Sample records for walakpa gas field

  1. Publications - GMC 140 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Operations Inc. Tunalik Test Well #1; Walakpa Test Well #1 and #2; Inigok Test Well #1 Authors: O'Sullivan Operations Inc. Tunalik Test Well #1; Walakpa Test Well #1 and #2; Inigok Test Well #1: Alaska Division of

  2. Publications - GMC 350 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    in the NPRA, Alaska as follows: Ikpikpuk #1 core, cuttings, and sidewall core; South Meade #1 cuttings; Brontosaurus #1 cuttings and core; Walakpa #1 core; and Walakpa #2 cuttings and core Authors follows: Ikpikpuk #1 core, cuttings, and sidewall core; South Meade #1 cuttings; Brontosaurus #1 cuttings

  3. Publications - GMC 289 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    : Kuyanak Test Well #1 (5099.5'); Peard Test Well #1 (7840', 7851.5', 7861.8'); Walakpa Test Well #2 (2624 , Petrographic thin-section data of core from the following wells: Kuyanak Test Well #1 (5099.5'); Peard Test Well #1 (7840', 7851.5', 7861.8'); Walakpa Test Well #2 (2624', 2638.35'); and Colville #1 (9030'-9031

  4. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim; ,

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  5. Oil and gas field code master list 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storagemore » Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.« less

  6. Oil and gas field code master list, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  7. Oil and Gas field code master list 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editionsmore » of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.« less

  8. Oil and Gas Field Code Master List 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area blockmore » in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.« less

  9. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  10. PIV Measurements of Gas Flow Fields from Burning End

    NASA Astrophysics Data System (ADS)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  11. Full field reservoir modelling of Central Oman gas/condensate fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemput, L.E.C. van de; Bertram, D.A.; Bentley, M.R.

    1995-12-31

    Gas reserves sufficient for a major export scheme have been found in Central Oman. To support appraisal and development planning of the gas/condensate fields, a dedicated, multi-disciplinary study team comprising both surface and subsurface engineers was assembled. The team fostered a high level of awareness of cross-disciplinary needs and challenges, resulting in timely data acquisition and a good fit between the various work-activities. The foundation of the subsurface contributions was a suite of advanced full-field reservoir models which: (1) provided production and well requirement forecasts; (2) quantified the impact of uncertainties on field performance and project costs; (3) supported themore » appraisal campaign; (4) optimised the field development plan; and (5) derived recovery factor ranges for reserves estimates. Geological/petrophysical uncertainties were quantified using newly-developed, 3-D probabilistic modelling tools. An efficient computing environment allowed a large number of sensitivities to be run in a timely, cost-effective manner. The models also investigated a key concern in gas/condensate fields: well impairment due to near-well condensate precipitation. Its impact was assessed using measured, capillary number-dependent, relative permeability curves. Well performance ranges were established on the basis of Equation of State single-well. simulations, and translated into the volatile oil full-field models using pseudo relative permeability curves for the wells. The models used the sparse available data in an optimal way and, as part of the field development plan, sustained confidence in the reserves estimates and the project, which is currently in the project specification phase.« less

  12. Ambient Field Analysis at Groningen Gas Field

    NASA Astrophysics Data System (ADS)

    Spica, Z.; Nakata, N.; Beroza, G. C.

    2016-12-01

    We analyze continuous ambient-field data at Groningen gas field (Netherlands) through cross-correlation processing. The Groningen array is composed of 75 shallow boreholes with 6 km spacing, which contain a 3C surface accelerometer and four 5-Hz 3C borehole geophones spaced at 50 m depth intervals. We successfully retrieve coherent waves from ambient seismic field on the 9 components between stations. Results show high SNR signal in the frequency range of 0.125-1 Hz, and the ZZ, ZR, RZ, RR and TT components show much stronger wave energy than other components as expected. This poster discuss the different type of waves retrieved, the utility of the combination of borehole and surface observations, future development as well as the importance to compute the 9 components of the Green's tensor to better understand the wave field propriety with ambient noise.

  13. Uniform pressures in gas fields (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravo, G.

    1966-08-01

    Throughout the huge Reynosa Field, petroleos Mexicanos (Pemex) is equalizing gas-well pressures to reduce the expense of gas-compressing equipment. This solution was proposed by the Department of Gas and Gasoline. Tests were taken on 4 specially selected wells. The results show production to be much less than the potential; by equalizing pressure, production is increased at less cost.

  14. Repairing casing at a gas storage field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenbaugh, B.

    1992-09-01

    This paper reports on the Leyden gas storage field which is a 1.5-Bcf working volume underground gas storage facility locating at the northwest edge of the Denver, Colo., metropolitan area. The field is owned by Public Service Co. of Colorado and operated by its wholly owned subsidiary, Western Gas Supply Co. Logging technology was instrumental in locating casing damage at two wells, identifying the extent of the damage and ensuring a successful repair. The well casings were repaired by installing a liner between two packers, with one packer set above the damage and the other set below it. Special equipmentmore » and procedures were required for workover and drilling operations because of the complications associated with cavern storage. Logging technology can locate damaged casing and evaluate the type and extent of the damage, and also predict the probability of gas migration behind the casing.« less

  15. Geology of Tompkins Hill gas field, Humboldt County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.

    1988-03-01

    The Tompkins Hill gas field, located in Humboldt County, California, is the only producing field in the Eel River basin. The field is an anticlinal flexure on the north limb of the Eel River syncline in the central onshore portion of the basin. The Tompkins Hill anticline is doubly plunging and trends east-west. Stratigraphic units present in the field include the Yager, Eel River, and Rio Dell Formations and Scotia Bluffs Sandstone. The Yager occurs below a major unconformity, and forms economic basement. Strata overlying the Eel River, Rio Dell, and Scotia Bluffs represent a progradational basin-fill sequence, including submarinemore » fan, slope, shelf, and littoral deposits. The primary productive interval in the field is within the middle of the Rio Dell and consists of interbedded fine sandstone and mudrock. Portions of the Eel River and upper Rio Dell Formations are also productive. The Tompkins Hill gas field was discovered by the Texas Company in 1937 with the drilling of Eureka 2 in Sec. 22, T3N, R1W. The play was probably based on outcrop mapping and the presence of gas seeps in the area. The primary trapping mechanism in the field is structural, although stratigraphy may have been a factor in constraining gas. To date, 39 producing wells have been drilled and 87.4 bcf of gas, consisting of 98% methane, has been produced. Very minor amounts of condensate are also produced. The source rocks for the gas are uncertain, but both the Yager Formation and strata of the lower Wildcat Group may have contributed.« less

  16. Kalimantan field development hikes gas supply for LNG export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharmoko, G.R.

    1991-10-14

    This paper reports on the development of Tambora and Tunu gas fields in Kalimantan that have increased available gas supply for the export of liquefied natural gas (LNG) from Indonesia. The demand for LNG is increasing in the energy thirsty Far East market. And Indonesia, the world's largest exporter, is keeping pace by expanding the Bontang liquefaction plant in East Kalimantan. A fifth train, with a capacity of around 2.5 million tons/year, began operating in January 1990. Start-up of a sixth train, of identical capacity, is planned for January 1994. The Bontang plant is operated by PT Badak on behalfmore » of Pertamina, the Indonesian state oil and gas mining company. The feed to the fifth train comes primarily from the first-phase development of Total Indonesie's two gas fields, Tambora and Tunu. The sixth train will be fed by a second-phase development of the Tunu field.« less

  17. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  18. Field testing the Raman gas composition sensor for gas turbine operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buric, M.; Chorpening, B.; Mullem, J.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less

  19. Gathering system optimization in a gas field with commingled flowlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soetedja, V.; Harun, A.F.

    1995-10-01

    Badak Field, located in East Kalimantan, Indonesia, is a giant onshore gas field with 181 wells and total gas deliverability of 1.3 billion standard cubic feet (BSCF) per day. In many cases, gas from more than one well is commingled in the same flowline. This study concludes that commingling flowlines has been extremely cost effective over the life of the field. However, good initial design is required to anticipate future reservoir depletion and recompletions in order to achieve the best economic efficiency.

  20. One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection

    PubMed Central

    Zhao, Xiaoli; Cai, Bin; Tang, Qingxin; Tong, Yanhong; Liu, Yichun

    2014-01-01

    Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorable for the studies of the response mechanism. On the other hand; one main merit of the field-effect sensors is to provide an extra gate electrode to realize the current modulation; so that the sensitivity can be dramatically enhanced by changing the conductivity when operating the sensors in the subthreshold regime. This article reviews the recent developments in the field of 1D nanostructure FET for gas detection. The sensor configuration; the performance as well as their sensing mechanism are evaluated. PMID:25090418

  1. Gas storage and separation by electric field swing adsorption

    DOEpatents

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  2. Field Measurements of Black Carbon Yields from Gas Flaring.

    PubMed

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  3. OH megamasers: dense gas & the infrared radiation field

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  4. Energy insurance for Anchorage, Alaska - Beluga river gas field, Cook Inlet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N.D.; Lindblom, R.G.

    1987-05-01

    The Beluga River gas field is the primary energy source for Anchorage, Alaska. The field is located 40 mi west of Anchorage astride the northwest shoreline of the Cook Inlet. Gas was discovered in December 1962 by Chevron's Beluga River unit (BRU) 1 well in section 35, T13N, R10W, S.B. and M. There are 16 producing wells in the field capable of a total gas potential of 140,000 MCFD. The current production averages 75,000 MCFD and the field has produced 220 BCF gas. Chevron, Shell, and ARCO have equal interests in the field. The Beluga River unit was formed inmore » 1962 with Chevron as operator. The produced gas is sold to the Chugach Electric Company and the Enstar Gas Company, both Anchorage-based utilities. The gas accumulation is trapped by a doubly plunging, slightly asymmetric anticlinal fold trending northeast-southwest. Gas is found from 3000 to 6000 ft vertical depth in sands within the lower Sterling (Pliocene) and Beluga River (upper Miocene) Formations. Reservoir sands range in thickness from 5 to 85 ft with average porosities of 24 to 30%. The Sterling sands were deposited in broad sand channels in a fluvial-deltaic setting, whereas Beluga sands were deposited in a high-energy fluvial environment in shifting stream courses. The use of the wireline repeat formation tester has aided in correlation, evaluation, and management of the multiple sand reservoirs. New gas sand reservoirs and partly depleted reservoirs are recognized, enabling completion from reservoirs of similar pressures and reducing risks associated with cross flow between reservoirs.« less

  5. Oil and gas field code master list 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specificmore » data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.« less

  6. Study optimizes gas lift in Gulf of Suez field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waly, A.A.; Darwish, T.A.; Osman Salama, A.

    1996-06-24

    A study using PVT data combined with fluid and multiphase flow correlations optimized gas lift in the Ramadan field, Nubia C, oil wells, in the Gulf of Suez. Selection of appropriate correlations followed by multiphase flow calculations at various points of injection (POI) were the first steps in the study. After determining the POI for each well from actual pressure and temperature surveys, the study constructed lift gas performance curves for each well. Actual and optimum operating conditions were compared to determine the optimal gas lift. The study indicated a net 2,115 bo/d could be gained from implementing its recommendations.more » The actual net oil gained as a result of this optimization and injected gas reallocation was 2,024 bo/d. The paper discusses the Ramadan field, fluid properties, multiphase flow, production optimization, and results.« less

  7. Pulsed-field-gradient measurements of time-dependent gas diffusion

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.

    1998-01-01

    Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.

  8. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  9. Development of a thin oil rim with horizontal wells in a low relief chalk gas field, Tyra field, Danish North Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nykjaer, O.

    1994-12-31

    This paper presents the history of the development of an oil rim in a chalk gas field. In a low relief gas field, oil rim development is problematic because the proximity to fluid contacts leads to gas and water coning and a significantly decreased oil production. This problem has been reduced in Tyra by developing the oil rim with horizontal wells. The best oil wells are in areas where gas production is impaired by tight chalk immediately above the gas-oil contact, and where the oil rim is thickest. The field was initially developed as a gas field due to poormore » production tests of the oil rim during the appraisal of the field. An understanding of the distribution of oil led to the drilling of a successful oil rim well. The advent of horizontal drilling increased the scope for oil rim development and accelerated the drilling of oil rim wells. Extensive reservoir simulation work provided the reservoir management tool for the planning of an oil rim development under the constraint of a gas sales agreement. It has resulted in a plan for further development of the Tyra gas field. According to the plan additional gas injection will in a period of seven years result in low net annual gas off-take from the Tyra gas production wells and the main production will instead come from horizontal wells in the oil-rim. During this time the majority of the oil reserves will be produced.« less

  10. Complete Moment Tensor Determination of Induced Seismicity in Unconventional and Conventional Oil/Gas Fields

    NASA Astrophysics Data System (ADS)

    Gu, C.; Li, J.; Toksoz, M. N.

    2013-12-01

    Induced seismicity occurs both in conventional oil/gas fields due to production and water injection and in unconventional oil/gas fields due to hydraulic fracturing. Source mechanisms of these induced earthquakes are of great importance for understanding their causes and the physics of the seismic processes in reservoirs. Previous research on the analysis of induced seismic events in conventional oil/gas fields assumed a double couple (DC) source mechanism. However, recent studies have shown a non-negligible percentage of a non-double-couple (non-DC) component of source moment tensor in hydraulic fracturing events (Šílený et al., 2009; Warpinski and Du, 2010; Song and Toksöz, 2011). In this study, we determine the full moment tensor of the induced seismicity data in a conventional oil/gas field and for hydrofrac events in an unconventional oil/gas field. Song and Toksöz (2011) developed a full waveform based complete moment tensor inversion method to investigate a non-DC source mechanism. We apply this approach to the induced seismicity data from a conventional gas field in Oman. In addition, this approach is also applied to hydrofrac microseismicity data monitored by downhole geophones in four wells in US. We compare the source mechanisms of induced seismicity in the two different types of gas fields and explain the differences in terms of physical processes.

  11. Overview of DOE Oil and Gas Field Laboratory Projects

    NASA Astrophysics Data System (ADS)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  12. Relationships between gas field development and the presence and abundance of pygmy rabbits in southwestern Wyoming

    USGS Publications Warehouse

    Germaine, Stephen; Carter, Sarah; Ignizio, Drew A.; Freeman, Aaron T.

    2017-01-01

    More than 5957 km2 in southwestern Wyoming is currently covered by operational gas fields, and further development is projected through 2030. Gas fields fragment landscapes through conversion of native vegetation to roads, well pads, pipeline corridors, and other infrastructure elements. The sagebrush steppe landscape where most of this development is occurring harbors 24 sagebrush-associated species of greatest conservation need, but the effects of gas energy development on most of these species are unknown. Pygmy rabbits (Brachylagus idahoensis) are one such species. In 2011, we began collecting three years of survey data to examine the relationship between gas field development density and pygmy rabbit site occupancy patterns on four major Wyoming gas fields (Continental Divide–Creston–Blue Gap, Jonah, Moxa Arch, Pinedale Anticline Project Area). We surveyed 120 plots across four gas fields, with plots distributed across the density gradient of gas well pads on each field. In a 1 km radius around the center of each plot, we measured the area covered by each of 10 gas field infrastructure elements and by shrub cover using 2012 National Agriculture Imagery Program imagery. We then modeled the relationship between gas field elements, pygmy rabbit presence, and two indices of pygmy rabbit abundance. Gas field infrastructure elements—specifically buried utility corridors and a complex of gas well pads, adjacent disturbed areas, and well pad access roads—were negatively correlated with pygmy rabbit presence and abundance indices, with sharp declines apparent after approximately 2% of the area consisted of gas field infrastructure. We conclude that pygmy rabbits in southwestern Wyoming may be sensitive to gas field development at levels similar to those observed for greater sage-grouse, and may suffer local population declines at lower levels of development than are allowed in existing plans and policies designed to conserve greater sage-grouse by limiting

  13. Field tests prove microscale NRU to upgrade low-btu gas

    USGS Publications Warehouse

    Bhattacharya, Saibal; Newell, K. David; Watney, W. Lynn; Sigel, Micael

    2009-01-01

    The Kansas Geological Survey (University of Kansas) and the American Energies Corp., Wichita, have conducted field tests of a scalable, microscale, N2-rejection unit (NRU) to demonstrate its effectiveness to upgrade low-pressure ((<100 psig) and low-volume (=100 Mcfd) low-btu gas to pipeline quality. The tests aim to develop inexpensive NRU technology, which is designed for low- volume, low-pressure gas wells, to significantly increase the contribution of marginal low-btu gas to the gas supply of the US. The NRU uses two towers and uses three stages, namely, adsorption under pressure, venting to 2 psig, and desorption under vacuum. The modular design allows additional sets of towers to be added or removed to handle increases or decreases in feed volumes. The field tests also reveal that a strong compressor, which is capable of evacuating the tower (volume) as quickly as possible, should be employed to reduce process cycle time and increase plant throughput.

  14. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  15. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. Allmore » three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.« less

  16. Gas, water, and oil production from Wattenberg field in the Denver Basin, Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.

    2011-01-01

    Gas, oil, and water production data were compiled from selected wells in two tight gas reservoirs-the Codell-Niobrara interval, comprised of the Codell Sandstone Member of the Carlile Shale and the Niobrara Formation; and the Dakota J interval, comprised mostly of the Muddy (J) Sandstone of the Dakota Group; both intervals are of Cretaceous age-in the Wattenberg field in the Denver Basin of Colorado. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after production commenced, which generally was in the 1990s. For each producing interval, summary diagrams and tables of oil-versus-gas production and water-versus-gas production are shown with fluid-production rates, the change in production over five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams and tables permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The Dakota J interval produces gas on a per-well basis at roughly three times the rate of the Codell-Niobrara interval. After five years of production, gas data from the second samples show that both intervals produce gas, on average, at about one-half the rate as the first sample. Oil-gas ratios in the Codell-Niobrara interval are characteristic of a retrograde gas and are considerably higher than oil-gas ratios in the Dakota J interval, which are characteristic of a wet gas. Water production from both intervals is low, and records in many wells are discontinuous, particularly in the Codell-Niobrara interval. Water-gas ratios are broadly variable, with some of the variability possibly due to the difficulty of measuring small production rates. Most wells for which water is reported have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir

  17. Land subsidence near oil and gas fields, Houston, Texas.

    USGS Publications Warehouse

    Holzer, T.L.; Bluntzer, R.L.

    1984-01-01

    Subsidence profiles across 29 oil and gas fields in the 12 200 km2 Houston, Texas, regional subsidence area, which is caused by the decline of ground-water level, suggest that the contribution of petroleum withdrawal to local land subsidence is small. In addition to land subsidence, faults with an aggregate length of more than 240 km have offset the land surface in historical time. Natural geologic deformation, ground-water pumping, and petroleum withdrawal have all been considered as potential causes of the historical offset across these faults. The minor amount of localized land subsidence associated with oil and gas fields, suggests that petroleum withdrawal is not a major cause of the historical faulting. -from Authors

  18. The space-time structure of oil and gas field growth in a complex depositional system

    USGS Publications Warehouse

    Drew, L.J.; Mast, R.F.; Schuenemeyer, J.H.

    1994-01-01

    Shortly after the discovery of an oil and gas field, an initial estimate is usually made of the ultimate recovery of the field. With the passage of time, this initial estimate is almost always revised upward. The phenomenon of the growth of the expected ultimate recovery of a field, which is known as "field growth," is important to resource assessment analysts for several reasons. First, field growth is the source of a large part of future additions to the inventory of proved reserves of crude oil and natural gas in most petroliferous areas of the world. Second, field growth introduces a large negative bias in the forecast of the future rates of discovery of oil and gas fields made by discovery process models. In this study, the growth in estimated ultimate recovery of oil and gas in fields made up of sandstone reservoirs formed in a complex depositional environment (Frio strand plain exploration play) is examined. The results presented here show how the growth of oil and gas fields is tied directly to the architectural element of the shoreline processes and tectonics that caused the deposition of the individual sand bodies hosting the producible hydrocarbon. ?? 1994 Oxford University Press.

  19. Geological probability calculation of new gas discoveries in wider area of Ivana and Ika Gas Fields, Northern Adriatic, Croatia

    NASA Astrophysics Data System (ADS)

    Tomislav, Malvić; Josipa, Velić; Režić, Mate

    2016-09-01

    There are eleven reservoirs in Ivana Gas Field and they are composed of Pleistocene sands, silt sands and siltstones, developed in dominant clays and marls depositional sequences. Ika Gas Field is the only field in Adriatic with gas accumulated in carbonate rocks, which are the deepest reservoir of the total four reservoirs. A carbonate reservoir is defined with tectonical and erosional unconformity, which is placed between Mesozoic and Pliocene rocks. The three younger Ika reservoirs are composed of Pleistocene sands, silt sands and siltstones that are laminated into clays and marls. The goal of our study was to assess the `Probability Of Success' (POS) of finding new gas accumulations within the marginal area of those two fields, either in the form of Mesozoic rocks or Pleistocene deposits. The assessment was successfully completed using the Microsoft Excel POS table for the analyzed areas in the Croatian part of the Po Depression, namely, Northern Adriatic. The methodology was derived and adapted from a similar POS calculation, which was originally used to calculate the geological probability of hydrocarbon discoveries in the Croatian part of the Pannonian Basin System (CPBS).

  20. ROLE OF SMALL OIL AND GAS FIELDS IN THE UNITED STATES.

    USGS Publications Warehouse

    Meyer, Richard F.; Fleming, Mary L.

    1985-01-01

    The actual economic size cutoff is a function of such factors as depth, water depth offshore, and accessibility to transportation infrastructure. Because of the constraint of resource availability, price is now the principal force driving drilling activity. The proportion of new-field wildcats to other exploratory wells has fallen in recent years, but success in new-field wildcats has risen to about 20%. However, only very small fields, less than 1 million BOE, are being found in large numbers. Through 1979, almost 93% of known gas fields and 94. 5% of known oil fields were small, yet they contain only 14. 5% of the ultimately recoverable gas and 12. 5% of the oil. However, small fields are less capital intensive than equivalent-capacity synthetic-fuel plants, they are extremely numerous, and they are relatively easy and inexpensive to find and put on production. Refs.

  1. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  2. Development of a Random Field Model for Gas Plume Detection in Multiple LWIR Images.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heasler, Patrick G.

    This report develops a random field model that describes gas plumes in LWIR remote sensing images. The random field model serves as a prior distribution that can be combined with LWIR data to produce a posterior that determines the probability that a gas plume exists in the scene and also maps the most probable location of any plume. The random field model is intended to work with a single pixel regression estimator--a regression model that estimates gas concentration on an individual pixel basis.

  3. Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field

    USGS Publications Warehouse

    Nehring, N.L.; D'Amore, F.

    1984-01-01

    Gas compositions of Cerro Prieto wells in 1977 reflected strong boiling in the reservoir around wells M-20 and M-25. This boiling zone appeared to be collapsing in 1982 when a number of wells in this area of the field were shut-in. In 1977 and 1982, gas compositions also showed boiling zones corresponding to faults H and L postulated by Halfman et al. (1982). Four gas geothermometers were applied, based on reservoir equilibria and calculated fugacities. The Fisher - Tropsch reaction predicted high temperatures and appeared to re-equilibrate slowly, whereas the H2S reaction predicted low temperatures and appeared to re-equilibrate rapidly. Hydrogen and NH3 reactions were intermediate. Like gas compositions, the geothermometers reflected reservoir processes, such as boiling. Surface gas compositions are related to well compositions, but contain large concentrations of N2 originating from air dissolved in groundwater. The groundwater appears to originate in the east and flow over the production field before mixing with reservoir gases near the surface. ?? 1984.

  4. A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms

    PubMed Central

    Chen, Dajing; Lei, Sheng; Chen, Yuquan

    2011-01-01

    A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky and Ohmic contacts based on different electrode materials. Higher applied gate voltage contributes to an increase in gas sensitivity. The nanofiber transistor showed a 7% reversible resistance change to 1 ppm NH3 with 10 V gate voltage. The FET characteristics of the sensor when exposed to different gas concentrations indicate that adsorption of NH3 molecules reduces the carrier mobility in the polyaniline nanofiber. As such, nanofiber-based sensors could be promising for environmental and industrial applications. PMID:22163969

  5. Two-dimensional Fermi gas in spin-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Anzai, Takaaki; Nishida, Yusuke

    Experimental techniques in ultracold atoms allow us to tune parameters of the system at will. In particular, synthetic magnetic fields have been created by using the atom-light coupling and, therefore, it is interesting to study what kinds of quantum phenomena appear in correlated ultracold atoms subjected to synthetic magnetic fields. In this work, we consider a two-dimensional Fermi gas with two spin states in spin-dependent magnetic fields which are assumed to be antiparallel for different spin states. By studying the ground-state phase diagram within the mean-field approximation, we find quantum spin Hall and superfluid phases separated by a second-order phase transition. We also show that there are regions where the superfluid gap parameter is proportional to the attractive coupling, which is in marked contrast to the usual exponential dependence. Moreover, we elucidate that the universality class of the phase transition belongs to that of the XY model at special points of the phase boundary, while it belongs to that of a dilute Bose gas anywhere else. International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology.

  6. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  7. Dual concentric gas-lift completion design for the Thistle field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, P.C.; Adair, P.

    1991-02-01

    A unique dual concentric gas-lift completion was installed in two wells in the thistle field during 1987. This paper outlines the completion concept and design, including vertical-lift performance and tubing movement/stress analysis. Results of field performance after 1 year of production history are presented and compared with predicted values.

  8. Passive drainage and biofiltration of landfill gas: Australian field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane,more » and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.« less

  9. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.

    PubMed

    Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava

    2011-06-01

    Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society

  11. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-01-01

    Several trace gases such as H2O, CO, CO2, NO, N2O, NO2 and CH4 strongly absorb in the mid-IR spectral region due to their fundamental rotational and vibrational transitions. In this work, we propose an evanescent field absorption gas sensor based on silicon/silicon dioxide slot waveguide at 3.39 μm for sensing of methane gas. These waveguides can provide the highest evanescent field ratio (EFR) > 47% with adequate dimensions. Higher EFR values often come at an expense of higher propagation losses. These waveguides have relatively higher losses as compared to conventional waveguides, such as rib and slab waveguides, as these fundamental losses are static and the proposed sensing mechanism is established on the incremental loss due to the absorption of the gas. Therefore, incident power can always be incremented to compensate the waveguide losses.

  12. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  13. Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio

    NASA Technical Reports Server (NTRS)

    Johnson, G. O.

    1981-01-01

    In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.

  14. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for

  15. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for

  16. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  17. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  18. New Argentine Central-West line taps rich Neuquen gas field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, J.

    1982-02-01

    Argentina's new Central-West gas pipeline consists of 697 miles of 30-in. line and 451 miles of smaller gathering and distribution lines that link the rich Neuquen gas field with cities to the north. A financing package drawn up by 21 banks in the US and Europe allowed Cogasco S.A. to build the line for Gas del Estado across the roadless pampas east of the Andes. Primarily an agricultural country, Argentina had to import all the equipment and materials for the project. Site work began in July, 1980 with 800 workers employed on three spreads; the line was commissioned in November,more » 1981, 15 months ahead of the contract schedule.« less

  19. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  20. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    USGS Publications Warehouse

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases

  1. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  2. Distribution of Iodine and Its Geochronological Implications for Gas Field Brine in Japan

    NASA Astrophysics Data System (ADS)

    Tomaru, H.; Hirose, N.; Miyazato, S.

    2017-12-01

    Global distribution of iodine is very heterogeneous in location and chemical species; 65% of total iodine is produced in Chile as solid nitrate (e.g. caliche) and 30% in Japan as solute mainly in gas field brine. In the latter case, because iodine has a close association with marine organic materials such as algae, iodine had been liberated into the surrounding aqueous phase during the generation of oil and gas and traveled together with oil/gas to the current deposit. The distribution of iodine therefore reflects the environments of accumulation and secondary migration of iodine during its diagenetic processes. Here we present the concentrations of total iodine (127-I) and a long-lived radioisotope (129-I) in gas field brines in Japan to understand the behavior of iodine in response to the development of present geological setting including oil field in terms of its geochronological signals using 129-I. The concentrations of iodine dissolved in gas field brines and hot/cold springs in nearby areas are relatively high compared with the seawater composition, although the chloride concentrations are lower than the seawater. This is due to the delivery of iodine from organic-rich sediments into the current deposits. The 129-I has decayed since the deposition of iodine-rich organic materials from the seawater following the standard decay curve, however, the129-I concentrations are relatively low compared with the age of host sediments of the fluids, which indicates iodine has derived secondary from old sediments responsible for the generation of gas. The 129-I and halogen composition also indicate these fluids mix with pre-anthropogenic seawater during the migration. These results characterize the history of long-term migration of iodine in organic-rich marine system.

  3. The role of magnetic fields in the collapse of protostellar gas clouds

    NASA Technical Reports Server (NTRS)

    Scott, E. H.; Black, D. C.

    1980-01-01

    The paper presents the results of a numerical calculation of the collapse of an idealized protostellar gas cloud including the effects of a 'frozen-in' magnetic field. The 'traditional' picture of magnetic effects on gas clouds and recent observational and theoretical work on the subject are summarized. Attention is given to the method of calculation and the results are interpreted. It is found that the central magnetic field in the collapsing cloud model follows a rho to the 1/2 power relation, and the discussion implies that this is a general result which should hold true for some range of initial conditions around those chosen. In addition, it is found that the outer envelope of the cloud will be held up by tension in the field lines.

  4. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    NASA Astrophysics Data System (ADS)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  5. An Explanation of the Varied Measurements of Gas Field Methane Leakage

    NASA Astrophysics Data System (ADS)

    Evans, W. F.; McHugh, M. J.

