Sample records for walk-run transition speed

  1. Effect of reduced gravity on the preferred walk-run transition speed

    NASA Technical Reports Server (NTRS)

    Kram, R.; Domingo, A.; Ferris, D. P.

    1997-01-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  2. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.

    PubMed

    Daley, Monica A; Channon, Anthony J; Nolan, Grant S; Hall, Jade

    2016-10-15

    The ostrich (Struthio camelus) is widely appreciated as a fast and agile bipedal athlete, and is a useful comparative bipedal model for human locomotion. Here, we used GPS-IMU sensors to measure naturally selected gait dynamics of ostriches roaming freely over a wide range of speeds in an open field and developed a quantitative method for distinguishing walking and running using accelerometry. We compared freely selected gait-speed distributions with previous laboratory measures of gait dynamics and energetics. We also measured the walk-run and run-walk transition speeds and compared them with those reported for humans. We found that ostriches prefer to walk remarkably slowly, with a narrow walking speed distribution consistent with minimizing cost of transport (CoT) according to a rigid-legged walking model. The dimensionless speeds of the walk-run and run-walk transitions are slower than those observed in humans. Unlike humans, ostriches transition to a run well below the mechanical limit necessitating an aerial phase, as predicted by a compass-gait walking model. When running, ostriches use a broad speed distribution, consistent with previous observations that ostriches are relatively economical runners and have a flat curve for CoT against speed. In contrast, horses exhibit U-shaped curves for CoT against speed, with a narrow speed range within each gait for minimizing CoT. Overall, the gait dynamics of ostriches moving freely over natural terrain are consistent with previous lab-based measures of locomotion. Nonetheless, ostriches, like humans, exhibit a gait-transition hysteresis that is not explained by steady-state locomotor dynamics and energetics. Further study is required to understand the dynamics of gait transitions. © 2016. Published by The Company of Biologists Ltd.

  3. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.

    PubMed

    Prilutsky, B I; Gregor, R J

    2001-07-01

    There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.

  4. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    PubMed

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  5. Effects of optic flow on spontaneous overground walk-to-run transition.

    PubMed

    De Smet, Kristof; Malcolm, P; Lenoir, M; Segers, V; De Clercq, D

    2009-03-01

    Perturbations of optic flow can induce changes in walking speed since subjects modulate their speed with respect to the speed perceived from optic flow. The purpose of this study was to examine the effects of optic flow on steady-state as well as on non steady-state locomotion, i.e. on spontaneous overground walk-to-run transitions (WRT) during which subjects were able to accelerate in their preferred way. In this experiment, while subjects moved along a specially constructed hallway, a series of stripes projected on the side walls and ceiling were made to move backward (against the locomotion direction) at an absolute speed of -2 m s(-1) (condition B), or to move forward at an absolute speed of +2 m s(-1) (condition F), or to remain stationary (condition C). While condition B and condition F entailed a decrease and an increase in preferred walking speed, respectively, the spatiotemporal characteristics of the spontaneous walking acceleration prior to reaching WRT were not influenced by modified visual information. However, backward moving stripes induced a smaller speed increase when making the actual transition to running. As such, running speeds after making the WRT were lower in condition B. These results indicate that the walking acceleration prior to reaching the WRT is more robust against visual perturbations compared to walking at preferred walking speed. This could be due to a higher contribution from spinal control during the walking acceleration phase. However, the finding that subjects started to run at a lower running speed when experiencing an approaching optic flow faster than locomotion speed shows that the actual realization of the WRT is not totally independent of external cues.

  6. Muscle activities during walking and running at energetically optimal transition speed under normobaric hypoxia on gradient slopes

    PubMed Central

    Fukuoka, Yoshiyuki; Horiuchi, Masahiro

    2017-01-01

    Energy cost of transport per unit distance (CoT; J·kg-1·km-1) displays a U-shaped fashion in walking and a linear fashion in running as a function of gait speed (v; km·h-1). There exists an intersection between U-shaped and linear CoT-v relationships, being termed energetically optimal transition speed (EOTS; km·h-1). Combined effects of gradient and moderate normobaric hypoxia (15.0% O2) were investigated when walking and running at the EOTS in fifteen young males. The CoT values were determined at eight walking speeds (2.4–7.3 km·h-1) and four running speeds (7.3–9.4 km·h-1) on level and gradient slopes (±5%) at normoxia and hypoxia. Since an alteration of tibialis anterior (TA) activity has been known as a trigger for gait transition, electromyogram was recorded from TA and its antagonists (gastrocnemius medialis (GM) and gastrocnemius lateralis (GL)) for about 30 steps during walking and running corresponding to the individual EOTS in each experimental condition. Mean power frequency (MPF; Hz) of each muscle was quantified to evaluate alterations of muscle fiber recruitment pattern. The EOTS was not significantly different between normoxia and hypoxia on any slopes (ranging from 7.412 to 7.679 km·h-1 at normoxia and 7.516 to 7.678 km·h-1 at hypoxia) due to upward shifts (enhanced metabolic rate) of both U-shaped and linear CoT-v relationships at hypoxia. GM, but not GL, activated more when switching from walking to running on level and gentle downhill slopes. Significant decreases in the muscular activity and/or MPF were observed only in the TA when switching the gait pattern. Taken together, the EOTS was not slowed by moderate hypoxia in the population of this study. Muscular activities of lower leg extremities and those muscle fiber recruitment patterns are dependent on the gradient when walking and running at the EOTS. PMID:28301525

  7. In vivo behavior of the human soleus muscle with increasing walking and running speeds.

    PubMed

    Lai, Adrian; Lichtwark, Glen A; Schache, Anthony G; Lin, Yi-Chung; Brown, Nicholas A T; Pandy, Marcus G

    2015-05-15

    The interaction between the muscle fascicle and tendon components of the human soleus (SO) muscle influences the capacity of the muscle to generate force and mechanical work during walking and running. In the present study, ultrasound-based measurements of in vivo SO muscle fascicle behavior were combined with an inverse dynamics analysis to investigate the interaction between the muscle fascicle and tendon components over a broad range of steady-state walking and running speeds: slow-paced walking (0.7 m/s) through to moderate-paced running (5.0 m/s). Irrespective of a change in locomotion mode (i.e., walking vs. running) or an increase in steady-state speed, SO muscle fascicles were found to exhibit minimal shortening compared with the muscle-tendon unit (MTU) throughout stance. During walking and running, the muscle fascicles contributed only 35 and 20% of the overall MTU length change and shortening velocity, respectively. Greater levels of muscle activity resulted in increasingly shorter SO muscle fascicles as locomotion speed increased, both of which facilitated greater tendon stretch and recoil. Thus the elastic tendon contributed the majority of the MTU length change during walking and running. When transitioning from walking to running near the preferred transition speed (2.0 m/s), greater, more economical ankle torque development is likely explained by the SO muscle fascicles shortening more slowly and operating on a more favorable portion (i.e., closer to the plateau) of the force-length curve. Copyright © 2015 the American Physiological Society.

  8. Locomotion Mode Affects the Physiological Strain during Exercise at Walk-Run Transition Speed inElderly Men.

    PubMed

    Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace

    2017-07-01

    This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO 2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min -1 ), pulmonary ventilation (>7.7 L·min -1 ), carbon dioxide output (>0.23 L·min -1 ), heart rate (>15 beats·min -1 ), oxygen pulse (>0.88 15 mL·beats -1 ), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg -1 ·km -1 ·bout -1 ). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (P<0.001). In all participants, %HRR and %VO 2 R throughout walking and running bouts were around or above the gas exchange threshold. In conclusion, elderly men exhibited higher cardiorespiratory responses during 30-min bouts of running than walking at WRTS. Nevertheless, walking corresponded to relative metabolic intensities compatible with preservation or improvement of cardiorespiratory fitness and should be preferable over running at WRTS in the untrained elderly characterized by poor fitness and reduced exercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.

  9. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  10. Effects of changing speed on knee and ankle joint load during walking and running.

    PubMed

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.

  11. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    PubMed Central

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  12. The preferred walk to run transition speed in actual lunar gravity.

    PubMed

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.

  13. Optimal speeds for walking and running, and walking on a moving walkway.

    PubMed

    Srinivasan, Manoj

    2009-06-01

    Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day--but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways--such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater--but the speed relative to the walkway smaller--than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the forward

  14. The Apollo Number: space suits, self-support, and the walk-run transition.

    PubMed

    Carr, Christopher E; McGee, Jeremy

    2009-08-12

    How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. The walk-run transition (denoted *) correlates with the Froude Number (Fr = v(2)/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (approximately 0.5) with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36+/-0.11, mean+/-95% CI) and Ap* (0.68+/-0.20). The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  15. The Apollo Number: Space Suits, Self-Support, and the Walk-Run Transition

    PubMed Central

    Carr, Christopher E.; McGee, Jeremy

    2009-01-01

    Background How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g), running, unlike on Earth, uses less energy per distance than walking. Methodology/Principal Findings The walk-run transition (denoted *) correlates with the Froude Number (Fr = v2/gL, velocity v, gravitational acceleration g, leg length L). Human unsuited Fr* is relatively constant (∼0.5) with gravity but increases substantially with decreasing gravity below ∼0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g) or completely (lunar-g) support their own weight. We define the Apollo Number (Ap = Fr/M) as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run) and calculate Ap. We estimated the binary transition between walk/lope (0) and run (1), yielding Fr* (0.36±0.11, mean±95% CI) and Ap* (0.68±0.20). Conclusions/Significance The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars. PMID:19672305

  16. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.

    PubMed

    Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine

    2015-08-01

    Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  17. The mechanics and energetics of human walking and running: a joint level perspective.

    PubMed

    Farris, Dominic James; Sawicki, Gregory S

    2012-01-07

    Humans walk and run at a range of speeds. While steady locomotion at a given speed requires no net mechanical work, moving faster does demand both more positive and negative mechanical work per stride. Is this increased demand met by increasing power output at all lower limb joints or just some of them? Does running rely on different joints for power output than walking? How does this contribute to the metabolic cost of locomotion? This study examined the effects of walking and running speed on lower limb joint mechanics and metabolic cost of transport in humans. Kinematic and kinetic data for 10 participants were collected for a range of walking (0.75, 1.25, 1.75, 2.0 m s(-1)) and running (2.0, 2.25, 2.75, 3.25 m s(-1)) speeds. Net metabolic power was measured by indirect calorimetry. Within each gait, there was no difference in the proportion of power contributed by each joint (hip, knee, ankle) to total power across speeds. Changing from walking to running resulted in a significant (p = 0.02) shift in power production from the hip to the ankle which may explain the higher efficiency of running at speeds above 2.0 m s(-1) and shed light on a potential mechanism behind the walk-run transition.

  18. A powered prosthetic ankle joint for walking and running.

    PubMed

    Grimmer, Martin; Holgate, Matthew; Holgate, Robert; Boehler, Alexander; Ward, Jeffrey; Hollander, Kevin; Sugar, Thomas; Seyfarth, André

    2016-12-19

    Current prosthetic ankle joints are designed either for walking or for running. In order to mimic the capabilities of an able-bodied, a powered prosthetic ankle for walking and running was designed. A powered system has the potential to reduce the limitations in range of motion and positive work output of passive walking and running feet. To perform the experiments a controller capable of transitions between standing, walking, and running with speed adaptations was developed. In the first case study the system was mounted on an ankle bypass in parallel with the foot of a non-amputee subject. By this method the functionality of hardware and controller was proven. The Walk-Run ankle was capable of mimicking desired torque and angle trajectories in walking and running up to 2.6 m/s. At 4 m/s running, ankle angle could be matched while ankle torque could not. Limited ankle output power resulting from a suboptimal spring stiffness value was identified as a main reason. Further studies have to show to what extent the findings can be transferred to amputees.

  19. Validity of the Nike+ device during walking and running.

    PubMed

    Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R

    2010-02-01

    We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (p<0.05). Similar results were found for distance. The Nike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (p<0.05). In conclusion the Nike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.

  20. Running for exercise mitigates age-related deterioration of walking economy.

    PubMed

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (p<.0001). Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  1. Influence of speed and step frequency during walking and running on motion sensor output.

    PubMed

    Rowlands, Ann V; Stone, Michelle R; Eston, Roger G

    2007-04-01

    Studies have reported strong linear relationships between accelerometer output and walking/running speeds up to 10 km x h(-1). However, ActiGraph uniaxial accelerometer counts plateau at higher speeds. The aim of this study was to determine the relationships of triaxial accelerometry, uniaxial accelerometry, and pedometry with speed and step frequency (SF) across a range of walking and running speeds. Nine male runners wore two ActiGraph uniaxial accelerometers, two RT3 triaxial accelerometers (all set at a 1-s epoch), and two Yamax pedometers. Each participant walked for 60 s at 4 and 6 km x h(-1), ran for 60 s at 10, 12, 14, 16, and 18 km x h(-1), and ran for 30 s at 20, 22, 24, and 26 km x h(-1). Step frequency was recorded by a visual count. ActiGraph counts peaked at 10 km x h(-10 (2.5-3.0 Hz SF) and declined thereafter (r=0.02, P>0.05). After correction for frequency-dependent filtering, output plateaued at 10 km x h(-1) but did not decline (r=0.77, P<0.05). Similarly, RT3 vertical counts plateaued at speeds > 10 km x h(-1) (r=0.86, P<0.01). RT3 vector magnitude and anteroposterior and mediolateral counts maintained a linear relationship with speed (r>0.96, P<0.001). Step frequency assessed by pedometry compared well with actual step frequency up to 20 km x h(-1) (approximately 3.5 Hz) but then underestimated actual steps (Yamax r=0.97; ActiGraph pedometer r=0.88, both P<0.001). Increasing underestimation of activity by the ActiGraph as speed increases is related to frequency-dependent filtering and assessment of acceleration in the vertical plane only. RT3 vector magnitude was strongly related to speed, reflecting the predominance of horizontal acceleration at higher speeds. These results indicate that high-intensity activity is underestimated by the ActiGraph, even after correction for frequency-dependent filtering, but not by the RT3. Pedometer output is highly correlated with step frequency.

