research is to develop a computational tool that provides the said capabilities and meets the community's demand. Our model has the forecasting capability and can be the basis for operational system that will provide live information on the current potential threats posed by SEPs based on observations of the Sun. The tool comprises several numerical models, which are designed to simulate different physical aspects of SEPs. The background conditions in the interplanetary medium, in particular, the Coronal Mass Ejection driving the particle acceleration, play a defining role and are simulated with the state-of-the-art MHD solver, Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US). The newly developed particle code, Multiple-Field-Line-Advection Model for Particle Acceleration (M-FLAMPA), simulates the actual transport and acceleration of SEPs and is coupled to the MHD code. The special property of SEPs, the tendency to follow magnetic lines of force, is fully taken advantage of in the computational model, which substitutes a complicated 3-D model with a multitude of 1-D models. This approach significantly simplifies computations and improves the time performance of the overall model. Also, it plays an important role of mapping the affected region by connecting it with the origin of

  8. Particle acceleration and production of energetic photons in SN1987A

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice

    1987-01-01

    A pulsar wind model for the acceleration of particles in SN1987A is discussed. The expected photon flux is investigated in terms of the spectrum of parent protons and electrons, the nature of the region in which they propagate after acceleration, and the magnetic field and radiation environment which determines the subsequent fate of produced photons. The model is found to produce observable signals if the spin period of the pulsar is 10 ms or less.

  9. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  10. Effects of Higher-Order Relativistic Nonlinearity and Wakefield During a Moderately Intense Laser Pulse Propagation in a Plasma Channel

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Ping; Liu, Bing-Bing; Liu, San-Qiu; Zhang, Fu-Yang; Liu, Jie

    2013-08-01

    Using a variational approach, the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated. The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included. The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF). The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength. The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.

  11. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

    1982-01-01

    Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

  12. Boron stripper foils for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zeisler, Stefan K.; Brigham, Michael; Kaur, Ishneet; Jaggi, Vinder

    2018-05-01

    Micromatter Technologies Inc., now located in Surrey B.C., Canada, is a worldwide supplier of pure and boron containing diamond-like carbon (DLC) stripper foils ranging from 10 nm to 10 μm. These foils are manufactured in-house using pulsed laser deposition. Continuing our research into novel production methods and alternative materials to be used as beam strippers for heavy elements and in particular for tandem particle accelerators, pure boron foils were prepared by laser plasma ablation of a disc shaped boron sputter target. Foil thickness between 10 nm to approximately 0.7 μm were achieved. The new boron foils showed considerably less stress, higher mechanical strength and better flexibility than comparable DLC films.

  13. Investigations of turbulent motions and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Jakimiec, J.; Fludra, A.; Lemen, J. R.; Dennis, B. R.; Sylwester, J.

    1986-01-01

    Investigations of X-raya spectra of solar flares show that intense random (turbulent) motions are present in hot flare plasma. Here it is argued that the turbulent motions are of great importance for flare development. They can efficiently enhance flare energy release and accelerate particles to high energies.

  14. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    NASA Astrophysics Data System (ADS)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  15. Progress of plasma wakefield self-modulation experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Berglyd Olsen, V. K.; Lindstrøm, C. A.; Muggli, P.; Reimann, O.; Vieira, J. M.; Amorim, L. D.; Clarke, C. I.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O`Shea, B. D.; Yakimenko, V.; Clayton, C.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Williams, O.

    2016-09-01

    Simulations and theory predict that long electron and positron beams may under favorable conditions self-modulate in plasmas. We report on the progress of experiments studying the self-modulation instability in plasma wakefield experiments at FACET. The experimental results obtained so far, while not being fully conclusive, appear to be consistent with the presence of the self-modulation instability.

  16. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less

  17. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    DOE PAGES

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; ...

    2016-11-14

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less

  18. Particle acceleration with anomalous pitch angle scattering in 2D magnetohydrodynamic reconnection simulations

    NASA Astrophysics Data System (ADS)

    Borissov, A.; Kontar, E. P.; Threlfall, J.; Neukirch, T.