    2014-12-01

    In situ engineering measurements of natural gas well sites indicate leakage rates with a mean rate of 1.5% of the gas production rate from individual wells. These have been made at several gas basins using in situ measurements. These in situ engineering measurements are reported as the fugitive emission rates to the UNCCC by the EPA. On the other hand, atmospheric measurements at altitudes above the surface by several atmospheric groups indicate that gas fields are leaking at an average rate of over 9 %. Papers have been published in several highly reputable journals by government and university scientists. Both groups have been criticizing the methodologies of the opposite group. We propose that a more likely explanation is that both groups are correct. Although this appears as a direct conflict with one group on each side, a careful analysis shows that the two groups are measuring different air parcels. This is the only explanation which will explain the apparent conflicting situation. This can be understood if the basins in which the wells are sited are actually leaking from the bed rock formations in which the wells are drilled. If the geology of the natural gas basins is examined in detail, then the situation becomes understandable. Many basins contain gas in fault traps. These faults often leak, particularly if there is a small earthquake. The leaks can follow tilted layers, resulting in vertical transport of gas along the slanted layer cracks. This leakage may emerge into the atmosphere at large distances from the actual gas well under measurement. Fracking can obviously increase the leakage from a valley gas field. The methane leaks could alter the budgets of greenhouse gases reported by various gas producing countries by significant amounts. The potential increases and altered budgets for various countries as reported to the UNCCC are estimated and reported in this presentation. The fraction of these unreported leaks which should be reported will have to

  6. Nowcasting Induced Seismicity at the Groningen Gas Field in the Netherlands

    NASA Astrophysics Data System (ADS)

    Luginbuhl, M.; Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The Groningen natural gas field in the Netherlands has recently been a topic of controversy for many residents in the surrounding area. The gas field provides energy for the majority of the country; however, for a minority of Dutch citizens who live nearby, the seismicity induced by the gas field is a cause for major concern. Since the early 2000's, the region has seen an increase in both number and magnitude of events, the largest of which was a magnitude 3.6 in 2012. Earthquakes of this size and smaller easily cause infrastructural damage to older houses and farms built with single brick walls. Nowcasting is a new method of statistically classifying seismicity and seismic risk. In this paper, the method is applied to the induced seismicity at the natural gas fields in Groningen, Netherlands. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say , and one small say . The method utilizes the number of small earthquakes that occur between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that have occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time, which it does in this case. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of earthquakes in

  7. Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher Michael

    The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron

  8. Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; Lee, Won Suk

    A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapidmore » exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate

  9. Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.

    PubMed

    Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J

    2009-04-02

    Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water.

  10. On the equilibrium structures of self-gravitating masses of gas containing axisymmetric magnetic fields

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    The general equations describing the equilibrium shapes of self-gravitating gas clouds containing axisymmetric magnetic fields are presented. The general equations admit of a large class of solutions. It is shown that if one additional (ad hoc) asumption is made that the mass be spherically symmetrically distributed, then the gas pressure and the boundary conditions are sufficiently constraining that the general topological structure of the solution is effectively determined. The further assumption of isothermal conditions for this case demands that all solutions possess force-free axisymmetric magnetic fields. It is also shown how the construction of aspherical (but axisymmetric) configurations can be achieved in some special cases, and it is demonstrated that the detailed form of the possible equilibrium shapes depends upon the arbitrary choice of the functional form of the variation of the gas pressure along the field lines.

  11. Gas, Oil, and Water Production from Grand Valley, Parachute, Rulison, and Mamm Creek Fields in the Piceance Basin, Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.

    2010-01-01

    Gas, oil, and water production data for tight gas reservoirs were compiled from selected wells in western Colorado. These reservoir rocks-the relatively shallow Paleogene Wasatch G sandstone interval in the Parachute and Rulison fields and fluvial sandstones in the deeper Upper Cretaceous Mesaverde Group in the Grand Valley, Parachute, Rulison, and Mamm Creek fields-are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after production commenced, which was generally in the 1990s. For each producing interval, summary diagrams of oil-versus-gas and water-versus-gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. Dry gas is produced from the Wasatch G interval and wet gas is produced from the Mesaverde Group. Production from the Wasatch G interval is also almost completely free of water, but water production commences with gas production in wells producing from the Mesaverde Group-all of these wells have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir temperature and pressure. The lack of produced water from the Wasatch G interval is attributed to expansion of the gas accumulation with uplift and erosion. The reported underpressure of the Wasatch G interval is here attributed to hydraulic connection to the atmosphere by outcrops in the Colorado River valley at an elevation lower than that of the gas fields. The amount of reduction of gas production over the five-year time span between the first and second samples is

  12. Improved Differential Ion Mobility Separations Using Linked Scans of Carrier Gas Composition and Compensation Field

    NASA Astrophysics Data System (ADS)

    Santiago, Brandon G.; Harris, Rachel A.; Isenberg, Samantha L.; Ridgeway, Mark E.; Pilo, Alice L.; Kaplan, Desmond A.; Glish, Gary L.

    2015-07-01

    Differential ion mobility spectrometry (DIMS) separates ions based on differences in their mobilities in low and high electric fields. When coupled to mass spectrometric analyses, DIMS has the ability to improve signal-to-background by eliminating isobaric and isomeric compounds for analytes in complex mixtures. DIMS separation power, often measured by resolution and peak capacity, can be improved through increasing the fraction of helium in the nitrogen carrier gas. However, because the mobility of ions is higher in helium, a greater number of ions collide with the DIMS electrodes or housing, yielding losses in signal intensity. To take advantage of the benefits of helium addition on DIMS separations and reduce ion losses, linked scans were developed. In a linked scan the helium content of the carrier gas is reduced as the compensation field is increased. Linked scans were compared with conventional compensation field scans with constant helium content for the protein ubiquitin and a tryptic digest of bovine serum albumin (BSA). Linked scans yield better separation of ubiquitin charge states and enhanced peak capacities for the analysis of BSA compared with compensation field scans with constant helium carrier gas percentages. Linked scans also offer improved signal intensity retention in comparison to compensation field scans with constant helium percentages in the carrier gas.

  13. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  14. Saga of coal bed methane, Ignacio Blanco gas field, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, B.C.; Harr, C.L.; Burch, L.C.

    1989-09-01

    Prior to the 1977 discovery of the Cedar Hill Basal Fruitland pool (the first officially designated coal-bed methane field in the western US) 28.5 bcf of gas had been produced from Fruitland Formation coal seams in the Ignacio Blanco Fruitland-Pictured Cliffs field, Northern San Juan basin, Colorado. The discovery well for the field, Southern Ute D-1, was drilled and completed in 1951 on the Ignacio anticline, La Plata County, Colorado. Initial completion was attempted in the Pictured Cliffs Sandstone. The well was plugged back after making water from the Pictured Cliffs and was completed in the lower coal-bearing section ofmore » the Fruitland Formation. The well produced 487,333 mcf of gas in nine years and was abandoned in 1959 due to water encroachment. Additionally, 52 similarly completed Ignacio anticline Fruitland wells were abandoned by the early 1970s due to the nemesis of If it's starting to kick water, you're through. Under today's coal-bed methane technology and economics, Amoco has twinned 12 of the abandoned wells, drilled five additional wells, and is successfully dewatering and producing adsorbed methane from previously depleted coal sections of the Ignacio structure. Field-wide drilling activity in 1988 exceeded all previous annual levels, with coal-seam degasification projects leading the resurgence. Drilling and completion forecasts for 1989 surpass 1988 levels by 50%.« less

  15. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  16. Detection of hydrocarbon microseepage in a rain forest environment (Jurua Gas field, northern Brazil) using Landsat MSS data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, F.P.; Cunha, F.M.B.

    1990-05-01

    The Jurua gas field is the first important hydrocarbon accumulation found in the jungle-covered Solimoes basin. The tectonic framework in this area is characterized by a right-lateral transpressional zone (Jurua structural trend). Hydrocarbon traps are anticlines developed along the upthrown block of a reverse fault. The prospective 2,200-m-thick Paleozoic section is unconformably covered by a 2,800-m-thick pile of Mesozoic and Cenozoic continental sediments. Anomalous concentrations of hydrocarbons (C{sub 2}-C{sub 4}) in soil samples are concordantly aligned with the trace of the reverse fault crossing the gas field, indicating that this feature acted as a conduit for hydrocarbon microseepage. Gas-producing wellsmore » are located over a tabular watershed which coincides with the northeast-southwest Jurua structural trend. An unsupervised classification of Landsat MSS data over the gas field area reveals that one spectral class of vegetation is aligned with the Jurua structural trend. Field checking shows that the vegetation near the gas-producing well 1-JR-1-AM is not as dense as the forest outside the limits of the Jurua gas field. Two geologic factors may account for the vegetation anomaly over the gas field. (1) The northeast-southwest tabular watershed corresponds to a Pleistocene erosional surface associated with weathering products such as bauxite and laterite. The resulting soil is impermeable and low in nutrients. (2) The spectral behavior of vegetation may represent the response of plants to long-term anaerobic soil conditions brought about by gas leakage from the Paleozoic reservoir.« less

  17. Field Evaluation of Open System Chambers for Measuring Whole Canopy Gas Exchanges

    USDA-ARS?s Scientific Manuscript database

    The ability to monitor whole canopy CO2 and H2O fluxes of crop plants in the field is needed for many research efforts ranging from plant breeding to the study of Climate Change effects on crops. Four portable, transparent, open system chambers for measuring canopy gas exchanges were field tested on...

  18. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  19. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  20. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  1. Turtle Bayou--1936 to 1983--case history of a major gas field in South Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronquist, C.

    1983-10-01

    Turtle Bayou Field, located in the middle Miocene trend in South Louisiana, is nearing the end of a productive life which spans over 30 years. Discovered by Shell Oil Company in 1949 after unsuccessful attempts by two other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approximately 6500 to 12,000 feet. Now estimated to have contained about 1.2 trillion standard cubic feet of gas in place, cumulative production through 1982 was 702more » billion standard cubic feet. Cumulative condensate-gas ratio has been 20 barrels per million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75 percent of original gas in place. On decline since 1973, it is anticipated the field will be essentially depleted in the next five years.« less

  2. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian J.; Boswell, Ray; Collett, Tim S.

    The Ignik Sikumi Gas Hydrate Exchange Field Trial was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas, and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope (ANS) during 2011 and 2012. The 2011 field program included drilling the vertical test well and performing extensive wireline logging through a thick section of gas-hydrate-bearing sand reservoirs that provided substantial new insight into the nature of ANS gas hydrate occurrences. The 2012 field program involved an extended, scientific field trial conducted within a single vertical wellmore » (“huff-and-puff” design) through three primary operational phases: 1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; 2) flowback conducted at down-hole pressures above the stability threshold for native CH4-hydrate, and 3) extended (30-days) flowback at pressures below the stability threshold of native CH4-hydrate. Ignik Sikumi represents the first field investigation of gas hydrate response to chemical injection, and the longest-duration field reservoir response experiment yet conducted. Full descriptions of the operations and data collected have been fully reported by ConocoPhillips and are available to the science community. The 2011 field program indicated the presence of free water within the gas hydrate reservoir, a finding with significant implications to the design of the exchange trial – most notably the use of a mixed gas injectant. While this decision resulted in a complex chemical environment within the reservoir that greatly tests current experimental and modeling capabilities – without such a mixture, it is apparent that injection could not have been achieved. While interpretation of the field data are continuing, the primary scientific findings and implications of the program are: 1) gas hydrate destabilizing is self-limiting, dispelling any notion of the

  3. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. © 2014 John Wiley & Sons Ltd.

  4. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  5. Effect of the axial magnetic field on a metallic gas-puff pinch implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Frolova, V.

    2016-06-15

    The effect of an axial magnetic field B{sub z} on an imploding metallic gas-puff Z-pinch was studied using 2D time-gated visible self-emission imaging. Experiments were performed on the IMRI-5 generator (450 kA, 450 ns). The ambient field B{sub z} was varied from 0.15 to 1.35 T. It was found that the initial density profile of a metallic gas-puff Z-pinch can be approximated by a power law. Time-gated images showed that the magneto-Rayleigh–Taylor instabilities were suppressed during the run-in phase both without axial magnetic field and with axial magnetic field. Helical instability structures were detected during the stagnation phase for B{sub z} < 1.1 T. For B{submore » z} = 1.35 T, the pinch plasma boundary was observed to be stable in both run-in and stagnation phases. When a magnetic field of 0.3 T was applied to the pinch, the soft x-ray energy was about twice that generated without axial magnetic field, mostly due to longer dwell time at stagnation.« less

  6. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  7. Turtle Bayou 1936-1983: case history of a major gas field in south Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronquist, C.

    1984-11-01

    Turtle Bayou field, located in the middle Miocene trend in south Louisiana, is nearing the end of a productive life spanning more than 30 years. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by two other companies, the field is a typical, low-relief, moderately faulted U.S. Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approximately 6,500 to 12,000 ft (1980 to 3660 m). Now estimated to have contained about 1.2 trillion scf (34 X 10/sup 9/ std m/sup 3/) ofmore » gas in place, cumulative production through 1982 was 702 billion scf (20 X 10/sup 9/ std m/sup 3/). Cumulative condensate/gas ration (CGR) has been 20 bbl/MMcf (110 X 10/sup -6/ m/sup 3//m/sup 3/. Recovery mechanisms in individual reservoirs include strong bottomwater drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range form 40 to 83% of original gas in place (OGIP). On decline since 1973, it is anticipated the field will be essentially depleted in the next 5 years.« less

  8. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  9. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition tomore » gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.« less

  10. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  11. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  12. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    NASA Technical Reports Server (NTRS)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; hide

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  13. Role of stranded gas in increasing global gas supplies

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  14. Identification and Quantification of Pesticides in Environmental Waters With Solid Phase Microextraction and Analysis Using Field-Portable Gas Chromatography-Mass Spectrometry

    DTIC Science & Technology

    2004-06-10

    Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry

  15. Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher; Gekelman, Walter

    2012-10-01

    A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.

  16. Turtle Bayou - 1936 to 1983: case history of a major gas field in south Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronquist, C.

    1983-01-01

    Turtle Bayou field, located in the middle Miocene trend in S. Louisiana, is nearing the end of a productive life which spans over 30 yr. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by 2 other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approx. 6500 to 12,000 ft. Now estimated to have contained ca 1.2 trillion scf of gas in place, cumulative production through 1982 was 702 billion scf.more » Cumulative condensate-gas ratio has been 20 bbl/million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75% of original gas in place.« less

  17. Overview of environmental investigations and remediations of leaks and spills in oil and gas fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, J.A.; Jacobs, O.T.; Traver, R.

    Historic and current leaks and spills in oil and gas fields can involve a variety of hazardous compounds, can be located virtually anywhere on site, and may significantly degrade soils and groundwater quality. Environmental evaluation of historic and current leaks and spills in oil and gas fields occurs in the investigative stage, characterized by a site assessment and field evaluation. The site assessment includes a site survey, aerial photo interpretation, review of regulatory agency records, operators' records, previous work by consultants, and interviews with knowledgeable persons. The field evaluation, designed to examine the lateral and vertical extent of the spillmore » or leak, could include a soil gas survey, cone penetrometer, trenching, and drilling. Using these techniques, collected soil or groundwater samples can be analyzed in a laboratory to differentiate the various hazardous compounds on-site. Once an environmental investigation has been performed to define the vertical and lateral extent of a spill and the potential pathways that the hazardous compound will move to expose a given population, then remediation options can be designed. Remedial programs for hazardous compounds commonly found in oil and gas fields include the following in-situ technologies: volatilization, biodegradation, leaching and chemical reaction, vitrification, passive remediation, and isolation/containment. Non-in-situ technologies include land farming, incineration, asphalt incorporation, solidification/stabilization, groundwater extraction and treatment, chemical extraction, and excavation and offsite disposal. Factors affecting remedial measures are cost of technology, time available to finish remediation, technical feasibility, regulatory acceptance, and accessibility and availability of space in the remediation area.« less

  18. Badak field's oil flowing; gas is ready

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.L.

    1975-03-24

    Within about 5 y after discovery of the Badak field in East Kalimantan, Indonesia, first deliveries are scheduled to be made from a new LNG plant fed over 530 million CF/day by the field. Badak is also flowing about 13,000 bbl/day of oil, which is piped to the Santan terminal. Other promising gas reserves found in the area could boost production to a level that - when coupled with Badak - would support an LNG-plant input of up to 1 billion CF/day. Indeed, the plant is being built with provisions for adding 2 more trains later. The plant will usemore » an Air Products Co. propane-precooled liquefaction process. The storage system will include four 600,000-bbl aboveground double-wall insulated tanks. Seven 4.4 million cu ft (125,000 cu m) tankers will be constructed to move the LNG from Bontang Bay to market in Japan, where 4 receiving terminals will be built - Chubu, Himeji, Kitakyushu, and Semboku II.« less

  19. Techno-economic sensitivity study of heliostat field parameters for micro-gas turbine CSP

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Gauché, Paul; Dinter, Frank; Myburgh, J. T.

    2017-06-01

    Concentrating solar power systems based on micro-gas turbines potentially offer numerous benefits should they become commercially viable. Heliostat fields for such systems have unique requirements in that the number of heliostats and the focal ratios are typically much lower than conventional central receiver systems. This paper presents a techno-economic sensitivity study of heliostat field parameters for a micro-gas turbine central receiver system. A 100 kWe minitower system is considered for the base case and a one-at-a-time strategy is used to investigate parameter sensitivities. Increasing heliostat focal ratios are found to have significant optical performance benefits due to both a reduction in astigmatic aberrations and a reduction in the number of facet focal lengths required; confirming the hypothesis that smaller heliostats offer a techno-economic advantage. Fixed Horizontal Axis tracking mechanism is shown to outperform the conventional Azimuth Zenith tracking mechanism in high density heliostat fields. Although several improvements to heliostat field performance are discussed, the capex fraction of the heliostat field for such system is shown to be almost half that of a conventional central receiver system and optimum utilization of the higher capex components, namely; the receiver and turbine subsystems, are more rewarding than that of the heliostat field.

  20. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    PubMed

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.

  1. Development of a Small, Inexpensive, and Field-deployable Gas Chromatograph for the Automated Collection, Separation, and Analysis of Gas-phase Organic Compounds

    NASA Astrophysics Data System (ADS)

    Skog, K.; Xiong, F.; Gentner, D. R.

    2017-12-01

    The identification and quantification of gas-phase organic compounds, like volatile organic compounds (VOCs), in the atmosphere relies on separation of complex mixtures and sensitive detection. Gas chromatography (GC) is widely applied, but relies on the need for high-purity compressed gases for separation and, often for detection. We have developed a low-cost, compact GC-based system for the collection and quantitative chemical speciation of complex mixtures of common atmospheric VOCs without the need for compressed high-purity gases or expensive detectors. We present results of lab and field testing against a commercially-available GC system. At optimized linear velocities challenging VOC pairs of similar volatility were resolved within 30 minutes, including n- and i-pentane; n-pentane and isoprene; and ethylbenzene and m/p-xylene. For 5-30 minute samples, we observe ppt-level detection limits for common VOCs such as benzene, toluene, ethylbenzene, xylenes, alpha-pinene, and limonene. We also present results of in-field use for VOC measurements. In all, this instrument is accurate, precise, small, and inexpensive (<$2500). Its lack of compressed gas cylinders make it ideal for field deployment and has been demonstrated to produce similar quality data to available GC technology.

  2. Petroleum system and production characteristics of the Muddy (J) Sandstone (Lower Cretaceous) Wattenberg continuous gas field, Denver basin, Colorado

    USGS Publications Warehouse

    Higley, D.K.; Cox, D.O.; Weimer, R.J.

    2003-01-01

    Wattenberg field is a continuous-type gas accumulation. Estimated ultimate recovery from current wells is 1.27 tcf of gas from the Lower Cretaceous Muddy (J) Sandstone. Mean gas resources that have the potential to be added to these reserves in the next 30 yr are 1.09 tcf; this will be primarily through infill drilling to recover a greater percentage of gas in place and to drain areas that are isolated because of geologic compartmentalization. Greatest gas production from the Muddy (J) Sandstone in Wattenberg field occurs (1) from within the most permeable and thickest intervals of Fort Collins Member delta-front and nearshore-marine sandstones, (2) to a lesser extent from the Horsetooth Member valley-fill channel sandstones, (3) in association with a large thermal anomaly that is delineated by measured temperatures in wells and by vitrinite reflectance contours of 0.9% and greater, (4) in proximity to the bounding Mowry, Graneros, and Skull Creek shales that are the hydrocarbon source rocks and reservoir seals, and (5) between the Lafayette and Longmont right-lateral wrench fault zones (WFZs) with secondary faults that act as conduits in areas of the field. The axis of greatest gas production is north 25 to 35?? northeast, which parallels the basin axis. Recurrent movement along five right-lateral WFZs that crosscut Wattenberg field shifted the Denver basin axis to the northeast and influenced depositional and erosional patterns of the reservoir and seal intervals. Levels of thermal maturity within the Wattenberg field are anomalously high compared to other areas of the Denver basin. The Wattenberg field thermal anomaly may be due to upward movement of fluids along faults associated with probable igneous intrusions. Areas of anomalous high heat flow within the field correlate with an increased and variable gas-oil ratio.

  3. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  4. Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater

    NASA Astrophysics Data System (ADS)

    Yokochi, Reika

    2016-09-01

    Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.

  5. Chaplygin gas inspired scalar fields inflation via well-known potentials

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Butt, Sadaf; Rani, Shamaila

    2016-08-01

    Brane inflationary universe models in the context of modified Chaplygin gas and generalized cosmic Chaplygin gas are being studied. We develop these models in view of standard scalar and tachyon fields. In both models, the implemented inflationary parameters such as scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio are derived under slow roll approximations. We also use chaotic and exponential potential in high energy limits and discuss the characteristics of inflationary parameters for both potentials. These models are compatible with recent astronomical observations provided by WMAP7{+}9 and Planck data, i.e., ηs=1.027±0.051, 1.009±0.049, 0.096±0.025 and r<0.38, 0.36, 0.11.

  6. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    PubMed

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  7. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes

    PubMed Central

    Winkel, Anders; Pedersen, Ole; Ella, Evangelina; Ismail, Abdelbagi M.; Colmer, Timothy D.

    2014-01-01

    Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O2 and CO2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (PN) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna, and Swarna-Sub1) were submerged for 13 days in the field and leaf gas films, chlorophyll, and the capacity for underwater PN at near ambient and high CO2 were assessed with time of submergence. At high CO2 during the PN assay, all genotypes initially showed high rates of underwater PN, and this rate was not affected by time of submergence in FR13A. This superior photosynthetic performance of FR13A was not evident in Swarna-Sub1 (carrying the SUB1 QTL) and the declines in underwater PN in both Swarna-Sub1 and Swarna were equal to that in IR42. At near ambient CO2 concentration, underwater PN declined in all four genotypes and this corresponded with loss of leaf gas films with time of submergence. FR13A retained leaf gas films moderately longer than the other genotypes, but gas film retention was not linked to SUB1. Diverse rice germplasm should be screened for gas film persistence during submergence, as this trait could potentially increase carbohydrate status and internal aeration owing to increased underwater PN, which contributes to submergence tolerance in rice. PMID:24759881

  8. Field calibration of orifice meters for natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Shen, J.J.S.

    1989-03-01

    This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less

  9. Global cosmological dynamics for the scalar field representation of the modified Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Uggla, Claes

    2013-09-01

    In this paper we investigate the global dynamics for the minimally coupled scalar field representation of the modified Chaplygin gas in the context of flat Friedmann-Lemaître-Robertson Walker cosmology. The tool for doing this is a new set of bounded variables that lead to a regular dynamical system. It is shown that the exact modified Chaplygin gas perfect fluid solution appears as a straight line in the associated phase plane. It is also shown that no other solutions stay close to this solution during their entire temporal evolution, but that there exists an open subset of solutions that stay arbitrarily close during an intermediate time interval, and into the future in the case when the scalar field potential exhibits a global minimum.

  10. Gas magnetometer

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  11. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    NASA Astrophysics Data System (ADS)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the

  12. A road damage and life-cycle greenhouse gas comparison of trucking and pipeline water delivery systems for hydraulically fractured oil and gas field development in Colorado

    PubMed Central

    Duthu, Ray C.

    2017-01-01

    The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields. PMID:28686682

  13. A road damage and life-cycle greenhouse gas comparison of trucking and pipeline water delivery systems for hydraulically fractured oil and gas field development in Colorado.

    PubMed

    Duthu, Ray C; Bradley, Thomas H

    2017-01-01

    The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields.

  14. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas

    PubMed Central

    Gan, Wei; Frohlich, Cliff

    2013-01-01

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast–southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957–1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  15. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes.

    PubMed

    Winkel, Anders; Pedersen, Ole; Ella, Evangelina; Ismail, Abdelbagi M; Colmer, Timothy D

    2014-07-01

    Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O2 and CO2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (PN) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna, and Swarna-Sub1) were submerged for 13 days in the field and leaf gas films, chlorophyll, and the capacity for underwater PN at near ambient and high CO2 were assessed with time of submergence. At high CO2 during the PN assay, all genotypes initially showed high rates of underwater PN, and this rate was not affected by time of submergence in FR13A. This superior photosynthetic performance of FR13A was not evident in Swarna-Sub1 (carrying the SUB1 QTL) and the declines in underwater PN in both Swarna-Sub1 and Swarna were equal to that in IR42. At near ambient CO2 concentration, underwater PN declined in all four genotypes and this corresponded with loss of leaf gas films with time of submergence. FR13A retained leaf gas films moderately longer than the other genotypes, but gas film retention was not linked to SUB1. Diverse rice germplasm should be screened for gas film persistence during submergence, as this trait could potentially increase carbohydrate status and internal aeration owing to increased underwater PN, which contributes to submergence tolerance in rice. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Fabrication of a trimer/single atom tip for gas field ion sources by means of field evaporation without tip heating.

    PubMed

    Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong

    2018-05-11

    A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.

  17. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  18. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.

    2016-07-08

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials alongmore » $$\\langle$$110$$\\rangle$$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $$\\langle$$110$$\\rangle$$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.« less

  19. Field Tests of the Magnetotelluric Method to Detect Gas Hydrates, Mallik, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Craven, J. A.; Roberts, B.; Bellefleur, G.; Spratt, J.; Wright, F.; Dallimore, S. R.

    2008-12-01

    The magnetotelluric method is not generally utilized at extreme latitudes due primarily to difficulties in making the good electrical contact with the ground required to measure the electric field. As such, the magnetotelluric technique has not been previously investigated to direct detect gas hydrates in on-shore permafrost environments. We present the results of preliminary field tests at Mallik, Northwest Territories, Canada, that demonstrate good quality magnetotelluric data can be obtained in this environment using specialized electrodes and buffer amplifiers similar to those utilized by Wannamaker et al (2004). This result suggests that subsurface images from larger magnetotelluric surveys will be useful to complement other techniques to detect, quantify and characterize gas hydrates.

  20. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  1. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  2. The Effect of a Tectonic Stress Field on Coal and Gas Outbursts

    PubMed Central

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648

  3. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA)

    PubMed Central

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  4. Methane emissions estimate from airborne measurements over a western United States natural gas field

    NASA Astrophysics Data System (ADS)

    Karion, Anna; Sweeney, Colm; PéTron, Gabrielle; Frost, Gregory; Michael Hardesty, R.; Kofler, Jonathan; Miller, Ben R.; Newberger, Tim; Wolter, Sonja; Banta, Robert; Brewer, Alan; Dlugokencky, Ed; Lang, Patricia; Montzka, Stephen A.; Schnell, Russell; Tans, Pieter; Trainer, Michael; Zamora, Robert; Conley, Stephen

    2013-08-01

    (CH4) emissions from natural gas production are not well quantified and have the potential to offset the climate benefits of natural gas over other fossil fuels. We use atmospheric measurements in a mass balance approach to estimate CH4 emissions of 55 ± 15 × 103 kg h-1 from a natural gas and oil production field in Uintah County, Utah, on 1 day: 3 February 2012. This emission rate corresponds to 6.2%-11.7% (1σ) of average hourly natural gas production in Uintah County in the month of February. This study demonstrates the mass balance technique as a valuable tool for estimating emissions from oil and gas production regions and illustrates the need for further atmospheric measurements to determine the representativeness of our single-day estimate and to better assess inventories of CH4 emissions.

  5. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Carlson, Kenneth H

    2014-01-01

    Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field.

  6. Environmental risks of the gas hydrate field development in the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Nagakubo, S.

    2009-12-01

    To establish any kinds of new energy resources, environmental impacts of the technology should be well understood before full industrial implementation. Methane hydrate (MH), a relatively clean fossil energy with low CO2 and no SOx emission, is not an exception. Because methane gas itself has strong greenhouse gas effect, and methane hydrate is not stable under the atmospheric pressure and room temperature, public image of MH field development is very risky game and potentially disastrous to the global climate. However, the real physics of the MH bearing sediments is far different from such images. MH21 Research Consortium in Japan has studied about the resource assessment and production techniques to develop MH since 2001. As the results, we found several gas hydrate concentrated zones with pore filling type hydrate in sandy layers of turbidite sediment in the Eastern Nankai Trough area off coasts of the Central Japan. The depressurization technique, in the other word, in-situ MH dissociation by water production and natural heat supply from surrounding formation, will be used as the basic method to produce methane gas from MH. Under the conditions, we have evaluated realistic environmental risk of the MH production. Because the most MH found in the Eastern Nankai Trough are composed of biogenic and almost pure methane, there is no concern of sea water contamination by oil releases that is the most common environmental disaster caused by misconducts of the oil industry. Also MH reservoirs there are not pressurized, and blowout of wells during drilling is very unlikely. Endothermic MH dissociation process decreases formation temperature with depressurization, and give negative feedback, then, there is no chance of chain reaction. Heat supply from surrounding formations is necessary for continuous dissociation, but heat transfer in the formations is relatively slow, and the dissociation rate is limited. Once the operation to pump water in boreholes for

  7. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  8. Relaxation rates of low-field gas-phase ^129Xe storage cells

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  9. Field studies of pine, spruce and aspen periodically subjected to sulfur gas emissions

    Treesearch

    A. H. Legge; R. G. Amundson; D. R. Jaques; R. B. Walker

    1976-01-01

    Field studies of photosynthesis in Pinus contorta/Pinus banksiana (lodgepole pine/jack pine) hybrids, Picea glauca (white spruce) and Populus tremuloides (aspen) subjected to SO2 and H2S from a nearby natural gas processing plant were initiated near Whitecourt,...