  2. Gait Transitions of Persons with and without Intellectual Disability

    ERIC Educational Resources Information Center

    Agiovlasitis, Stamatis; Yun, Joonkoo; Pavol, Michael J.; McCubbin, Jeffrey A.; Kim, So-Yeun

    2008-01-01

    This study examined whether the walk-to-run transition speed (W-RTS) and the run-to-walk transition speed (R-WTS) were different or more variable between participants with and without intellectual disability (ID). Nine adults with ID and 10 adults without ID completed in a series of walk-to-run and run-to-walk trials on a treadmill. W-RTS and…

  3. Biomechanical and energetic determinants of the walk-trot transition in horses.

    PubMed

    Griffin, Timothy M; Kram, Rodger; Wickler, Steven J; Hoyt, Donald F

    2004-11-01

    We studied nine adult horses spanning an eightfold range in body mass (M(b)) (90-720 kg) and a twofold range in leg length (L) (0.7-1.4 m). We measured the horses' walk-trot transition speeds using step-wise speed increments as they locomoted on a motorized treadmill. We then measured their rates of oxygen consumption over a wide range of walking and trotting speeds. We interpreted the transition speed results using a simple inverted-pendulum model of walking in which gravity provides the centripetal force necessary to keep the leg in contact with the ground. By studying a large size range of horses, we were naturally able to vary the absolute walking speed that would produce the same ratio of centripetal to gravitational forces. This ratio, (M(b)v2/L)/(M(b)g), reduces to the dimensionless Froude number (v2/gL), where v is forward speed, L is leg length and g is gravitational acceleration. We found that the absolute walk-trot transition speed increased with size from 1.6 to 2.3 m s(-1), but it occurred at nearly the same Froude number (0.35). In addition, horses spontaneously switched between gaits in a narrow range of speeds that corresponded to the metabolically optimal transition speed. These results support the hypotheses that the walk-trot transition is triggered by inverted-pendulum dynamics and occurs at the speed that maximizes metabolic economy.

  4. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion

    PubMed Central

    Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A

    2006-01-01

    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753

  5. Limited Transfer of Newly Acquired Movement Patterns across Walking and Running in Humans

    PubMed Central

    Ogawa, Tetsuya; Kawashima, Noritaka; Ogata, Toru; Nakazawa, Kimitaka

    2012-01-01

    The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes. PMID:23029490

  6. Compliant leg behaviour explains basic dynamics of walking and running

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2006-01-01

    The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312

  7. BIOENERGETIC DIFFERENCES DURING WALKING AND RUNNING IN TRANSFEMORAL AMPUTEE RUNNERS USING ARTICULATING AND NON-ARTICULATING KNEE PROSTHESES

    PubMed Central

    Highsmith, M. Jason; Kahle, Jason T.; Miro, Rebecca M.; Mengelkoch, Larry J.

    2016-01-01

    Transfemoral amputation (TFA) patients require considerably more energy to walk and run than non-amputees. The purpose of this study was to examine potential bioenergetic differences (oxygen uptake (VO2), heart rate (HR), and ratings of perceived exertion (RPE)) for TFA patients utilizing a conventional running prosthesis with an articulating knee mechanism versus a running prosthesis with a non-articulating knee joint. Four trained TFA runners (n = 4) were accommodated to and tested with both conditions. VO2 and HR were significantly lower (p ≤ 0.05) in five of eight fixed walking and running speeds for the prosthesis with an articulating knee mechanism. TFA demonstrated a trend for lower RPE at six of eight walking speeds using the prosthesis with the articulated knee condition. A trend was observed for self-selected walking speed, self-selected running speed, and maximal speed to be faster for TFA subjects using the prosthesis with the articulated knee condition. Finally, all four TFA participants subjectively preferred running with the prosthesis with the articulated knee condition. These findings suggest that, for trained TFA runners, a running prosthesis with an articulating knee prosthesis reduces ambulatory energy costs and enhances subjective perceptive measures compared to using a non-articulating knee prosthesis. PMID:28066524

  8. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    PubMed

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.

  9. Why not walk faster?

    PubMed Central

    Usherwood, James Richard

    2005-01-01

    Bipedal walking following inverted pendulum mechanics is constrained by two requirements: sufficient kinetic energy for the vault over midstance and sufficient gravity to provide the centripetal acceleration required for the arc of the body about the stance foot. While the acceleration condition identifies a maximum walking speed at a Froude number of 1, empirical observation indicates favoured walk–run transition speeds at a Froude number around 0.5 for birds, humans and humans under manipulated gravity conditions. In this study, I demonstrate that the risk of ‘take-off’ is greatest at the extremes of stance. This is because before and after kinetic energy is converted to potential, velocities (and so required centripetal accelerations) are highest, while concurrently the component of gravity acting in line with the leg is least. Limitations to the range of walking velocity and stride angle are explored. At walking speeds approaching a Froude number of 1, take-off is only avoidable with very small steps. With realistic limitations on swing-leg frequency, a novel explanation for the walk–run transition at a Froude number of 0.5 is shown. PMID:17148201

  10. Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton.

    PubMed

    Malcolm, P; Fiers, P; Segers, V; Van Caekenberghe, I; Lenoir, M; De Clercq, D

    2009-10-01

    The goal of this study was to analyse the role of the plantarflexor muscles in the walk-to-run transition (WRT) by means of a powered ankle-foot-exoskeleton. 11 female subjects performed several WRT's on an accelerating treadmill while their plantarflexors were assisted or resisted during push off. The WRT speed was lower in the resist condition than in the control condition which reinforces hypotheses from previous simulations, descriptive and experimental studies. There was no increase in WRT speed in the assist condition which is in contrast to another study where the plantarflexor push off was assisted indirectly by a horizontal traction at waist level. The lack of effect from the assist condition in the present study is possibly due to the narrowly focused nature of the experimental manipulation.

  11. Muscle mechanical advantage of human walking and running: implications for energy cost.

    PubMed

    Biewener, Andrew A; Farley, Claire T; Roberts, Thomas J; Temaner, Marco

    2004-12-01

    Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.

  12. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners

    NASA Astrophysics Data System (ADS)

    McGregor, Stephen J.; Busa, Michael A.; Skufca, Joseph; Yaggie, James A.; Bollt, Erik M.

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control.

  13. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID

  14. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  15. Calcaneal loading during walking and running

    NASA Technical Reports Server (NTRS)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  16. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center employees and guests are off to a running start at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  17. Optimal stride frequencies in running at different speeds.

    PubMed

    van Oeveren, Ben T; de Ruiter, Cornelis J; Beek, Peter J; van Dieën, Jaap H

    2017-01-01

    During running at a constant speed, the optimal stride frequency (SF) can be derived from the u-shaped relationship between SF and heart rate (HR). Changing SF towards the optimum of this relationship is beneficial for energy expenditure and may positively change biomechanics of running. In the current study, the effects of speed on the optimal SF and the nature of the u-shaped relation were empirically tested using Generalized Estimating Equations. To this end, HR was recorded from twelve healthy (4 males, 8 females) inexperienced runners, who completed runs at three speeds. The three speeds were 90%, 100% and 110% of self-selected speed. A self-selected SF (SFself) was determined for each of the speeds prior to the speed series. The speed series started with a free-chosen SF condition, followed by five imposed SF conditions (SFself, 70, 80, 90, 100 strides·min-1) assigned in random order. The conditions lasted 3 minutes with 2.5 minutes of walking in between. SFself increased significantly (p<0.05) with speed with averages of 77, 79, 80 strides·min-1 at 2.4, 2.6, 2.9 m·s-1, respectively). As expected, the relation between SF and HR could be described by a parabolic curve for all speeds. Speed did not significantly affect the curvature, nor did it affect optimal SF. We conclude that over the speed range tested, inexperienced runners may not need to adapt their SF to running speed. However, since SFself were lower than the SFopt of 83 strides·min-1, the runners could reduce HR by increasing their SFself.

  18. Ultrasonographic assessment of medial femoral cartilage deformation acutely following walking and running.

    PubMed

    Harkey, M S; Blackburn, J T; Davis, H; Sierra-Arévalo, L; Nissman, D; Pietrosimone, B

    2017-06-01

    To determine the magnitude of medial femoral cartilage deformation using ultrasonography (US) following walking and running in healthy individuals. Twenty-five healthy participants with no history of osteoarthritis or knee injury volunteered for this study. Medial femoral cartilage thickness was assessed using US before and after three separate 30-min loading conditions: (1) walking at a self-selected speed, (2) running at a self-selected speed, and (3) sitting on a treatment table (i.e., control). Cartilage deformation was calculated as the percent change score from pre to post loading in each loading condition. The magnitude of cartilage deformation was compared between the three loading conditions. There was no difference in baseline cartilage thickness between the three sessions (F 1,24  = 0.18, P = 0.68). Cartilage deformation was different between the loading conditions (F 1,24  = 47.54, P < 0.001). The walking (%Δ = -6.7, t 24  = 6.90, P < 0.001, d = -1.92) and running (%Δ = -8.9, t 24  = 8.14, P < 0.001, d = -1.85) conditions resulted in greater cartilage deformation when compared to the control condition (%Δ = +3.4). There was no difference in cartilage deformation between the running and walking conditions (t 24  = 1.10, P = 0.28, d = 0.33). US measured medial femoral cartilage thickness demonstrated reliability and precision within a single session (ICC 2,k  = 0.966, SEM = 0.07 mm) and between additional sessions separated by seven (ICC 2,k  = 0.964, SEM = 0.08 mm) and 16 days (ICC 2,k  = 0.919, SEM = 0.11 mm). US demonstrated to be a reliable and sensitive imaging modality at quantifying medial femoral cartilage deformation in healthy individuals. Both walking and running conditions created greater cartilage deformation when compared to the control conditions, but no difference was observed between the walking and running conditions. Copyright © 2016 Osteoarthritis Research Society International

  19. [Comparison of kinematic and kinetic parameters between the locomotion patterns in nordic walking, walking and running].

    PubMed

    Kleindienst, F I; Michel, K J; Schwarz, J; Krabbe, B

    2006-03-01

    Based on a higher cardio-pulmonary and cardio-vascular benefit and a promised reduction of mechanical load of the musculoskeletal system Nordic Walking (NW) shows an increased market potential. The present study should investigate whether there are biomechanical differences between the locomotion patterns NW, walking and running. Moreover possible resultant load differences should be determined. Eleven subjects, who were already experienced with the NW-technique, participated in this experiment. The kinematic data were collected using two high-speed camera systems from posterior and from lateral at the same time. Simultaneously the ground reaction forces were recorded. The kinematic and the kinetic data reveal differences between the three analyzed locomotion patterns. For NW as well as walking the mechanical load of the lower extremity is lower compared to running. None of the kinematic parameters suggest a "physiological benefit" of NW compared to walking. Moreover NW shows higher vertical and horizontal forces during landing. Exclusively the lower vertical force peak during push off indicates a lower mechanical load for NW in comparison to walking. Consequently it is questionable is NW -- based on its promised "biomechanical benefits" compared to walking -- should be still recommended for overweight people and for people with existing musculoskeletal problems of the lower limb.

  20. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces

    PubMed Central

    Pugh, L. G. C. E.

    1971-01-01

    1. O2 intakes were determined on subjects running and walking at various constant speeds, (a) against wind of up to 18·5 m/sec (37 knots) in velocity, and (b) on gradients ranging from 2 to 8%. 2. In running and walking against wind, O2 intakes increased as the square of wind velocity. 3. In running on gradients the relation of O2 intake and lifting work was linear and independent of speed. In walking on gradients the relation was linear at work rates above 300 kg m/min, but curvilinear at lower work rates. 4. In a 65 kg athlete running at 4·45 m/sec (marathon speed) V̇O2 increased from 3·0 l./min with minimal wind to 5·0 l./min at a wind velocity of 18·5 m/sec. The corresponding values for a 75 kg subject walking at 1·25 m/sec were 0·8 l./min with minimal wind and 3·1 l./min at a wind velocity of 18·5 m/sec. 5. Direct measurements of wind pressure on shapes of similar area to one of the subjects yielded higher values than those predicted from the relation of wind velocity and lifting work at equal O2 intakes. Horizontal work against wind was more efficient than vertical work against gravity. 6. The energy cost of overcoming air resistance in track running may be 7·5% of the total energy cost at middle distance speed and 13% at sprint speed. Running 1 m behind another runner virtually eliminated air resistance and reduced V̇O2 by 6·5% at middle distance speed. PMID:5574828

  1. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    PubMed Central

    Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05) and 12 and 18% higher during SRS (P < 0.05) than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05) and 12 and 18% greater during SRS (P < 0.05) than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948

  2. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center Director Bob Cabana approaches the finish line at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  3. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    A line of Kennedy Space Center employees and guests stretches down the Shuttle Landing Facility Runway during the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  4. Running shoes increase achilles tendon load in walking: an acoustic propagation study.