    2017-09-01

    The conversion of magnetic energy into other forms (such as plasma heating, bulk plasma flows, and non-thermal particles) during solar flares is one of the outstanding open problems in solar physics. It is generally accepted that magnetic reconnection plays a crucial role in these conversion processes. In order to achieve the rapid energy release required in solar flares, an anomalous resistivity, which is orders of magnitude higher than the Spitzer resistivity, is often used in magnetohydrodynamic (MHD) simulations of reconnection in the corona. The origin of Spitzer resistivity is based on Coulomb scattering, which becomes negligible at the high energies achieved by accelerated particles. As a result, simulations of particle acceleration in reconnection events are often performed in the absence of any interaction between accelerated particles and any background plasma. This need not be the case for scattering associated with anomalous resistivity caused by turbulence within solar flares, as the higher resistivity implies an elevated scattering rate. We present results of test particle calculations, with and without pitch angle scattering, subject to fields derived from MHD simulations of two-dimensional (2D) X-point reconnection. Scattering rates proportional to the ratio of the anomalous resistivity to the local Spitzer resistivity, as well as at fixed values, are considered. Pitch angle scattering, which is independent of the anomalous resistivity, causes higher maximum energies in comparison to those obtained without scattering. Scattering rates which are dependent on the local anomalous resistivity tend to produce fewer highly energised particles due to weaker scattering in the separatrices, even though scattering in the current sheet may be stronger when compared to resistivity-independent scattering. Strong scattering also causes an increase in the number of particles exiting the computational box in the reconnection outflow region, as opposed to along the

  19. Milky Way's super-efficient particle accelerators caught in the act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. ESO PR Photo 23a/09 The rim of RCW 86 ESO PR Photo 23b/09 DSS + insert, annotated ESO PR Photo 23c/09 DSS image ESO PR Video 23a/09 Zoom-in RCW 86 During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays -- extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough

  20. Particle injection and acceleration at earth's bow shock - Comparison of upstream and downstream events

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Moebius, Eberhard; Paschmann, Goetz

    1990-01-01

    The injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions is investigated. Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite observations of complete proton spectra, and of heavy ion spectra above 10 keV/Q, made on September 12, 1984 near the nose of the shock, are presented and compared to the predictions of a Monte Carlo shock simulation which includes diffusive shock acceleration. It is found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma. The efficiency, which is determined directly from the downstream observations, is high, with at least 15 percent of the solar wind energy flux going into accelerated particles. The comparisons allow constraints to be placed on the rigidity dependence of the scattering mean free path and suggest that the upstream solar wind must be slowed substantially by backstreaming accelerated ions prior to undergoing a sharp transition in the viscous subshock.

  1. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  2. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  3. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  4. Efficiency Versus Instability in Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2017-01-05

    Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.

  5. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  6. Particle acceleration and gamma rays in solar flares: Recent observations and new modeling

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Gan, W. Q.

    2012-09-01

    Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian-Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different

  7. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvoda, T.; Stovicek, P., E-mail: stovicek@kmlinux.fjfi.cvut.cz

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found.more » - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.« less

  8. GPU acceleration of Eulerian-Lagrangian particle-laden turbulent flow simulations

    NASA Astrophysics Data System (ADS)

    Richter, David; Sweet, James; Thain, Douglas

    2017-11-01

    The Lagrangian point-particle approximation is a popular numerical technique for representing dispersed phases whose properties can substantially deviate from the local fluid. In many cases, particularly in the limit of one-way coupled systems, large numbers of particles are desired; this may be either because many physical particles are present (e.g. LES of an entire cloud), or because the use of many particles increases statistical convergence (e.g. high-order statistics). Solving the trajectories of very large numbers of particles can be problematic in traditional MPI implementations, however, and this study reports the benefits of using graphical processing units (GPUs) to integrate the particle equations of motion while preserving the original MPI version of the Eulerian flow solver. It is found that GPU acceleration becomes cost effective around one million particles, and performance enhancements of up to 15x can be achieved when O(108) particles are computed on the GPU rather than the CPU cluster. Optimizations and limitations will be discussed, as will prospects for expanding to two- and four-way coupled systems. ONR Grant No. N00014-16-1-2472.