  10. Full field gas phase velocity measurements in microgravity

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  11. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  12. Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.

    2009-12-01

    At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2

  13. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minxi; Liu, Junyu; Lu, Shiyun

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two modelsmore » produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.« less

  14. Minimizing field time to get reasonable greenhouse gas flux estimates from many chambers

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas measurements from soil are typically derived from static chambers placed in several replicate field plots and in multiple locations within a plot. Inherent variability in emissions is due to a number of known and unknown factors. Getting robust emission estimates from numerous chamber...

  15. Nanowire field-effect transistors for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Constantinou, Marios

    Sensing BTEX (Benzene, Ethylbenzene, Toluene, Xylene) pollutants is of utmost importance to reduce health risk and ensure public safety. The lack of sensitivity and selectivity of the current gas sensors and the limited number of available technologies in the field of BTEX-sensing raises the demand for the development of high-performance gas sensors for BTEX applications. The scope of this thesis is the fabrication and characterisation of high-quality field-effect transistors (FETs), with functionalised silicon nanowires (SiNWs), for the selective sensing of benzene vs. other BTEX gases. This research addresses three main challenges in SiNW FET-sensor device development: i) controllable and reproducible assembly of high-quality SiNWs for FET sensor devices using the method of dielectrophoresis (DEP), ii) almost complete elimination of harmful hysteresis effect in the SiNW FET current-voltage characteristics induced by surface states using DMF solvent, iii) selective sensing of benzene with up to ppb range of sensitivity using calix[4]arene-derivatives. It is experimentally demonstrated that frequency-controlled DEP is a powerful tool for the selection and collection of semiconducting SiNWs with advanced electrical and morphological properties, from a poly-disperse as-synthesised NWs. The DEP assembly method also leads to a controllable and reproducible fabrication of high-quality NW-based FETs. The results highlight the superiority of DEP, performed at high signal frequencies (5-20 MHz) to selectively assemble only high-quality NWs which can respond to such high DEP frequencies. The SiNW FETs, with NWs collected at high DEP frequencies, have high mobility (≈50 cm2 V-1 s-1), low sub-threshold-swing (≈1.26 V/decade), high on-current (up to 3 mA) and high on/off ratio (106-107). The DEP NW selection is also demonstrated using an industrially scalable method, to allow establishing of NW response characteristics to different DEP frequencies in a very short time

  16. An Adjustable Gas-Mixing Device to Increase Feasibility of In Vitro Culture of Plasmodium falciparum Parasites in the Field

    PubMed Central

    Volkman, Sarah K.; Ahouidi, Ambroise D.; Ndiaye, Daouda; Mboup, Souleymane; Wirth, Dyann F.

    2014-01-01

    A challenge to conducting high-impact and reproducible studies of the mechanisms of P. falciparum drug resistance, invasion, virulence, and immunity is the lack of robust and sustainable in vitro culture in the field. While the technology exists and is routinely utilized in developed countries, various factors–from cost, to supply, to quality–make it hard to implement in malaria endemic countries. Here, we design and rigorously evaluate an adjustable gas-mixing device for the in vitro culture of P. falciparum parasites in the field to circumvent this challenge. The device accurately replicates the gas concentrations needed to culture laboratory isolates, short-term adapted field isolates, cryopreserved previously non-adapted isolates, as well as to adapt ex vivo isolates to in vitro culture in the field. We also show an advantage over existing alternatives both in cost and in supply. Furthermore, the adjustable nature of the device makes it an ideal tool for many applications in which varied gas concentrations could be critical to culture success. This adjustable gas-mixing device will dramatically improve the feasibility of in vitro culture of Plasmodium falciparum parasites in malaria endemic countries given its numerous advantages. PMID:24603696

  17. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    NASA Astrophysics Data System (ADS)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  18. Gas density field imaging in shock dominated flows using planar laser scattering

    NASA Astrophysics Data System (ADS)

    Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran

    2018-07-01

    Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.

  19. Frustrated spin chains in strong magnetic field: Dilute two-component Bose gas regime

    NASA Astrophysics Data System (ADS)

    Kolezhuk, A. K.; Heidrich-Meisner, F.; Greschner, S.; Vekua, T.

    2012-02-01

    We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta ±Q, and just below the saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around ±Q. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.

  20. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation].

    PubMed

    Tian, Zhan; Niu, Yi-long; Sun, Lai-xiang; Li, Chang-sheng; Liu, Chun-jiang; Fan, Dong-li

    2015-03-01

    In contrast to a large body of literature assessing the impact of agriculture greenhouse gas (GHG) emissions on climate change, there is a lack of research examining the impact of climate change on agricultural GHG emissions. This study employed the DNDC v9.5, a state-of-art biogeochemical model, to simulate greenhouse gas emissions in China' s rice-growing fields during 1971-2010. The results showed that owing to temperature rising (on average 0.49 °C higher in the second 20 years than in the first 20 year) and precipitation increase (11 mm more in the second 20 years than in the first 20 years) during the rice growing season, CH4 and N2O emissions in paddy field increased by 0.25 kg C . hm-2 and 0.25 kg N . hm-2, respectively. The rising temperature accelerated CH4 emission and N2O emission increased with precipitation. These results indicated that climate change exerted impact on the mechanism of GHG emissions in paddy field.

  1. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  2. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study.

    NASA Astrophysics Data System (ADS)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn

    2017-04-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  3. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability

  4. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-05-01

    Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.

  5. Carbon Dioxide Sequestration in Depleted Oil/Gas Fields: Evaluation of Gas Microseepage and Carbon Dioxide Fate at Rangely, Colorado USA

    NASA Astrophysics Data System (ADS)

    Klusman, R. W.

    2002-12-01

    Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.

  6. Effect of Electric Field on Gas Hydrate Nucleation Kinetics: Evidence for the Enhanced Kinetics of Hydrate Nucleation by Negatively Charged Clay Surfaces.

    PubMed

    Park, Taehyung; Kwon, Tae-Hyuk

    2018-03-06

    Natural gas hydrates are found widely in oceanic clay-rich sediments, where clay-water interactions have a profound effect on the formation behavior of gas hydrates. However, it remains unclear why and how natural gas hydrates are formed in clay-rich sediments in spite of factors that limit gas hydrate formation, such as small pore size and high salinity. Herein, we show that polarized water molecules on clay surfaces clearly promote gas hydrate nucleation kinetics. When water molecules were polarized with an electric field of 10 4 V/m, gas hydrate nucleation occurred significantly faster with an induction time reduced by 5.8 times. Further, the presence of strongly polarized water layers at the water-gas interface hindered gas uptake and thus hydrate formation, when the electric field was applied prior to gas dissolution. Our findings expand our understanding of the formation habits of naturally occurring gas hydrates in clay-rich sedimentary deposits and provide insights into gas production from natural hydrate deposits.

  7. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  8. NPDES Permit for Eagle Oil and Gas Company – Sheldon Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0020338, the Eagle Oil and Gas Company is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, a tributary to the Wind River.

  9. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  10. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  11. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE PAGES

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang; ...

    2016-05-25

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  12. U.S. EPA'S FIELD TEST PROGRAMS TO UPDATE DATA ON LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper discusses a field test program in which the EPA is currently engaged to improve data on landfill gas (LFG) emissions. LFG emissions data in use at this time are based on determinations made in the late 1980s and early 1990s; changes in landfill operations, such as using...

  13. Gate-opening gas adsorption and host-guest interacting gas trapping behavior of porous coordination polymers under applied AC electric fields.

    PubMed

    Kosaka, Wataru; Yamagishi, Kayo; Zhang, Jun; Miyasaka, Hitoshi

    2014-09-03

    The gate-opening adsorption behavior of the one-dimensional chain compound [Ru2(4-Cl-2-OMePhCO2)4(phz)] (1; 4-Cl-2-OMePhCO2(-) = 4-chloro-o-anisate; phz = phenazine) for various gases (O2, NO, and CO2) was electronically monitored in situ by applying ac electric fields to pelletized samples attached to a cryostat, which was used to accurately control the temperature and gas pressure. The gate-opening and -closing transitions induced by gas adsorption/desorption, respectively, were accurately monitored by a sudden change in the real part of permittivity (ε'). The transition temperature (TGO) was also found to be dependent on the applied temperature and gas pressure according to the Clausius-Clapeyron equation. This behavior was also observed in the isostructural compound [Rh2(4-Cl-2-OMePhCO2)4(phz)] (2), which exhibited similar gate-opening adsorption properties, but was not detected in the nonporous gate-inactive compound [Ru2(o-OMePhCO2)4(phz)] (3). Furthermore, the imaginary part of permittivity (ε″) effectively captured the electronic perturbations of the samples induced by the introduced guest molecules. Only the introduction of NO resulted in the increase of the sample's electronic conductivity for 1 and 3, but not for 2. This behavior indicates that electronic host-guest interactions were present, albeit very weak, at the surface of sample 1 and 3, i.e., through grain boundaries of the sample, which resulted in perturbation of the conduction band of this material's framework. This technique involving the in situ application of ac electric fields is useful not only for rapidly monitoring gas sorption responses accompanied by gate-opening/-closing structural transitions but also potentially for the development of molecular framework materials as chemically driven electronic devices.

  14. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  15. Application of facies analysis to improve gas reserve growth in Fluvial Frio Reservoirs, La Gloria Field, South Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Jackson, M.L.W.; Finley, R.J.

    1988-01-01

    Geologically based infill-drilling strategies hold great potential for extension of domestic gas resources. Traditional gas-well drilling and development have often assumed homogeneous and continuous reservoirs; uniform gas-well spacing has resulted in numerous untapped reservoirs isolated from other productive sand bodies. Strategically located infill wells drilled into these undrained reservoirs may ultimately contact an additional 20% of original gas in place in Texas gas fields. Tertiary formations in the Texas Gulf Coast commonly exhibit multiple fluvial and fluvial-deltaic reservoirs that contain vertical and horizontal permeability barriers. For example, the Frio La Gloria field (Jim Wells and Brooks Counties, Texas) contains isolatedmore » and compartmentalized reservoirs that can be related to the irregular distribution of heterogeneous facies. Net-sand and log-facies maps in areas of dense well spacing delineate relatively continuous pay defined by lenticular point-bar and channel-fill deposits 1,500-2,500 ft wide. These point-bar deposits are flanked laterally by sand-poor levee and splay facies that isolate the reservoirs into narrow, dip-elongate bands.« less

  16. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    PubMed

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  17. Survey of stranded gas and delivered costs to Europe of selected gas resources

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2011-01-01

    Two important trends affecting the expected growth of global gas markets are (1) the shift by many industrialized countries from coal-fired electricity generation to the use of natural gas to generate electricity and (2) the industrialization of the heavily populated Asian countries of India and China. This paper surveys discovered gas in stranded conventional gas accumulations and presents estimates of the cost of developing and producing stranded gas in selected countries. Stranded gas is natural gas in discovered or identified fields that is not currently commercially producible for either physical or economic reasons. Published reserves of gas at the global level do not distinguish between volumes of gas in producing fields and volumes in nonproducing fields. Data on stranded gas reported here-that is the volumes, geographical distribution, and size distributions of stranded gas fields at the country and regional level-are based on the examination of individual-field data and represent a significant improvement in information available to industry and government decision makers. Globally, stranded gas is pervasive, but large volumes in large accumulations are concentrated in only a few areas. The cost component of the paper focuses on stranded conventional gas accumulations in Africa and South America that have the potential to augment supplies to Europe. The methods described for the computation of extraction and transport costs are innovative in that they use information on the sizes and geographical distribution of the identified stranded gas fields. The costs are based on industry data specific to the country and geologic basin where the stranded gas is located. Gas supplies to Europe can be increased significantly at competitive costs by the development of stranded gas. Net extraction costs of producing the identified gas depend critically on the natural-gas-liquids (NGLs) content, the prevailing prices of liquids, the size of the gas accumulation, and the

  18. Noble gas partitioning behavior in the Sleipner Vest hydrocarbon field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Warr, O.; Mabry, J.; Byrne, D. J.; Meurer, W. P.; Ballentine, C. J.

    2015-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways, mechanisms and reservoir storage. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. We present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner gases are generated from primary cracking of kerogen and the thermal cracking of oil, sourced from type II marine source, with relatively homogeneous maturities and a range in vitrinite reflectance (1.2-1.7%). Gases are hosted in the lower shoreface sandstones of the Jurassic Hugin formation, which is sealed by the Jurassic Upper Draupne and Heather formations. Gases are composed of N2 (0.6-0.9%), CO2 (5.4-15.3%) and hydrocarbons (69-80%). Helium isotopes (3He/4He) are radiogenic and range from 0.065 to 0.116 RA, showing a small mantle contribution, consistent with Ne isotopes (20Ne/22Ne from 9.70-9.91; 21Ne/22Ne from 0.0290-0.0344) and Ar isotopes (40Ar/36Ar from 315-489). 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar values are systematically higher relative to air saturated water ratios. These data are discussed within the framework of several conceptual models: i) Total gas-stripping model, which defines the minimum volume of water to have interacted with the hydrocarbon phase; ii) Equilibrium model, assuming simple equilibration between groundwater and hydrocarbon phase at reservoir P,T and salinity; and iii) Open and closed system gas-stripping models. Using Ne-Ar, we estimate gas-water ratios for the Sleipner system of 0.02-0.09, which compare with geologic gas-water estimates of ~0.24, and suggest more groundwater interaction than a static system estimate. Kr and Xe show evidence for an additional source or process involving oil or sediments.

  19. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  20. Constraints on the magnitude and rate of carbon dioxide dissolution at Bravo Dome natural gas field

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2013-12-01

    The Bravo Dome field in northeastern New Mexico contains at least 10 trillion cubic feet (tcf) of magmatic CO2. The CO2 has been emplaced in the reservoir for at least 10,000 years, providing a useful analog for geologic CO2 storage. The reservoir is comprised of a CO2 gas layer overlying brine water in a sandstone reservoir. Previous estimates have used differences in the CO2/3He ratio in the gas to infer that locally, half of the CO2 originally emplaced has dissolved into the underlying brine. This study presents the first estimate of the total amount of CO2 dissolved. We incorporate gas pressure, reservoir geometry, and gas layer thickness to show that over 80% of the CO2 originally emplaced is still present in the gas layer. It is generally assumed that the dissolution of CO2 is driven by convective currents in the brine. We present an alternative hypothesis for the spatial differences of the CO2/3He ratio seen in this reservoir. Gas injection theory predicts that as gas displaces a liquid, relatively insoluble gas components will become enriched at the front of the displacement. If the emplacement occurred from west to east this would cause 3He enrichment in the eastern portion of the Bravo Dome field overlying the brine. This effect could be responsible for the spatial differences in the CO2/3He ratio. Mass per area in the gas layer of the reservoir is seen in the 2 right panes. The measured bottom hole pressure data from 1981 is used in combination with CO2/3He measurements to estimate the mass of CO2 originally in place. The water thickness is inversely correlated with the CO2/3He ratio, suggesting that there may be convective dissolution occurring in the eastern part of the reservoir. Present day mass of CO2 is roughly 83% of the original total.

  1. CHANGE OF MAGNETIC FIELD-GAS ALIGNMENT AT THE GRAVITY-DRIVEN ALFVÉNIC TRANSITION IN MOLECULAR CLOUDS: IMPLICATIONS FOR DUST POLARIZATION OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicularmore » to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.« less

  2. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  3. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  4. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  5. Gas, Water, and Oil Production from the Wasatch Formation, Greater Natural Buttes Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, Philip H.; Hoffman, Eric L.

    2009-01-01

    Gas, oil, and water production data were compiled from 38 wells with production commencing during the 1980s from the Wasatch Formation in the Greater Natural Buttes field, Uinta Basin, Utah. This study is one of a series of reports examining fluid production from tight gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. The general ranges of production rates after 2 years are 100-1,000 mscf/day for gas, 0.35-3.4 barrel per day for oil, and less than 1 barrel per day for water. The water:gas ratio ranges from 0.1 to10 barrel per million standard cubic feet, indicating that free water is produced along with water dissolved in gas in the reservoir. The oil:gas ratios are typical of a wet gas system. Neither gas nor water rates show dependence upon the number of perforations, although for low gas-flow rates there is some dependence upon the number of sandstone intervals that were perforated. Over a 5-year time span, gas and water may either increase or decrease in a given well, but the changes in production rate do not exhibit any dependence upon well proximity or well location.

  6. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  7. Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.

    1989-05-01

    Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1

  8. Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy

    2018-01-01

    Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  9. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  10. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  11. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  12. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  13. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranesmore » provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  14. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  15. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  16. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide muchmore » greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  17. A new reserve growth model for United States oil and gas fields

    USGS Publications Warehouse

    Verma, M.K.

    2005-01-01

    Reserve (or field) growth, which is an appreciation of total ultimate reserves through time, is a well-recognized phenomenon, particularly in mature petroleum provinces. The importance of forecasting reserve growth accurately in a mature petroleum province made it necessary to develop improved growth functions, and a critical review of the original Arrington method was undertaken. During a five-year (1992-1996), the original Arrington method gave 1.03% higher than the actual oil reserve growth, whereas the proposed modified method gave a value within 0.3% of the actual growth, and therefore it was accepted for the development for reserve growth models. During a five-year (1992-1996), the USGS 1995 National Assessment gave 39.3% higher oil and 33.6% lower gas than the actual growths, whereas the new model based on Modified Arrington method gave 11.9% higher oil and 29.8% lower gas than the actual growths. The new models forecast predict reserve growths of 4.2 billion barrels of oil (2.7%) and 30.2 trillion cubic feet of gas (5.4%) for the conterminous U.S. for the next five years (1997-2001). ?? 2005 International Association for Mathematical Geology.

  18. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

    PubMed

    García-Pérez, E; Serra-Crespo, P; Hamad, S; Kapteijn, F; Gascon, J

    2014-08-14

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

  19. Successful new anti-sloughing drilling fluid application, Yanchang gas field, China

    NASA Astrophysics Data System (ADS)

    He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai

    2017-10-01

    Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.

  20. Maps showing geology, oil and gas fields, and geological provinces of South America

    USGS Publications Warehouse

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  1. Probabilistic Analysis of Gas Turbine Field Performance

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  2. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon

  3. FIELD MEASUREMENT OF GREENHOUSE GAS EMISSION RATES AND DEVELOPMENT OF EMISSION FACTORS FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The report gives results of field testing to develop more reliable green house gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. (NOTE: Estimates are available for the amount of methane (CH4) emitted from certain types of waste facilities, but there is not adeq...

  4. Preliminary Prioritization of California Oil and Gas Fields for Regional Groundwater Monitoring Based on Intensity of Petroleum Resource Development and Proximity to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Landon, M. K.; Bennett, G.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess where and to what degree groundwater resources may be at risk of contamination from oil and gas development activities including stimulation, well integrity issues, produced water ponds, and underground injection. A key issue in the implementation of the RMP is that the state has 487 onshore oil fields covering 8,785 square kilometers but detailed characterization work can only be done in a few oil fields annually. The first step in the RMP is to prioritize fields using available data that indicate potential risk to groundwater from oil and gas development, including vertical proximity of groundwater and oil/gas resources, density of petroleum and water wells, and volume of water injected in oil fields. This study compiled data for these factors, computed summary metrics for each oil field, analyzed statewide distributions of summary metrics, used those distributions to define relative categories of potential risk for each factor, and combined these into an overall priority ranking. Aggregated results categorized 22% (107 fields) of the total number of onshore oil and gas fields in California as high priority, 23% as moderate priority, and 55% as low priority. On an area-weighted basis, 41% of the fields ranked high, 30% moderate, and 29% low, highlighting that larger fields tend to have higher potential risk because of greater intensity of development, sometimes coupled with closer proximity to groundwater. More than half of the fields ranked as high priority were located in the southern Central Valley or the Los Angeles Basin. The prioritization does not represent an assessment of groundwater risk from oil and gas development; rather, such assessments are planned to follow based on detailed analysis of data from the RMP near the oil fields selected for study in the future.

  5. Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection

    PubMed Central

    Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Chen, Yunfa

    2018-01-01

    Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance (RL), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage (VOUT) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous VOUT amplification process. PMID:29509659

  6. Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection.

    PubMed

    Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Han, Ning; Chen, Yunfa

    2018-03-06

    Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance ( R L ), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage ( V OUT ) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous V OUT amplification process.

  7. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  8. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary

  9. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway

  10. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  11. The effect of liquid target on a nonthermal plasma jet—imaging, electric fields, visualization of gas flow and optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kovačević, Vesna V.; Sretenović, Goran B.; Slikboer, Elmar; Guaitella, Olivier; Sobota, Ana; Kuraica, Milorad M.

    2018-02-01

    The article describes the complex study of the interaction of a helium plasma jet with distilled water and saline. The discharge development, spatial distribution of the excited species, electric field measurement results and the results of the Schlieren imaging are presented. The results of the experiments showed that the plasma-liquid interaction could be prolonged with the proper choice of the gas composition between the jet nozzle and the target. This depends on the gas flow and the target distance. Increased conductivity of the liquid does not affect the discharge properties significantly. An increase of the gas flow enables an extension of the plasma duration on the liquid surface up to 10 µs, but with a moderate electric field strength in the ionization wave. In contrast, there is a significant enhancement of the electric field on the liquid surface, up to 30 kV cm-1 for low flows, but with a shorter time of the overall plasma liquid interaction. Ignition of the plasma jet induces a gas flow modification and may cause turbulences in the gas flow. A significant influence of the plasma jet causing a mixing in the liquid is also recorded and it is found that the plasma jet ignition changes the direction of the liquid circulation.

  12. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs

  13. Winter habitat selection of mule deer before and during development of a natural gas field

    USGS Publications Warehouse

    Sawyer, H.; Nielson, R.M.; Lindzey, F.; McDonald, L.L.

    2006-01-01

    Increased levels of natural gas exploration, development, and production across the Intermountain West have created a variety of concerns for mule deer (Odocoileus hemionus) populations, including direct habitat loss to road and well-pad construction and indirect habitat losses that may occur if deer use declines near roads or well pads. We examined winter habitat selection patterns of adult female mule deer before and during the first 3 years of development in a natural gas field in western Wyoming. We used global positioning system (GPS) locations collected from a sample of adult female mule deer to model relative frequency or probability of use as a function of habitat variables. Model coefficients and predictive maps suggested mule deer were less likely to occupy areas in close proximity to well pads than those farther away. Changes in habitat selection appeared to be immediate (i.e., year 1 of development), and no evidence of well-pad acclimation occurred through the course of the study; rather, mule deer selected areas farther from well pads as development progressed. Lower predicted probabilities of use within 2.7 to 3.7 km of well pads suggested indirect habitat losses may be substantially larger than direct habitat losses. Additionally, some areas classified as high probability of use by mule deer before gas field development changed to areas of low use following development, and others originally classified as low probability of use were used more frequently as the field developed. If areas with high probability of use before development were those preferred by the deer, observed shifts in their distribution as development progressed were toward less-preferred and presumably less-suitable habitats.

  14. Xenon gas field ion source from a single-atom tip

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  15. Improving Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Well Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer

    2006-03-01

    This report summarizes the work performed under contract DE-FC26-03NT41743. The primary objective of this study was to develop tools that would allow Underground Gas Storage (UGS) operators to use wellhead electronic flow measurement (EFM) data to quickly and efficiently identify trends in well damage over time, thus aiding in the identification of potential causes of the damage. Secondary objectives of this work included: (1) To assist UGS operators in the evaluation of hardware and software requirements for implementing an EFM system similar to the one described in this report, and (2) To provide a cost-benefit analysis framework UGS operators canmore » use to evaluate economic benefits of installing wellhead EFM systems in their particular fields. Assessment of EFM data available for use, and selection of the specific study field are reviewed. The various EFM data processing tasks, including data collection, organization, extraction, processing, and interpretation are discussed. The process of damage assessment via pressure transient analysis of EFM data is outlined and demonstrated, including such tasks as quality control, semi-log analysis, and log-log analysis of pressure transient test data extracted from routinely collected EFM data. Output from pressure transient test analyses for 21 wells is presented, and the interpretation of these analyses to determine the timing of damage development is demonstrated using output from specific study wells. Development of processing and interpretation modules to handle EFM data interpretation in horizontal wells is also a presented and discussed. A spreadsheet application developed to aid underground gas storage operators in the selection of EFM equipment is presented, discussed, and used to determine the cost benefit of installing EFM equipment in a gas storage field. Recommendations for future work related to EFM in gas storage fields are presented and discussed.« less

  16. Unitization of oil and gas fields in Texas. A study of legislative, administrative, and judicial policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J.L.

    1986-01-01

    In the 1970s, the long lines of cars at gasoline stations, the blackouts, and the school and factory closings announced to the public that the United States had an ''energy crisis.'' In response, an outpouring of state and federal legislation sought to lessen the effects of the oil and gas shortages and to prevent their recurrence. By 1985, every oil- and gas-producing state but Texas has passed a compulsory unitization statute. ''Unitization'' is the joint, coordinated operation of all, or at least a large part, of an oil or gas reservoir by the owners of the separate tracts overlying themore » reservoir; only by such joint endeavors can the many owners of interests in oil and gas fields operate efficiently to recover as much as possible at the lowest cost. In this book, Jacqueline Lang Weaver explains why Texas failed to enact such a statute--and how Texas has achieved a substantial degree of unitization nonetheless.« less

  17. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    PubMed

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  18. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-04-01

    Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity

  19. Emission characteristics of NOx, CO, NH3 and VOCs from gas-fired industrial boilers based on field measurements in Beijing city, China

    NASA Astrophysics Data System (ADS)

    Yue, Tao; Gao, Xiang; Gao, Jiajia; Tong, Yali; Wang, Kun; Zuo, Penglai; Zhang, Xiaoxi; Tong, Li; Wang, Chenlong; Xue, Yifeng

    2018-07-01

    In the past decade, due to the management policies and coal combustion controls in Beijing, the consumption of natural gas has increased gradually. Nevertheless, the research on the emission characteristics of gaseous pollutants emitted from gas-fired industrial boilers, especially considering the influence of low nitrogen (low-NOx) retrofit policy of gas boilers, is scarcely. In this study, based on literature and field investigations, onsite measurements of NOx, CO, NH3 and VOCs (Volatile Organic Compounds) emissions from gas-fired industrial boilers as well as the key factors that affected the emission of gaseous pollutants were discussed. Category-specific emission factors (EFs) of NOx, CO, NH3 and VOCs were obtained from the field measurements of 1107 "low-NOx" retrofitted and unabated gas-fired industrial boilers. Our results showed that operating load and control measures were the two key factors affecting the formation of gaseous pollutants. The EFs of NOx (EFNOx) and CO (EFCO) of atmospheric combustion boilers (ACBs) were much higher than the EFs of chamber combustion boilers (CCBs). The total emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing in the year of 2015 were estimated at 10489.6 t, 3272.8 t, 196.4 t and 235.4 t, respectively. Alkanes, BTEX, oxygenated VOCs and non-reactive organic matter were the four main chemical components of VOCs. As for the spatial distributions, the emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing were predominantly concentrated in central six urban districts. In the future, more detailed investigation and field tests for all kinds of gas-fired industrial boilers are still greatly needed to achieve more reliable estimations of atmospheric pollutants from gas-fired industrial boilers.

  20. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A

  1. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  2. Oil and Gas Supply Modeling

    NASA Astrophysics Data System (ADS)

    Gass, S. I.

    1982-05-01

    The theoretical and applied state of the art of oil and gas supply models was discussed. The following areas were addressed: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply.

  3. Three field tests of a gas filter correlation radiometer

    NASA Technical Reports Server (NTRS)

    Campbell, S. A.; Casas, J. C.; Condon, E. P.

    1977-01-01

    Test flights to remotely measure nonurban carbon monoxide (CO) concentrations by gas filter correlation radiometry are discussed. The inferred CO concentrations obtained through use of the Gas Filter Correlation Radiometer (GFCR) agreed with independent measurements obtained by gas chromatography air sample bottle analysis to within 20 percent. The equipment flown on board the aircraft, the flight test procedure, the gas chromatograph direct air sampling procedure, and the GFCR data analysis procedure are reported.

  4. Monitoring the Groningen gas field by seismic noise interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field in the Netherlands is the world's 7th largest onshore gas field and has been producing from 1963. Since 2013, the year with the highest level of induced seismicity, the reservoir has been monitored by two geophone strings at reservoir level at about 3 km depth. For borehole SDM, 10 geophones with a natural frequency of 15-Hz are positioned from the top to bottom of the reservoir with a geophone spacing of 30 m. We used seismic interferometry to determine, as accurately as possible, the inter-geophone P- and S-wave velocities from ambient noise. We used 1-bit normalization and spectral whitening, together with a bandpass filter from 3 to 400 Hz. After that, for each station pair, the normalized cross-correlation was calculated for 6 seconds segments with 2/3 overlap. These segmented cross-correlations were stacked for every 1 hour, 24(hours)*33(days) segments were obtained for each station pair. The cross-correlations show both day-and-night and weekly variations reflecting fluctuations in cultural noise. The apparent P-wave travel time for each geophone pair is measured from the maximum of the vertical component cross-correlation for each of the hourly stacks. Because the distribution of these (24*33) picked travel times is not Gaussian but skewed, we used Kernel density estimations to obtain probability density functions of the travel times. The maximum likelihood travel times of all the geophone pairs was subsequently used to determine inter-geophone P-wave velocities. A good agreement was found between our estimated P velocity structure and well logging data, with difference less than 5%. The S-velocity structure was obtained from the east-component cross-correlations. They show both the direct P- and S-wave arrivals and, because of the interference, the inferred S-velocity structure is less accurate. From the 9(3x3)-component cross-correlations for all the geophone pairs, not only the direct P and S waves can be identified, but also

  5. Integral field spectroscopy of nearby quasi-stellar objects - II. Molecular gas content and conditions for star formation

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Davis, T. A.; Jahnke, K.; Dannerbauer, H.; Urrutia, T.; Hodge, J.