    PubMed

    Wearing, Scott C; Reed, Lloyd; Hooper, Sue L; Bartold, Simon; Smeathers, James E; Brauner, Torsten

    2014-08-01

    Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy because it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Acoustic velocity was measured in the Achilles tendon of 12 recreationally active males (age, 31 ± 9 yr; height, 1.78 ± 0.06 m; weight, 81.0 ± 16.9 kg) during barefoot and shod walking at matched self-selected speed (3.4 ± 0.7 km·h). Standard running shoes incorporating a 10-mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom-built ultrasonic device. All data were acquired at a rate of 100 Hz during 10 s of steady-state walking. Statistical comparisons between barefoot and shod conditions were made using paired t-tests and repeated-measure ANOVA. Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration, and peak vertical ground reaction force compared with barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10-mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.

  5. SLF Run & Walk

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center Director Bob Cabana, center, is joined by a large group of center employees and guests as they participate in the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  6. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia.

    PubMed

    Sims, David T; Onambélé-Pearson, Gladys L; Burden, Adrian; Payton, Carl; Morse, Christopher I

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption ([Formula: see text]O 2 ) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal [Formula: see text]O 2 and C during a range of set walking speeds (SWS; 0.56 - 1.94 m⋅s -1 , increment 0.28 m⋅s -1 ), set running speeds (SRS; 1.67 - 3.33 m⋅s -1 , increment 0.28 m⋅s -1 ) and a self-selected walking speed (SSW). [Formula: see text]O 2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude's number (Fr). Achondroplasic [Formula: see text]O 2TBM and [Formula: see text]O 2FFM were on average 29 and 35% greater during SWS ( P < 0.05) and 12 and 18% higher during SRS ( P < 0.05) than controls, respectively. Achondroplasic C TBM and C FFM were 29 and 33% greater during SWS ( P < 0.05) and 12 and 18% greater during SRS ( P < 0.05) than controls, respectively. There was no difference in SSW [Formula: see text]O 2TBM or [Formula: see text]O 2FFM between groups ( P > 0.05), but C TBM and C FFM at SSW were 23 and 29% higher ( P < 0.05) in the Achondroplasic group compared to controls, respectively. [Formula: see text]O 2TBM and [Formula: see text]O 2FFM correlated with Fr for both groups ( r = 0.984 - 0.999, P < 0.05). Leg length accounted for the majority of the higher [Formula: see text]O 2TBM and [Formula: see text]O 2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic C TBM and C FFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched

  7. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    PubMed

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  8. Cellular telephone use during free-living walking significantly reduces average walking speed.

    PubMed

    Barkley, Jacob E; Lepp, Andrew

    2016-03-31

    Cellular telephone (cell phone) use decreases walking speed in controlled laboratory experiments and there is an inverse relationship between free-living walking speed and heart failure risk. The purpose of this study was to examine the impact of cell phone use on walking speed in a free-living environment. Subjects (n = 1142) were randomly observed walking on a 50 m University campus walkway. The time it took each subject to walk 50 m was recorded and subjects were coded into categories: cell phone held to the ear (talking, n = 95), holding and looking at the cell phone (texting, n = 118), not visibly using the cell phone (no use, n = 929). Subjects took significantly (p < 0.001) longer traversing the walkway when talking (39.3 s) and texting (37.9 s) versus no use (35.3 s). As was the case with the previous laboratory experiments, cell phone use significantly reduces average speed during free-living walking.

  9. Walking vs running for hypertension, cholesterol, & diabetes risk reduction

    PubMed Central

    Thompson, Paul D.

    2013-01-01

    Background To test whether equivalent energy expenditure by moderate-intensity (e.g., walking) and vigorous-intensity exercise (e.g., running) provides equivalent health benefits. Methods and Results We used the National Runners’ (n=33,060) and Walkers’ (n=15,945) Health Study cohorts to examine the effect of differences in exercise mode and thereby exercise intensity on coronary heart disease (CHD) risk factors. Baseline expenditure (METhr/d) was compared to self-reported, physician-diagnosed incident hypertension, hypercholesterolemia, diabetes and CHD during 6.2 years follow-up. Running significantly decreased the risks for incident hypertension by 4.2% (P<10-7), hypercholesterolemia by 4.3% (P<10-14), diabetes by 12.1% (P<10-5), and CHD by 4.5% per METh/d run (P=0.05). The corresponding reductions for walking were 7.2% (P<10-6), 7.0% (P<10-8), 12.3% (P<10-4), and 9.3% (P=0.01). Relative to <1.8 METh/d, the risk reductions for 1.8 to 3.6, 3.6 to 5.4, 5.4 to 7.2, and ≥ 7.2 METh/d were: 1) 10.1%, 17.7%, 25.1% and 34.9% from running and 14.0%, 23.8%, 21.8% and 38.3% from walking for hypercholesterolemia; 2) 19.7%, 19.4%, 26.8% and 39.8% from running and 14.7%, 19.1%, 23.6% and 13.3% from walking for hypertension; 3) 43.5%, 44.1%, 47.7% and 68.2% from running and 34.1%, 44.2%, and 23.6% from walking for diabetes (too few cases for diabetes for walking >5.4 METh/d). The risk reductions were not significantly greater for running than walking for diabetes (P=0.94) or CHD (P=0.26), and only marginally greater for walking than running for hypertension (P=0.06) and hypercholesterolemia (P=0.04). Conclusion Equivalent energy expenditures by moderate (walking) and vigorous (running) exercise produced similar risk reductions for hypertension, hypercholesterolemia, diabetes, and CHD, but there is limited statistical power to evaluate CHD conclusively. PMID:23559628

  10. Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running.

    PubMed

    Hafer, Jocelyn F; Boyer, Katherine A

    2017-01-01

    Coordination variability (CV) quantifies the variety of movement patterns an individual uses during a task and may provide a measure of the flexibility of that individual's motor system. While there is growing popularity of segment CV as a marker of motor system health or adaptability, it is not known how many strides of data are needed to reliably calculate CV. This study aimed to determine the number of strides needed to reliably calculate CV in treadmill walking and running, and to compare CV between walking and running in a healthy population. Ten healthy young adults walked and ran at preferred speeds on a treadmill and a modified vector coding technique was used to calculate CV for the following segment couples: pelvis frontal plane vs. thigh frontal plane, thigh sagittal plane vs. shank sagittal plane, thigh sagittal plane vs. shank transverse plane, and shank transverse plane vs. rearfoot frontal plane. CV for each coupling of interest was calculated for 2-15 strides for each participant and gait type. Mean CV was calculated across the entire gait cycle and, separately, for 4 phases of the gait cycle. For running and walking 8 and 10 strides, respectively, were sufficient to obtain a reliable CV estimate. CV was significantly different between walking and running for the thigh vs. shank couple comparisons. These results suggest that 10 strides of treadmill data are needed to reliably calculate CV for walking and running. Additionally, the differences in CV between walking and running suggest that the role of knee (i.e., inter-thigh- shank) control may differ between these forms of locomotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.

    PubMed

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo

    2013-04-06

    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk-trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk-trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics.

  12. Ground reaction force adaptations during cross-slope walking and running.

    PubMed

    Damavandi, Mohsen; Dixon, Philippe C; Pearsall, David J

    2012-02-01

    Though transversely inclined (cross-sloped) surfaces are prevalent, our understanding of the biomechanical adaptations required for cross-slope locomotion is limited. The purpose of this study was to examine ground reaction forces (GRF) in cross-sloped and level walking and running. Nine young adult males walked and ran barefoot along an inclinable walkway in both level (0°) and cross-slope (10°) configurations. The magnitude and time of occurrence of selected features of the GRF were extracted from the force plate data. GRF data were collected in level walking and running (LW and LR), inclined walking and running up-slope (IWU and IRU), and down-slope (IWD and IRD), respectively. The GRF data were then analyzed using repeated measures MANOVA. In the anteroposterior direction, the timing of the peak force values differed across conditions during walking (p=.041), while the magnitude of forces were modified across conditions for running (p=.047). Most significant differences were observed in the mediolateral direction, where generally force values were up to 390% and 530% (p<.001) larger during the cross-slope conditions compared to level for walking and running, respectively. The maximum force peak during running occurred earlier at IRU compared to the other conditions (p≤.031). For the normal axis a significant difference was observed in the first maximum force peak during walking (p=.049). The findings of this study showed that compared to level surfaces, functional adaptations are required to maintain forward progression and dynamic stability in stance during cross-slope walking and running. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    PubMed

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of walking speed on lower extremity joint loading in graded ramp walking.

    PubMed

    Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich

    2005-07-01

    Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.

  15. Effect of training in minimalist footwear on oxygen consumption during walking and running.

    PubMed

    Bellar, D; Judge, L W

    2015-06-01

    The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg(-1)·min(-1)) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr(-1)), light running (7.2 km·hr(-1)), and moderate running (9.6 km·hr(-1)). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, [Formula: see text]=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr(-1) (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr(-1). At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.

  16. Effects of medially posted insoles on foot and lower limb mechanics across walking and running in overpronating men.

    PubMed

    Kosonen, Jukka; Kulmala, Juha-Pekka; Müller, Erich; Avela, Janne

    2017-03-21

    Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70±0.19m/s vs 1.72±0.20m/s, respectively) and running (4.04±0.17m/s vs 4.10±0.13m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p<0.05-0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p<0.01) leading to an increase in frontal plane moments at the hip (p<0.05) and knee (p<0.05) joints and a reduction at the ankle joint (p<0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking.

    PubMed

    Patel, P; Lamar, M; Bhatt, T

    2014-02-28

    We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Validation of an ambient measurement system (AMS) for walking speed.

    PubMed

    Varsanik, Jonathan S; Kimmel, Zebadiah M; de Moor, Carl; Gabel, Wendy; Phillips, Glenn A

    2017-07-01

    Walking speed is an important indicator of worsening in a variety of neurological and neuromuscular diseases, yet typically is measured only infrequently and in a clinical setting. Passive measurement of walking speed at home could provide valuable information to track the progression of many neuromuscular conditions. The purpose of this study was to validate the measurement of walking speed by a shelf-top ambient measurement system (AMS) that can be placed in a patient's home. Twenty-eight healthy adults (16 male, 12 female) were asked to walk three pre-defined routes two times each (total of 168 traversals). For each traversal, walking speed was measured simultaneously by five sources: two independent AMSs and three human timers with stopwatches. Measurements across the five sources were compared by generalised estimating equations (GEE). Correlation coefficients compared pairwise for walking speeds across the two AMSs, three human timers, and three routes all exceeded 0.86 (p < .0001), and for AMS-to-AMS exceeded 0.92 (p < .0001). Aggregated across all routes, there was no significant difference in measured walking speeds between the two AMSs (p = .596). There was a statistically significant difference between the AMSs and human timers of 8.5 cm/s (p < .0001), which is comparable to differences reported for other non-worn sensors. The tested AMS demonstrated the ability to automatically measure walking speeds comparable to manual observation and recording, which is the current standard for assessing walking speed in a clinical setting. The AMS may be used to detect changes in walking speed in community settings.

  19. Effect of training in minimalist footwear on oxygen consumption during walking and running

    PubMed Central

    Judge, LW

    2015-01-01

    The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar. PMID:26060339

  20. Unstable footwear as a speed-dependent noise-based training gear to exercise inverted pendulum motion during walking.

    PubMed

    Dierick, Frédéric; Bouché, Anne-France; Scohier, Mikaël; Guille, Clément; Buisseret, Fabien

    2018-05-15

    Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h -1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.

  1. Walking versus running for hypertension, cholesterol, and diabetes mellitus risk reduction.

    PubMed

    Williams, Paul T; Thompson, Paul D

    2013-05-01

    To test whether equivalent energy expenditure by moderate-intensity (eg, walking) and vigorous-intensity exercise (eg, running) provides equivalent health benefits. We used the National Runners' (n=33 060) and Walkers' (n=15 945) Health Study cohorts to examine the effect of differences in exercise mode and thereby exercise intensity on coronary heart disease (CHD) risk factors. Baseline expenditure (metabolic equivant hours per day [METh/d]) was compared with self-reported, physician-diagnosed incident hypertension, hypercholesterolemia, diabetes mellitus, and CHD during 6.2 years follow-up. Running significantly decreased the risks for incident hypertension by 4.2% (P<10(-7)), hypercholesterolemia by 4.3% (P<10(-14)), diabetes mellitus by 12.1% (P<10(-5)), and CHD by 4.5% per METh/d (P=0.05). The corresponding reductions for walking were 7.2% (P<10(-6)), 7.0% (P<10(-8)), 12.3% (P<10(-4)), and 9.3% (P=0.01). Relative to <1.8 METh/d, the risk reductions for 1.8 to 3.6, 3.6 to 5.4, 5.4 to 7.2, and ≥7.2 METh/d were as follows: (1) 10.1%, 17.7%, 25.1%, and 34.9% from running and 14.0%, 23.8%, 21.8%, and 38.3% from walking for hypercholesterolemia; (2) 19.7%, 19.4%, 26.8%, and 39.8% from running and 14.7%, 19.1%, 23.6%, and 13.3% from walking for hypertension; and (3) 43.5%, 44.1%, 47.7%, and 68.2% from running, and 34.1%, 44.2% and 23.6% from walking for diabetes mellitus (walking >5.4 METh/d excluded for too few cases). The risk reductions were not significantly different for running than walking for diabetes mellitus (P=0.94), hypertension (P=0.06), or CHD (P=0.26), and only marginally greater for walking than running for hypercholesterolemia (P=0.04). Equivalent energy expenditures by moderate (walking) and vigorous (running) exercise produced similar risk reductions for hypertension, hypercholesterolemia, diabetes mellitus, and possibly CHD.