  9. Studies of Particle Acceleration, Transport and Radiation in Impulsive Phase of Solar Flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2005-01-01

    Solar activity and its most prominent aspect, the solar flares, have considerable influence on terrestrial and space weather. Solar flares also provide a suitable laboratory for the investigation of many plasma and high energy processes important in the magnetosphere of the Earth and many other space and astrophysical situations. Hence, progress in understanding of flares will have considerable scientific and societal impact. The primary goal of this grant is the understanding of two of the most important problems of solar flare physics, namely the determination of the energy release mechanism and how this energy accelerates particles. This is done through comparison of the observations with theoretical models, starting from observations and gradually proceeding to theoretically more complex situations as the lower foundations of our understanding are secured. It is generally agreed that the source of the flare energy is the annihilation of magnetic fields by the reconnection process. Exactly how this energy is released or how it is dissipated remains controversial. Moreover, the exact mechanism of the acceleration of the particles is still a matter of debate. Data from many spacecrafts and ground based instruments obtained over the past decades have given us some clues. Theoretical analyses of these data have led to the standard thick target model (STT) where most of the released energy goes into an (assumed) power law spectrum of accelerated particles, and where all the observed radiations are the consequence of the interaction of these particles with the flare plasma. However, some theoretical arguments, and more importantly some new observations, have led us to believe that the above picture is not complete. It appears that plasma turbulence plays a more prominent role than suspected previously, and that it is the most likely agent for accelerating particles. The model we have developed is based on production of a high level of plasma waves and turbulence in

  10. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2004-01-01

    We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.

  11. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, J.

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less

  12. Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-04-01

    An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.

  13. Particle Acceleration in Two Converging Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Wang, Na; Shan, Hao

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlomore » method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.« less

  14. On the acceleration of charged particles at relativistic shock fronts

    NASA Technical Reports Server (NTRS)

    Kirk, J. G.; Schneider, P.

    1987-01-01

    The diffusive acceleration of highly relativistic particles at a shock is reconsidered. Using the same physical assumptions as Blandford and Ostriker (1978), but dropping the restriction to nonrelativistic shock velocities, the authors find approximate solutions of the particle kinetic equation by generalizing the diffusion approximation to higher order terms in the anisotropy of the particle distribution. The general solution of the transport equation on either side of the shock is constructed, which involves the solution of an eigenvalue problem. By matching the two solutions at the shock, the spectral index of the resulting power law is found by taking into account a sufficiently large number of eigenfunctions. Low-order truncation corresponds to the standard diffusion approximation and to a somewhat more general method described by Peacock (1981). In addition to the energy spectrum, the method yields the angular distribution of the particles and its spatial dependence.

  15. Time-dependent shock acceleration of particles. Effect of the time-dependent injection, with application to supernova remnants

    NASA Astrophysics Data System (ADS)

    Petruk, O.; Kopytko, B.

    2016-11-01

    Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts towards the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injection affects the shape of the particle spectrum. In particular, (I) the power-law index is not solely determined by the shock compression, in contrast to the stationary solution; (II) the larger the injection efficiency during the first decades after the supernova explosion, the harder the particle spectrum around the high-energy cutoff at the later times. This is important, in particular, for interpretation of the radio and gamma-ray observations of supernova remnants, as demonstrated on a number of examples.

  16. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular,more » whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.« less

  17. Observational test of shock drift and Fermi acceleration on a seed particle population upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.

  18. Model-independent particle accelerator tuning

    DOE PAGES

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  19. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  20. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.