    2017-09-01

    We present single-dish 12CO(1-0) and 12CO(2-1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy, we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1-0) is detected in 8 of 14 targets and 12CO(2-1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times matching normal star-forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1-0), which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs, however, imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and it is well represented by a scaling relation between the total and circumnuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blown out of the gas envelope through outflows, or a different interstellar medium phase composition.

  6. Argentine gas system underway for Gas del Estado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, H.

    Gas del Estado's giant 1074-mile Centro-Oeste pipeline project - designed to ultimately transport over 350 million CF/day of natural gas from the Neuquen basin to the Campo Duran-Buenos Aires pipeline system - is now underway. The COGASCO consortium of Dutch and Argentine companies awarded the construction project will also operate and maintain the system for 15 years after its completion. In addition to the 30-in. pipelines, the agreement calls for a major compressor station at the gas field, three intermediate compressor stations, a gas-treatment plant, liquids-recovery facilities, and the metering, control, communications, and maintenance equipment for the system. Fabricated inmore » Holland, the internally and externally coated pipe will be double-jointed to 80-ft lengths after shipment to Argentina; welders will use conventional manual-arc techniques to weld the pipeline in the field.« less

  7. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    NASA Astrophysics Data System (ADS)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  8. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  9. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.

  10. GIS-based technology for marine geohazards in LW3-1 Gas Field of the South China Sea

    NASA Astrophysics Data System (ADS)

    Su, Tianyun; Liu, Lejun; Li, Xishuang; Hu, Guanghai; Liu, Haixing; Zhou, Lin

    2013-04-01

    The exploration and exploitation of deep-water oil-gas are apt to be suffered from high-risk geo-hazards such as submarine landslide, soft clay creep, shallow gas, excess pore-water pressure, mud volcano or mud diaper, salt dome and so on. Therefore, it is necessary to survey the seafloor topography, identify the unfavourable geological risks and investigate their environment and mechanism before exploiting the deep-water oil-gas. Because of complex environment, the submarine phenomenon and features, like marine geohazards, can not be recognized directly. Multi-disciplinary data are acquired and analysed comprehensively in order to get more clear understanding about the submarine processes. The data include multi-beam bathymetry data, sidescan sonar images, seismic data, shallow-bottom profiling images, boring data, etc.. Such data sets nowadays increase rapidly to large amounts, but may be heterogeneous and have different resolutions. It is difficult to make good management and utilization of such submarine data with traditional means. GIS technology can provide efficient and powerful tools or services in such aspects as spatial data management, processing, analysis and visualization. They further promote the submarine scientific research and engineering development. The Liwan 3-1 Gas Field, the first deep-water gas field in China, is located in the Zhu II Depression in the Zhujiang Basin along the continental slope of the northern South China Sea. The exploitation of this field is designed to establish subsea wellhead and to use submarine pipeline for the transportation of oil. The deep-water section of the pipeline route in the gas field is to be selected to pass through the northern continental slope of the South China Sea. To avoid huge economic loss and ecological environmental damage, it is necessary to evaluate the geo-hazards for the establishment and safe operation of the pipeline. Based on previous scientific research results, several survey cruises have

  11. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, J.D.; Edwards, E.B.; Heck, R.G.

    1996-01-01

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lyingmore » semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.« less

  12. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, J.D.; Edwards, E.B.; Heck, R.G.

    1996-12-31

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lyingmore » semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.« less

  13. Electric field enhancement due to a saw-tooth asperity in a channel and implications on microscale gas breakdown

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy

    2014-10-01

    The electric field enhancement due to an isolated saw-tooth asperity in an infinite channel is considered with the goal of providing some inputs to the choice of field enhancement factors used to describe microscale gas breakdown. The Schwarz-Christoffel transformation is used to map the interior of the channel to the upper half of the transformed plane. The expression for the electric field in the transformed plane is then used to determine the electric field distribution in the channel as well as field enhancement near the asperity. The effective field enhancement factor is determined and its dependence on operating and geometrical parameters is studied. While the effective field enhancement factor depends only weakly on the height of the asperity in comparison to the channel, it is influenced significantly by the base angles of the asperity. Due to the strong dependence of field emission current density on electric field, the effective field enhancement factor (βeff) is shown to vary rapidly with the applied electric field irrespective of the geometrical parameters. This variation is included in the analysis of microscale gas breakdown and compared with results obtained using a constant βeff as is done traditionally. Even though results for a varying βeff may be approximately reproduced using an equivalent constant βeff independent of E-field, it might be important for a range of operating conditions. This is confirmed by extracting βeff from experimental data for breakdown in argon microgaps with plane-parallel cathodes and comparing its dependence on the E-field. While the use of two-dimensional asperities is shown to be a minor disadvantage of the proposed approach in its current form, it can potentially help in developing predictive capabilities as opposed to treating βeff as a curve-fitting parameter.

  14. Investigating gas-phase defect formation in late-stage solidification using a novel phase-field crystal alloy model

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Smith, Nathan; Provatas, Nikolas

    2017-09-01

    We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.

  15. Gas hydrate dissociation via in situ combustion of methane - lab studies and field tests

    NASA Astrophysics Data System (ADS)

    Luzi-Helbing, Manja; Schicks, Judith M.; Spangenberg, Erik; Giese, Ronny

    2013-04-01

    would have to be used for the catalytic combustion of methane. However, only a part of the hydrate-bound methane gas could be produced during the experiment. The residual gas remained in the pore space. Currently the pilot-scale reactor is developed to a borehole tool with an outer diameter of 90 mm and ca. 5 m length. The first field test is planned for summer 2013 at the continental deep drilling KTB in Windischeschenbach, Germany. In future, we aim for a field test in hydrate-bearing sediments.

  16. Effect of different agronomic management practices on greenhouse gas emissions and nutrient cycling in a long-term field trial

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2015-04-01

    In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental

  17. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  18. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.

    PubMed

    Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke

    2014-05-20

    Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.

  19. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  20. The Laser-Assisted Field Effect Transistor Gas Sensor Based on Morphological Zinc-Excited Tin-Doped In2O3 Nanowires

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen; Khosravinejad, Fariba

    The gas nanosensor of indium oxide nanowires in laser assisted approach, doped with tin and zinc for gas sensing and 1D growth purposes respectively, was reported. The nanowires were very sensitive to H2S gas in low concentration of 20ppb gas at room temperature. The fast dynamic intensive and sensitive response to gas was in a few seconds with an on/off sensitivity ratio of around 10. The square cross-section indium oxide nanowires were fabricated through physical vapor deposition (PVD) mechanism and annealing approach. The field emission scanning electron microscopy (FESEM) observations indicated that the annealing temperature was vital in nanostructures’ morphology. The fabricated nanowires for the optimized annealing temperature in applied growth technique were around 60nm in diameter.

  1. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  2. Metallicity gradients in local field star-forming galaxies: insights on inflows, outflows, and the coevolution of gas, stars and metals

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Zahid, H. Jabran; Dopita, Michael A.; Bresolin, Fabio; Rupke, David S. N.

    2015-04-01

    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [O III]/Hβ, [N II]/Hα, and [N II]/[O II] line ratios. The two derived metallicity gradients are usually in good agreement within ± 0.14 dex R_{25}^{-1} (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionization parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8 < log (M*/M⊙) < 11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex kpc-1, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex R_{25}^{-1}, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disc under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (≫0.3). These models imply low current mass accretion rates ( ≲ 0.3 × SFR), and low-mass outflow rates ( ≲ 3 × SFR) in local field star-forming galaxies.

  3. Breakdown voltage reliability improvement in gas-discharge tube surge protectors employing graphite field emitters

    NASA Astrophysics Data System (ADS)

    Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc

    2012-04-01

    Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.

  4. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie

    2017-12-01

    The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.

  5. FInd Gas Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, Bryan; Sauer, Jeremy; Dubey, Manvendra

    2017-02-24

    FIGS is a neural network software that ingests real time synchronized field data on environmental flow fields and turbulence and gas concentration variations at high frequency and uses an error minimization algorithm to locate the gas source and quantify its strength. The software can be interfaced with atmospheric, oceanic and subsurface instruments in a variety of platforms stationary or mobile (e.g. cars, UAVs, submersible vehicles or boreholes) and used to find gas sources by smart use of data and phenomenology. FIGS can be trained by phenomenological model of the flow fields in the environment of interest and/or be calibrated bymore » controlled release. After initial deployment the FIGS learning will grow with time as it accumulates data on source quantification. FIGS can be installed on any computer from small beagle-bones for field deployment/end-use to PC/MACs/main-frame for training/analysis. FIGS has been trained (using LANL's high resolution atmospheric simulations) and calibrated, tested and evaluated in the field and shown to perform well in finding and quantifying methane leaks at 10-100m scales at well pads by ingesting atmospheric measurements. The code is applicable to gas and particle source location at large scales.« less

  6. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  7. Modeling winter ozone episodes near oil and natural gas fields in Wyoming

    NASA Astrophysics Data System (ADS)

    Wu, Yuling; Rappenglück, Bernhard; Pour-Biazar, Arastoo; Field, Robert A.; Soltis, Jeff

    2017-04-01

    Wintertime ozone episodes have been reported in the oil and natural gas (O&NG) producing fields in Uintah Basin, Utah and the Upper Green River Basin (UGRB) in Wyoming in recent years. High concentrations of ozone precursors facilitated by favorable meteorological conditions, including low wind and shallow boundary layer (BL), were found in these episodes, although the exact roles of these precursor species in different O&NG fields are to be determined. Meanwhile, snow cover is also found to play an important role in these winter ozone episodes as the cold snow covered surface enhances the inversion, further limits the BL and the high snow albedo greatly boosts photolysis reactions that are closely related to ozone chemistry. In this study, we utilize model simulation to explore the role of chemical compositions, in terms of different VOC groups and NOx, and that of the enhanced photolysis due to snow cover in the UGRB ozone episodes in the late winter of 2011.

  8. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  9. Complex wave fields in the interacting one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Pietraszewicz, J.; Deuar, P.

    2018-05-01

    We study the temperature regimes of the one-dimensional interacting gas to determine when the matter wave (c-field) theory is, in fact, correct and usable. The judgment is made by investigating the level of discrepancy in many observables at once in comparison to the exact Yang-Yang theory. We also determine what cutoff maximizes the accuracy of such an approach. Results are given in terms of a bound on accuracy, as well as an optimal cutoff prescription. For a wide range of temperatures the optimal cutoff is independent of density or interaction strength and so its temperature-dependent form is suitable for many cloud shapes and, possibly, basis choices. However, this best global choice is higher in energy than most prior determinations. The high value is needed to obtain the correct kinetic energy, but does not detrimentally affect other observables.

  10. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro

    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less

  11. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A.

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has beenmore » achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].« less

  12. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    DOE PAGES

    Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; ...

    2016-10-20

    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less

  13. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions.

    PubMed

    Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; Alday, Josu G; Bahn, Michael; Del Castillo, Jorge; Devidal, Sébastien; García-Muñoz, Sonia; Kayler, Zachary; Landais, Damien; Martín-Gómez, Paula; Milcu, Alexandru; Piel, Clément; Pirhofer-Walzl, Karin; Ravel, Olivier; Salekin, Serajis; Tissue, David T; Tjoelker, Mark G; Voltas, Jordi; Roy, Jacques

    2016-10-20

    Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2 O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO 2 and H 2 O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. Our results show that circadian controls affect diurnal CO 2 and H 2 O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.

  14. New phenomenology of gas breakdown in DC and RF fields

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran Lj; Sivoš, Jelena; Savić, Marija; Škoro, Nikola; Radmilović Radenović, Marija; Malović, Gordana; Gocić, Saša; Marić, Dragana

    2014-05-01

    This paper follows a review lecture on the new developments in the field of gas breakdown and low current discharges, usually covered by a form of Townsend's theory and phenomenology. It gives an overview of a new approach to identifying which feedback agents provide breakdown, how to model gas discharge conditions and reconcile the results with binary experiments and how to employ that knowledge in modelling gas discharges. The next step is an illustration on how to record volt-ampere characteristics and use them on one hand to obtain the breakdown voltage and, on the other, to identify the regime of operation and model the secondary electron yields. The second aspect of this section concerns understanding the different regimes, their anatomy, how those are generated and how free running oscillations occur. While temporal development is the most useful and interesting part of the new developments, the difficulty of presenting the data in a written form precludes an easy publication and discussion. Thus, we shall only mention some of the results that stem from these measurements. Most micro discharges operate in DC albeit with complex geometries. Thus, parallel plate micro discharge measurements were needed to establish that Townsend's theory, with all its recent extensions, is still valid until some very small gaps. We have shown, for example, how a long-path breakdown puts in jeopardy many experimental observations and why a flat left-hand side of the Paschen curve often does not represent good physics. We will also summarize a kinetic representation of the RF breakdown revealing a somewhat more complex picture than the standard model. Finally, we will address briefly the breakdown in radially inhomogeneous conditions and how that affects the measured properties of the discharge. This review has the goal of summarizing (rather than developing details of) the current status of the low-current DC discharges formation and operation as a discipline which, in spite of

  15. Near-field acoustic radiation by high-speed turbulence: amplitude, structure, gas-stiffness, and dilatational dissipation

    NASA Astrophysics Data System (ADS)

    Buchta, David; Freund, Jonathan

    2017-11-01

    High-speed (supersonic) turbulent shear flows are well-known to radiate pressure-wave patterns that have higher positive peaks than negative valleys, which yields a notable skewness, usually with Sk > 0.4 . Direct numerical simulations (DNS) of planar turbulent mixing layers at different Mach numbers (M) are used to examine this. The baseline simulations, of an air-like gas at speeds up to M = 3.5 , reproduced the observed behavior of jets. Simulations initialized with corresponding instability modes show that Sk increases linearly with the velocity amplitude (Mt =√{ui' ui'} /co), reflecting the M dependence of the DNS, which can be related to simpler gas dynamic flows. Simulations with a stiffened-gas equation of state (often used to model liquids) show essentially the same Mach-number dependence, despite the nominally greater resistance to compressibility. Turbulence simulations with an artificial energy reallocation mechanism, imposed to alter its structure, show little change in Sk. Finally, we also consider significantly increased bulk viscosity to suppress dilatation. In this case, Sk diminishes along with the sound-field intensity, though the turbulence stresses themselves are nearly unchanged.

  16. Measurements of Gas and Particle Phase Emissions From Munitions Detonation in a Field Environment

    NASA Astrophysics Data System (ADS)

    Fortner, E. C.; Knighton, W. B.; Timko, M.; Wood, E.; Onasch, T. B.; Kolb, C. E.; Beardsley, H. M.

    2007-12-01

    During the Point of Fire (POF) field campaign conducted at Fort Sill Oklahoma U.S.A. in March 2007 a suite of real- time trace gas and fine (submicron) particulate matter (PM) instrumentation characterized the point of fire emission plumes from large, medium and small caliber weapons systems. Muzzle emission plumes were measured and where appropriate, breach plumes and gun crew breathing zone measurements were also conducted. Aerosol measurements were conducted with an aerosol mass spectrometer (Aerodyne CTOF-AMS) for particle composition, condensation particle counter (CPC) for particle number density and DUSTRAK aerosol monitor for particle mass. Gas phase measurements included CO, CO2, NOx and a variety of trace gas species measured by proton transfer reaction mass spectrometry (PTR-MS) including hydrogen cyanide (HCN), acetonitrile, acrylonitrile, benzene, toluene, benzonitrile and styrene. In the majority of the plume measurements, HCN was the most prominent compound measured by PTR-MS. Quantification of HCN by PTR-MS is difficult due to its proton affinity being close enough to that of water to allow a significant backward reaction of protonated HCN with water, reducing the detection sensitivity and making the response dependent on humidity. We have developed a quantification procedure for HCN based on laboratory measurements of a calibration gas standard of HCN, which allows the humidity dependence to be extracted directly from the proton hydrate ion intensities. The correction factors for HCN are quite significant varying between 10 and 30 depending on sample humidity.

  17. Structure and shale gas production patterns from eastern Kentucky field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, R.C.

    Computer-derived subsurface structure, isopach, and gas-flow maps, based on 4000 drillers logs, have been generated for eastern Kentucky under a project sponsored by the Gas Research Institute. Structure maps show low-relief flextures related to basement structure. Some structures have been mapped at the surface, others have not. Highest final open-flow (fof) of shale gas from wells in Martin County follow a structural low between (basement) anticlines. From there, elevated gas flows (fof) extend westward along the Warfield monocline to Floyd County where the high flow (fof) trend extends southward along the Floyd County channel. In Knott County, the number ofmore » wells with high gas flow (fof) decreases abruptly. The center of highest gas flow (fof) in Floyd County spreads eastward to Pike County, forming a triangular shaped area of high production (fof). The center of highest gas flow (fof) is in an area where possible (basement) structure trends intersect and where low-relief surface folds (probably detached structure) were mapped and shown on the 1922 version of the Floyd County structure map. Modern regional maps, based on geophysical logs from widely spaced wells, do not define the low-relief structures that have been useful in predicting gas flow trends. Detailed maps based on drillers logs can be misleading unless carefully edited. Comparative analysis of high gas flows (fof) and 10-year cumulative production figures in a small area confirms that there is a relationship between gas flow (fof) values and long-term cumulative production.« less

  18. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  19. Characterizing tight-gas systems with production data: Wyoming, Utah, and Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    The study of produced fluids allows comparisons among tight-gas systems. This paper examines gas, oil, and water production data from vertical wells in 23 fields in five Rocky Mountain basins of the United States, mostly from wells completed before the year 2000. Average daily rates of gas, oil, and water production are determined two years and seven years after production begins in order to represent the interval in which gas production declines exponentially. In addition to the daily rates, results are also presented in terms of oil-to-gas and water-to-gas ratios, and in terms of the five-year decline in gas production rates and water-to-gas ratios. No attempt has been made to estimate the ultimate productivity of wells or fields. The ratio of gas production rates after seven years to gas production rates at two years is about one-half, with median ratios falling within a range of 0.4 to 0.6 in 16 fields. Oil-gas ratios show substantial variation among fields, ranging from dry gas (no oil) to wet gas to retrograde conditions. Among wells within fields, the oil-gas ratios vary by a factor of three to thirty, with the exception of the Lance Formation in Jonah and Pinedale fields, where the oil-gas ratios vary by less than a factor of two. One field produces water-free gas and a large fraction of wells in two other fields produce water-free gas, but most fields have water-gas ratios greater than 1 bbl/mmcf—greater than can be attributed to water dissolved in gas in the reservoir— and as high as 100 bbl/mmcf. The median water-gas ratio for fields increases moderately with time, but in individual wells water influx relative to gas is erratic, increasing greatly with time in many wells while remaining constant or decreasing in others.

  20. On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H2 microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka

    2015-04-01

    A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.

  1. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  2. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing somore » using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.« less

  3. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    NASA Astrophysics Data System (ADS)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  4. Assessment of the effect of development of the Bovanenkovskoe gas-condensate field in the middle Yamal region on the dynamics of the polar fox population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrinskii, N.L.; Sosin, V.F.

    Based on the findings of integrated monitoring research, the state of polar fox population in a zone of heavy technogenic pressure is assessed experimentally. Networks of breeding burrows on permanent experimental and control plots were carefully examined over the course of three summer seasons. Active development of the Bovanenkovskoe gas-condensate field has led to loss of the central portion of this area as a zone of polar fox restocking. Heavy accelerated exploitation of other gas and gas-condensate fields in the Yamal Peninsula may lower the Yamal population of polar fox to the verge of extinction. 15 refs.

  5. A COMPARISON OF LIQUID AND GAS-PHASE PHOTOOXIDATION TREATMENT OF METHYL TERTIARY BUTYL ETHER: SYNTHETIC AND FIELD SAMPLES

    EPA Science Inventory

    The feasibility of photo-oxidation treatment of metyl tert-butyl either (MTBE) in water was investigated using two systems, 1) a slurry falling film photo-reactor, and 2) an integrated air-stripping with gas phase photooxidation system. MTBE-contaminated synthetic water and field...

  6. Alternating Field Electronanofluidization

    NASA Astrophysics Data System (ADS)

    Espin, M. J.; Valverde, J. M.; Quintanilla, M. A. S.; Castellanos, A.

    2009-06-01

    The use of fluidized beds to remove submicron particles from gases has been investigated since 1949. High efficiency removal was achieved in the 1970's by imposing an electric field on a fluidized bed of semi-insulating granules that were able to collect the charged pollutant entrained in the fluidizing gas. In spite of their extended use nowadays, the collection efficiency of electrofluidized beds (EFB) is still hindered by gas bypassing associated to gas bubbling and the consequent requirement of too high gas flow and pressure drop. In this paper we report on the electromechanical behavior of an EFB of insulating nanoparticles. When fluidized by gas, these nanoparticles form extremely porous light agglomerates of size of the order of hundreds of microns that allow for a highly expanded nonbubbling fluidized state at reduced gas flow. It is found that fluidization uniformity and bed expansion are additionally enhanced by an imposed AC electric field for field oscillation frequencies of several tens of hertzs and field strengths of the order of 1 kV/cm. For oscillation frequencies of the order of hertzs, or smaller, bed expansion is hindered due to electrophoretic deposition of the agglomerates onto the vessel walls, whereas for oscillation frequencies of the order of kilohertzs, or larger, electrophoresis is nullified and bed expansion is not affected. According to a proposed model, the size of nanoparticle agglomerates stems from the balance between shear, which depends on field strength, and van der Waals forces. The optimum field strength for enhancing bed expansion produces an electric force on the agglomerates similar to their weight force, while the oscillation velocity of the agglomerates is similar to the gas velocity.

  7. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma tomore » propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.« less

  8. Jonah field, sublette county, Wyoming: Gas production from overpressured Upper Cretaceous Lance sandstones of the Green River basin

    USGS Publications Warehouse

    Montgomery, S.L.; Robinson, J.W.

    1997-01-01

    Jonah field, located in the northwestern Green River basin, Wyoming, produces gas from overpressured fluvial channel sandstones of the Upper Cretaceous Lance Formation. Reservoirs exist in isolated and amalgamated channel facies 10-100 ft (3-30 m) thick and 150-4000 ft (45-1210 m) wide, deposited by meandering and braided streams. Compositional and paleocurrent studies indicate these streams flowed eastward and had their source area in highlands associated with the Wyoming-Idaho thrust belt to the west. Productive sandstones at Jonah have been divided into five pay intervals, only one of which (Jonah interval) displays continuity across most of the field. Porosities in clean, productive sandstones range from 8 to 12%, with core permeabilities of .01-0.9 md (millidarcys) and in-situ permeabilities as low as 3-20 ??d (microdarcys), as determined by pressure buildup analyses. Structurally, the field is bounded by faults that have partly controlled the level of overpressuring. This level is 2500 ft (758 m) higher at Jonah field than in surrounding parts of the basin, extending to the top part of the Lance Formation. The field was discovered in 1975, but only in the 1990s did the area become fully commercial, due to improvements in fracture stimulation techniques. Recent advances in this area have further increased recoverable reserves and serve as a potential example for future development of tight gas sands elsewhere in the Rocky Mountain region.

  9. Fault reactivation and seismicity risk from CO2 sequestration in the Chinshui gas field, NW Taiwan

    NASA Astrophysics Data System (ADS)

    Sung, Chia-Yu; Hung, Jih-Hao

    2015-04-01

    The Chinshui gas field located in the fold-thrust belt of western Taiwan was a depleted reservoir. Recently, CO2 sequestration has been planned at shallower depths of this structure. CO2 injection into reservoir will generate high fluid pressure and trigger slip on reservoir-bounding faults. We present detailed in-situ stresses from deep wells in the Chinshui gas field and evaluated the risk of fault reactivation for underground CO2 injection. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, sonic logs, mud weight, and hydraulic fracturing including leak-off tests and hydraulic fracturing. The magnitude of maximum horizontal stress (SHmax) was constrained by frictional limit of critically stressed faults. Results show that vertical stress gradient is about 23.02 MPa/km (1.02 psi/ft), and minimum horizontal stress gradient is 18.05 MPa/km (0.80 psi/ft). Formation pore pressures were hydrostatic at depths 2 km, and increase with a gradient of 16.62 MPa/km (0.73 psi/ft). The ratio of fluid pressure and overburden pressure (λp) is 0.65. The upper bound of maximum horizontal stress constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 18.55 MPa/km (0.82 psi/ft). The orientation of maximum horizontal stresses was calculated from four-arm caliper tools through the methodology suggested by World Stress Map (WMS). The mean azimuth of preferred orientation of borehole breakouts are in ~65。N. Consequently, the maximum horizontal stress axis trends in 155。N and sub-parallel to the far-field plate-convergence direction. Geomechanical analyses of the reactivation of pre-existing faults was assessed using 3DStress and Traptester software. Under current in-situ stress, the middle block fault has higher slip tendency, but still less than frictional coefficient of 0.6 a common threshold value for

  10. Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1993-01-01

    Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.

  11. [Monitoring of public health in the Kashagan oil and gas field].

    PubMed

    Kenessariev, U I; Zinulin, U Z; Yerzhanova, A E; Amrin, M K; Aybasova, Zh A

    According to explored hydrocarbon reserves the Republic of Kazakhstan (RK) is among ten top countries rich in oil deposits. In connection with the intensive development of oil and gas industry environmental protection and public health issues became subject of a great interest from both scientists ’ and health practitioners ’ side. Results of the study included in this article are devoted to the study of health of the population, living near the “Bolashak” installation of complex preparation of oil and gas. There is a preliminary oil refining process coming from the Kashagan field and its further export. Analysis proved air pollution to be the one of the major risk factors for the health of the residing people. In the area there are problems of fresh water supply and frequent accidents at sewage plants. Landfills for municipal solid waste does not meet sanitary standards. The health care system of Makat district is characterized by uncompleted personnel and lack of beds. Indices of the mortality rate over the study period declined by 28.8%. As a result, population growth over the study the period was characterized by a tendency to increase. In 2013 population sought medical advice due to respiratory diseases, injuries and poisoning, diseases of blood and hemopoietic organs, diseases of the skin and subcutaneous tissue and nervous system.

  12. The Role of Surface Water Flow in Gas Fluxes from a Subtropical Rice Field

    NASA Astrophysics Data System (ADS)

    Huynh, K. T.; Suvocarev, K.; Reavis, C.; Runkle, B.; Variano, E. A.

    2016-12-01

    Wetlands are the single largest source of methane emissions, but the underlying processes behind this flux are not yet fully understood. Typically, methane fluxes from wetlands have been attributed to ebullition (bubbling) and to transport through vegetation. However, a third major pathway-hydrodynamic transport-has been seen in a temperate wetland in the Sacramento-San Joaquin Delta. We wish to explore whether this additional pathway is also important to a subtropical rice paddy site where the diel thermal cycle is less pronounced than in the temperate site. Measurements in the surface water of a rice field were collected over two weeks. Specific measurements collected included dissolved and atmospheric methane concentration, surface water velocity, and air and water temperature. These were used to augment a long-term dataset of micrometeorology and gas fluxes. Together, these data demonstrate the role that surface water motions play in the fluxes between soil and atmosphere. Data are analyzed to reveal the fraction of total methane flux that is governed by advective/diffusive transport through surface water, and daily cycles in this behavior. Results will be used to advance predictions of atmospheric methane gas concentrations and could be foundational for developing methane management solutions. Closing this gap in knowledge is key to improving calculations of current global greenhouse gas emissions.

  13. Smart Application of Direct Gas Injection using a new conceptual model on Coherent and Incoherent Flow: From Bench Scale to Field Scale.

    NASA Astrophysics Data System (ADS)

    Geistlinger, H.; Samani, S.; Pohlert, M.; Martienssen, M.; Engelmann, F.; Hüttmann, S.

    2008-12-01

    Within the framework of the OXYWALL field experiment we developed the direct gas injection (DGI) of oxygen as a remediation technology, which allows the cost-efficient and large-scale cleaning of groundwater contaminated with organic contaminants. That technology can be used as wide-banded, unselective remediation method for complex contaminant mixtures. Particularly, it could be proofed in field experiments that mineral oil hydrocarbons, aromatic hydrocarbons (BTEX), the rather persistent gasoline component Methyl tertiary-butyl ether (MTBE), and chlorinated aliphatic and aromatic hydrocarbons, like Trichloroethene and Monochlorobenzene, can be aerobically metabolized by autochthon microorganisms. Over the last 8 years the field site was investigated and a dense monitoring network was installed using Geoprobe direct- push technology and standard hydrogeological investigations were conducted, like EC-Logs, Injections-Logs, Gamma-Logs, TDR-probes, oxygen measurements with in-situ optodes, and tracer test with test gases SF6, Ar, and Oxygen. The key parameter for controling and regulating the DGI is the spatial and temporal distribution of the gas phase. High-resolution optical bench scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads and natural sands. We observed a grain-size (dk)- and flow-rate (Q) dependent transition from incoherent to coherent flow. Conceptualizing the stationary tortuous gas flow as core-annulus flow and applying Hagen- Poiseuille flow for a straight capillary, we propose a flow-rate- and grain-size dependent stability criterion that could describe our experimental results and was used for classifying the experiments in a dk-Q-diagram (flow chart). Since DGI simulations are mainly based on continuum models, we also test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media by

  14. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    PubMed

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  15. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  16. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  17. Microminiature gas chromatograph

    DOEpatents

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  18. Microminiature gas chromatograph

    DOEpatents

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  19. Gaussian Mean Field Lattice Gas

    NASA Astrophysics Data System (ADS)

    Scoppola, Benedetto; Troiani, Alessio

    2018-03-01

    We study rigorously a lattice gas version of the Sherrington-Kirckpatrick spin glass model. In discrete optimization literature this problem is known as unconstrained binary quadratic programming and it belongs to the class NP-hard. We prove that the fluctuations of the ground state energy tend to vanish in the thermodynamic limit, and we give a lower bound of such ground state energy. Then we present a heuristic algorithm, based on a probabilistic cellular automaton, which seems to be able to find configurations with energy very close to the minimum, even for quite large instances.

  20. Waveform-based Bayesian full moment tensor inversion and uncertainty determination for the induced seismicity in an oil/gas field

    NASA Astrophysics Data System (ADS)

    Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi

    2018-03-01

    Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.