  2. Walking modulates speed sensitivity in Drosophila motion vision.

    PubMed

    Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek

    2010-08-24

    Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Fast visual prediction and slow optimization of preferred walking speed.

    PubMed

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting <2 s) and in a direction opposite to the perturbation and consistent with returning the visually presented speed toward their preferred walking speed, when visual speed was suddenly twice (one-half) the walking speed, subjects decreased (increased) their speed. Subjects did not maintain the new speed but instead gradually returned toward the speed preferred before the perturbation (lasting >300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  4. Physiological consequences of military high-speed boat transits.

    PubMed

    Myers, Stephen D; Dobbins, Trevor D; King, Stuart; Hall, Benjamin; Ayling, Ruth M; Holmes, Sharon R; Gunston, Tom; Dyson, Rosemary

    2011-09-01

    The purpose of this study was to investigate the consequences of a high-speed boat transit on physical performance. Twenty-four Royal Marines were randomly assigned to a control (CON) or transit (TRAN) group. The CON group sat onshore for 3 h whilst the TRAN group completed a 3-h transit in open-boats running side-by-side, at 40 knots in moderate-to-rough seas, with boat deck and seat-pan acceleration recorded. Performance tests (exhaustive shuttle-run, handgrip, vertical-jump, push-up) were completed pre- and immediately post-transit/sit, with peak heart rate (HRpeak) and rating of perceived exertion (RPE) recorded. Serial blood samples (pre, 24, 36, 48, 72 h) were analyzed for creatine kinase (CK) activity. The transit was typified by frequent high shock impacts, but moderate mean heart rates (<45% HRpeak). The TRAN group post-transit run distance (-219 m, P < 0.01) and vertical-jump height (5%, P < 0.05) were reduced, the CON group showed no change. The TRAN group post-transit test RPE increased (P < 0.05), however, HRpeak was similar for each group (98%). Post-transit CK activity increased in the TRAN group up to 72 h (P < 0.01) and also, but less markedly, in the CON group (24 and 48 h, P < 0.05). Post-transit run and jump performances were reduced despite mean transit heart rates indicating low energy expenditure. The greater TRAN CK activity suggests muscle damage may have been a contributory factor. These findings have operational implications for Special Forces/naval/police/rescue services carrying out demanding, high-risk physical tasks during and immediately after high-speed boat transits.

  5. Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.

    PubMed

    Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk

    2015-07-01

    Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.

  6. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.

    PubMed

    Seethapathi, Nidhi; Srinivasan, Manoj

    2015-09-01

    Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).

  7. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates

    PubMed Central

    Seethapathi, Nidhi; Srinivasan, Manoj

    2015-01-01

    Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072

  8. Walking speed and peak plantar pressure distribution during barefoot walking in persons with diabetes.

    PubMed

    Ko, Mansoo; Hughes, Lynne; Lewis, Harriet

    2012-03-01

    The impact of walking speed has not been evaluated as a feasible outcome measure associated with peak plantar pressure (PPP) distribution, which may result in tissue damage in persons with diabetic foot complications. The objective of this pilot study was to determine the walking speed and PPP distribution during barefoot walking in persons with diabetes.   Nine individuals with diabetes and nine age-gender matched individuals without diabetes participated in this study. Each individual was marked at 10 anatomical landmarks for vibration and tactile pressure sensation tests to determine the severity of sensory deficits on the plantar surface of the dominant limb foot. A steady state walking speed, PPP, the fore and rear foot (F/R) PPP ratio and gait variables were measured during barefoot walking.   Persons with diabetes had a significantly slower walking speed than the age-gender matched group resulting in a significant reduction of PPP at the F/R foot during barefoot walking (p < 0.05). There was no significant difference in F/R foot PPP ratio in the diabetic group compared with the age-gender matched group during barefoot walking (p > 0.05). There was a significant difference between the diabetic and non-diabetic groups for cadence, step time, toe out angle and the anterior-posterior excursion (APE) for centre of force (p < 0.05).   Walking speed may be a potential indicator for persons with diabetes to identify PPP distribution during barefoot walking in a diabetic foot. However, the diabetic group demonstrated a more cautious walking pattern than the age-gender matched group by decreasing cadence, step length and APE, and increasing step time and toe in/out angle. People with diabetes may reduce the risk of foot ulcerations as long as they are able to prevent severe foot deformities such as callus, hammer toe or charcot foot. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Development and Validation of a New Method to Measure Walking Speed in Free-Living Environments Using the Actibelt® Platform

    PubMed Central

    Schimpl, Michaela; Lederer, Christian; Daumer, Martin

    2011-01-01

    Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure. PMID:21850254

  10. Influence of Neuromuscular Noise and Walking Speed on Fall Risk and Dynamic Stability in a 3D Dynamic Walking Model

    PubMed Central

    Roos, Paulien E.; Dingwell, Jonathan B.

    2013-01-01

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911

  11. Comparison of energy expenditure to walk or run a mile in adult normal weight and overweight men and women.

    PubMed

    Loftin, Mark; Waddell, Dwight E; Robinson, James H; Owens, Scott G

    2010-10-01

    We compared the energy expenditure to walk or run a mile in adult normal weight walkers (NWW), overweight walkers (OW), and marathon runners (MR). The sample consisted of 19 NWW, 11 OW, and 20 MR adults. Energy expenditure was measured at preferred walking speed (NWW and OW) and running speed of a recently completed marathon. Body composition was assessed via dual-energy x-ray absorptiometry. Analysis of variance was used to compare groups with the Scheffe's procedure used for post hoc analysis. Multiple regression analysis was used to predict energy expenditure. Results that indicated OW exhibited significantly higher (p < 0.05) mass and fat weight than NWW or MR. Similar values were found between NWW and MR. Absolute energy expenditure to walk or run a mile was similar between groups (NWW 93.9 ± 15.0, OW 98.4 ± 29.9, MR 99.3 ± 10.8 kcal); however, significant differences were noted when energy expenditure was expressed relative to mass (MR > NWW > OW). When energy expenditure was expressed per kilogram of fat-free mass, similar values were found across groups. Multiple regression analysis yielded mass and gender as significant predictors of energy expenditure (R = 0.795, SEE = 10.9 kcal). We suggest that walking is an excellent physical activity for energy expenditure in overweight individuals that are capable of walking without predisposed conditions such as osteoarthritis or cardiovascular risk factors. Moreover, from a practical perspective, our regression equation (kcal = mass (kg) × 0.789 - gender (men = 1, women = 2) × 7.634 + 51.109) allows for the prediction of energy expenditure for a given distance (mile) rather than predicting energy expenditure for a given time (minutes).

  12. Tibiofemoral contact forces during walking, running and sidestepping.

    PubMed

    Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G

    2016-09-01

    We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20walking) produced large errors when applied to a different gait task (e.g. running or sidestepping). Muscles well stabilized the knee, increasing their role in stabilization from walking to running to sidestepping. KAM was a poor predictor of medial contact force and load distributions. Step-wise regression models results suggest the relationships between external gait measures and contact forces cannot be generalized across tasks. Neuromusculoskeletal modelling may be required to examine tibiofemoral contact forces and role of muscle in knee stabilization across gait tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    PubMed

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking

  14. Influence of neuromuscular noise and walking speed on fall risk and dynamic stability in a 3D dynamic walking model.

    PubMed

    Roos, Paulien E; Dingwell, Jonathan B

    2013-06-21

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats

    PubMed Central

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-01-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003

  16. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis.

    PubMed

    Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F

    2014-01-01

    To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.

  17. One-family walking technicolor in light of LHC Run II

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya

    2017-12-01

    The LHC Higgs can be identified as the technidilaton, a composite scalar, arising as a pseudo Nambu-Goldstone boson for the spontaneous breaking of scale symmetry in walking technicolor. One interesting candidate for the walking technicolor is the QCD with the large number of fermion flavors, involving the one-family model having the eight-fermion flavors. The smallness of the technidilaton mass can be ensured by the generic walking feature, Miransky scaling, and the presence of the “anti-Veneziano limit” characteristic to the large-flavor walking scenario. To tell the standard-model Higgs from the technidilaton, one needs to wait for the precise estimate of the Higgs couplings to the standard model particles, which is expected at the ongoing LHC Run II. In this talk the technidilaton phenomenology in comparison with the LHC Run-I data is summarized with the special emphasis placed on the presence of the anti-Veneziano limit supporting the lightness of technidilaton. Besides the technidilaton, the walking technicolor predicts the rich particle spectrum such as technipions and technirho mesons, arising as composite particles formed by technifermions. The LHC phenomenology of those technihadrons and the discovery channels are also discussed, which are smoking-guns of the walking technicolor, to be accessible at the LHC Run II.

  18. Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed

    PubMed Central

    Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.

    2014-01-01

    When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239

  19. Fitness Assessment Comparison Between the "Jackie Chan Action Run" Videogame, 1-Mile Run/Walk, and the PACER.

    PubMed

    Haddock, Bryan; Siegel, Shannon; Costa, Pablo; Jarvis, Sarah; Klug, Nicholas; Medina, Ernie; Wilkin, Linda

    2012-06-01

    The purpose of this study was to examine whether a correlation existed among the scores of the "Jackie Chan Studio Fitness(™) Action Run" active videogame (XaviX(®), SSD Company, Ltd., Kusatsu, Japan), the 1-mile run/walk, and Progressive Aerobic Cardiovascular Endurance Run (PACER) aerobic fitness tests of the FITNESSGRAM(®) (The Cooper Institute, Dallas, TX) in order to provide a potential alternative testing method for days that are not environmentally desirable for outdoor testing. Participants were a convenience sample from physical education classes of students between the ages of 10 and 15 years. Participants (n=108) were randomly assigned to one of three groups with the only difference being the order of testing. The tests included the "Jackie Chan Action Run" active videogame, the 1-mile run/walk, and the PACER. Testing occurred on three different days during the physical education class. Rating of perceived exertion (RPE) was reported. Significant correlations (r=-0.598 to 0.312) were found among the three aerobic fitness tests administered (P<0.05). The RPE for the "Jackie Chan Action Run" was lower than the RPE for the 1-mile run/walk and the PACER (3.81±1.89, 5.93±1.77, and 5.71±2.14, respectively). The results suggest that the "Jackie Chan Action Run" test could be an alternative to the 1-mile run/walk and PACER, allowing physical education teachers to perform aerobic fitness testing in an indoor setting that requires less space. Also, children may be more willing to participate in the "Jackie Chan Action Run" based on the lower RPE.

  20. Maximizing Safety, Social Support, and Participation in Walking/Jogging/Running Classes

    ERIC Educational Resources Information Center

    Consolo, Kitty A.

    2007-01-01

    Physical education instructors who teach high school or college walking/jogging/running classes, or who include walking or running as a segment of a wellness class, face a particular challenge in trying to meet each student's individual fitness needs while ensuring safety. This article provides strategies for effectively meeting individual needs…

  1. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    PubMed Central

    Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442

  2. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    PubMed

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  3. Distinct motor strategies underlying split-belt adaptation in human walking and running.

    PubMed

    Ogawa, Tetsuya; Kawashima, Noritaka; Obata, Hiroki; Kanosue, Kazuyuki; Nakazawa, Kimitaka

    2015-01-01

    The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.

  4. Distinct Motor Strategies Underlying Split-Belt Adaptation in Human Walking and Running

    PubMed Central

    Ogawa, Tetsuya; Kawashima, Noritaka; Obata, Hiroki; Kanosue, Kazuyuki; Nakazawa, Kimitaka

    2015-01-01

    The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes. PMID:25775426

  5. Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.

    PubMed

    Kulmala, J-P; Korhonen, M T; Kuitunen, S; Suominen, H; Heinonen, A; Mikkola, A; Avela, J

    2017-09-01

    This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. These alterations in the hip and pelvis motions may reflect insufficient force production of hip abductors to stabilize the pelvis during single-limb support, while limited trunk lateral flexion may enhance control of the mediolateral balance. On the other hand, larger trunk side-to-side movement among the young and early old adults may provide a mechanism to prevent the increase of the hip frontal moment despite greater vertical ground reaction force. This, in turn, can assist hip abductors to maintain stability of the pelvis during sprinting while allowing powerful force generation by a large adductor muscle group. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running.

    PubMed

    de Ruiter, Cornelis J; van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick; van Dieen, Jaap H

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited.