  1. Exploitation utilizing 3D seismic in the Red Oak gas field of the Arkoma Basin, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutty, P.; Schlaefer, J.; Antonio, V.

    1995-09-01

    Red Oak field,located in the Arkoma basin of Eastern Oklahoma, produces 200 Mmcfd of gas under pressure depletion drive with 2.6 TCF of gas recoverable. Structurally, the field occupied a position along the northern flank of the southward collapsing shear-margin formed during the Ouachita Orogeny. The basin flank is characterized by rapid subsidence and deposition of over 20,000 feet (6000 m) of shallow to deep marine shale and stacked sandstone in Atokan time (mid-late Carboniferous). This sequence culminates with a shoaling upward cycle and is structurally deformed by earliest Desmoinesian thrusting (280-265 Mya). Interpretation from an 18 mi{sup {center_dot}2} (47km{supmore » 2}) 3-D seismic survey was integrated with available with available well control and litho-facies mapping defining detailed structural irregularities and providing new drillsites while reducing economic risk. Resolution of data from the 3D seismic survey varied greatly. The one failed aspect of the original 3D survey design was to precisely map Red Oak sandstone. However, the survey was robust enough to provide excellent shallow and deep data, leading to identification of additional reservoir targets and multiple drilling proposals.« less

  2. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu

    2016-11-01

    Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.

  3. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, M.R.; Hartley, J.N.

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weathermore » conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.« less

  4. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy.more » Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.« less

  5. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve McRae; Thomas Walsh; Michael Dunn

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrowmore » Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  6. Numerical analysis of spin-orbit-coupled one-dimensional Fermi gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Y. H.

    2015-06-01

    Based on the density-matrix renormalization group and the infinite time-evolving block decimation methods we study the interacting spin-orbit-coupled 1D Fermi gas in a transverse magnetic field. We find that the system with an attractive interaction can have a polarized insulator phase, a superconducting (SC) phase, a Luther-Emery (LE) phase, and a band insulator phase as we vary the chemical potential and the strength of the magnetic field. Spin-orbit coupling (SOC) enhances the triplet pairing order at zero momentum in both the SC and the LE phase, which leads to an algebraically decaying correlation with the same exponent as that of the singlet pairing one. In contrast to the Fulde-Ferrell-Larkin-Ovchinnikov phase found in the spin imbalanced system without SOC, pairings at finite momentum in these two phases have larger exponents hence do not dictate the long-range behavior. We also test for the presence of Majorana fermions in this system. Unlike results from the mean-field study, we do not find positive evidence of Majorana fermions.

  7. Compilation of gas geochemistry and isotopic analyses from The Geysers geothermal field: 1978-1991

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    We present 45 chemical and isotopic analyses from well discharges at The Geysers geothermal field and summarize the most notable geochemical trends. H2 and H2S concentrations are highest in the Southeast Geysers, where steam samples have δD and δ18O values that reflect replenishment by meteoric water. In the Northwest Geysers, samples are enriched in gas/steam, CO2, CH4, and N2/Ar relative to the rest of the field, and contain steam that is elevated in δD and δ18O, most likely due to substantial contributions from Franciscan-derived fluids. The δ13C of CO2, trends in CH4 vs. N2, and abundance of NH3 indicate that the bulk of the non-condensable gases are derived from thermal breakdown of organic materials in Franciscan meta-sediments.

  8. Experimental and Numerical Investigation of Guest Molecule Exchange Kinetics based on the 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Ruprecht Yonkofski, C. M.; Horner, J.; White, M. D.

    2015-12-01

    In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after a thorough quality check. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This study uses numerical simulation to provide an interpretation of the CH4/CO2/N2 guest molecule exchange process that occurred at Ignik Sikumi #1. Simulations were further informed by experimental observations. The goal of the scoping experiments was to understand kinetic exchange rates and develop parameters for use in Iġnik Sikumi history match simulations. The experimental procedure involves two main stages: 1) the formation of CH4 hydrate in a consolidated sand column at 750 psi and 2°C and 2) flow-through of a 77.5/22.5 N2/CO2 molar ratio gas mixture across the column. Experiments were run both above and below the hydrate stability zone in order to observe exchange behavior across varying conditions. The numerical simulator, STOMP-HYDT-KE, was then used to match experimental results, specifically fitting kinetic behavior. Once this behavior is understood, it can be applied to field scale models based on Ignik Sikumi #1.

  9. Model of quantum kinetics of spin-orbit coupled two-dimensional electron gas in the presence of strong electromagnetic field

    NASA Astrophysics Data System (ADS)

    Turkin, Yaroslav V.; Kuptsov, Pavel V.

    2018-04-01

    A quantum model of spin dynamics of spin-orbit coupled two-dimensional electron gas in the presence of strong high- frequency electromagnetic field is suggested. Interaction of electrons with optical phonons is taken into account in the second order of perturbation theory.

  10. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    PubMed

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  11. Soil Gas Sampling

    EPA Pesticide Factsheets

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  12. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  14. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  15. Extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  16. [Research on lateral shearing interferometer for field monitoring of natural gas pipeline leak].

    PubMed

    Zhang, Xue-Feng; Gao, Yu-Bin

    2012-09-01

    Aimed at the mechanical scanning spectroscopy equipment with poor anti-interference and anti-jamming ability, which affects the accuracy of its natural gas pipeline leak detection in the wild, a new type of lateral shearing interferometer system was designed. The system uses a beam splitter to get optical path difference by a mechanical scanning part, and it cancel the introduction of external vibration interference through the linkage between the two beam splitterw. The interference intensity of interference fringes produced was calculated, and analysis of a rotating beam splitter corresponds to the angle of the optical path difference function, solving for the maximum angle of the forward rotation and reverse rotation, which is the maximum optical path range. Experiments using the gas tank deflated simulated natural gas pipeline leak process, in the interference conditions, and the test data of the type WQF530 spectrometer and the new type of lateral shearing interferometer system were comparedt. The experimental results show that the relative error of both systems is about 1% in indoor conditions without interference. However, in interference environment, the error of WQF530 type spectrometer becomes larger, more than 10%, but the error of the new type of lateral shearing interferometer system is still below 5%. The detection accuracy of the type WQF530 spectrometer decreased significantly due to the environment. Therefore, the seismic design of the system can effectively offset power deviation and half-width increases of center wavelength caused by external interference, and compared to conventional mechanical scanning interferometer devices the new system is more suitable for field detection.

  17. Field Test Report: NETL Portable Raman Gas Composition Monitor - Initial Industrial tests at NETL and General Electric (GE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Buric; Jessica, Mullen; Steven, Woodruff

    2012-02-24

    NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented formore » spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise

  18. Charged excitons in a dilute two-dimensional electron gas in a high magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojs, Arkadiusz; Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370,; Quinn, John J.

    2000-08-15

    A theory of charged excitons X{sup -} in a dilute two-dimensional (2D) electron gas in a high-magnetic field is presented. In contrast to previous calculations, three bound X{sup -} states (one singlet and two triplets) are found in a narrow and symmetric GaAs quantum well. The singlet and a ''bright'' triplet are the two optically active states observed in experiments. The bright triplet has the binding energy of about 1 meV, smaller than the singlet and a ''dark'' triplet. The interaction of bound X{sup -}'s with a dilute 2D electron gas is investigated using exact diagonalization techniques. It is foundmore » that the short-range character of the e-X{sup -} interactions effectively isolates bound X{sup -} states from a dilute e-h plasma. This results in the insensitivity of the photoluminescence spectrum to the filling factor {nu}, and a rapid decrease of the oscillator strength of the dark triplet X{sup -} as a function of {nu}{sup -1}. (c) 2000 The American Physical Society.« less

  19. Variability in the gas phase composition of fluids discharged from Los Azufres geothermal field, Mexico

    NASA Astrophysics Data System (ADS)

    Santoyo, E.; Verma, S. P.; Nieva, D.; Portugal, E.

    1991-07-01

    Studies related to hydrological structure of the Los Azufres geothermal field and its effects on the exploitation of the field for generation of electrical energy have included a program of sampling and chemical analysis of fluids discharged by a number of deep wells in continuous production. Chemical analysis of the gaseous phase includes monitoring of CO 2, H 2S, NH 3, H 2, He, N 2, CH 4 and 222Rn. Five wells in Los Azufres field were periodically sampled during 1983-1988. The monitoring program has shown considerable variability in the gas concentrations of fluids. Before mid-1985, the 'base-line' concentrations of the gases showed standard deviations between 8 and 28%. During the later period, the average concentrations of different gases ranged from 37% to much higher values above the 'base-line'. The largest variations are observed in He, CO 2 and 222Rn. This variability is interpreted in terms of (1) addition of 'excess steam', (2) a possible relationship with earthquake events that occurred in México during September 19-21, 1985, and early May to early June of 1987 and, (3) more recent variations (after mid-1987), increased exploitation of the field.

  20. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  1. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  2. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <˜0.5 ppm for SO2. More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  3. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  4. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    DTIC Science & Technology

    2003-01-01

    PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

  5. VARIATION OF THE VISCOSITY OF CERTAIN GAS-OXYGEN MIXTURES UNDER THE INFLUENCE OF MAGNETIC FIELD; Variatia Viscozitatii unor Amestecuri de Gaze cu Oxigen sub Influenta unui Cimp Magnetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursu, I.

    1958-01-01

    The paramagnetic effects of oxygen and gas-oxygen mixtures are discussed. One of the paramagnetic effect the varistion of viscosity during the viscous flow in a magnetic field. The viscosity of gaseous oxygen and certain gas-oxygen mixtures decreased when the flow occurred in a magnetic field. The dependence of this effect on the size of the capillaries and porous materials was investigated. The viscosity was also found to vary with the concentration of oxygen and the other components forming the mixture. The results of the investigations with various gas mixtures are graphically shown. (A.C.)

  6. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  7. Gas cluster ion beam surface treatments for reducing field emission and breakdown of electrodes and SRF cavities

    NASA Astrophysics Data System (ADS)

    Swenson, D. R.; Wu, A. T.; Degenkolb, E.; Insepov, Z.

    2007-08-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high-voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high-voltage electrodes. For this paper, we have processed Nb, stainless steel and Ti electrode materials using beams of Ar, O2, or NF3 + O2 clusters with accelerating potentials up to 35 kV. Using a scanning field emission microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on stainless steel and Ti substrates, evaluated using SEM and AFM imaging, show that 200-nm-wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB-treated stainless steel electrode has shown virtually no DC field emission current at gradients over 20 MV/m.

  8. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  9. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the

  10. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is providedmore » by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.« less

  11. Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2015-07-01

    A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.

  12. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    USGS Publications Warehouse

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  13. Water quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12

    USGS Publications Warehouse

    Chambers, Douglas B.; Kozar, Mark D.; Messinger, Terence; Mulder, Michon L.; Pelak, Adam J.; White , Jeremy S.

    2015-01-01

    This study provides a baseline of water-quality conditions in the Monongahela River Basin in West Virginia during the early phases of development of the Marcellus Shale gas field. Although not all inclusive, the results of this study provide a set of reliable water-quality data against which future data sets can be compared and the effects of shale-gas development may be determined.

  14. Evidence for non-axisymmetry in M 31 from wide-field kinematics of stars and gas

    NASA Astrophysics Data System (ADS)

    Opitsch, M.; Fabricius, M. H.; Saglia, R. P.; Bender, R.; Blaña, M.; Gerhard, O.

    2018-03-01

    Aim. As the nearest large spiral galaxy, M 31 provides a unique opportunity to study the structure and evolutionary history of this galaxy type in great detail. Among the many observing programs aimed at M 31 are microlensing studies, which require good three-dimensional models of the stellar mass distribution. Possible non-axisymmetric structures like a bar need to be taken into account. Due to M 31's high inclination, the bar is difficult to detect in photometry alone. Therefore, detailed kinematic measurements are needed to constrain the possible existence and position of a bar in M 31. Methods: We obtained ≈220 separate fields with the optical integral-field unit spectrograph VIRUS-W, covering the whole bulge region of M 31 and parts of the disk. We derived stellar line-of-sight velocity distributions from the stellar absorption lines, as well as velocity distributions and line fluxes of the emission lines Hβ, [O III] and [N I]. Our data supersede any previous study in terms of spatial coverage and spectral resolution. Results: We find several features that are indicative of a bar in the kinematics of the stars, we see intermediate plateaus in the velocity and the velocity dispersion, and correlation between the higher moment h3 and the velocity. The gas kinematics is highly irregular, but is consistent with non-triaxial streaming motions caused by a bar. The morphology of the gas shows a spiral pattern, with seemingly lower inclination than the stellar disk. We also look at the ionization mechanisms of the gas, which happens mostly through shocks and not through starbursts. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe".Full Tables B.4-B.7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A38

  15. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence

  16. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    PubMed

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  17. Gas occurrence property in shales of Tuha basin northwest china

    NASA Astrophysics Data System (ADS)

    Chen, Jinlong; Huang, Zhilong

    2017-04-01

    Pore of rock under formation condition must be fulfilled by gas, oil, or water, so the volume of water and gas is equation to porous volume in shale gas. The occurrences states of gas are free gas, solution gas, and absorbed gas. Field analysis is used to obtain total gas content by improved lost gas recover method. Free gas content acquired by pore proportion of gas, which use measured pore volume minus water and oil saturation, convert gas content of standard condition by state equation. Water saturation obtain from core water content, oil saturation obtain from extract carbohydrate. Solution gas need gas solubility in oil and water to calculate solution gas content in standard condition. Absorbed gas, introduce Absorbed Gas Saturation ɛ, which acquire from isothermal adsorption volume vs field analysis gas content in many basins of published paper, need isothermal adsorption and Absorbed Gas Saturation to obtain absorbed gas content. All of the data build connect with logging value by regression equation. The gas content is 0.92-1.53 m3/t from field analysis, evaluate gas content is 1.33 m3/t average, free gas proportion is about 47%, absorbed gas counter for 49%, and solution gas is average 4%.

  18. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    PubMed

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather

  19. Gas Lasers

    NASA Astrophysics Data System (ADS)

    Dixit, S. K.

    The field of gas lasers, started with the invention of He-Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He-Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.

  20. The Maurice field: New gas reserves from buried structure along the Oligocene trend of southwestern Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, M.P.

    1990-09-01

    Significant new gas reserves have recently been discovered in the Marginulina texana sands along the Oligocene trend at the Maurice field. Detailed subsurface maps and seismic data are presented to exhibit the extent and nature of this local buried structure and to demonstrate future opportunities along the Oligocene trend. Since discovery in 1988, the MARG. TEX. RC has extended the Maurice field one-half mile south and has encountered over 170 ft of Marginulina texana pay Estimated reserves are in the order of 160 BCFG with limits of the reservoir still unknown. This reserve addition would increase the estimated ultimate ofmore » the Maurice field by over 70% from 220 BCFG to 380 BCFG. Cross sections across the field depict the new reservoir trap as a buried upthrown fault closure with an anticipated gas column of 700 ft. Interpretation of the origin of this local structure is that of a buried rotated fault block on an overall larger depositional structure. Detailed subsurface maps at the Marginulina texana and the overlying Miogypsinoides level are presented. These maps indicate that one common fault block is productive from two different levels. The deeper Marginulina texana sands are trapped on north dip upthrown to a southern boundary fault, Fault B. The overlying Miogypsinoides sands are trapped on south dip downthrown to a northern boundary fault, Fault A. The northern boundary fault, Fault A, was the Marginulina texana expansion fault and rotated that downthrown section to north dip. Because of the difference in dip between the two levels, the apex of the deeper Marginulina texana fault closure is juxtaposed by one mile south relative to the overlying Miogypsinoides fault closure. Analysis indicates that important structural growth occur-red during Marginulina texana deposition with a local unconformity covering the apex of the upthrown fault closure. State-of-the-art reconnaissance seismic data clearly exhibit this buried rotated fault block.« less

  1. Study of the confinement properties in a reversed-field pinch with mode rotation and gas fuelling

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Nielsen, P.; Pasqualotto, R.; Drake, J. R.

    2002-08-01

    An extensive investigation of the global confinement properties in different operating scenarios in the rebuilt EXTRAP T2R reversed-field pinch (RFP) experiment is reported here. In particular, the role of a fast gas puff valve system, used to control plasma density, on confinement is studied. Without gas puffing, the electron density decays below 0.5×1019 m-3. The poloidal beta varies between 5% and 15%, decreasing at large I/N. The energy confinement time ranges from 70 to 225 μs. With gas puffing, the density is sustained at ne≈1.5×1019 m-3. However, a general slight deterioration of the plasma performances is observed for the same values of I/N: the plasma becomes cooler and more radiative. The poloidal beta is comparable to that in the scenarios without puff but the energy confinement time drops ranging from 60 to 130 μs. The fluctuation level and the energy confinement time have been found to scale with the Lundquist number as S-0.05+/-0.07 and S0.5+/-0.1, respectively. Mode rotation is typical for all the discharges and rotation velocity is observed to increase with increasing electron diamagnetic velocity.

  2. Microbial Oxidation of Natural Gas in a Plume Emanating from the Coal Oil Point Seep Field

    NASA Astrophysics Data System (ADS)

    Mendes, S. D.; Valentine, D. L.; Perez, C.; Scarlett, R.

    2012-12-01

    The hydrocarbon seep field at Coal Oil Point, off the coast of Santa Barbara, California, releases > 1010 g of thermogenic natural gas each year. Gases emitted from Coal Oil Point include methane, ethane, propane, and butane, which are atmospheric pollutants and greenhouse gases. Even though the seeps are at water depths of only 5-80 m, much of the gas dissolves and contributes to a plume that is transported by ocean currents. While hydrocarbons can support bacterial respiration, resulting in the removal of hydrocarbon gas from the plume, the time-scale for the bacterial respiratory response is unconstrained. To track hydrocarbon respiration 3H-ethane, propane, and butane were synthesized using Grignard reagents and tritiated water with yields of >70% and applied as tracers to samples up- and down-current from the seeps at Coal Oil Point. Validation experiments conducted in September 2011 aboard the R/V Atlantis show that 3H-labeled tracers are an order of magnitude more sensitive than previous methods using stable carbon isotopes (Valentine et. al 2010), making this technique preferable in natural systems. Application of the tracers concurrent with plume tracking in July-August 2012 show ethane, propane, and butane consumption are readily inducible on a timescale of days.

  3. Occurrence and structural characterization of gas hydrates associated with a cold vent field, offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Lu, Hailong; Moudrakovski, Igor; Riedel, Michael; Spence, George; Dutrisac, Regent; Ripmeester, John; Wright, Fred; Dallimore, Scott

    2005-10-01

    Gas hydrate samples recovered from a cold vent field offshore Vancouver Island were studied in detail both by macroscopic observations and instrumental methods (powder X-ray diffraction method (PXRD), nuclear magnetic resonance (NMR), and Raman spectroscopy). It was found that gas hydrates were massive from 2.64 to 2.94 m below seafloor (mbsf), elongated, nodular and tabular from 4.60 to 4.81 mbsf, and vein-like from 5.48 to 5.68 mbsf, showing a trend of decreasing hydrate content with increasing depth. All samples were determined to be structure I hydrate from PXRD, NMR, and Raman spectroscopies. The hydration numbers were estimated to be 6.1 ± 0.2 on average as determined from the methane distribution over the cage sites from NMR and Raman analytical results. Estimates of conversion levels indicated that ˜78% of the water in the massive samples was hydrate, down to a low value of ˜0.4% for the pore hydrate samples. The results are compared with measurements on synthetic hydrates and samples recovered from below the permafrost on the Mallik site. Differences in methane content and lattice parameters for synthetic and natural samples are relatively minor. Additional work is needed to address the presence of minor gas components and the heterogeneity of natural hydrate samples.

  4. Production induced subsidence and seismicity in the Groningen gas field - can it be managed?

    NASA Astrophysics Data System (ADS)

    de Waal, J. A.; Muntendam-Bos, A. G.; Roest, J. P. A.

    2015-11-01

    Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl) went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995) and 42 cm (2005) to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas production by as

  5. Variable gas leak rate valve

    DOEpatents

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  6. The Far-Field Angular Distribution of High-Order Harmonics Produced in Light Scattering from a Thin Low - Gas Target

    NASA Astrophysics Data System (ADS)

    Peatross, Justin Bruce

    The far-field angular distributions of high-order optical harmonics have been measured. Harmonics up to the 41st order were observed in the light scattered from noble gas targets subjected to very intense pulses of laser radiation with wavelength 1053nm. The experimental conditions minimized collective effects such as phase-mismatch due to propagation or refractive index effects caused, for example, by free electrons arising in the ionization of the target Ar, Kr, or Xe atoms. The angular distributions of many harmonic orders, ranging from the low teens to the upper thirties, all of which emerge collinear to the laser beam, could be distinguished and recorded simultaneously. Gaussian laser pulses, 1.25 -times-diffraction-limited and 1.4ps duration, were focused to intensities ranging from 1times 10^ {13} W/cm^2 to 5times 10^{14} W/cm ^2 using f/70 optics. A novel gas target localized the gas distribution to a thickness of about 1mm, less than one tenth of the laser confocal parameter, at pressures of 1 Torr and less. The narrow and low-density gas distribution employed in these experiments allows the harmonics to be thought of as emerging from atoms lying in a single plane in the interaction region. This is in contrast with previously reported harmonic generation experiments in which propagation effects played strong roles. At these pressures, an order of magnitude below pressures used in other experiments, free electrons created by ionization of target atoms had a negligible effect on the far-field harmonic profiles. We have found that the far-field distributions of nearly all of the harmonics exhibit a narrow central peak surrounded by broad wings of about the same width as the emerging laser beam. The relative widths and strengths of the wings have been found to vary with harmonic order, laser intensity, and atomic species. Since the intensity varies radially across the laser beam in the atomic source plane, an intensity-dependent phase variation among the

  7. Site characterization at Groningen gas field area through joint surface-borehole H/V analysis

    NASA Astrophysics Data System (ADS)

    Spica, Zack J.; Perton, Mathieu; Nakata, Nori; Liu, Xin; Beroza, Gregory C.

    2018-01-01

    A new interpretation of the horizontal to vertical (H/V) spectral ratio in terms of the Diffuse Field Assumption (DFA) has fuelled a resurgence of interest in that approach. The DFA links H/V measurements to Green's function retrieval through autocorrelation of the ambient seismic field. This naturally allows for estimation of layered velocity structure. In this contribution, we further explore the potential of H/V analysis. Our study is facilitated by a distributed array of surface and co-located borehole stations deployed at multiple depths, and by detailed prior information on velocity structure that is available due to development of the Groningen gas field. We use the vertical distribution of H/V spectra recorded at discrete depths inside boreholes to obtain shear wave velocity models of the shallow subsurface. We combine both joint H/V inversion and borehole interferometry to reduce the non-uniqueness of the problem and to allow faster convergence towards a reliable velocity model. The good agreement between our results and velocity models from an independent study validates the methodology, demonstrates the power of the method, but more importantly provides further constraints on the shallow velocity structure, which is an essential component of integrated hazard assessment in the area.

  8. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The gas heterogeneous flows cleaning technology from corona discharge field

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Tokarev, A.; Judanov, V.; Vinogradov, V.

    2017-11-01

    A nanogold capture and extraction from combustion products of Kara-Keche coal, description the process: a coal preparation to experiments, nanogold introducing in its composition, temperature and time performance of combustion, device and function of experimental apparatus, gas-purification of the gas flow process and receiving combustion products (condensate, coke, ash, rags) is offerred.

  10. Impact of local electrostatic field rearrangement on field ionization

    NASA Astrophysics Data System (ADS)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  11. An analysis of the flow field near the fuel injection location in a gas core reactor.

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Murty, B. G. K.; Porter, R. W.

    1971-01-01

    An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.

  12. Meeting Asia's future gas import demand with stranded natural gas from central Asia, Russia, Southeast Asia, and Australia

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This analysis shows the important contribution that stranded gas from central Asia, Russia, Southeast Asia, and Australia can make in meeting the projected demand for gas imports of China, India, Japan, and South Korea from 2020 to 2040. The estimated delivered costs of pipeline gas from stranded fields in Russia and central Asia at Shanghai, China, are generally less than delivered costs of liquefied natural gas (LNG). Australia and Malaysia are initially the lowest-cost LNG suppliers. In the concluding section, it is argued that Asian LNG demand is price sensitive, and that current Asian LNG pricing procedures are unlikely to be sustainable for gas import demand to attain maximum potential growth. Resource volumes in stranded fields evaluated can nearly meet projected import demands.

  13. History of gas production from Devonian shale in eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, J.R.; Frankie, W.T.; Smath, R.A.

    More than 10,500 wells that penetrate the Devonian shale have been compiled into a data base covering a 25-county area of eastern Kentucky. This area includes the Big Sandy gas field, the largest in the Appalachian basin, and marginal areas to the southwest, west, and northwest. The development of the Big Sandy gas field began in the 1920s in western Floyd County, Kentucky, and moved concentrically outward through 1970. Since 1971, the trend has been for infill and marginal drilling, and fewer companies have been involved. The resulting outline of the Big Sandy gas field covers most of Letcher, Knott,more » Floyd, Martin, and Pike Counties in Kentucky; it also extends into West Virginia. Outside the Big Sandy gas field, exploration for gas has been inconsistent, with a much higher ratio of dry holes. The results of this study, which was partially supported by the Gas Research Institute (GRI), indicate that certain geologic factors, such as fracture size and spacing, probably determine the distribution of commercial gas reserves as well as the outline of the Big Sandy gas field. Future Big Sandy infill and extension drilling will need to be based on an understanding of these factors.« less

  14. Viability of modelling gas transport in shallow injection-monitoring experiment field at Maguelone, France

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Fagerlund, Fritjof; Sharma, Prabhakar; Pezard, Philippe; Niemi, Auli

    2015-04-01

    In this study, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried out at Maguelone, France, during 2012 and 2013. The possibility of CO2 leakage from storage reservoir to upper layers is one of the issues that need to be addressed in CCS projects. Developing reliable monitoring techniques to detect and characterize CO2 leakage is necessary for the safety of CO2 storage in reservoir formations. To test and cross-validate different monitoring techniques, a series of shallow gas injection-monitoring experiments (SIMEx) has been carried out at the Maguelone. The experimental site is documented in Lofi et al [2013]. At the site, a series of nitrogen and one CO2 injection experiment have been carried out during 2012-2013 and different monitoring techniques have been applied. The purpose of modelling is to acquire understanding of the system performance as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. The preliminary simulation of the experiment including the simulation for the Nitrogen injection test in 2012 was presented in Basirat et al [2013]. In this work, the simulations represent the gaseous CO2 distribution and dissolved CO2 within range obtained by monitoring approaches. The Multiphase modelling in combination with geophysical monitoring can be used for process understanding of gas phase migration- and mass transfer processes resulting from gaseous CO2 injection. Basirat, F., A. Niemi, H. Perroud, J. Lofi, N. Denchik, G. Lods, P. Pezard, P. Sharma, and F. Fagerlund (2013), Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment, Energy Procedia, 40, 337-345. Lofi, J., P. Pezard, F. Bouchette, O. Raynal, P. Sabatier, N. Denchik, A. Levannier, L. Dezileau, and R. Certain (2013), Integrated Onshore-Offshore Investigation of a Mediterranean Layered Coastal Aquifer, Groundwater, 51(4), 550-561.

  15. Floating production platforms and their applications in the development of oil and gas fields in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Dagang; Chen, Yongjun; Zhang, Tianyu

    2014-03-01

    This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A detailed review of current deepwater platforms worldwide was performed through the examples of industry projects, and the pros and cons of each platform are discussed. Four types of platforms are currently used for the deepwater development: tension leg platform, Spar, semi-submersible platform, and the floating production system offloading. Among these, the TLP and Spar can be used for dry tree applications, and have gained popularity in recent years. The dry tree application enables the extension of the drilling application for fixed platforms into floating systems, and greatly reduces the cost and complexity of the subsea operation. Newly built wet tree semi-submersible production platforms for ultra deepwater are also getting their application, mainly due to the much needed payload for deepwater making the conversion of the old drilling semi-submersible platforms impossible. These platforms have been used in different fields around the world for different environments; each has its own advantages and disadvantages. There are many challenges with the successful use of these floating platforms. A lot of lessons have been learned and extensive experience accumulated through the many project applications. Key technologies are being reviewed for the successful use of floating platforms for field development, and potential future development needs are being discussed. Some of the technologies and experience of platform applications can be well used for the development of the South China Sea oil and gas field.

  16. Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.

    2015-12-01

    Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.

  17. FIELD METHODS TO MEASURE CONTAMINANT REMOVAL EFFECTIVENESS OF GAS-PHASE AIR FILTRATION EQUIPMENT - PHASE 1: SEARCH OF LITERATURE AND PRIOR ART

    EPA Science Inventory

    The report, Phase 1 of a two-phase research project, gives results of a literature search into the
    effectiveness of in-field gas-phase air filtration equipment (GPAFE) test methods, including required instrumentation and costs. GPAFE has been used in heating, ventilation, and ...

  18. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found

  19. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-05-15

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of themore » Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems.« less

  20. Intermittent spring flooding of agricultural fields will increase net global-warming potential of greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smyth, E. M.; Smith, C. M.; Kantola, I. B.; Krichels, A.; Yang, W. H.; DeLucia, E. H.

    2014-12-01

    The U.S. Corn Belt is currently a net source of carbon dioxide and nitrous dioxide to the atmosphere but is also a weak sink for methane. Climate change is projected to increase the frequency and duration of spring precipitation in the North American Midwest, resulting in intermittent flooding and ponding in agricultural fields. Inundation changes the greenhouse gas (GHG) fluxes of the soil, especially by promoting methanogenesis under anoxic conditions. DNA and 16S cDNA sequencing results of earlier, similar experiments confirmed the presence of methanogens in soil samples, albeit in low abundance (representing <0.01% of reads per sample). We installed collars into bare ground of a central Illinois research field to experiment with flooding conditions and observe changes in gas fluxes, microbial community, and soil chemistry. We established three treatments of five replicates—control, continuously flooded, and intermittently flooded—each with separate collars for gas flux measurements, soil sample collection, and soil probe measurements. A drip irrigation system flooded the headspaces of the collars to produce flooding events. The continuously flooded collars were maintained in a flooded condition for the duration of the experiment, and the intermittently flooded collars were flooded for 72 hours per flooding event and then kept dry for at least 5 days before the next flooding event. We measured net concentrations of N2O, CH4, and CO2 in situ using a static chamber connected to a cavity ringdown spectrometer. We found that the periodicity of wetting and drying events induces hysteresis effects that push GHG shifts to occur rapidly (< 1 hr). Integrating fluxes across the period of the experiment, the intermittently flooded collars showed 88.7% higher global-warming potential of GHG fluxes at the 100-year horizon versus control, with most of change driven by increased net CO2 flux (87.1% higher) and net methane flux (29 times higher). These data indicate that

  1. Apparatus for extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  2. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  3. Effects of saline-wastewater injection on water quality in the Altamont-Bluebell oil and gas field, Duchesne County, Utah, 1990-2005

    USGS Publications Warehouse

    Steiger, Judy I.

    2007-01-01

    The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.

  4. Nanogenerators for Self-Powered Gas Sensing

    NASA Astrophysics Data System (ADS)

    Wen, Zhen; Shen, Qingqing; Sun, Xuhui

    2017-10-01

    Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.

  5. A preliminary experiment to collect gas from a submarine gas plume

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Fukuoka, H.

    2016-12-01

    Thousands of gas plumes have been found on the sea floors around Japan. Most of them are associated with methane hydrates on seafloor surface and/or shallow subsurface, and those bubbles are consisting largely of methane. Concerns are emerging about large scale plumes may provide the highly efficient greenhouse gas to the atmosphere. A novel methodology is proposed in this study, to collect those gas bubbles in the plumes using membrane-made dome to reduce global greenhouse effect and to develop new energy resources. Experiment field is northeast offshore of the Sado Island, Niigata prefecture of Japan, where more than 40 gas plumes had been found, gushing out from rather shallower sea floor of 150 - 400 m depth. Authors will present the achievement obtained in the preliminary gas collection experiment which was performed in a gas plume in this sea area in March 2016.

  6. Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea

    USGS Publications Warehouse

    Ginsburg, G.D.; Soloviev, V.A.; Cranston, R.E.; Lorenson, T.D.; Kvenvolden, K.A.

    1993-01-01

    Ten gas-vent fields were discovered in the Okhotsk Sea on the northeast continental slope offshore from Sakhalin Island in water depths of 620-1040 m. At one vent field, estimated to be more than 250 m across, gas hydrates, containing mainly microbial methane (??13C = -64.3???), were recovered from subbottom depths of 0.3-1.2 m. The sediment, having lenses and bedded layers of gas hydrate, contained 30-40% hydrate per volume of wet sediment. Although gas hydrates were not recovered at other fields, geochemical and thermal measurements suggest that gas hydrates are present. ?? 1993 Springer-Verlag.

  7. Physical Properties of Gas Hydrates: A Review

    DOE PAGES

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  8. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  9. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  10. Design of a 300-kV gas environmental transmission electron microscope equipped with a cold field emission gun.

    PubMed

    Isakozawa, Shigeto; Nagaoki, Isao; Watabe, Akira; Nagakubo, Yasuhira; Saito, Nobuhiro; Matsumoto, Hiroaki; Zhang, Xiao Feng; Taniguchi, Yoshifumi; Baba, Norio

    2016-08-01

    A new in situ environmental transmission electron microscope (ETEM) was developed based on a 300 kV TEM with a cold field emission gun (CFEG). Particular caution was taken in the ETEM design to assure uncompromised imaging and analytical performance of the TEM. Because of the improved pumping system between the gun and column, the vacuum of CFEG was largely improved and the probe current was sufficiently stabilized to operate without tip flashing for 2-3 h or longer. A high brightness of 2.5 × 10(9) A/cm(2) sr was measured at 300 kV, verifying the high quality of the CFEG electron beam. A specially designed gas injection-heating holder was used in the in situ TEM study at elevated temperatures with or without gas around the TEM specimen. Using this holder in a 10 Pa gas atmosphere and specimen temperatures up to 1000°C, high-resolution ETEM performance and analysis were achieved. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    USGS Publications Warehouse

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  12. Neogene Gas Total Petroleum System -- Neogene Nonassociated Gas Assessment Unit of the San Joaquin Basin Province: Chapter 22 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2009-01-01

    The Neogene Nonassociated Gas Assessment Unit (AU) of the Neogene Total Petroleum System consists of nonassociated gas accumulations in Pliocene marine and brackish-water sandstone located in the south and central San Joaquin Basin Province (Rudkin, 1968). Traps consist mainly of stratigraphic lenses in low-relief, elongate domes that trend northwest-southeast. Reservoir rocks typically occur as sands that pinch out at shallow depths (1,000 to 7,500 feet) within the Etchegoin and San Joaquin Formations. Map boundaries of the assessment unit are shown in figures 22.1 and 22.2; this assessment unit replaces the Pliocene Nonassociated Gas play 1001 (shown by purple line in fig. 22.1) considered by the U.S. Geological Survey (USGS) in its 1995 National Assessment (Beyer, 1996). The AU is drawn to include all existing fields containing nonassociated gas accumulations in the Pliocene to Pleistocene section, as was done in the 1995 assessment, but it was greatly expanded to include adjacent areas believed to contain similar source and reservoir rock relationships. Stratigraphically, the AU extends from the topographic surface to the base of the Etchegoin Formation (figs. 22.3 and 22.4). The boundaries of the AU explicitly exclude gas accumulations in Neogene rocks on the severely deformed west side of the basin and gas accumulations in underlying Miocene rocks; these resources, which primarily consist of a mixture of mostly thermogenic and some biogenic gas, are included in two other assessment units. Lillis and others (this volume, chapter 10) discuss the geochemical characteristics of biogenic gas in the San Joaquin Basin Province. Primary fields in the assessment unit are defined as those containing hydrocarbon resources greater than the USGS minimum threshold for assessment—3 billion cubic feet (BCF) of gas; secondary fields contain smaller volumes of gas but constitute a significant show of hydrocarbons. Although 12 fields meet the 3 BCF criterion for inclusion in

  13. Gas dynamics in strong centrifugal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarizedmore » along the rotational axis having the smallest dumping due to the viscosity.« less

  14. High-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source

    NASA Astrophysics Data System (ADS)

    Zeng, Qiusun; Chen, Dehong; Wang, Minghuang

    2017-12-01

    In order to improve the fusion energy gain (Q) of a gas dynamic trap (GDT)-based fusion neutron source, a method in which the neutral beam is obliquely injected at a higher magnetic field position rather than at the mid-plane of the GDT is proposed. This method is beneficial for confining a higher density of fast ions at the turning point in the zone with a higher magnetic field, as well as obtaining a higher mirror ratio by reducing the mid-plane field rather than increasing the mirror field. In this situation, collision scattering loss of fast ions with higher density will occur and change the confinement time, power balance and particle balance. Using an updated calculation model with high-field neutral beam injection for a GDT-based fusion neutron source conceptual design, we got four optimal design schemes for a GDT-based fusion neutron source in which Q was improved to two- to three-fold compared with a conventional design scheme and considering the limitation for avoiding plasma instabilities, especially the fire-hose instability. The distribution of fast ions could be optimized by building a proper magnetic field configuration with enough space for neutron shielding and by multi-beam neutral particle injection at different axial points.

  15. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give

  16. Magnetic Fields Versus Gravity

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  17. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  18. Resource-assessment perspectives for unconventional gas systems

    USGS Publications Warehouse

    Schmoker, J.W.

    2002-01-01

    Concepts are described for assessing those unconventional gas systems that can also be defined as continous accumulations. Continuous gas accumulations exist more or less independently of the water column and do not owe their existence directly to the bouyancy of gas in water. They cannot be represented in terms of individual, countable fields or pools delineated by downdip water contacts. For these reasons, traditional resource-assessment methods based on estimating the sizes and numbers of undiscovered discrete fields cannot not be applied to continuous accumulations. Specialized assessment methods are required. Unconventional gas systems that are also continous accumulations include coalbed methane, basin-centered gas, so-called tight gas, fractured shale (and chalk) gas, and gas hydrates. Deep-basin and bacterial gas systems may or may not be continuous accumulations, depending on their geologic setting. Two basic resource-assessment approaches have been employed for continous accumulations. The first approach is based on estimates of gas in place. A volumetric estimate of total gas in place is commonly coupled with an overall recovery factor to narrow the assessment scope from a treatment of gas volumes residing in sedimentary strata to a prediction of potential additions to reserves. The second approach is based on the production performance of continous gas reservoirs, as shown empirically by wells and reservoir-simulation models. In these methods, production characteristics (as opposed to gas in place) are the foundation for forecasts of potential additions to reserves.

  19. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model

    NASA Astrophysics Data System (ADS)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang

    2017-11-01

    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  20. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James; Li, Lei; Yu, Yang

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminatedmore » owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.« less

  1. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less

  2. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  3. Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucci, A.; Vasco, D.W.; Novali, F.

    2010-04-01

    Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production onlymore » results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.« less

  4. Geological notes, Boory field, Cameron County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, W.L.

    1981-12-01

    The gas fields of the Lower Miocene sands of Cameron County have gained enough maturity in their production experience to afford a consideration of their performance and characteristics. The Holy Beach field in the Laguna Madre has produced over 100 billion cu ft of gas, and others have produced over 25 billion; several are smaller. The characteristics of these fields include the modest cost of drilling in the range of pays 3000 ft to 7500 ft depth, and the small area of production, with several pay sands, usually a few feet thick but being very porous (over 30%) and permeablemore » (streaks of over 800 md). A fairly dry gas is produced with normal pressures. The Boory field may be singled out as a small but interesting field in this trend. It was found in 1973 and produced 4-1/2 billion cu ft of gas from a 310-acre area with 8 pay sands in depths 4750 to 6200 ft depth. The field was abandoned in 1980.« less

  5. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    NASA Astrophysics Data System (ADS)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  6. Characterization of gas station emissions during the CAREBeijing 2008 field study

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, T.; Zhang, R.; Wang, M.; Chang, C.-C.; Shao, M.; Hu, M.

    2011-05-01

    A proton transfer-reaction mass spectrometer (PTR-MS) onboard a mobile laboratory was used to conduct emission measurements at eight gas stations in Beijing during the CAREBeijing 2008 campaign. Benzene, toluene, C8-, C9-aromatics, methanol, MTBE, butenes and pentenes were the major volatile organic compounds (VOCs) detected during the measurements. An inter-comparison between the PTR-MS and an on-line GC/MS/FID system was also conducted and the result showed good agreement between the two instruments (Interception < 0.08 ppbv, 0.72 < Slope < 0.95, and R2 > 0.92). A Gaussian point source plume model was applied to evaluate the VOCs emission rates. The results showed that on average about 4.5 mt of gasoline were emitted from gas stations in Beijing per day. The estimated emission factor (EF) for gas stations due to refueling processes was about 0.5 kg t-1, which was significantly lower than a value of 2.49 kg t-1 obtained in 2002, indicating a successful implementation of vapor recovery system in the gas stations of Beijing. On average, about 18 ppbv of benzene has been detected at one gas station, twice as much as the US Environmental Protection Agency (EPA) recommended safe chronic exposure level and implying a potential public health concern. MTBE and aromatics were found to be the major antiknocking additives used in gasoline supplied in Beijing. Our results reveal that emissions from gas stations represent an important source for VOCs in megacity Beijing and need to be properly included in emission inventories to assess their roles in photochemical ozone production and secondary organic aerosol formation. Furthermore, promoting methanol-blended fuel in Beijing can be an effective way to reduce toxic air pollutants emission.

  7. Ecological policy in oil-gas complexes, HSE MS implementation in oil and gas company

    NASA Astrophysics Data System (ADS)

    Kochetkova, O. P.; Glyzina, T. S.; Vazim, A. A.; Tugutova, S. S.

    2016-09-01

    The paper considers the following issues: HSE MS international standard implementation in oil and gas industry, taking into account international practices; implementation of standards in oil and gas companies; policy in the field of environmental protection and occupational health and safety; achievement of planned indicators and targets in environmental protection and occupational health and safety.

  8. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  9. Utility gas turbine combustor viewing system: Volume 1, Conceptual design and initial field testing: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less

  10. Geographic information system (GIS)-based maps of Appalachian basin oil and gas fields: Chapter C.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previously named fields that were originally treated as conventional fields have evolved into large, commonly unnamed continuous-type accumulations. These new digital maps will facilitate a comparison between EUR values from recently drilled, unnamed parts of continuous accumulations and EUR values from named fields discovered early during the exploration cycle of continuous accumulations.

  11. Radiation, Gas and Magnetic Fields: Understanding Accretion Disks with Real Physics

    NASA Astrophysics Data System (ADS)

    Tao, Ted

    2011-01-01

    This dissertation studies some of the fundamental physics ingredients that underlie the theory of astrophysical accretion disks. We begin by focusing on local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. Our analysis includes the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. We find that the two instabilities transition smoothly into each other at a characteristic wavelength that is approximately equal to the magnetic pressure scale height times the ratio of radiation to magnetic pressure gradient forces. The Parker instability exists for longer wavelengths, while photon bubbles exist for wavelengths shorter than the transition wavelength. We also consider the effects of finite gas pressure on the coupled instabilities. Finite gas pressure introduces an additional short wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at high wave numbers. Finally, our analytic infinite wavenumber perturbation calculation strongly suggest that magnetic pressure gradients do not modify the photon bubble growth rate in the asymptotic regime. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths. Next, we turn to the effects of local dissipation physics on the spectra and vertical structure of high luminosity stellar mass black hole X-ray binary accretion disks. More specifically, we present spectral calculations of non-LTE accretion

  12. Exploration and development of natural gas, Pattani basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, H.M.; Bradley, K.

    The geology of the Gulf of Thailand features a series of north-south-trending ridges and linear, fault-bounded basins with a sedimentary section predominantly of upper Tertiary sediments. The Pattani basin, located near the geographic center of the Gulf of Thailand, contains up to 8 km of almost entirely nonmarine fluvial-deltaic sediments. The gas/condensate fields described in this paper are on the west flank of the Pattani basin. Gas reservoirs are thin, randomly distributed sandstone beds occurring between 1200 and 3000 m below sea level. At greater depths, very high temperatures cause a degradation of reservoir properties. The gas fields occur onmore » intensely faulted structures. The high fault density superimposed on the stratigraphic model limits the size of individual gas accumulations. Extensive three-dimensional seismic surveys were essential for delineating and developing these complex fields. An interactive computer system was used to interpret the 23,000 line-km of three-dimensional data. A new era in Thailand began when gas production commenced from Erawan field in August 1981. Baanpot, Satun, and Platong fields came on production between October 1983 and March 1985. In these four fields, 238 development wells have been drilled from 22 platforms. The wells can presently produce 475 MMCFGD, considerably in excess of Thailand's current requirements. The condensate ratios average 40 bbl/mmcf of gas. The commercial limits of each field have yet to be established. The advent of gas production has created a new industry in Thailand, with significant social and economic benefits to the country.« less

  13. Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry.

    PubMed

    Krylova, N; Krylov, E; Eiceman, G A; Stone, J A

    2003-05-15

    The electric field dependence of the mobilities of gas-phase protonated monomers [(MH+(H2O)n] and proton-bound dimers [M2H+(H2O)n] of organophosphorus compounds was determined at E/N values between 0 and 140 Td at ambient pressure in air with moisture between 0.1 and 15 000 ppm. Field dependence was described as alpha (E/N) and was obtained from the measurements of compensation voltage versus field amplitude in a planar high-field asymmetric waveform ion mobility spectrometer. The alpha function for protonated monomers to 140 Td was constant from 0.1 to 10 ppm moisture in air with onset of effect at approximately 50 ppm. The value of alpha increased 2-fold from 100 to 1000 ppm at all E/N values. At moisture values between 1000 and 10 000 ppm, a 2-fold or more increase in alpha (E/N) was observed. In a model proposed here, field dependence for mobility through changes in collision cross sections is governed by the degree of solvation of the protonated molecule by neutral molecules. The process of ion declustering at high E/N values was consistent with the kinetics of ion-neutral collisional periods, and the duty cycle of the waveform applied to the drift tube. Water was the principal neutral above 50 ppm moisture in air, and nitrogen was proposed as the principal neutral below 50 ppm.

  14. In situ gas treatment technology demonstration test plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, E.C.; Miller, R.D.

    1996-02-16

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities.

  15. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  16. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  17. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas

  18. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  19. Electrofacies vs. lithofacies sandstone reservoir characterization Campanian sequence, Arshad gas/oil field, Central Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Burki, Milad; Darwish, Mohamed

    2017-06-01

    The present study focuses on the vertically stacked sandstones of the Arshad Sandstone in Arshad gas/oil field, Central Sirt Basin, Libya, and is based on the conventional cores analysis and wireline log interpretation. Six lithofacies types (F1 to F6) were identified based on the lithology, sedimentary structures and biogenic features, and are supported by wireline log calibration. From which four types (F1-F4) represent the main Campanian sandstone reservoirs in the Arshad gas/oil field. Lithofacies F5 is the basal conglomerates at the lower part of the Arshad sandstones. The Paleozoic Gargaf Formation is represented by lithofacies F6 which is the source provenance for the above lithofacies types. Arshad sediments are interpreted to be deposited in shallow marginal and nearshore marine environment influenced by waves and storms representing interactive shelf to fluvio-marine conditions. The main seal rocks are the Campanian Sirte shale deposited in a major flooding events during sea level rise. It is contended that the syn-depositional tectonics controlled the distribution of the reservoir facies in time and space. In addition, the post-depositional changes controlled the reservoir quality and performance. Petrophysical interpretation from the porosity log values were confirmed by the conventional core measurements of the different sandstone lithofacies types. Porosity ranges from 5 to 20% and permeability is between 0 and 20 mD. Petrophysical cut-off summary of the lower part of the clastic dominated sequence (i. e. Arshad Sandstone) calculated from six wells includes net pay sand ranging from 19.5‧ to 202.05‧, average porosity from 7.7 to 15% and water saturation from 19 to 58%.

  20. High gas flow alpha detector

    DOEpatents

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  1. High gas flow alpha detector

    DOEpatents

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  2. Field Tests of a Gas-Filter Imaging Radiometer for Methane, CH4,: A Prototype for Geostationary Remote Infrared Pollution Sounder, GRIPS

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Fish, C. S.; Brent, L. C.; Burrows, J. P.; Fuentes, J. D.; Gordley, L. L.; Jacob, D. J.; Schoeberl, M. R.; Salawitch, R. J.; Ren, X.; Thompson, A. M.

    2013-12-01

    Gas filter radiometry is a powerful tool for measuring infrared active trace gases. Methane (CH4) is the second most important greenhouse gas and is more potent molecule for molecule than carbon dioxide (CO2). Unconventional natural gas recovery has the potential to show great environmental benefits relative to coal, but only if fugitive leakage is held below 3% and leak rates remain highly uncertain. We present design specifications and initial field/aircraft test results for an imaging remote sensing device to measure column content of methane. The instrument is compared to in situ altitude profiles measured with cavity ring-down. This device is an airborne prototype for the Geostationary Remote Infrared Pollution Sounder, GRIPS, a satellite instrument designed to monitor CH4, CO2, CO, N2O and AOD from geostationary orbit, with capabilities for great advances in air quality and climate research. GRIPS: The Geostationary Remote Infrared Pollution Sounder

  3. Electrical Characteristics of Organic Field Effect Transistor Formed by Gas Treatment of High-k Al2O3 at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho

    2009-04-01

    We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.

  4. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  5. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an

  6. ALMA Observations of Gas-rich Galaxies in z ˜ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.; Boone, K.; Cooper, M. C.; DeGroot, A.; Delahaye, A.; Demarco, R.; Foltz, R.; Hayden, B.; Lidman, C.; Manilla-Robles, A.; Perlmutter, S.

    2017-06-01

    We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z ˜ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5σ detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ˜ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2 × 1011 M ⊙ in these objects, with high gas fractions (f gas) and long depletion timescales (τ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ˜4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  7. Geologic distributions of US oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-31

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists` Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less

  8. Geologic distributions of US oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-31

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less

  9. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effectivemore » management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.« less

  10. Oil, gas field growth projections: Wishful thinking or reality?

    USGS Publications Warehouse

    Attanasi, E.D.; Mast, R.F.; Root, D.H.

    1999-01-01

    The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.

  11. Magnetic Tracking of Gas Hydrate Deposits.

    NASA Astrophysics Data System (ADS)

    Lowe, C.; Enkin, R. J.; Judith, B.; Dallimore, S. R.

    2005-12-01

    Analysis of recovered core from the Mallik gas hydrate field in the Mackenzie Delta, Northwest Territories, Canada demonstrates that the magnetic properties of hydrate-bearing strata differ significantly from those strata lacking gas hydrate. The recovered core, which extends from just above (885 m) to just below (1152 m) observed gas hydrate occurrences (891-1107 m), comprises a series of six stratigraphic units that are either sand or silt dominated. Gas hydrate is preferentially concentrated in the higher porosity, sand-dominated units. Although the sediment source region for the Mackenzie Delta is sufficiently large that silts and sands have similar primary mineralogy, their magnetic properties are distinct. Magnetite, apparent in silt units with porosities too low to accommodate significant gas hydrate deposits, is reduced to iron sulphide in the gas hydrate-bearing sand horizons. The degree of the observed magnetic reduction increases with increasing gas hydrate concentration. Furthermore, silts retain their primary magnetism, whereas sands are remagnetized. Two independent investigations of marine gas hydrate occurrences (Blake Ridge, offshore eastern USA and Cascadia, offshore western Canada) demonstrate similar magnetic reduction within known gas hydrate fields, and an even larger depletion of magnetic minerals in vent zones where methane is actively fluxing to surface. Collectively, the findings from these three regions indicate that porosity and structure are fundamental controls on methane pathways. Investigations are presently underway to determine the precise triggers and chemical pathways of the observed magnetic reductions. However, findings to date indicate that magnetic studies of host sediments in gas hydrate systems provide a powerful lithologic correlation tool, a window into the processes associated with gas hydrate formation, and form the basis of quantitative analysis of magnetic surveys over gas hydrate deposits.

  12. Salem limestone oil and gas production in the Keenville field, Wayne County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, D.L.

    Oil has been produced from the Salem Limestone of Valmeyeran (middle Mississippian) age in Illinois since 1939. In 1972 the discovery of Salem oil at Zenith North field in Wayne County, Illinois, stimulated a resurgence of Salem exploration in the Illinois Basin. By the end of 1977, activity had resulted in 3 new field discoveries and 24 new pool discoveries in the Salem of Illinois. One of the most promising of these discoveries was in the Keenville field in T. 1 S., R. 5 E., Wayne County, Illinois. The discovery well was completed early in January 1977, and by themore » end of the year 40 wells had produced approximately 760,000 barrels of Salem oil. The oil is produced from a biocalcarenite (predominatly sand-sized fossils and fossil fragments), with highly variable porosity and permeability, which lies about midway between the top and bottom of the formation. No structural closure is evident on key marker beds above the Salem, but some closure is created by the tendency of the producing zone to occur increasingly lower in the section in an up-dip direction. Water-free oil production was obtained in many wells by setting pipe through the reservoir and perforating above the oil-water contact, as determined by examination of drill cuttings. The oil produced is accompanied by gas with a heating value of about 1500 Btu/ft/sup 3/. To date, most of the oil accumulations in the Salem have been found by drilling below shallower, producing zones on prominent structures. The presence of reservoirs within the Salem, such as the one at Keenville has been difficult to predict prior to drilling. The recent increase in the number of holes drilled to or through the Salem should add to our knowledge of its depositional and diagenetic history and help in further oil exploration.« less

  13. Extraction and evaluation of gas-flow-dependent features from dynamic measurements of gas sensors array

    NASA Astrophysics Data System (ADS)

    Kalinowski, Paweł; Woźniak, Łukasz; Jasiński, Grzegorz; Jasiński, Piotr

    2016-11-01

    Gas analyzers based on gas sensors are the devices which enable recognition of various kinds of volatile compounds. They have continuously been developed and investigated for over three decades, however there are still limitations which slow down the implementation of those devices in many applications. For example, the main drawbacks are the lack of selectivity, sensitivity and long term stability of those devices caused by the drift of utilized sensors. This implies the necessity of investigations not only in the field of development of gas sensors construction, but also the development of measurement procedures or methods of analysis of sensor responses which compensate the limitations of sensors devices. One of the fields of investigations covers the dynamic measurements of sensors or sensor-arrays response with the utilization of flow modulation techniques. Different gas delivery patterns enable the possibility of extraction of unique features which improves the stability and selectivity of gas detecting systems. In this article three utilized flow modulation techniques are presented, together with the proposition of the evaluation method of their usefulness and robustness in environmental pollutants detecting systems. The results of dynamic measurements of an commercially available TGS sensor array in the presence of nitrogen dioxide and ammonia are shown.

  14. A gas-loading system for LANL two-stage gas guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design andmore » evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.« less

  15. A gas-loading system for LANL two-stage gas guns

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.

    2017-01-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  16. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  17. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Travis C.; Straughn, A. N.; Machuca, C.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out tomore » several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.« less

  18. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    NASA Technical Reports Server (NTRS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  19. Middle and upper Miocene natural gas sands in onshore and offshore Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, R.M.; Mancini, E.A.; Bearden, B.L.

    1988-09-01

    Thirty Miocene natural gas fields have been established in onshore and offshore Alabama since the discovery of Miocene gas in this area in 1979. These fields have produced over 16 bcf of natural gas from the middle Miocene Amos sand (24 fields) and upper Miocene Luce (3 fields), Escambia (1 field), and Meyer (3 fields) sands. Production from the Amos transgressive sands represents over 92% of the cumulative shallow Miocene natural gas produced in onshore and offshore Alabama. In addition, over 127 bcf of natural gas has been produced from upper Miocene sands in the Chandeleur area. The productive Miocenemore » section in onshore and coastal Alabama is interpreted to present transgressive marine shelf and regressive shoreface sands. The middle Miocene Amos sand bars are the most productive reservoirs of natural gas in onshore and coastal Alabama, principally due to the porous and permeable nature of these transgressive sands and their stratigraphic relationship to the underlying basinal clays in this area. In offshore Alabama the upper Miocene sands become thicker and are generally more porous and permeable than their onshore equivalents. Because of their deeper burial depth in offshore Alabama, these upper Miocene sands are associated with marine clays that are thermally more mature. The combination of reservoir grade lithologies associated with moderately mature petroleum source rocks enhances the natural gas potential of the upper Miocene sands in offshore Alabama.« less

  20. Nigeria`s Escravos gas project starts up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nwokoma, M.

    Nigeria`s Escravos gas project, Delta state, officially began late last year. The project -- 6,650 b/d of LPG and 1,740 b/d of condensate from 165 MMscfd of gas -- is the first attempt to rid Nigeria of incessant flares that have lit the Delta skies. Operator Chevron Nigeria Ltd. believes that the Escravos project will enable the joint venture to utilize a significant portion of the gas reserves, thus reducing gas flaring. The paper describes the background of the project, the gas fields, transport pipeline, process design, construction, and start-up.

  1. Precision gas therapy using intelligent nanomedicine.

    PubMed

    He, Qianjun

    2017-10-24

    Gas therapy is an emerging and promising field, utilizing the unique therapeutic effects of several kinds of gases (NO, CO, H 2 S and H 2 ) towards many major diseases, including cancer and cardiovascular diseases, and it is also facing challenges relating to enhancing gas therapy efficacy and avoiding gas poisoning risks. Here, we have proposed a new concept for precision gas therapy using a nanomedicine strategy to overcome the challenges. In this perspective, we have addressed a series of existing and potential solutions from the point of view of nanomedicine, and conveyed a collection of opinions about future expandable research into precision gas therapy.

  2. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    PubMed

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  3. The Seno Otway pockmark field and its relationship to thermogenic gas occurrence at the western margin of the Magallanes Basin (Chile)

    NASA Astrophysics Data System (ADS)

    Kilian, R.; Breuer, S.; Behrmann, J. H.; Baeza, O.; Diaz-Michelena, M.; Mutschke, E.; Arz, H.; Lamy, F.

    2017-12-01

    Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since 15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.

  4. The Seno Otway pockmark field and its relationship to thermogenic gas occurrence at the western margin of the Magallanes Basin (Chile)

    NASA Astrophysics Data System (ADS)

    Kilian, R.; Breuer, S.; Behrmann, J. H.; Baeza, O.; Diaz-Michelena, M.; Mutschke, E.; Arz, H.; Lamy, F.

    2018-06-01

    Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to >100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to >30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since 15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.

  5. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  6. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  7. Methane Emissions from Production Sites in Dry vs. Wet Natural Gas Fields

    NASA Astrophysics Data System (ADS)

    Robertson, Anna M.

    Drilling of unconventional resources (shale, tight sands), has resulted in a 40% increase in U.S. natural gas production since 2005. Due to the large increase in supply, and thus decrease in cost, natural gas has become a viable bridge fuel to transition from more carbon-intensive fuels (coal, oil). Natural gas emits roughly half as much carbon dioxide as coal when burned in a modern power plant, but methane emissions throughout the natural gas network can negate its climatic benefits. Methane emissions from active oil and natural gas production sites were quantified in four basins/plays: Upper Green River (UGR, Wyoming), Denver-Julesburg (DJ, Colorado), Uintah (Utah), and Fayetteville (FV, Arkansas), using the EPA's Other Test Method 33a. Throughput-normalized mass average (TNMA) emissions, total methane mass emissions as a percent of gross methane produced, were higher in basins where wells co-produced oil (Uintah, DJ, UGR) than in FV, which has no oil production. Average TNMA emissions in the UGR were lower than in the DJ and Uintah (0.18% vs 2.06% and 2.78%, respectively). However, well pads in UGR with low gas production (< 500 mcfd) had TNMA emissions similar to wells in DJ and Uintah. The low overall TNMA emissions from UGR appear to be driven by higher average well pad gas production (1774 mcfd per well pad vs 111-148 mcfd in DJ and Uintah). Skewed emission distributions were observed in the Uintah, DJ, and FV with 20% of well pads contributing 72-83% of total measured mass emissions, but not in the UGR where only 54% of total measured mass emissions were contributed by the highest emitting 20% of well pads. TNMA emissions from measured well pads were (95% CI): 0.05-0.16% in FV, 0.12-0.29% in UGR, 1.10-3.95% in DJ, and 0.96-8.60% in Uintah.