  7. The influence of gait speed on the stability of walking among the elderly.

    PubMed

    Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo

    2016-06-01

    Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The development of an estimation model for energy expenditure during water walking by acceleration and walking speed.

    PubMed

    Kaneda, Koichi; Ohgi, Yuji; Tanaka, Chiaki; Burkett, Brendan

    2014-01-01

    The aim of this study was to develop an estimation equation for energy expenditure during water walking based on the acceleration and walking speed. Cross-validation study. Fifty participants, males (n=29, age: 27-73) and females (n=21, age: 33-70) volunteered for this study. Based on their physical condition water walking was conducted at three self-selected walking speeds from a range of: 20, 25, 30, 35 and 40 m/min. Energy expenditure during each trial was calculated. During water walking, an accelerometer was attached to the occipital region and recorded three-dimensional accelerations at 100 Hz. A stopwatch was used for timing the participant's walking speed. The estimation model for energy expenditure included three components; (i) resting metabolic rate, (ii) internal energy expenditure for moving participants' body, and (iii) external energy expenditure due to water drag force. When comparing the measured and estimated energy expenditure with the acceleration data being the third component of the estimation model, high correlation coefficients were found in both male (r=0.73) and female (r=0.77) groups. When walking speeds were applied to the third component of the model, higher correlation coefficients were found (r=0.82 in male and r=0.88 in female). Good agreements of the developed estimation model were found in both methods, regardless of gender. This study developed a valid estimation model for energy expenditure during water walking by using head acceleration and walking speed. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    PubMed

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  10. Is There an Optimal Speed for Economical Running?

    PubMed

    Black, Matthew I; Handsaker, Joseph C; Allen, Sam J; Forrester, Stephanie E; Folland, Jonathan P

    2018-01-01

    The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg -1  · km -1 ) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed-energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.

  11. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.

    PubMed

    Moro, Federico L; Spröwitz, Alexander; Tuleu, Alexandre; Vespignani, Massimo; Tsagarakis, Nikos G; Ijspeert, Auke J; Caldwell, Darwin G

    2013-06-01

    This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

  12. Running speed increases plantar load more than per cent body weight on an AlterG® treadmill.

    PubMed

    Thomson, Athol; Einarsson, Einar; Witvrouw, Erik; Whiteley, Rod

    2017-02-01

    AlterG® treadmills allow for running at different speeds as well as at reduced bodyweight (BW), and are used during rehabilitation to reduce the impact load. The aim of this study was to quantify plantar loads borne by the athlete during rehabilitation. Twenty trained male participants ran on the AlterG® treadmill in 36 conditions: all combinations of indicated BW (50-100%) paired with different walking and running speeds (range 6-16 km · hr -1 ) in a random order. In-shoe maximum plantar force (Fmax) was recorded using the Pedar-X system. Fmax was lowest at the 6 km · hr -1 at 50% indicated BW condition at 1.02 ± 0.21BW and peaked at 2.31 ± 0.22BW for the 16 km · hr -1 at 100% BW condition. Greater increases in Fmax were seen when increasing running speed while holding per cent BW constant than the reverse (0.74BW-0.91BW increase compared to 0.19-0.31BW). A table is presented with each of the 36 combinations of BW and running speed to allow a more objective progression of plantar loading during rehabilitation. Increasing running speed rather than increasing indicated per cent BW was shown to have the strongest effect on the magnitude of Fmax across the ranges of speeds and indicated per cent BWs examined.

  13. Modulation of walking speed by changing optic flow in persons with stroke

    PubMed Central

    Lamontagne, Anouk; Fung, Joyce; McFadyen, Bradford J; Faubert, Jocelyn

    2007-01-01

    Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s), from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek). Instantaneous changes in gait speed (experiment 1) and the ratio of speed changes in the test trial over the control trial (experiment 2) were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1), an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p < 0.05, T-test) correlation coefficients between gait speed and OF speed, due to less pronounced changes and an altered phasing of gait speed modulation. When OF speed was manipulated discretely (experiment 2), a negative linear relationship was generally observed between the test-control ratio of

  14. Braking and Propulsive Impulses Increase with Speed during Accelerated and Decelerated Walking

    PubMed Central

    Peterson, Carrie L.; Kautz, Steven A.; Neptune, Richard R.

    2011-01-01

    The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from ten healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0 to 1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects’ preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking. PMID:21356590

  15. Healthy Living Initiative: Running/Walking Club

    ERIC Educational Resources Information Center

    Stylianou, Michalis; Kulinna, Pamela Hodges; Kloeppel, Tiffany

    2014-01-01

    This study was grounded in the public health literature and the call for schools to serve as physical activity intervention sites. Its purpose was twofold: (a) to examine the daily distance covered by students in a before-school running/walking club throughout 1 school year and (b) to gain insights on the teachers perspectives of the club.…

  16. Walk Score® and Transit Score® and Walking in the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Hirsch, Jana A.; Moore, Kari A.; Evenson, Kelly R.; Rodriguez, Daniel A; Diez Roux, Ana V.

    2013-01-01

    Background Walk Score® and Transit Score® are open-source measures of the neighborhood built environment to support walking (“walkability”) and access to transportation. Purpose To investigate associations of Street Smart Walk Score and Transit Score with self-reported transport and leisure walking using data from a large multi-city and diverse population-based sample of adults. Methods Data from a sample of 4552 residents of Baltimore MD; Chicago IL; Forsyth County NC; Los Angeles CA; New York NY; and St. Paul MN from the Multi-Ethnic Study of Atherosclerosis (2010–2012) were linked to Walk Score and Transit Score (collected in 2012). Logistic and linear regression models estimated ORs of not walking and mean differences in minutes walked, respectively, associated with continuous and categoric Walk Score and Transit Score. All analyses were conducted in 2012. Results After adjustment for site, key sociodemographic, and health variables, a higher Walk Score was associated with lower odds of not walking for transport and more minutes/week of transport walking. Compared to those in a “walker’s paradise,” lower categories of Walk Score were associated with a linear increase in odds of not transport walking and a decline in minutes of leisure walking. An increase in Transit Score was associated with lower odds of not transport walking or leisure walking, and additional minutes/week of leisure walking. Conclusions Walk Score and Transit Score appear to be useful as measures of walkability in analyses of neighborhood effects. PMID:23867022

  17. Influence of Systematic Increases in Treadmill Walking Speed on Gait Kinematics After Stroke

    PubMed Central

    Tyrell, Christine M.; Roos, Margaret A.; Rudolph, Katherine S.

    2011-01-01

    Background Fast treadmill training improves walking speed to a greater extent than training at a self-selected speed after stroke. It is unclear whether fast treadmill walking facilitates a more normal gait pattern after stroke, as has been suggested for treadmill training at self-selected speeds. Given the massed stepping practice that occurs during treadmill training, it is important for therapists to understand how the treadmill speed selected influences the gait pattern that is practiced on the treadmill. Objective The purpose of this study was to characterize the effect of systematic increases in treadmill speed on common gait deviations observed after stroke. Design A repeated-measures design was used. Methods Twenty patients with stroke walked on a treadmill at their self-selected walking speed, their fastest speed, and 2 speeds in between. Using a motion capture system, spatiotemporal gait parameters and kinematic gait compensations were measured. Results Significant improvements in paretic- and nonparetic-limb step length and in single- and double-limb support were found. Asymmetry of these measures improved only for step length. Significant improvements in paretic hip extension, trailing limb position, and knee flexion during swing also were found as speed increased. No increases in circumduction or hip hiking were found with increasing speed. Limitations Caution should be used when generalizing these results to survivors of a stroke with a self-selected walking speed of less than 0.4 m/s. This study did not address changes with speed during overground walking. Conclusions Faster treadmill walking facilitates a more normal walking pattern after stroke, without concomitant increases in common gait compensations, such as circumduction. The improvements in gait deviations were observed with small increases in walking speed. PMID:21252308

  18. Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children

    ERIC Educational Resources Information Center

    Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala

    2009-01-01

    Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…

  19. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

    PubMed

    Kulmala, Juha-Pekka; Korhonen, Marko T; Ruggiero, Luca; Kuitunen, Sami; Suominen, Harri; Heinonen, Ari; Mikkola, Aki; Avela, Janne

    2016-11-01

    The knee and ankle extensors as human primary antigravity muscle groups are of utmost importance in a wide range of locomotor activities. Yet, we know surprisingly little about how these muscle groups work, and specifically, how close to their maximal capacities they function across different modes and intensity of locomotion. Therefore, to advance our understanding of locomotor constraints, we determined and compared relative operating efforts of the knee and ankle extensors during walking, running, and sprinting. Using an inverse dynamics biomechanical analysis, the muscle forces of the knee and ankle extensors during walking (1.6 m·s), running (4.1 m·s), and sprinting (9.3 m·s) were quantified and then related to maximum forces of the same muscle groups obtained from a reference hopping test that permitted natural elastic limb behavior. During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors (35% ± 6% vs 19% ± 5%, P < 0.001). Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors (84% ± 12% vs 63% ± 17%, P < 0.05). At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors (96% ± 11% vs 72% ± 19%, P < 0.01). Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function.

  20. Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.

    PubMed

    Hsiao, HaoYuan; Zabielski, Thomas M; Palmer, Jacqueline A; Higginson, Jill S; Binder-Macleod, Stuart A

    2016-12-08

    Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session. Participants (N=43) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill. Propulsive impulse, peak propulsive force, and mean propulsive value (propulsive impulse divided by duration) were analyzed. In addition, each participant׳s cadence was calculated. Pearson correlation coefficients were used to determine the relationships between different measurements of propulsion versus walking speed as well as changes in propulsion versus changes in walking speed. Stepwise linear regression was used to determine which measurement of propulsion best predicted walking speed and changes in walking speed. The results showed that all 3 measurements of propulsion were correlated to walking speed, with peak propulsive force showed the strongest correlation. Similarly, when participants increased their walking speeds, changes in peak propulsive forces showed the strongest correlation to changes in walking speed. In addition, multiplying each measurement by cadence improved the correlations. The present study suggests that measuring peak propulsive force and cadence may be most appropriate of the variables studied to characterize propulsion in individuals poststroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging.

    PubMed

    Schrack, Jennifer A; Zipunnikov, Vadim; Simonsick, Eleanor M; Studenski, Stephanie; Ferrucci, Luigi

    2016-07-01

    Slow gait is a robust biomarker of health and a predictor of functional decline and death in older adults, yet factors contributing to the decline in gait speed with aging are not well understood. Previous research suggests that the energetic cost of walking at preferred speed is inversely associated with gait speed, but whether individuals with a rising energetic cost of walking experience a steeper rate of gait speed decline has not been investigated. In participants of the Baltimore Longitudinal Study of Aging, the energetic cost of overground walking at preferred speed (mL/kg/m) was assessed between 2007 and 2014 using a portable indirect calorimeter. The longitudinal association between the energetic cost of walking and usual gait speed over 6 meters (m/s) was assessed with multivariate linear regression models, and the risk of slow gait (<1.0 m/s) was analyzed using Cox proportional hazards models. The study population consisted of 457 participants aged 40 and older who contributed 1,121 person-visits to the analysis. In fully adjusted models, increases in the energetic cost of walking predicted the rate of gait speed decline in those older than 65 years (β = -0.008 m/s, p < .001). Moreover, those with a higher energetic cost of walking (>0.17mL/kg/m) had a 57% greater risk of developing slow gait compared with a normal energetic cost of walking (≤0.17mL/kg/m; adjusted hazard ratio = 1.57, 95% confidence interval: 1.01-2.46). These findings suggest that strategies to maintain walking efficiency hold significant implications for maintaining mobility in late life. Efforts to curb threats to walking efficiency should focus on therapies to treat gait and balance impairments, and reduce clinical disease burden. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Control of Walking Speed in Children With Cerebral Palsy.

    PubMed

    Davids, Jon R; Cung, Nina Q; Chen, Suzy; Sison-Williamson, Mitell; Bagley, Anita M

    2017-03-21

    Children's ability to control the speed of gait is important for a wide range of activities. It is thought that the ability to increase the speed of gait for children with cerebral palsy (CP) is common. This study considered 3 hypotheses: (1) most ambulatory children with CP can increase gait speed, (2) the characteristics of free (self-selected) and fast walking are related to motor impairment level, and (3) the strategies used to increase gait speed are distinct among these levels. A retrospective review of time-distance parameters (TDPs) for 212 subjects with CP and 34 typically developing subjects walking at free and fast speeds was performed. Only children who could increase their gait speed above the minimal clinically important difference were defined as having a fast walk. Analysis of variance was used to compare TDPs of children with CP, among Gross Motor Function Classification System (GMFCS) levels, and children in typically developing group. Eight-five percent of the CP group (GMFCS I, II, III; 96%, 99%, and 34%, respectively) could increase gait speed on demand. At free speed, children at GMFCS I and II were significantly faster than children at GMFCS level III. At free speed, children at GMFCS I and II had significantly greater stride length than those at GMFCS levels III. At free speed, children at GMFCS level III had significantly lower cadence than those at GMFCS I and II. There were no significant differences in cadence among GMFCS levels at fast speeds. There were no significant differences among GMFCS levels for percent change in any TDP between free and fast walking. Almost all children with CP at GMFCS levels I and II can control the speed of gait, however, only one-third at GMFCS III level have this ability. This study suggests that children at GMFCS III level can be divided into 2 groups based on their ability to control gait speed; however, the prognostic significance of such categorization remains to be determined. Diagnostic level II.

  3. Blood lactate thresholds and walking/running economy are determinants of backpack-running performance in trained soldiers.

    PubMed

    Simpson, Richard J; Graham, Scott M; Connaboy, Christopher; Clement, Richard; Pollonini, Luca; Florida-James, Geraint D

    2017-01-01

    We developed a standardized laboratory treadmill protocol for assessing physiological responses to a simulated backpack load-carriage task in trained soldiers, and assessed the efficacy of blood lactate thresholds (LTs) and economy in predicting future backpack running success over an 8-mile course in field conditions. LTs and corresponding physiological responses were determined in 17 elite British soldiers who completed an incremental treadmill walk/run protocol to exhaustion carrying 20 kg backpack load. Treadmill velocity at the breakpoint (r = -0.85) and Δ 1 mmol l(-1) (r = -0.80) LTs, and relative V˙O2 at 4 mmol l(-1) (r = 0.76) and treadmill walk/run velocities of 6.4 (r = 0.76), 7.4 (r = 0.80), 11.4 (r = 0.66) and 12.4 (r = 0.65) km h(-1) were significantly associated with field test completion time. We report for the first time that LTs and backpack walk/run economy are major determinants of backpack load-carriage performance in trained soldiers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Tempo and walking speed with music in the urban context

    PubMed Central

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  5. The three-dimensional locomotor dynamics of African (Loxodonta africana) and Asian (Elephas maximus) elephants reveal a smooth gait transition at moderate speed

    PubMed Central

    Ren, Lei; Hutchinson, John R

    2007-01-01

    We examined whether elephants shift to using bouncing (i.e. running) mechanics at any speed. To do this, we measured the three-dimensional centre of mass (CM) motions and torso rotations of African and Asian elephants using a novel multisensor method. Hundreds of continuous stride cycles were recorded in the field. African and Asian elephants moved very similarly. Near the mechanically and metabolically optimal speed (a Froude number (Fr) of 0.09), an inverted pendulum mechanism predominated. With increasing speed, the locomotor dynamics quickly but continuously became less like vaulting and more like bouncing. Our mechanical energy analysis of the CM suggests that at a surprisingly slow speed (approx. 2.2 m s−1, Fr 0.25), the hindlimbs exhibited bouncing, not vaulting, mechanics during weight support. We infer that a gait transition happens at this relatively slow speed: elephants begin using their compliant hindlimbs like pogo sticks to some extent to drive the body, bouncing over their relatively stiff, vaulting forelimbs. Hence, they are not as rigid limbed as typically characterized for graviportal animals, and use regular walking as well as at least one form of running gait. PMID:17594960

  6. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    PubMed

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf

    2013-05-01

    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  7. Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization.

    PubMed

    Rankin, Jeffery W; Rubenson, Jonas; Hutchinson, John R

    2016-05-01

    Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip-knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait. © 2016 The Authors.

  8. Dalfampridine Effects Beyond Walking Speed in Multiple Sclerosis

    PubMed Central

    Fjeldstad, Cecilie; Suárez, Gustavo; Klingler, Michael; Henney, Herbert R.; Rabinowicz, Adrian L.

    2015-01-01

    Background: Dalfampridine extended release (ER) improves walking in people with multiple sclerosis (MS), as demonstrated by walking speed improvement. This exploratory study evaluated treatment effects of dalfampridine-ER on gait, balance, and walking through treatment withdrawal and reinitiation. Methods: Dalfampridine-ER responders, based on Timed 25-Foot Walk (T25FW) assessment before study entry, were included in this open-label, three-period, single-center study. Period 1: on-drug evaluations performed at screening and 1 week after screening. Period 2: dalfampridine-ER withdrawal and off-drug evaluations (days 5 and 11). Period 3: dalfampridine-ER reinitiation/final on-drug evaluation (day 15). Primary outcome variables: NeuroCom composite scores for gait and balance; balance was evaluated if gait changes were significant. Secondary variables: individual NeuroCom scores, walking speed (T25FW) and distance (2-Minute Walk Test [2MWT]), and balance (Berg Balance Scale [BBS]). Results: All 20 patients completed the study: mean age, 53.1 years; mean MS duration, 11.3 years; mean time taking dalfampridine-ER, 315.3 days. NeuroCom gait composite scores worsened during period 2 relative to period 1 and improved during period 3; the mean ± SD difference in gait composite scores on drug was 4.03 ± 1.51 points (P = .015). Balance composite scores did not change significantly. Improvements were observed for off-drug versus on-drug for T25FW (0.36 ft/sec, P < .001), 2MWT (25.4 ft, P = .006), and BBS (1.7 points, P = .003). Safety profile was consistent with previous studies. Conclusions: Significant improvements in gait, walking speed, distance, and balance were demonstrated by dalfampridine-ER reinitiation after a 10-day withdrawal period. PMID:26664333

  9. Effects of Unstable Shoes on Energy Cost During Treadmill Walking at Various Speeds

    PubMed Central

    Koyama, Keiji; Naito, Hisashi; Ozaki, Hayao; Yanagiya, Toshio

    2012-01-01

    In recent years, shoes having rounded soles in the anterior-posterior direction have been commercially introduced, which are commonly known as unstable shoes (US). However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE), muscle activation, oxygen consumption (VO2), and optimum speed. Healthy male adults wore US or normal walking shoes (WS), and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds) and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG) was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG) was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1) did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds. Key points During walking at various speeds, wearing unstable shoes results in longer step length and lower cadence compared with wearing WS. Wearing

  10. Quadriceps oxygenation changes during walking and running on a treadmill

    NASA Astrophysics Data System (ADS)

    Quaresima, Valentina; Pizzi, Assunta; De Blasi, Roberto A.; Ferrari, Adriano; de Angelis, Marco; Ferrari, Marco

    1995-04-01

    Vastus lateralis muscle oxygenation was investigated on volunteers as well as muscular dystrophy patients during a walking test, and on volunteers during a free running by a continuous wave near infrared instrument. The data were analyzed using an oxygenation index independent on pathlength changes. Walking did not significantly affect the oxygenation of volunteers and patients. A relative deoxygenation was found only during free running indicating an unbalance between oxygen supply and tissue oxygen extraction. Preliminary measurements of exercising muscle oxygen saturation were performed by a 110 MHz frequency-domain, multisource instrument.

  11. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.

    PubMed

    Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T

    2017-03-08

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.

  12. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    NASA Astrophysics Data System (ADS)

    Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi

    2018-03-01

    Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS) for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  13. Effects of walking speed on the step-by-step control of step width.

    PubMed

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  14. Generalized run-and-turn motions: From bacteria to Lévy walks

    NASA Astrophysics Data System (ADS)

    Detcheverry, François

    2017-07-01

    Swimming bacteria exhibit a repertoire of motility patterns, in which persistent motion is interrupted by turning events. What are the statistical properties of such random walks? If some particular instances have long been studied, the general case where turning times do not follow a Poisson process has remained unsolved. We present a generic extension of the continuous time random walks formalism relying on operators and noncommutative calculus. The approach is first applied to a unimodal model of bacterial motion. We examine the existence of a minimum in velocity correlation function and discuss the maximum of diffusivity at an optimal value of rotational diffusion. The model is then extended to bimodal patterns and includes as particular cases all swimming strategies: run-and-tumble, run-stop, run-reverse and run-reverse-flick. We characterize their velocity correlation functions and investigate how bimodality affects diffusivity. Finally, the wider applicability of the method is illustrated by considering curved trajectories and Lévy walks. Our results are relevant for intermittent motion of living beings, be they swimming micro-organisms or crawling cells.

  15. A case study of energy expenditure based on walking speed reduction during walking upstairs situation at a staircase in FKAAS, UTHM, Johor building

    NASA Astrophysics Data System (ADS)

    Abustan, M. S.; Ali, M. F. M.; Talib, S. H. A.

    2018-04-01

    Walking velocity is a vector quantity that can be determined by calculating the time taken and displacement of a moving objects. In Malaysia, there are very few researches that were done to determine the walking velocity of citizens to be compared with other countries such as the study about walking upstairs during evacuation process is important when emergency case happen, if there are people in underground garages, they have to walk upstairs for exits and look for shelter and the walking velocity of pedestrian in such cases are necessary to be analysed. Therefore, the objective of this study is to determine the walking speed of pedestrian during walking upstairs situation, finding the relationship between pedestrian walking speed and the characteristics of the pedestrian as well as analysing the energy reduction by comparing the walking speed of pedestrian at the beginning and at the end of staircase. In this case study, an experiment was done to determine the average walking speed of pedestrian. The pedestrian has been selected from different gender, physical character, and age. Based on the data collected, the average normal walking speed of male pedestrian was 1.03 m/s while female was 1.08 m/s. During walking upstairs, the walking speed of pedestrian decreased as the number of floor increased. The average speed for the first stairwell was 0.90 m/s and the number decreased to 0.73 m/s for the second stairwell. From the reduction of speed, the energy used has been calculated and the average kinetic energy used was 1.69 J. Hence, the data collected can be used for further research of staircase design and plan of evacuation process.

  16. Inertial sensor-based methods in walking speed estimation: a systematic review.

    PubMed

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  17. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    PubMed Central

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm. PMID:22778632

  18. Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty.

    PubMed

    Doets, H Cornelis; Vergouw, David; Veeger, H E J Dirkjan; Houdijk, Han

    2009-12-01

    The aim of this study was to investigate whether impaired ankle function after total ankle arthroplasty (TAA) affects the mechanical work during the step-to-step transition and the metabolic cost of walking. Respiratory and force plate data were recorded in 11 patients and 11 healthy controls while they walked barefoot at a fixed walking speed (FWS, 1.25 m/s) and at their self-selected speed (SWS). At FWS metabolic cost of transport was 28% higher for the TAA group, but at SWS there was no significant increase. During the step-to-step transition, positive mechanical work generated by the trailing TAA leg was lower and negative mechanical work in the leading intact leg was larger. Despite the increase in mechanical work dissipation during double support, no significant differences in total mechanical work were found over a complete stride. This might be a result of methodological limitations of calculating mechanical work. Nevertheless, mechanical work dissipated during the step-to-step transition at FWS correlated significantly with metabolic cost of transport: r=.540. It was concluded that patients after successful TAA still experienced an impaired lower leg function, which contributed to an increase in mechanical energy dissipation during the step-to-step transition, and to an increase in the metabolic demand of walking. 2009 Elsevier B.V. All rights reserved.

  19. Social inequality in walking speed in early old age in the Whitehall II study.

    PubMed

    Brunner, Eric; Shipley, Martin; Spencer, Victoria; Kivimaki, Mika; Chandola, Tarani; Gimeno, David; Singh-Manoux, Archana; Guralnik, Jack; Marmot, Michael

    2009-10-01

    We investigated social inequalities in walking speed in early old age. Walking speed was measured by timed 8-ft (2.44 m) test in 6,345 individuals, with mean age of 61.1 (SD 6.0) years. Current or last known civil service employment grade defined socioeconomic position. Mean walking speed was 1.36 (SD 0.29) m/s in men and 1.21 (SD 0.30) in women. Average age- and ethnicity-adjusted walking speed was approximately 13% higher in the highest employment grade compared with the lowest. Based on the relative index of inequality (RII), the difference in walking speed across the social hierarchy was 0.15 m/s (95% confidence interval [CI] 0.12-0.18) in men and 0.17 m/s (0.12-0.22) in women, corresponding to an age-related difference of 18.7 (13.6-23.8) years in men and 14.9 (9.9-19.9) years in women. The RII for slow walking speed (logistic model for lowest sex-specific quartile vs others) adjusted for age, sex, and ethnicity was 3.40 (2.64-4.36). Explanatory factors for the social gradient in walking speed included Short-Form 36 physical functioning, labor market status, financial insecurity, height, and body mass index. Demographic, psychosocial, behavioral, biologic, and health factors in combination accounted for 40% of social inequality in walking speed. Social inequality in walking speed is substantial in early old age and reflects many factors beyond the direct effects of physical health.

  20. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  1. Determinants of Slow Walking Speed in Ambulatory Patients Undergoing Maintenance Hemodialysis

    PubMed Central

    Matsuzawa, Ryota; Kutsuna, Toshiki; Yamamoto, Shuhei; Yoneki, Kei; Harada, Manae; Ishikawa, Ryoma; Watanabe, Takaaki; Yoshida, Atsushi

    2016-01-01

    Walking ability is significantly lower in hemodialysis patients compared to healthy people. Decreased walking ability characterized by slow walking speed is associated with adverse clinical events, but determinants of decreased walking speed in hemodialysis patients are unknown. The purpose of this study was to identify factors associated with slow walking speed in ambulatory hemodialysis patients. Subjects were 122 outpatients (64 men, 58 women; mean age, 68 years) undergoing hemodialysis. Clinical characteristics including comorbidities, motor function (strength, flexibility, and balance), and maximum walking speed (MWS) were measured and compared across sex-specific tertiles of MWS. Univariate and multivariate logistic regression analyses were performed to examine whether clinical characteristics and motor function could discriminate between the lowest, middle, and highest tertiles of MWS. Significant and common factors that discriminated the lowest and highest tertiles of MWS from other categories were presence of cardiac disease (lowest: odds ratio [OR] = 3.33, 95% confidence interval [CI] = 1.26–8.83, P<0.05; highest: OR = 2.84, 95% CI = 1.18–6.84, P<0.05), leg strength (OR = 0.62, 95% CI = 0.40–0.95, P<0.05; OR = 0.57, 95% CI = 0.39–0.82, P<0.01), and standing balance (OR = 0.76, 95% CI = 0.63–0.92, P<0.01; OR = 0.81, 95% CI = 0.68–0.97, P<0.05). History of fracture (OR = 3.35, 95% CI = 1.08–10.38; P<0.05) was a significant factor only in the lowest tertile. Cardiac disease, history of fracture, decreased leg strength, and poor standing balance were independently associated with slow walking speed in ambulatory hemodialysis patients. These findings provide useful data for planning effective therapeutic regimens to prevent decreases in walking ability in ambulatory hemodialysis patients. PMID:27018891

  2. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    PubMed Central

    Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869

  3. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  4. Vitamin D and walking speed in older adults: Systematic review and meta-analysis.