  8. Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests

    PubMed Central

    KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.

    2014-01-01

    We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421

  9. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    PubMed Central

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei

    2018-01-01

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future. PMID:29370109

  10. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.

    PubMed

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin

    2018-01-25

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  11. Landfill gas to electricity demonstration project

    NASA Astrophysics Data System (ADS)

    Giuliani, A. J.; Cagliostro, L. A.

    1982-03-01

    Medium Btu methane gas is a naturally occurring by product of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10 percent of the natural gas used annually in the State. The 18-month Landfill Gas to Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

  12. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  13. Breakdown electric fields in dissociated hot gas mixtures of sulfur hexafluoride including teflon: Calculations with experimental validations and utilization in fluid dynamics arc simulations

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Merbahi, N.; Reichert, F.; Petchanka, A.

    2017-03-01

    Measurements of breakdown voltage Vb, gas temperature Tg, and density N and the associated critical electric field Ecr/N are performed in hot dissociated SF6 highly diluted in argon and in hot dissociated SF6 mixed with PTFE (Polytetrafluoroethylene or C2F4) also highly diluted in argon. Gases are heated using a microwave source and optical emission spectroscopy is used for measurements of Tg and N while Vb is measured from a specific inter-electrode arrangement placed inside of the cell of the hot gas conditioning. The experimental Ecr/N data in the numerous considered cases of gas temperatures and compositions have been used to evaluate and validate the sets of the collision cross sections of the 11 species involved in hot dissociated SF6 (i.e., SF6, SF5, SF4, S2F2, SF3, SF2, SF, S2, F2, F, and S), the 13 additional species involved either in hot C2F4 or CF4 (C2F6, C2F4, C2F2, CF4, CF3, CF2, CF, F2, F and carbon species as C, C2, C3, C4) and also the 2 further species (CS and CS2) present only in the considered mixtures SF6 + C2F4. The fitted sets of collision cross sections of all these 26 species are then used without argon dilution in hot SF6 and hot SF6 + C2F4 mixtures to calculate and to analyze the Ecr/N data obtained for a wide range of gas temperature (up to 4000 K) and gas pressure (8 bar and more) using a rigorous multi-term solution of the Boltzmann equation for electron energy distribution function and standard calculations of hot gas composition for the species proportions. Such Ecr/N data have been then successfully used to evaluate from a Computational Fluid Dynamics model the switching capacity at terminal fault from a coupled simulation of the electrostatic field and the hot gas flow after current zero.

  14. Superdiffusive gas recovery from nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; He, Yadong; Qiao, Rui

    2016-11-01

    Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.

  15. [Poisoning by exhaust gas of the imperfect combustion of natural gas: 22 cases study].

    PubMed

    Dong, Li-Min; Zhao, Hai; Zhang, Ming-Chang; He, Meng

    2014-10-01

    To analyze the case characteristics of poisoning by exhaust gas of the imperfect combustion of natural gas and provide references for forensic identification and prevention of such accidents. Twenty-two cases of poisoning by exhaust gas of the imperfect combustion of natural gas in Minhang District during 2004 to 2013 were collected. Some aspects such as general conditions of deaths, incidence time, weather, field investigation, and autopsy were retrospectively analyzed. In the 22 cases, there were 15 males and 16 females. The age range was between 2 and 82 years old. The major occurring time was in January or February (8 cases in each) and the cases almost occurred in small area room (21 cases). There was wide crack next to the exhaust port when the gas water heater was been used in all cases. There are more prone to occurrence of exhaust gas poisoning of imperfect combustion of natural gas in small area room with a ventilation window near the exhaust port of gas water heated. It shows that the scene of combustion exhaust gas poisoning should be more concerned in the cold season.

  16. Corrosion in MDEA sour gas treating plants: Correlation between laboratory testing and field experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bich, N.N.; Vacha, F.; Schubert, R.

    1996-08-01

    Corrosion in MDEA sour gas treating systems operating in severely loaded conditions is investigated using both laboratory data and actual gas plant experience. Effects of acid gas loading, flow turbulence, solution quality, temperature, etc. on corrosion are being studied. Preliminary results indicated severe corrosion of several mm/y would occur if acid gas loading, circulation rate and level of suspended solids are all high. A mitigation strategy based on operating envelopes is formulated.

  17. Classical force field for hydrofluorocarbon molecular simulations. Application to the study of gas solubility in poly(vinylidene fluoride).

    PubMed

    Lachet, V; Teuler, J-M; Rousseau, B

    2015-01-08

    A classical all-atoms force field for molecular simulations of hydrofluorocarbons (HFCs) has been developed. Lennard-Jones force centers plus point charges are used to represent dispersion-repulsion and electrostatic interactions. Parametrization of this force field has been performed iteratively using three target properties of pentafluorobutane: the quantum energy of an isolated molecule, the dielectric constant in the liquid phase, and the compressed liquid density. The accuracy and transferability of this new force field has been demonstrated through the simulation of different thermophysical properties of several fluorinated compounds, showing significant improvements compared to existing models. This new force field has been applied to study solubilities of several gases in poly(vinylidene fluoride) (PVDF) above the melting temperature of this polymer. The solubility of CH4, CO2, H2S, H2, N2, O2, and H2O at infinite dilution has been computed using test particle insertions in the course of a NpT hybrid Monte Carlo simulation. For CH4, CO2, and their mixtures, some calculations beyond the Henry regime have also been performed using hybrid Monte Carlo simulations in the osmotic ensemble, allowing both swelling and solubility determination. An ideal mixing behavior is observed, with identical solubility coefficients in the mixtures and in pure gas systems.

  18. Comparison of characteristics and downstream uniformity of linear-field and cross-field atmospheric pressure plasma jet array in He

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Fang, Zhi; Liu, Feng; Zhou, Renwu; Zhou, Ruoyu

    2018-06-01

    Using an atmospheric pressure plasma jet array is an effective way for expanding the treatment area of a single jet, and generating arrays with well downstream uniformity is of great interest for its applications. In this paper, a plasma jet array in helium is generated in a linear-field jet array with a ring-ring electrode structure excited by alternating current. The characteristics and downstream uniformity of the array and their dependence on the applied voltage and gas flow rate are investigated through optical, electrical, and Schlieren diagnostics. The results are compared with those of our reported work of a cross-field jet array with a needle-ring electrode structure. The results show that the linear-field jet array can generate relatively large-scale plasma with better uniformity and longer plumes than the cross-field case. The divergences observed in gas channels and the plasma plume trajectories are much less than those of the cross-field one. The deflection angle of lateral plumes is less than 6°, which is independent of the gas flow rate and applied voltage. The maximum downstream plumes of 23 mm can be obtained at 7 kV peak applied voltage and 4 l/min gas flow rate. The better uniformity of linear-field jet arrays is due to the effective suppression of hydrodynamic and electrical interactions among the jets in the arrays with a more uniform electric field distribution. The hydrodynamic interaction induced by the gas heating in the linear-field jet array is less than that of the cross-field one. The more uniform electric field distribution in the linear-field jet arrays can reduce the divergence of the propagation trajectories of the plasma plumes. It will generate less residual charge between the adjacent discharges and thus can reduce the accumulation effect of Coulomb force between the plasma plumes. The reported results can help design controllable and scalable plasma jet arrays with well uniformity for material surface and biomedical treatments.

  19. Habitat loss and modification due to gas development in the Fayetteville shale.

    PubMed

    Moran, Matthew D; Cox, A Brandon; Wells, Rachel L; Benichou, Chloe C; McClung, Maureen R

    2015-06-01

    Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2% of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.

  20. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  1. Impact origin of the Avak Structure, Arctic Alaska, and genesis of the Barrow gas fields

    USGS Publications Warehouse

    Kirschner, C.E.; Grantz, A.; Mullen, M.W.

    1992-01-01

    Geophysical and subsurface geologic data suggest that the Avak structure, which underlies the Arctic Coastal Plain 12 km southeast of Barrow, Alaska, is a hypervelocity meteorite or comet impact structure. The structure is a roughly circular area of uplifted, chaotically deformed Upper Triassic to Lower Cretaceous sedimentary rocks 8 km in diameter that is bounded by a ring of anastomosing, inwardly dipping, listric normal faults 12 km in diameter. Examination of cores from the Barrow gas fields and data concerning the age of the Avak structure suggest that the Avak meteorite struck a Late Cretaceous or Tertiary marine shelf or coastal plain between the Cenomanian (ca. 95 Ma), and deposition of the basal beds of the overlying late Pliocene and Quaternary Gubik Formation (ca. 3 Ma). -from Authors

  2. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    NASA Astrophysics Data System (ADS)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  3. Mechanism of the M L 4.0 25 April 2016 earthquake in southwest of France in the vicinity of the Lacq gas field

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Burnol, André

    2018-05-01

    The source mechanism of the M L 4.0 25 April 2016 Lacq earthquake (Aquitaine Basin, South-West France) is analyzed from the available public data and discussed with respect to the geometry of the nearby Lacq gas field. It is one of the biggest earthquakes in the area in the past few decades of gas extraction and the biggest after the end of gas exploitation in 2013. The routinely obtained location shows its hypocenter position inside the gas reservoir. We first analyze its focal mechanism through regional broad-band seismograms recorded in a radius of about 50 km epicentral distances and obtain EW running normal faulting above the reservoir. While the solution is stable using regional data only, we observe a large discrepancy between the recorded data on nearby station URDF and the forward modeling up to 1 Hz. We then look for the best epicenter position through performing wave propagation simulations and constraining the potential source area by the peak ground velocity (PGV). The resulting epicentral position is a few to several km away to the north or south direction with respect to station URDF such that the simulated particle motions are consistent with the observation. The initial motion of the seismograms shows that the epicenter position in the north from URDF is preferable, indicating the north-east of the Lacq reservoir. This study is an application of full waveform simulations and characterization of near-field ground motion in terms of an engineering factor such as PGV. The finally obtained solution gives a moment magnitude of M w 3.9 and the best focal depth of 4 km, which corresponds to the crust above the reservoir rather than its interior. This position is consistent with the tendency of Coulomb stress change due to a compaction at 5 km depth in the crust. Therefore, this earthquake can be interpreted as a relaxation of the shallow crust due to a deeper gas reservoir compaction so that the occurrence of similar events cannot be excluded in the near

  4. Coulomb-Gas scaling law for a superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films in magnetic fields

    PubMed

    Zhang; Deltour; Zhao

    2000-10-16

    The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.

  5. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blunt, Martin J.; Orr, Franklin M.

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factorsmore » influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.« less

  6. The impact of magnetic fields on thermal instability

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Peng Oh, S.; McCourt, Michael

    2018-02-01

    Cold (T ˜ 104 K) gas is very commonly found in both galactic and cluster halos. There is no clear consensus on its origin. Such gas could be uplifted from the central galaxy by galactic or AGN winds. Alternatively, it could form in situ by thermal instability. Fragmentation into a multi-phase medium has previously been shown in hydrodynamic simulations to take place once tcool/tff, the ratio of the cooling time to the free-fall time, falls below a threshold value. Here, we use 3D plane-parallel MHD simulations to investigate the influence of magnetic fields. We find that because magnetic tension suppresses buoyant oscillations of condensing gas, it destabilizes all scales below l_A^cool ˜ v_A t_cool, enhancing thermal instability. This effect is surprisingly independent of magnetic field orientation or cooling curve shape, and sets in even at very low magnetic field strengths. Magnetic fields critically modify both the amplitude and morphology of thermal instability, with δρ/ρ∝β-1/2, where β is the ratio of thermal to magnetic pressure. In galactic halos, magnetic fields can render gas throughout the entire halo thermally unstable, and may be an attractive explanation for the ubiquity of cold gas, even in the halos of passive, quenched galaxies.

  7. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. S.; Chen, J.; Liu, T. Q.; Cao, C. G.; Li, C. F.

    2016-11-01

    The effects of nitrogen (N) fertilizer sources and tillage practices on greenhouse gas (GHG) emission have been well elucidated separately. However, it is still remained unclear regarding the combined effects of N fertilization and tillage practices on the global warming potential (GWP) and net ecosystem economic budget (NEEB) in paddy fields. In this paper, a 2-year field experiment was performed to investigate the effects of N fertilizer sources (N0, no N; IF, 100% N from chemical fertilizer; SRIF, 50% N from slow-release fertilizer and 50% N from chemical fertilizer; OF, 100% N from organic fertilizer; OFIF, 50% N from organic fertilizer and 50% N from chemical fertilizer) and tillage practices (CT, conventional intensive tillage; NT, no-tillage) on the emissions of methane (CH4) and nitrous oxide (N2O), GWP, greenhouse gas intensity (GHGI), and NEEB in paddy fields of central China. Compared with N0 treatment, IF, SRIF, OF and OFIF treatments greatly enhanced the cumulative seasonal CH4 emissions (by 54.7%, 41.7%, 51.1% and 66.0%, respectively) and N2O emissions (by 164.5%, 93.4%, 130.2% and 251.3%, respectively). NT treatment significantly decreased the GWP and GHGI compared with CT treatment. On the other hand, NT treatment significantly decreased CH4 emissions by 8.5-13.7%, but did not affect N2O emissions relative to CT treatment. Application of N fertilizers significantly increased GWP and GHGI. It was worth noting that the combined treatment of OFIF and NT resulted in the second-highest GWP and GHGI and the largest NEEB among all treatments. Therefore, our results suggest that OFIF combined with NT is an eco-friendly strategy to optimize the economic and environmental benefits of paddy fields in central China. Although the treatment of SRIF plus NT showed the lowest GWP and GHGI and the highest grain yield among all treatments, it led to the lowest NEEB due to its highest fertilizer cost. These results indicate that the government should provide

  8. Assessing sorbent injection mercury control effectiveness in flue gas streams

    USGS Publications Warehouse

    Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.

    2000-01-01

    One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.

  9. Application of Solid Phase Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare Agent Precursors

    DTIC Science & Technology

    2005-03-01

    in hair samples with analysis by GC-MS [41,42]. The research discussed here examined a polydimethylsiloxane polymer with 10% activated charcoal (PDMS...Field Sampling and Analysis of Chemical Warfare Agent Precursors” Name of Candidate: LT Douglas Parrish Doctor of Philosophy, Environmental...Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare

  10. New Tracers of Gas Migration in the Continental Crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Mark D.

    2015-11-01

    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The centralmore » goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are

  11. Occurrences of Intrapermafrost Gas Hydrates and Shallow Gas in the Mackenzie Delta area, N.W.T., Canada

    NASA Astrophysics Data System (ADS)

    Dallimore, S. R.; Wright, J. F.; Collett, T. S.; Schmitt, D.

    2005-12-01

    The thickness of permafrost (i.e. depth of the 0°C isotherm) in the Mackenzie Delta area, and the associated deep geothermal regime have been strongly influenced by ground surface temperature history during the past several million years. Important considerations include periods of glacial ice cover, duration of post-glacial terrestrial exposure and periods of marine incursions, all of which are known to vary considerably at both regional and local scales. Perhaps more than any area in the world, permafrost conditions are highly variable spatially, with areas having less than 50m of permafrost in close proximity to terrain having in excess of 700m of permafrost. Assuming normal pressure conditions, Structure I methane hydrate can be expected to be stable in locations where permafrost is greater than 250m in thickness. Conditions for the occurrence of intrapermafrost gas hydrate (gas hydrate within the permafrost interval) are therefore widespread throughout much of the coastal and offshore areas of the Beaufort Sea. Current research issues include the sensitivity of intrapermafrost gas hydrates to climate warming and their potential as a geohazard during exploration drilling and hydrocarbon production. This paper will review the intrapermafrost and sub-permafrost gas hydrate regime as well as the occurrence of shallow free gas within the gas hydrate pressure-temperature stability field. Evidence for the occurrence of intrapermafrost gas hydrate has been documented in laboratory tests of core samples recovered from a research well at the Taglu field and inferred from surface geophysical surveys, well log assessments, and anomalous gas shows during exploration drilling. Finally, data from constrained laboratory experiments will document the unique behavior of gas hydrate within sediment-gas hydrate-liquid water/ice systems.

  12. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  13. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch.

    PubMed

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.

  14. Opportunities for increasing natural gas production in the near term. Volume VI. The East Cameron Block 271 Field. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-01

    This report examines the potential for increasing the rate of production of natural gas from the East Cameron Block 271 Field in the Gulf of Mexico Outer Continental Shelf. Proved reserves are estimated using all available reservoir data, including well logs and pressure tests, and cost parameters typical in the area. Alternative schedules for future production are devised, and net present values calculated from which the maximum production rate that also maximizes net present value is determined.

  15. Generation and characterization of gas bubbles in liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empiricalmore » nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.« less

  16. Giddings Austin chalk enters deep lean-gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritis, G.

    1995-12-25

    Deep lean gas is the latest phase in the growth of the Giddings field Austin chalk play. The first phase involved drilling vertical oil and gas wells. Next came the horizontal well boom in the shallower Austin chalk area, which is still continuing. And now this third phase places horizontal laterals in the Austen chalk at about 14,000--15,000 ft to produce lean gas. The article describes the producing wells and gas gathering.

  17. Heterogeneous reactivity of sea spray particles during the CalNex field campaign: Insight from single particle measurements and correlations with gas phase measurements

    NASA Astrophysics Data System (ADS)

    Gaston, C. J.; Riedel, T. P.; Thornton, J. A.; Wagner, N.; Brown, S. S.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2011-12-01

    Sea spray particles are ubiquitous in marine environments. Heterogeneous reactions between sea spray particles and gas phase pollutants, such as HNO3(g), and N2O5(g), alter particle composition by displacing particulate phase halogens in sea spray and releasing these halogen species into the gas phase; these halogen-containing gas phase species play a significant role in tropospheric ozone production. Measurements of both gas phase and particle phase species on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of heterogeneous reactivity of marine aerosols along the California coast. During the cruise, coastal measurements were made near the Santa Monica and Port of Los Angeles regions to monitor the chemical processing of marine aerosols. Sea spray particles were analyzed since these particles were the major chloride-containing particles detected. Real-time single particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the nocturnal processing of sea spray particles through the loss of particulate chloride and a simultaneous gain in particulate nitrate. Gas phase measurements are consistent with the particle phase observations: As N2O5(g) levels rose overnight, the production of ClNO2(g) coincided with the decrease in particulate chloride. These observations provide unique insight into heterogeneous reactivity from both a gas and particle phase perspective. Results from these measurements can be used to better constrain the rate of heterogeneous reactions on sea spray particles.

  18. Numerical solution of Space Shuttle Orbiter flow field including real gas effects

    NASA Technical Reports Server (NTRS)

    Prabhu, D. K.; Tannehill, J. C.

    1984-01-01

    The hypersonic, laminar flow around the Space Shuttle Orbiter has been computed for both an ideal gas (gamma = 1.2) and equilibrium air using a real-gas, parabolized Navier-Stokes code. This code employs a generalized coordinate transformation; hence, it places no restrictions on the orientation of the solution surfaces. The initial solution in the nose region was computed using a 3-D, real-gas, time-dependent Navier-Stokes code. The thermodynamic and transport properties of equilibrium air were obtained from either approximate curve fits or a table look-up procedure. Numerical results are presented for flight conditions corresponding to the STS-3 trajectory. The computed surface pressures and convective heating rates are compared with data from the STS-3 flight.

  19. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  20. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  1. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  2. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  3. 30 CFR 250.512 - Field well-completion rules.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Field well-completion rules. 250.512 Section... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.512 Field well-completion rules. When geological and engineering information available in a...

  4. 30 CFR 250.512 - Field well-completion rules.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Field well-completion rules. 250.512 Section... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.512 Field well-completion rules. When geological and engineering information available in a...

  5. 30 CFR 250.512 - Field well-completion rules.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Field well-completion rules. 250.512 Section... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.512 Field well-completion rules. When geological and engineering information available in a...

  6. Gas hydrate environmental monitoring program in the Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Chun, Jong-Hwa; McLean, Scott

    2013-04-01

    As a part of the Korean National Gas Hydrate Program, the Korea Institute of Geoscience and Mineral Resources (KIGAM) has been planned and conducted the environmental monitoring program for the gas hydrate production test in the Ulleung Basin, East Sea of Korea in 2014. This program includes a baseline survey using a KIGAM Seafloor Observation System (KISOS) and R/V TAMHAE II of KIGAM, development of a KIGAM Seafloor Monitoring System (KIMOS), and seafloor monitoring on various potential hazards associated with the dissociated gas from gas hydrates during the production test. The KIGAM also plans to conduct the geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well before and after the production test. During production test, release of gas dissociated from the gas hydrate to the water column, seafloor deformation, changes in chemical characteristics of bottom water, changes in seafloor turbidity, etc. will be monitored by using the various monitoring instruments. The KIMOS consists of a near-field observation array and a far-field array. The near-field array is constructed with four remote sensor platforms each, and cabled to the primary node. The far-field sensor array will consists of four autonomous instrument pods. A scientific Remotely Operated Vehicle (ROV) will be used to deploy the sensor arrays, and to connect the cables to each field instrument package and a primary node. A ROV will also be tasked to collect the water and/or gas samples, and to identify any gas (bubble) plumes from the seafloor using a high-frequency sector scanning sonar. Power to the near-field instrument packages will be supplied by battery units located on the seafloor near the primary node. Data obtained from the instruments on the near-field array will be logged and downloaded in-situ at the primary node, and transmitted real-time to the support vessel using a ROV. These data will also be transmitted real-time to

  7. The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Bei, Yu Bei; Hui, Li; Lin, Li Dong

    2018-06-01

    This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.

  8. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    NASA Astrophysics Data System (ADS)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  9. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  10. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  11. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  12. New Colombian gas line overcomes desert, marshland, hilly terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-02-28

    Wind-swept deserts, rock hills, and tricky swamps are some of the main obstacles being faced in the construction of a major Colombian pipeline for Promigas, a Colombian gas-marketing firm. The 236-mile (380-km), 20 and 12-in. transmission system will link the onshore and offshore Guajira Peninsula fields with the industrial cities of Barranquilla and Cartagena as part of an ambitious gas-utilization program aimed at substituting imported fuel oil in industrial operations at these cities and creating a sizable gas-processing and liquefaction complex at Palomino. Scheduled for completion in October 1977, the $60 million gas line will deliver up to 900 millionmore » cf/day of untreated, 98 mol % methane gas without the use of compressor stations because of the 1400-psi reservoir pressure. The estimated potential of the field is expected to support this production rate for at least 15 years.« less

  13. 30 CFR 250.612 - Field well-workover rules.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Field well-workover rules. 250.612 Section 250... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.612 Field well-workover rules. When geological and engineering information available in a...

  14. 30 CFR 250.612 - Field well-workover rules.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Field well-workover rules. 250.612 Section 250... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.612 Field well-workover rules. When geological and engineering information available in a...

  15. 30 CFR 250.612 - Field well-workover rules.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Field well-workover rules. 250.612 Section 250... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.612 Field well-workover rules. When geological and engineering information available in a...

  16. Soil Gas Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.

  17. Influence of gas flow and applied voltage on interaction of jets in a cross-field helium plasma jet array

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Liu, Feng; Fang, Zhi; Zhang, Bo; Wan, Hui

    2017-09-01

    Atmospheric Pressure Plasma Jet arrays can greatly enhance the treatment area to fulfill the need for large-scale surface processing, while the spatial uniformity of the plasma jet array is closely related to the interactions of the adjacent jets. In this paper, a three-tube one-dimensional (1D) He plasma jet array with a cross-field needle-ring electrode structure is used to investigate the influences of the gas flow rate and applied voltage on the interactions of the adjacent jets through electrical, optical, and fluid measurements. The repulsion of the adjacent plume channels is observed using an intensified charge-coupled device (ICCD) and the influence of the gas flow rate and applied voltage on the electrostatic repulsion force, Coulomb force, is discussed. It is found that electrical coupling, mainly electrostatic repulsion force, exists among the jets in the array, which causes both the divergence of the lateral plumes and the nonlinear changes of the discharge power and the transport charge. The deflection angle of the lateral plumes with respect to the central plume in the optical images increases with the increase of applied voltage and decreases with the increase of gas flow rate. The deflection angle of the lateral plumes in the optical images is obviously larger than that of the lateral gas streams in the Schlieren images under the same experimental conditions, and the unconformity of the deflection angles is mainly attributed to the electrostatic repulsion force in adjacent plasma plume channels. The experimental results can help understand the interaction mechanisms of jets in the array and design controllable and scalable plasma jet arrays.

  18. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    DOEpatents

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  19. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is

  20. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    PubMed

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  1. The effects of solarization on the performance of a gas turbine

    NASA Astrophysics Data System (ADS)

    Homann, Christiaan; van der Spuy, Johan; von Backström, Theodor

    2016-05-01

    Various hybrid solar gas turbine configurations exist. The Stellenbosch University Solar Power Thermodynamic (SUNSPOT) cycle consists of a heliostat field, solar receiver, primary Brayton gas turbine cycle, thermal storage and secondary Rankine steam cycle. This study investigates the effect of the solarization of a gas turbine on its performance and details the integration of a gas turbine into a solar power plant. A Rover 1S60 gas turbine was modelled in Flownex, a thermal-fluid system simulation and design code, and validated against a one-dimensional thermodynamic model at design input conditions. The performance map of a newly designed centrifugal compressor was created and implemented in Flownex. The effect of the improved compressor on the performance of the gas turbine was evident. The gas turbine cycle was expanded to incorporate different components of a CSP plant, such as a solar receiver and heliostat field. The solarized gas turbine model simulates the gas turbine performance when subjected to a typical variation in solar resource. Site conditions at the Helio100 solar field were investigated and the possibility of integrating a gas turbine within this system evaluated. Heat addition due to solar irradiation resulted in a decreased fuel consumption rate. The influence of the additional pressure drop over the solar receiver was evident as it leads to decreased net power output. The new compressor increased the overall performance of the gas turbine and compensated for pressure losses incurred by the addition of solar components. The simulated integration of the solarized gas turbine at Helio100 showed potential, although the solar irradiation is too little to run the gas turbine on solar heat alone. The simulation evaluates the feasibility of solarizing a gas turbine and predicts plant performance for such a turbine cycle.

  2. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  3. Solid State Gas Sensor Research in Germany – a Status Report

    PubMed Central

    Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo

    2009-01-01

    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529

  4. Water-gas dynamics and coastal land subsidence over Chioggia Mare field, northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Teatini, Pietro; Baú, Domenico; Gambolati, Giuseppe

    2000-09-01

    A major development programme comprising 15 gas fields of the northern Adriatic Sea has recently been submitted to the Ministry of the Environment, VIA Committee for the assessment of the environmental impact, by ENI-Agip, the Italian national oil company. One of the largest reservoirs is Chioggia Mare, located about 10 km offshore of the Venetian littoral, with a burial depth of 1000-1400 m. The planned gas production from this field is expected to impact the shoreline stability with a potential threat to the city of Venice, 25 km northwest of the center of Chioggia Mare. To evaluate the risk of anthropogenic land subsidence due to gas withdrawal, a numerical model was developed that predicts the compaction of both the gas-bearing formations and the lateral/bottom aquifer (water drive) during a 13-year producing and a 12-year post-production period, and the transference of the deep compaction to the ground surface. To address the uncertainty of a few important hydromechanical parameters, several scenarios are simulated and the most pessimistic predictions obtained. The modeling results show that at most 1 cm of land subsidence over 25 years may be expected at the city of Chioggia, whereas Venice is not subject to settlement. If aquifer drawdown is mediated by water injection, land subsidence is arrested 5 km offshore, with the Chioggia littoral zone experiencing a rebound of 0.6-0.7 cm. Résumé. Un important programme de développement portant sur 15 gisements de gaz du nord de l'Adriatique a été récemment soumis au Comité VIA pour l'évaluation de l'impact sur l'environnement du Ministère de l'Environnement, par la société ENI-Agip, la compagnie nationale pétrolière italienne. L'un des plus importants réservoirs est celui de Chioggia Mare, situé à environ 10 km au large du littoral vénitien, à une profondeur de 1000 à 1400 m. La production de gaz prévue pour ce gisement laisse envisager un impact sur la stabilité du trait de côte, avec une

  5. Future oil and gas: Can Iran deliver?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takin, M.

    1996-11-01

    Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operationsmore » required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.« less

  6. Prediction of slug-to-annular flow pattern transition (STA) for reducing the risk of gas-lift instabilities and effective gas/liquid transport from low-pressure reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toma, P.R.; Vargas, E.; Kuru, E.

    Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less

  7. A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs

    NASA Astrophysics Data System (ADS)

    Chang, Ailian; Sun, HongGuang; Zheng, Chunmiao; Lu, Bingqing; Lu, Chengpeng; Ma, Rui; Zhang, Yong

    2018-07-01

    Fractional-derivative models have been developed recently to interpret various hydrologic dynamics, such as dissolved contaminant transport in groundwater. However, they have not been applied to quantify other fluid dynamics, such as gas transport through complex geological media. This study reviewed previous gas transport experiments conducted in laboratory columns and real-world oil-gas reservoirs and found that gas dynamics exhibit typical sub-diffusive behavior characterized by heavy late-time tailing in the gas breakthrough curves (BTCs), which cannot be effectively captured by classical transport models. Numerical tests and field applications of the time fractional convection-diffusion equation (fCDE) have shown that the fCDE model can capture the observed gas BTCs including their apparent positive skewness. Sensitivity analysis further revealed that the three parameters used in the fCDE model, including the time index, the convection velocity, and the diffusion coefficient, play different roles in interpreting the delayed gas transport dynamics. In addition, the model comparison and analysis showed that the time fCDE model is efficient in application. Therefore, the time fractional-derivative models can be conveniently extended to quantify gas transport through natural geological media such as complex oil-gas reservoirs.