    PubMed

    Annweiler, Cedric; Henni, Samir; Walrand, Stéphane; Montero-Odasso, Manuel; Duque, Gustavo; Duval, Guillaume T

    2017-12-01

    Vitamin D is involved in musculoskeletal health. There is no consensus on a possible association between circulating 25-hydroxyvitamin D (25OHD) concentrations and walking speed, a 'vital sign' in older adults. Our objective was to systematically review and quantitatively assess the association of 25OHD concentration with walking speed. A Medline search was conducted on June 2017, with no limit of date, using the MeSH terms "Vitamin D" OR "Vitamin D Deficiency" combined with "Gait" OR "Gait disorders, Neurologic" OR "Walking speed" OR "Gait velocity". Fixed-effect meta-analyses were performed to compute: i) mean differences in usual and fast walking speeds and Timed Up and Go test (TUG) between participants with severe vitamin D deficiency (≤25nmol/L) (SVDD), vitamin D deficiency (≤50nmol/L) (VDD), vitamin D insufficiency (≤75nmol/L) (VDI) and normal vitamin D (>75nmol/L) (NVD); ii) risk of slow walking speed according to vitamin D status. Of the 243 retrieved studies, 22 observational studies (17 cross-sectional, 5 longitudinal) met the selection criteria. The number of participants ranged between 54 and 4100 (0-100% female). Usual walking speed was slower among participants with hypovitaminosis D, with a clinically relevant difference compared with NVD of -0.18m/s for SVDD, -0.08m/s for VDD and -0.12m/s for VDI. We found similar results regarding the fast walking speed (mean differences -0.04m/s for VDD and VDI compared with NVD) and TUG (mean difference 0.48s for SVDD compared with NVD). A slow usual walking speed was positively associated with SVDD (summary OR=2.17[95%CI:1.52-3.10]), VDD (OR=1.38[95%CI:1.01-1.89]) and VDI (OR=1.38[95%CI:1.04-1.83]), using NVD as the reference. In conclusion, this meta-analysis provides robust evidence that 25OHD concentrations are positively associated with walking speed among adults. Copyright © 2017. Published by Elsevier B.V.

  5. Movement measurements at home for multiple sclerosis: walking speed measured by a novel ambient measurement system.

    PubMed

    Smith, Victoria Mj; Varsanik, Jonathan S; Walker, Rachel A; Russo, Andrew W; Patel, Kevin R; Gabel, Wendy; Phillips, Glenn A; Kimmel, Zebadiah M; Klawiter, Eric C

    2018-01-01

    Gait disturbance is a major contributor to clinical disability in multiple sclerosis (MS). A sensor was developed to assess walking speed at home for people with MS using infrared technology in real-time without the use of wearables. To develop continuous in-home outcome measures to assess gait in adults with MS. Movement measurements were collected continuously for 8 months from six people with MS. Average walking speed and peak walking speed were calculated from movement data, then analyzed for variability over time, by room (location), and over the course of the day. In-home continuous gait outcomes and variability were correlated with standard in-clinic gait outcomes. Measured in-home average walking speed of participants ranged from 0.33 m/s to 0.96 m/s and peak walking speed ranged from 0.89 m/s to 1.51 m/s. Mean total within-participant coefficient of variation for daily average walking speed and peak walking speed were 10.75% and 10.93%, respectively. Average walking speed demonstrated a moderately strong correlation with baseline Timed 25-Foot Walk (r s  = 0.714, P  = 0.111). New non-wearable technology provides reliable and continuous in-home assessment of walking speed.

  6. Multiple running speed signals in medial entorhinal cortex

    PubMed Central

    Hinman, James R.; Brandon, Mark P.; Climer, Jason R.; Chapman, G. William; Hasselmo, Michael E.

    2016-01-01

    Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus two speed signals are present in MEC that are differentially affected by disrupted MS input. PMID:27427460

  7. Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke.

    PubMed

    Hurt, Christopher P; Burgess, Jamie K; Brown, David A

    2015-03-01

    Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5±9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3±4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p=0.004) under some level of BWS (5% n=2, 10% n=3, 20% n=3) whereas nonimpaired controls did not change speed (p=0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r=0.68, p=0.003) and nonparetic braking impulses (r=-0.80, p=0.006), but were not correlated with decreased paretic braking impulses (r=0.50 p=0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Walking, running and the evolution of short toes in humans.

    PubMed

    Rolian, Campbell; Lieberman, Daniel E; Hamill, Joseph; Scott, John W; Werbel, William

    2009-03-01

    The phalangeal portion of the forefoot is extremely short relative to body mass in humans. This derived pedal proportion is thought to have evolved in the context of committed bipedalism, but the benefits of shorter toes for walking and/or running have not been tested previously. Here, we propose a biomechanical model of toe function in bipedal locomotion that suggests that shorter pedal phalanges improve locomotor performance by decreasing digital flexor force production and mechanical work, which might ultimately reduce the metabolic cost of flexor force production during bipedal locomotion. We tested this model using kinematic, force and plantar pressure data collected from a human sample representing normal variation in toe length (N=25). The effect of toe length on peak digital flexor forces, impulses and work outputs was evaluated during barefoot walking and running using partial correlations and multiple regression analysis, controlling for the effects of body mass, whole-foot and phalangeal contact times and toe-out angle. Our results suggest that there is no significant increase in digital flexor output associated with longer toes in walking. In running, however, multiple regression analyses based on the sample suggest that increasing average relative toe length by as little as 20% doubles peak digital flexor impulses and mechanical work, probably also increasing the metabolic cost of generating these forces. The increased mechanical cost associated with long toes in running suggests that modern human forefoot proportions might have been selected for in the context of the evolution of endurance running.

  9. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center employees and guests cross the finish line during the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  10. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center employees and guests approach the finish line during the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  11. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center Director Bob Cabana approaches the finish line at the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  12. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    A line of Kennedy Space Center employees and guests stretches down the Shuttle Landing Facility Runway during the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  13. Cumulative loads increase at the knee joint with slow-speed running compared to faster running: a biomechanical study.

    PubMed

    Petersen, Jesper; Sørensen, Henrik; Nielsen, Rasmus Østergaard

    2015-04-01

    Biomechanical cross-sectional study. To investigate the hypothesis that the cumulative load at the knee during running increases as running speed decreases. The knee joint load per stride decreases as running speed decreases. However, by decreasing running speed, the number of strides per given distance is increased. Running a given distance at a slower speed may increase the cumulative load at the knee joint compared with running the same distance at a higher speed, hence increasing the risk of running-related injuries in the knee. Kinematic and ground reaction force data were collected from 16 recreational runners, during steady-state running with a rearfoot strike pattern at 3 different speeds (mean ± SD): 8.02 ± 0.17 km/h, 11.79 ± 0.21 km/h, and 15.78 ± 0.22 km/h. The cumulative load (cumulative impulse) over a 1000-m distance was calculated at the knee joint on the basis of a standard 3-D inverse-dynamics approach. Based on a 1000-m running distance, the cumulative load at the knee was significantly higher at a slow running speed than at a high running speed (relative difference, 80%). The mean load per stride at the knee increased significantly across all biomechanical parameters, except impulse, following an increase in running speed. Slow-speed running decreases knee joint loads per stride and increases the cumulative load at the knee joint for a given running distance compared to faster running. The primary reason for the increase in cumulative load at slower speeds is an increase in number of strides needed to cover the same distance.

  14. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  15. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia

    PubMed Central

    2012-01-01

    Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500

  16. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center Director Bob Cabana speaks to center employees and guests before the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  17. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center employees and guests head toward the start line for the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  18. The effect of socks on vertical and anteroposterior ground reaction forces in walking and running.

    PubMed

    Blackmore, Tim; Ball, Nick; Scurr, Joanna

    2011-03-01

    Previous research suggests that socks may have the potential for injury protection through the absorption and/or redistribution of impact forces. However, there is limited research regarding the shock attenuation qualities of athletic socks in sporting populations and previously observed pressure reductions have not been quantified using a force plate. Firstly to identify the effect of specialist athletic socks on vertical and anteroposterior ground reaction forces (GRFs) during walking and running. Secondly, to compare GRFs between specialist socks, non-specialist socks and barefoot walking and running conditions. Following ethical approval participants (n=5) completed five walking (1.52-1.68 m s(-1)) and running (3.8-4.2 m s(-1)) trials, unshod, over a force plate. This was completed before and after a 5000 m run (3.2 m s(-1)) in their own trainers in three conditions; barefoot, non-specialist socks and specialist running socks. Significant differences were identified between barefoot and specialist sock conditions for pre-intervention time to impact peak (F=3.110((2)), P=.05, r=.11) and maximum propulsive force (F=8.126((2)), P=.001, r=.25) when walking. Post hoc analysis identified an increase of .0016 s in time to impact peak when walking barefoot compared to the specialist sock condition (T=-7.402((4)), P=.002, r=.71). During walking the specialist sock also demonstrated a significant decrease of .075 BWs in maximum propulsive force when compared to the barefoot condition (T=-7.624((4)), P=.002, r=.79). Both significant effects diminished following the 5000 m run. Findings suggest that the specialist running sock has limited effects on GRFs and therefore may be responsible for a limited degree of shock attenuation experienced during walking. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Effects of human running cadence and experimental validation of the bouncing ball model

    NASA Astrophysics Data System (ADS)

    Bencsik, László; Zelei, Ambrus

    2017-05-01

    The biomechanical analysis of human running is a complex problem, because of the large number of parameters and degrees of freedom. However, simplified models can be constructed, which are usually characterized by some fundamental parameters, like step length, foot strike pattern and cadence. The bouncing ball model of human running is analysed theoretically and experimentally in this work. It is a minimally complex dynamic model when the aim is to estimate the energy cost of running and the tendency of ground-foot impact intensity as a function of cadence. The model shows that cadence has a direct effect on energy efficiency of running and ground-foot impact intensity. Furthermore, it shows that higher cadence implies lower risk of injury and better energy efficiency. An experimental data collection of 121 amateur runners is presented. The experimental results validate the model and provides information about the walk-to-run transition speed and the typical development of cadence and grounded phase ratio in different running speed ranges.

  20. The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.

    PubMed

    Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J

    2016-01-01

    In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.

  1. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.

    PubMed

    Owaki, Dai; Ishiguro, Akio

    2017-03-21

    The manner in which quadrupeds change their locomotive patterns-walking, trotting, and galloping-with changing speed is poorly understood. In this paper, we provide evidence for interlimb coordination during gait transitions using a quadruped robot for which coordination between the legs can be self-organized through a simple "central pattern generator" (CPG) model. We demonstrate spontaneous gait transitions between energy-efficient patterns by changing only the parameter related to speed. Interlimb coordination was achieved with the use of local load sensing only without any preprogrammed patterns. Our model exploits physical communication through the body, suggesting that knowledge of physical communication is required to understand the leg coordination mechanism in legged animals and to establish design principles for legged robots that can reproduce flexible and efficient locomotion.

  2. Negative Perceptions of Aging and Decline in Walking Speed: A Self-Fulfilling Prophecy

    PubMed Central

    Robertson, Deirdre A.; Savva, George M.; King-Kallimanis, Bellinda L.; Kenny, Rose Anne

    2015-01-01

    Introduction Walking speed is a meaningful marker of physical function in the aging population. While it is a primarily physical measure, experimental studies have shown that merely priming older adults with negative stereotypes about aging results in immediate declines in objective walking speed. What is not clear is whether this is a temporary experimental effect or whether negative aging stereotypes have detrimental effects on long term objective health. We sought to explore the association between baseline negative perceptions of aging in the general population and objective walking speed 2 years later. Method 4,803 participations were assessed over 2 waves of The Irish Longitudinal Study on Ageing (TILDA), a prospective, population representative study of adults aged 50+ in the Republic of Ireland. Wave 1 measures – which included the Aging Perceptions Questionnaire, walking speed and all covariates - were taken between 2009 and 2011. Wave 2 measures – which included a second measurement of walking speed and covariates - were collected 2 years later between March and December 2012. Walking speed was measured as the number of seconds to complete the Timed Up-And-Go (TUG) task. Participations with a history of stroke, Parkinson’s disease or an MMSE < 18 were excluded. Results After full adjustment for all covariates (age, gender, level of education, disability, chronic conditions, medications, global cognition and baseline TUG) negative perceptions of aging at baseline were associated with slower TUG speed 2 years later (B=.03, 95% CI = .01 to 05, p< .05). Conclusions Walking speed has previously been considered to be a consequence of physical decline but these results highlight the direct role of psychological state in predicting an objective aging outcome. Negative perceptions about aging are a potentially modifiable risk factor of some elements of physical decline in aging. PMID:25923334

  3. The independent effects of speed and propulsive force on joint power generation in walking

    PubMed Central

    Browne, Michael G.; Franz, Jason R.