  8. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa

    2017-12-01

    To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.

  9. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  10. 76 FR 81924 - East Cheyenne Gas Storage, LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Gas Storage, LLC; Notice of Amendment Take notice that on December 16, 2011, East Cheyenne Gas Storage... the West Peetz Field of its East Cheyenne Gas Storage Project to a maximum bottom-hole pressure of 2..., East Cheyenne Gas Storage, LLC, 10370 Richmond Avenue, Suite 510, Houston, Texas 77042, by Telephone...

  11. Stopping power of an electron gas with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  12. A petroleum discovery-rate forecast revisited-The problem of field growth

    USGS Publications Warehouse

    Drew, L.J.; Schuenemeyer, J.H.

    1992-01-01

    A forecast of the future rates of discovery of crude oil and natural gas for the 123,027-km2 Miocene/Pliocene trend in the Gulf of Mexico was made in 1980. This forecast was evaluated in 1988 by comparing two sets of data: (1) the actual versus the forecasted number of fields discovered, and (2) the actual versus the forecasted volumes of crude oil and natural gas discovered with the drilling of 1,820 wildcat wells along the trend between January 1, 1977, and December 31, 1985. The forecast specified that this level of drilling would result in the discovery of 217 fields containing 1.78 billion barrels of oil equivalent; however, 238 fields containing 3.57 billion barrels of oil equivalent were actually discovered. This underestimation is attributed to biases introduced by field growth and, to a lesser degree, the artificially low, pre-1970's price of natural gas that prevented many smaller gas fields from being brought into production at the time of their discovery; most of these fields contained less than 50 billion cubic feet of producible natural gas. ?? 1992 Oxford University Press.

  13. Occidental conserves Libyan gas by reinjection into oil reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozens, E.T.

    1972-04-24

    As a leading producer in the Libyan Arab Republic, Occidental Petroleum Corp. is vitally concerned with conservation of gas produced along with the oil. Important among the manifestations of this concern is the use of residue gas from a processing plant for injection into an oil-producing reservoir. The miscible drive created by the gas will increase ultimate recovery, and the processing plant recovers LP gas and condensate for sale. Following discovery of the 103-A in 1967, Occidental moved quickly to install production equipment and a 40-in. pipeline to Zueitina, 135 miles distant on the Mediterranean. By Feb. 1968, the firstmore » oil was loaded into tankers. Discovery of C and D fields in the 103 concession followed shortly. The three 103 fields plus an original discovery in the 102 concession increased Occidental's oil rate to more than 700,000 bpd by 1970. Facilities in the Intisar A and D fields each consist of a centralized separator system containing 3 stages of separation, plus degassing boots and surge tanks. The terminal at Zueitina includes 8,000,000 bbl of oil storage. The gas processing, the products pipeline, and other aspects of the industrial plant are discussed in detail.« less

  14. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia

    2016-08-24

    Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.

  15. Mobile Measurements of Gas and Particle Emissions from Marcellus Shale Gas Development

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.; Floerchinger, C. R.; Fortner, E.; Wormhoudt, J.; Knighton, W. B.; Herndon, S.; Kolb, C. E.; Shaw, S. L.; Knipping, E. M.

    2013-12-01

    Production of natural gas in the Marcellus shale is increasing rapidly due to the vast quantities of natural gas stored in the formation. Transient and long-term activities have associated emissions to the atmosphere of methane, volatile organic compounds, NOx, particulates and other species from gas production and transport infrastructure. In the summer of 2012, a team of researchers from Drexel University and Aerodyne Research deployed the Aerodyne mobile laboratory (AML) and measured in-situ concentrations of gas-phase and aerosol chemical components in the main gas producing regions of Pennsylvania, with the overall goal of understanding the impacts to regional ozone and particulate matter (PM) concentrations. State-of-the-art instruments including quantum cascade laser systems, proton transfer mass spectrometry, tunable diode lasers and a soot particle aerosol mass spectrometer, were used quantify concentrations of pollutants of interest. Chemical species measured include methane, ethane, NO, NO2, CO, CO2, SO2, and many volatile organic compounds, and aerosol size and chemical composition. Tracer-release techniques were employed to link sources with emissions and to quantify emission rates from gas facilities, in order to understand the regional burden of these chemical species from oil and gas development in the Marcellus. Measurements were conducted in two regions of Pennsylvania: the NE region that is predominantly dry gas (95% + methane), and the SW region where wet gas (containing greater than 5% higher hydrocarbons) is found. Regional scale measurements of current levels of air pollutants will be shown and will put into context how further development of the gas resource in one of the largest natural gas fields in the world impacts air quality in a region upwind of the highly urbanized east coast corridor.

  16. Giant capacitance of a plane capacitor with a two-dimensional electron gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Shklovskii, B. I.

    2013-01-01

    If a clean two-dimensional electron gas (2DEG) with a low concentration n comprises one electrode of a plane capacitor, the resulting capacitance C can be higher than the “geometric capacitance” Cg determined by the physical separation d between electrodes. A recent paper [B. Skinner and B. I. Shklovskii, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.82.155111 82, 155111 (2010)] argued that when the effective Bohr radius aB of the 2DEG satisfies aB≪d, one can achieve C≫Cg at a low concentration nd2≪1. Here we show that even for devices with aB>d, including graphene, for which aB is effectively infinite, one also arrives at C≫Cg at low electron concentrations if there is a strong perpendicular magnetic field.

  17. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady

    2017-04-01

    Intra-permafrost gas (mostly methane) is represent a serious geological hazards during exploration and development of oil and gas fields. Special danger is posed by large methane accumulations which usually confined to sandy and silty sand horizons and overlying in the frozen strata on the depth up to 200 meters. Such methane accumulations are widely spread in a number of gas fields in the northern part of Western Siberia. According to indirect indicators this accumulations can be relic gas hydrates, that formed earlier during favorable conditions for hydrate accumulation (1, 2). Until now, they could be preserved in the frozen sediments due to geological manifestation of the self-preservation effect of gas hydrates at temperatures below zero. These gas hydrate formations, which are lying above the gas hydrate stability zone today, are in a metastable state and are very sensitive to various anthropogenic impacts. During drilling and operation of production wells in the areas where the relic of gas hydrates can occur, there are active gas emission and gas explosion, that can lead to various technical complications up to the accident. Mathematical and experimental simulations were were conducted to evaluate the possibility of existence of relic gas hydrates in the northern part of West Siberia. The results of math simulations revealed stages of geological history when the gas hydrate stability zone began virtually from the ground surface and saturated in shallow permafrost horizons. Later permafrost is not completely thaw. Experimental simulations of porous gas hydrate dissociation in frozen soils and evaluation of self-preservation manifestation of gas hydrates at negative temperatures were carried out for identification conditions for relic gas hydrates existence in permafrost of northern part of West Siberia. Sandy and silty sand sediments were used in experimental investigations. These sediments are typical of most gas-seeping (above the gas hydrate stability

  18. Gas adsorption in Mg-porphyrin-based porous organic frameworks: A computational simulation by first-principles derived force field.

    PubMed

    Pang, Yujia; Li, Wenliang; Zhang, Jingping

    2017-09-15

    A novel type of porous organic frameworks, based on Mg-porphyrin, with diamond-like topology, named POF-Mgs is computationally designed, and the gas uptakes of CO 2 , H 2 , N 2 , and H 2 O in POF-Mgs are investigated by Grand canonical Monte Carlo simulations based on first-principles derived force fields (FF). The FF, which describes the interactions between POF-Mgs and gases, are fitted by dispersion corrected double-hybrid density functional theory, B2PLYP-D3. The good agreement between the obtained FF and the first-principle energies data confirms the reliability of the FF. Furthermore our simulation shows the presence of a small amount of H 2 O (≤ 0.01 kPa) does not much affect the adsorption quantity of CO 2 , but the presence of higher partial pressure of H 2 O (≥ 0.1 kPa) results in the CO 2 adsorption decrease significantly. The good performance of POF-Mgs in the simulation inspires us to design novel porous materials experimentally for gas adsorption and purification. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Atmospheric Benzene Observations from an Oil and Gas Field in the Denver Julesburg Basin in July and August 2014

    NASA Technical Reports Server (NTRS)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald; Hornbrook, Rebecca S.; Mikoviny, Tomas; Mueller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan

    2016-01-01

    High time resolution measurements of volatile organic compounds (VOCs) were collectedusing a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the PlattevilleAtmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (ONG) developmentimpacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurementswere carried out in July and August 2014 as part of NASAs Deriving Information on Surface Conditions fromColumn and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign. ThePTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontalsurveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (meanbenzene 0.53 ppbv, maximum benzene 29.3 ppbv), primarily at night (mean nighttime benzene 0.73ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurementsindicate that benzene originated from within the WGF, and typical source signatures detected in the canistersamples implicate emissions from ONG activities rather than urban vehicular emissions as primary benzenesource. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerlyflow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that trafficemissions were not responsible for the observed high benzene levels. Previous measurements at the BoulderAtmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzeneenhancements between the two atmospheric observatories. Fugitive emissions of benzene from ONGoperations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  20. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  1. The ties that bind? Galactic magnetic fields and ram pressure stripping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially acceleratemore » stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.« less

  2. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  3. Characterizing Gas Transport in Wetland Soil-Root Systems with Dissolved Gas Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Jaffe, P. R.

    2016-12-01

    Soil fluxes of methane (CH4), nitrous oxide (N2O), and other biogenic gases depend on coupling between microbial and physiochemical processes within soil media. The importance of plant-mediated transport in wetland CH4 emissions is well known, but a generalized understanding of gas transfer between pore water and root aerenchyma, and how this process competes with biogeochemical production/consumption of gases beyond CH4, is incomplete [1]. A lack of experimental approaches to characterize transport processes in complex soil-water-plant systems at field scale has limited efforts to close this knowledge gap. In this presentation we describe dissolved gas tracer techniques to tease apart effects of transport from simultaneous biochemical reaction on trace gas dynamics in soils. We discuss a push-pull test with helium and sulfur hexafluoride gas tracers to quantify in situ root-mediated gas transfer kinetics in a wetland soil [2]. A Damköhler number analysis is introduced to interpret the results and evaluate the balance between biochemical reaction and root-driven gas transfer in controlling the fate of CH4 and N2O in vegetated wetland soils. We conclude with a brief discussion of other problems in soil gas dynamics that can be addressed with gas tracer approaches. [1] Blagodatsky and Smith 2012. Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry 47, 78-92. [2] Reid et al. 2015. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determind via push-pull tracer tests. Water Resour. Res. 51, doi:10.1002/2014WR016803.

  4. Prospects of developing the Shtokman and Prirazlomnoe Fields in the Barents Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubin, I.B.

    1994-09-01

    Russia, having the world`s largest oil and gas resources on the shelf, exceeding 60 billion tons of hydrocarbons, has hardly begun to develop them. Such a situation developed because more than 95% of the oil and gas resources of the shelf of the Russian Federation are concentrated in arctic and Far Eastern seas with harsh natural and climatic conditions and require large and long-term capital investments. Nine oil and gas fields have been discovered on the shelf of arctic seas, including three unique ones: the Shtokman gas-condensate field in the Barents Sea with gas reserves of category C{sub 1} ofmore » 1.7 trillion m{sup 3} and of category C{sub 2} of 1.3 trillion m{sup 3}, Rusanov gas-condensate field, and the Leningrad gas field in the Kara Sea with estimated natural gas resources up to 4.0 trillion m{sup 3}. Furthermore, an oil field, the Prirazlomnoe, the recoverable reserves of which are estimated to be up to 70 million tons, was discovered in the Perchora Sea. To execute the orders of the government of the Russian Federation, in 1992 the Russian joint-stock company for developing the oil and gas resources of the continental shelf {open_quotes}Rosshelf{close_quotes} was created for exploration of useful resources on the continental shelf, their extraction and transportation, processing, and sale of the products, as well as design, construction, and manufacture of equipment needed for developing the fields on the basis of converting defence enterprises of the northwestern shipbuilding complex and design departments, institutes, organizations, and enterprises related to them.« less

  5. Monopole excitations of a harmonically trapped one-dimensional Bose gas from the ideal gas to the Tonks-Girardeau regime.

    PubMed

    Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M

    2015-09-11

    Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.

  6. New Holographic Chaplygin Gas Model of Dark Energy

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Khodam-Mohammadi, A.

    In this work, we investigate the holographic dark energy model with a new infrared cutoff (new HDE model), proposed by Granda and Oliveros. Using this new definition for the infrared cutoff, we establish the correspondence between the new HDE model and the standard Chaplygin gas (SCG), generalized Chaplygin gas (GCG) and modified Chaplygin gas (MCG) scalar field models in a nonflat universe. The potential and dynamics for these scalar field models, which describe the accelerated expansion of the universe, are reconstructed. According to the evolutionary behavior of the new HDE model, we derive the same form of dynamics and potential for the different SCG, GCG and MCG models. We also calculate the squared sound speed of the new HDE model as well as the SCG, GCG and MCG models, and investigate the new HDE Chaplygin gas models from the viewpoint of linear perturbation theory. In addition, all results in the nonflat universe are discussed in the limiting case of the flat universe, i.e. k = 0.

  7. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Who establishes field drilling rules? 250.463...

  8. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Who establishes field drilling rules? 250.463...

  9. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Who establishes field drilling rules? 250.463..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a...

  10. 30 CFR 250.463 - Who establishes field drilling rules?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Who establishes field drilling rules? 250.463...

  11. Shapes of star-gas waves in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen H.

    1988-01-01

    Density-wave profile shapes are influenced by several effects. By solving viscous fluid equations, the nonlinear effects of the gas and its gravitational interaction with the stars can be analyzed. The stars are treated through a linear theory developed by Lin and coworkers. Short wavelength gravitational forces are important in determining the gas density profile shape. With the inclusion of disk finite thickness effects, the gas gravitational field remains important, but is significantly reduced at short wavelengths. Softening of the gas equation of state results in an enhanced response and a smoothing of the gas density profile. A Newtonian stress relation is marginally acceptable for HI gas clouds, but not acceptable for giant molecular clouds.

  12. Gas-evaporation in low-gravity field (cogelation mechanism of metal vapors) (M-14)

    NASA Technical Reports Server (NTRS)

    Wada, N.

    1993-01-01

    When metal and alloy compounds are heated and vaporized in a rare gas such as helium, argon, or xenon, the vaporized substances diffused in the rare gas are supersaturated resulting in a smoke of fine particles of the material congealing as snow or fog. The gas vaporizing method is a fine particle generation method. Though the method has a variety of applications, the material vapor flow is disturbed by gravitational convection on Earth. The inability to elucidate the fine particle generation mechanism results in an obstruction to improving the method to mass production levels. As no convection occurs in microgravity in space, the fine particle generation mechanism influenced only by diffusion can be investigated. Investigators expect that excellent particles with homogeneous diameter distribution can be obtained. Experiment data and facts will assist in improving efficiency, quality, and scale or production processes including element processes such as vaporization, diffusion, and condensation. The objective of this experiment is to obtain important information related to the mechanism of particle formation in the gas atmosphere (smoke particles) and the production of submicron powders of extremely uniform size.

  13. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  14. Modern methods rediscover deep gas. [Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.S.

    1979-03-01

    In 1973, Northern Natural Gas (NNG) Co.'s Midland exploration and production district acquired a 7-section lease block on a Devonian-Montoya prospect suggested by trend geology and limited seismic data. This acreage block was 2 miles west of the abandoned Hershey field, and included acreage on which the Devonian was tested at noncommercial rates in 1962. Additional seismic data confirmed the presence of a drillable prospect on NNG's acreage block. Engineering analyses of the reservoir characteristics suggested that modern completion and treatment techniques would result in a commercial producer. NNG's management approved the expenditure and the first well was spudded inmore » April, 1977. This well, the No. 1 Hershenson, was completed in Sept., 1977 as the discovery well in the Hershey West (Devonian-Montoya) field for a calculated open flow potential (CAOFP) of 20.5 mmcfd dry gas from perforations at 15,445 to 16,017 ft. The confirmation well, No. 1 Hershenson 6, was spudded in May, 1978, and completed in Oct., 1978, for a CAOFP of 86.3 mmcfd from perforations at 16,000 to 16,624 ft. A third well, No. 1 Maddox-Willbanks 15, was spudded in Nov., 1978. Rediscovered field potential justified construction of a gas processing plant and a 16-mile pipeline.« less

  15. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle.

    PubMed

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-26

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5/3, when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  16. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  17. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  18. Cold gas properties of the Herschel Reference Survey. III. Molecular gas stripping in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Cortese, L.; Boquien, M.; Boissier, S.; Catinella, B.; Gavazzi, G.; Lagos, C.; Saintonge, A.

    2014-04-01

    The Herschel Reference Survey is a complete volume-limited, K-band-selected sample of nearby objects including Virgo cluster and isolated objects. Using a recent compilation of Hi and CO data for this sample we study the effects of the cluster environment on the molecular gas content of spiral galaxies. With the subsample of unperturbed field galaxies, we first identify the stellar mass as the scaling variable that traces the total molecular gas mass of galaxies better. We show that, on average, Hi-deficient galaxies are significantly offset (4σ) from the M(H2) vs. Mstar relation for Hi-normal galaxies. We use the M(H2) vs. Mstar scaling relation to define the H2-deficiency parameter as the difference, on logarithmic scale, between the expected and observed molecular gas mass for a galaxy of given stellar mass. The H2-deficiency parameter shows a weak and scattered relation with the Hi-deficiency parameter, here taken as a proxy for galaxy interactions with the surrounding cluster environment. We also show that, as for the atomic gas, the extent of the molecular disc decreases with increasing Hi-deficiency. All together, these results show that cluster galaxies have, on average, a lower molecular gas content than similar objects in the field. Our analysis indicates that ram pressure stripping is the physical process responsible for this molecular gas deficiency. The slope of the H2 - def vs. Hi - def relation is less than unity, while the D(Hi)/D(i) vs. Hi - def relation is steeper than the D(CO)/D(i) vs. Hi - def relation, thereby indicating that the molecular gas is removed less efficiently than the atomic gas. This result can be understood if the atomic gas is distributed on a relatively flat disc that is more extended than the stellar disc. It is thus less anchored to the gravitational potential well of the galaxy than the molecular gas phase, which is distributed on an exponential disc with a scalelength rCO ≃ 0.2r24.5(g). There is a clear trend between the

  19. Photoelectron spectrometer for liquid and gas-phase attosecond spectroscopy with field-free and magnetic bottle operation modes

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Jain, Arohi; Gaumnitz, Thomas; Ma, Jun; Wörner, Hans Jakob

    2018-05-01

    A compact time-of-flight spectrometer for applications in attosecond spectroscopy in the liquid and gas phases is presented. It allows for altering the collection efficiency by transitioning between field-free and magnetic-bottle operation modes. High energy resolution (ΔE/E = 0.03 for kinetic energies >20 eV) is achieved despite the short flight-tube length through a homogeneous deceleration potential at the beginning of the flight tube. A closing mechanism allows isolating the vacuum system of the flight tube from the interaction region in order to efficiently perform liquid-microjet experiments. The capabilities of the instrument are demonstrated through photoelectron spectra from multiphoton ionization of argon and xenon, as well as photoelectron spectra of liquid and gaseous water generated by an attosecond pulse train.

  20. Economic geology of natural gas hydrate

    USGS Publications Warehouse

    Max, M.D.; Johnson, A.H.; Dillon, William P.

    2006-01-01

    This is the first book that attempts to broadly integrate the most recent knowledge in the fields of hydrate nucleation and growth in permafrost regions and marine sediments. Gas hydrate reactant supply, growth models, and implications for pore fill by natural gas hydrate are discussed for both seawater precursors in marine sediments and for permafrost hydrate. These models for forming hydrate concentrations that will constitute targets for exploration are discussed, along with exploration methods. Thermodynamic models for the controlled conversion of hydrate to natural gas, which can be recovered using conventional industry practices, suggest that a number of different types of hydrate occurrence are likely to be practical sources of hydrate natural gas. Current progress in the various aspects of commercial development of hydrate gas deposits are discussed, along with the principal extractive issues that have yet to be resolved.

  1. GAS INJECTION/WELL STIMULATION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learnedmore » form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.« less

  2. Nitrogen Gas Field Ion Source (GFIS) Focused Ion Beam (FIB) Secondary Electron Imaging: A First Look.

    PubMed

    Schmidt, Marek E; Yasaka, Anto; Akabori, Masashi; Mizuta, Hiroshi

    2017-08-01

    The recent technological advance of the gas field ion source (GFIS) and its successful integration into systems has renewed the interest in the focused ion beam (FIB) technology. Due to the atomically small source size and the use of light ions, the limitations of the liquid metal ion source are solved as device dimensions are pushed further towards the single-digit nanometer size. Helium and neon ions are the most widely used, but a large portfolio of available ion species is desirable, to allow a wide range of applications. Among argon and hydrogen, $${\\rm N}_{2}^{{\\plus}} $$ ions offer unique characteristics due to their covalent bond and their use as dopant for various carbon-based materials including diamond. Here, we provide a first look at the $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB enabled imaging of a large selection of microscopic structures, including gold on carbon test specimen, thin metal films on insulator and nanostructured carbon-based devices, which are among the most actively researched materials in the field of nanoelectronics. The results are compared with images acquired by He+ ions, and we show that $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB can offer improved material contrast even at very low imaging dose and is more sensitive to the surface roughness.

  3. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Honggang; Liu, Xiaobing

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only amore » few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.« less

  4. Understanding Natural Gas Methane Leakage from Buried Pipelines as Affected by Soil and Atmospheric Conditions - Field Scale Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Mitton, M.; Moradi, A.; Chamindu, D. K.

    2017-12-01

    Reducing the amount of leaked natural gas (NG) from pipelines from production to use has become a high priority in efforts to cut anthropogenic emissions of methane. In addition to environmental impacts, NG leakage can cause significant economic losses and safety failures such as fires and explosions. However, tracking and evaluating NG pipeline leaks requires a better understanding of the leak from the source to the detector as well as more robust quantification methods. Although recent measurement-based approaches continue to make progress towards this end, efforts are hampered due to the complexity of leakage scenarios. Sub- surface transport of leaked NG from pipelines occurs through complex transport pathways due to soil heterogeneities and changes in soil moisture. Furthermore, it is affected by variable atmospheric conditions such as winds, frontal passages and rain. To better understand fugitive emissions from NG pipelines, we developed a field scale testbed that simulates low pressure gas leaks from pipe buried in soil. The system is equipped with subsurface and surface sensors to continuously monitor changes in soil and atmospheric conditions (e.g. moisture, pressure, temperature) and methane concentrations. Using this testbed, we are currently conducting a series of gas leakage experiments to study of the impact of subsurface (e.g. soil moisture, heterogeneity) and atmospheric conditions (near-surface wind and temperature) on the detected gas signals and establish the relative importance of the many pathways for methane migration between the source and the sensor location. Accompanying numerical modeling of the system using the multiphase transport simulator TOUGH2-EOS7CA demonstrates the influence of leak location and direction on gas migration. These findings will better inform leak detectors of the leak severity before excavation, aiding with safety precautions and work order categorization for improved efficiency.

  5. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  6. High harmonic generation in rare gas solids

    NASA Astrophysics Data System (ADS)

    Reis, David

    2015-05-01

    There has recently been renewed interest in the interaction of strong optical fields with large band-gap solids. The response is known to involve the attosecond dynamics of the electrons and includes the generation of non-perturbative high-order harmonics. However, the detailed mechanism remain a matter of intense debate. Here we report on high harmonic generation in rare gas solids as compared to a dilute gas. The measured spectrum in the solid exhibits a secondary plateau and a subsequent high-energy cut-off that extends well beyond the gas phase, while the ellipticity dependence is simlar to the gas phase and suggests importance of coherent single-site recombination.

  7. Metal/gas MHD conversion

    NASA Astrophysics Data System (ADS)

    Thibault, J. P.; Joussellin, F.; Alemany, A.; Dupas, A.

    1982-09-01

    Operation features, theory, performance, and possible spatial applications of metal/gas MHD electrical generators are described. The working principle comprises an MHD channel, surrounded by a magnet, filled with a molten, highly conductive metal into which gas is pumped. The heat of the metal expands the gas, forcing a flow through the magnetic field crossing the channel, thus creating an electrical current conducted by the metal. The gas and metal are separated by a centrifugal device and both are redirected into the channel, forming thereby a double closed circuit when the heat of the molten metal is returned to the flow. Necessary characteristics for the gas such as a fairly low vaporization temperature and nonmiscibility with the metal, are outlined, and a space system using Li-Cs or Z-K as the heat carrier kept molten by a parabolic dish system is sketched. Equations governing the fluid mechanics, thermodynamics, and the electrical generation are defined. The construction of a prototype MHD generator using a tin-water flow operating at 250 C, a temperature suitable for coupling to solar heat sources, is outlined, noting expected efficiencies of 20-30 percent.

  8. Gas geochemistry of the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: implications for gas hydrate exploration in the Arctic

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, T.S.; Hunter, R.B.

    2011-01-01

    Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation.

  9. Nonaligned carbon nanotubes anchored on porous alumina: formation, process modeling, gas-phase analysis, and field-emission properties.

    PubMed

    Lysenkov, Dmitry; Engstler, Jörg; Dangwal, Arti; Popp, Alexander; Müller, Günter; Schneider, Jörg J; Janardhanan, Vinod M; Deutschmann, Olaf; Strauch, Peter; Ebert, Volker; Wolfrum, Jürgen

    2007-06-01

    We have developed a chemical vapor deposition (CVD) process for the catalytic growth of carbon nanotubes (CNTs), anchored in a comose-type structure on top of porous alumina substrates. The mass-flow conditions of precursor and carrier gases and temperature distributions in the CVD reactor were studied by transient computational fluid dynamic simulation. Molecular-beam quadrupole mass spectroscopy (MB-QMS) has been used to analyze the gas phase during ferrocene CVD under reaction conditions (1073 K) in the boundary layer near the substrate. Field-emission (FE) properties of the nonaligned CNTs were measured for various coverages and pore diameters of the alumina. Samples with more dense CNT populations provided emitter-number densities up to 48,000 cm(-2) at an electric field of 6 V microm(-1). Samples with fewer but well-anchored CNTs in 22-nm pores yielded the highest current densities. Up to 83 mA cm(-2) at 7 V microm(-1) in dc mode and more than 200 mA cm(-2) at 11 V microm(-1) in pulsed diode operation have been achieved from a cathode size of 24 mm2.

  10. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Jayapalan, K. K.; Wong, C. S.

    2014-08-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile.

  11. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Herwig, E-mail: hahn@gan.rwth-aachen.de; Reuters, Benjamin; Geipel, Sascha

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing conceptmore » which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.« less

  12. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  13. East Kalimantan project recovers 200 MMscfd of associated gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nacouz, E.

    1984-02-06

    Bekapai and Handil fields were discovered in 1972 and 1974 and in the Mahakam offshore Permit, East Kalimantan (Fig. 1). They are operated by Total Indonesie in association with Inpex under a production sharing contract with Pertamina. Oil production of the fields is about 200,000 b/d. Associated gas, until the construction of the facilities described here, were flared. Associated gas production is about 200 MMscfd. The Bekapai field is 40 km offshore in 35 m of water. The Handil field, located in the delta of the Mahakam, has a gathering system and platformmounted central process area. After a first stagemore » of separation at the Bekapai production platform and the central process area of Handil, the production of both fields is sent through pipelines to Senipah terminal onshore for final separation, processing, and storage before shipment.« less

  14. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less

  15. Topological signatures of interstellar magnetic fields - I. Betti numbers and persistence diagrams

    NASA Astrophysics Data System (ADS)

    Makarenko, Irina; Shukurov, Anvar; Henderson, Robin; Rodrigues, Luiz F. S.; Bushby, Paul; Fletcher, Andrew

    2018-04-01

    The interstellar medium (ISM) is a magnetized system in which transonic or supersonic turbulence is driven by supernova explosions. This leads to the production of intermittent, filamentary structures in the ISM gas density, whilst the associated dynamo action also produces intermittent magnetic fields. The traditional theory of random functions, restricted to second-order statistical moments (or power spectra), does not adequately describe such systems. We apply topological data analysis (TDA), sensitive to all statistical moments and independent of the assumption of Gaussian statistics, to the gas density fluctuations in a magnetohydrodynamic simulation of the multiphase ISM. This simulation admits dynamo action, so produces physically realistic magnetic fields. The topology of the gas distribution, with and without magnetic fields, is quantified in terms of Betti numbers and persistence diagrams. Like the more standard correlation analysis, TDA shows that the ISM gas density is sensitive to the presence of magnetic fields. However, TDA gives us important additional information that cannot be obtained from correlation functions. In particular, the Betti numbers per correlation cell are shown to be physically informative. Magnetic fields make the ISM more homogeneous, reducing the abundance of both isolated gas clouds and cavities, with a stronger effect on the cavities. Remarkably, the modification of the gas distribution by magnetic fields is captured by the Betti numbers even in regions more than 300 pc from the mid-plane, where the magnetic field is weaker and correlation analysis fails to detect any signatures of magnetic effects.

  16. Effect of CO on the field emission properties of tetrapod zinc oxide cathode.

    PubMed

    Wang, Jinchan; Zhang, Xiaobing; Lei, Wei; Mao, Fuming; Cui, Yunkang; Xiao, Mei

    2012-08-01

    Tetrapod zinc oxide (T-ZnO), being a kind of nano-material, has large specific surface area and surface binding energy, which will make it sensitive to the ambient gas condition. So the field emission properties will be influenced by the gas adsorption when being applied as the cathode materials of field emission devices. Carbon monoxide is the main residual gas in T-ZnO field emission devices. In this paper, carbon monoxide was introduced into a field emission device with T-ZnO emitters. The field emission currents of tetrapod ZnO were compared before and after exposure to CO.

  17. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  18. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  19. Flow dynamics of a spiral-groove dry-gas seal

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhang, Huiqiang; Cao, Hongjun

    2013-01-01

    The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.

  20. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.