    2017-01-01

    Walking speed is modulated using propulsive forces (FP) during push-off and both preferred speed and FP decrease with aging. However, even prior to walking slower, reduced FP may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time FP measurements to decouple and investigate the interaction between joint-level coordination, whole-body FP, and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9 – 1.3 m/s). We immediately calculated the average FP from each speed. Subjects then walked at 1.3 m/s while completing a series of biofeedback trials with instructions to match their instantaneous FP to their averaged FP from slower speeds. Walking slower decreased FP and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced FP, not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body FP, and walking speed in our aging population. PMID:28262285

  4. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study.

    PubMed

    Hamer, Mark; Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew

    2010-03-01

    Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Cross-sectional. Setting Epidemiological cohort. 530 adults (aged 63 + or - 6 years, 50.3% male) from the Whitehall II cohort study with no known history or objective signs of CVD. Electron beam computed tomography and ultrasound was used to assess the presence and extent of coronary artery calcification (CAC) and carotid intima-media thickness (IMT), respectively. High levels of CAC (Agatston score >100) were detected in 24% of the sample; the mean IMT was 0.75 mm (SD 0.15). Participants with no detectable CAC completed the walking course 0.16 s (95% CI 0.04 to 0.28) faster than those with CAC > or = 400. Objectively assessed, but not self-reported, faster walking speed was associated with a lower risk of high CAC (odds ratio 0.62, 95% CI 0.40 to 0.96) and lower IMT (beta=-0.04, 95% CI -0.01 to -0.07 mm) in comparison with the slowest walkers (bottom third), after adjusting for conventional risk factors. Faster walking speed was also associated with lower adiposity, C-reactive protein and low-density lipoprotein cholesterol. Short-distance walking speed is associated with metabolic risk and subclinical atherosclerosis in older adults without overt CVD. These data suggest that a non-aerobically challenging walking test reflects the presence of underlying vascular disease.

  5. Indicators of walking speed in rheumatoid arthritis: relative influence of articular, psychosocial, and body composition characteristics.

    PubMed

    Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T

    2015-01-01

    To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). RA patients underwent the timed 400-meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition (using whole-body dual X-ray absorptiometry, and abdominal and thigh computed tomography) were assessed and their associations with walking speed explored. A total of 132 RA patients had data for the 400-meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, nontreatment with disease-modifying antirheumatic drugs, and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristic was associated with a 20% lower walking speed among those with worse body composition (P < 0.001), compared with only a 6% lower speed among those with better body composition (P = 0.010 for interaction). Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, nonarticular indicators were collectively more potent indicators of an individual's mobility limitations. Copyright © 2015 by the American College of Rheumatology.

  6. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running.

    PubMed

    Boey, Hannelore; Aeles, Jeroen; Schütte, Kurt; Vanwanseele, Benedicte

    2017-06-01

    Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.

  7. Reliability and minimal detectable difference in multisegment foot kinematics during shod walking and running.

    PubMed

    Milner, Clare E; Brindle, Richard A

    2016-01-01

    There has been increased interest recently in measuring kinematics within the foot during gait. While several multisegment foot models have appeared in the literature, the Oxford foot model has been used frequently for both walking and running. Several studies have reported the reliability for the Oxford foot model, but most studies to date have reported reliability for barefoot walking. The purpose of this study was to determine between-day (intra-rater) and within-session (inter-trial) reliability of the modified Oxford foot model during shod walking and running and calculate minimum detectable difference for common variables of interest. Healthy adult male runners participated. Participants ran and walked in the gait laboratory for five trials of each. Three-dimensional gait analysis was conducted and foot and ankle joint angle time series data were calculated. Participants returned for a second gait analysis at least 5 days later. Intraclass correlation coefficients and minimum detectable difference were determined for walking and for running, to indicate both within-session and between-day reliability. Overall, relative variables were more reliable than absolute variables, and within-session reliability was greater than between-day reliability. Between-day intraclass correlation coefficients were comparable to those reported previously for adults walking barefoot. It is an extension in the use of the Oxford foot model to incorporate wearing a shoe while maintaining marker placement directly on the skin for each segment. These reliability data for walking and running will aid in the determination of meaningful differences in studies which use this model during shod gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Changes in resting and walking energy expenditure and walking speed during pregnancy in obese women.

    PubMed

    Byrne, Nuala M; Groves, Ainsley M; McIntyre, H David; Callaway, Leonie K

    2011-09-01

    Energy-conserving processes reported in undernourished women during pregnancy are a recognized strategy for providing the energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy-conserving mechanisms. We tested the hypothesis that obese women would show behavioral adaptation [ie, a decrease in self-selected walking (SSW) speed] but not metabolic compensation [ie, a decrease in resting metabolic rate (RMR) or the metabolic cost of walking] during gestation. RMR, SSW speed, metabolic cost of walking, and anthropometric variables were measured in 23 women aged 31 ± 4 y with a BMI (in kg/m(2)) of 33.6 ± 2.5 (mean ± SD) at ≈15 and 30 wk of gestation. RMR was also measured in 2 cohorts of nonpregnant control subjects matched for the age, weight, and height of the pregnant cohort at 15 (n = 23) and 30 (n = 23) wk. Gestational weight gain varied widely (11.3 ± 5.4 kg), and 52% of the women gained more weight than is recommended. RMR increased significantly by an average of 177 ± 176 kcal/d (11 ± 12%; P < 0.0001); however, the within-group variability was large. Both the metabolic cost of walking and SSW speed decreased significantly (P < 0.01). Whereas RMR increased in >80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Although the increase in RMR was greater than that explained by weight gain, evidence of both behavioral and biological compensation in the metabolic cost of walking was observed in obese women during gestation. The trial is registered with the Australian Clinical Trials Registry as ACTRN012606000271505.

  9. Association of slower walking speed with incident knee osteoarthritis-related outcomes.

    PubMed

    Purser, Jama L; Golightly, Yvonne M; Feng, Qiushi; Helmick, Charles G; Renner, Jordan B; Jordan, Joanne M

    2012-07-01

    To determine whether slower walking speed was associated with an increased risk of incident hip and knee osteoarthritis (OA)-related outcomes. After providing informed consent, community-dwelling participants in the Johnston County Osteoarthritis Project completed 2 home-based interviews and an additional clinic visit for radiographic and physical evaluation. One thousand eight hundred fifty-eight noninstitutionalized residents ages ≥ 45 years living for at least 1 year in 1 of 6 townships in Johnston County, North Carolina, completed the study's questionnaires and clinical examinations at baseline and at followup testing. Walking time was assessed using a manual stopwatch in 2 trials over an 8-foot distance, and walking speed was calculated as the average of both trials. For the hip and knee, we examined 3 outcomes per joint site: radiographic OA (weight-bearing anteroposterior knee radiographs, supine anteroposterior pelvic radiographs of the hip), chronic joint symptoms, and symptomatic OA. Covariates included age, sex, race, education, marital status, body mass index, number of self-reported chronic conditions diagnosed by a health care provider, number of prescriptions, depressive symptoms, self-rated health, number of lower body functional limitations, smoking, and physical activity. Faster walking speed was consistently associated with a lower incidence of radiographic (adjusted odds ratio [OR] 0.88, 95% confidence interval [95% CI] 0.79-0.97) and symptomatic knee OA (adjusted OR 0.84, 95% CI 0.75-0.95); slower walking speed was associated with a greater incidence of these outcomes across a broad range of different clinical and radiographic OA outcomes. Slower walking speed may be a marker for incident knee OA, but other studies must confirm this finding. Copyright © 2012 by the American College of Rheumatology.

  10. The independent effects of speed and propulsive force on joint power generation in walking.

    PubMed

    Browne, Michael G; Franz, Jason R

    2017-04-11

    Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Does a run/walk strategy decrease cardiac stress during a marathon in non-elite runners?

    PubMed

    Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan; Gronwald, Thomas; Jäger, Frank-Stephan

    2016-01-01

    Although alternating run/walk-periods are often recommended to novice runners, it is unclear, if this particular pacing strategy reduces the cardiovascular stress during prolonged exercise. Therefore, the aim of the study was to compare the effects of two different running strategies on selected cardiac biomarkers as well as marathon performance. Randomized experimental trial in a repeated measure design. Male (n=22) and female subjects (n=20) completed a marathon either with a run/walk strategy or running only. Immediately after crossing the finishing line cardiac biomarkers were assessed in blood taken from the cubital vein. Before (-7 days) and after the marathon (+4 days) subjects also completed an incremental treadmill test. Despite different pacing strategies, run/walk strategy and running only finished the marathon with similar times (04:14:25±00:19:51 vs 04:07:40±00:27:15 [hh:mm:ss]; p=0.377). In both groups, prolonged exercise led to increased B-type natriuretic peptide, creatine kinase MB isoenzyme and myoglobin levels (p<0.001), which returned to baseline 4 days after the marathon. Elevated cTnI concentrations were observable in only two subjects. B-type natriuretic peptide (r=-0.363; p=0.041) and myoglobin levels (r=-0.456; p=0.009) were inversely correlated with the velocity at the individual anaerobic threshold. Run/walk strategy compared to running only reported less muscle pain and fatigue (p=0.006) after the running event. In conclusion, the increase in cardiac biomarkers is a reversible, physiological response to strenuous exercise, indicating temporary stress on the myocyte and skeletal muscle. Although a combined run/walk strategy does not reduce the load on the cardiovascular system, it allows non-elite runners to achieve similar finish times with less (muscle) discomfort. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study

    PubMed Central

    Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew

    2010-01-01

    Objective Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Design Cross-sectional. Setting Epidemiological cohort. Participants 530 adults (aged 63±6 years, 50.3% male) from the Whitehall II cohort study with no known history or objective signs of CVD. Main outcome Electron beam computed tomography and ultrasound was used to assess the presence and extent of coronary artery calcification (CAC) and carotid intima-media thickness (IMT), respectively. Results High levels of CAC (Agatston score >100) were detected in 24% of the sample; the mean IMT was 0.75 mm (SD 0.15). Participants with no detectable CAC completed the walking course 0.16 s (95% CI 0.04 to 0.28) faster than those with CAC ≥400. Objectively assessed, but not self-reported, faster walking speed was associated with a lower risk of high CAC (odds ratio 0.62, 95% CI 0.40 to 0.96) and lower IMT (β=−0.04, 95% CI −0.01 to −0.07 mm) in comparison with the slowest walkers (bottom third), after adjusting for conventional risk factors. Faster walking speed was also associated with lower adiposity, C-reactive protein and low-density lipoprotein cholesterol. Conclusions Short-distance walking speed is associated with metabolic risk and subclinical atherosclerosis in older adults without overt CVD. These data suggest that a non-aerobically challenging walking test reflects the presence of underlying vascular disease. PMID:19955091

  13. An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed Populations.

    PubMed

    Beevi, Femina H A; Miranda, Jorge; Pedersen, Christian F; Wagner, Stefan

    2016-05-01

    Pedometers are considered desirable devices for monitoring physical activity. Two population groups of interest include patients having undergone surgery in the lower extremities or who are otherwise weakened through disease, medical treatment, or surgery procedures, as well as the slow walking senior population. For these population groups, pedometers must be able to perform reliably and accurately at slow walking speeds. The objectives of this study were to evaluate the step count accuracy of three commercially available pedometers, the Yamax (Tokyo, Japan) Digi-Walker(®) SW-200 (YM), the Omron (Kyoto, Japan) HJ-720 (OM), and the Fitbit (San Francisco, CA) Zip (FB), at slow walking speeds, specifically at 1, 2, and 3 km/h, and to raise awareness of the necessity of focusing research on step-counting devices and algorithms for slow walking populations. Fourteen participants 29.93 ±4.93 years of age were requested to walk on a treadmill at the three specified speeds, in four trials of 100 steps each. The devices were worn by the participants on the waist belt. The pedometer counts were recorded, and the error percentage was calculated. The error rate of all three evaluated pedometers decreased with the increase of speed: at 1 km/h the error rates varied from 87.11% (YM) to 95.98% (FB), at 2 km/h the error rates varied from 17.27% (FB) to 46.46% (YM), and at 3 km/h the error rates varied from 22.46% (YM) to a slight overcount of 0.70% (FB). It was observed that all the evaluated devices have high error rates at 1 km/h and mixed error rates at 2 km/h, and at 3 km/h the error rates are the smallest of the three assessed speeds, with the OM and the FB having a slight overcount. These results show that research on pedometers' software and hardware should focus more on accurate step detection at slow walking speeds.

  14. Walking economy is predictably determined by speed, grade, and gravitational load.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2017-11-01

    The metabolic energy that human walking requires can vary by more than 10-fold, depending on the speed, surface gradient, and load carried. Although the mechanical factors determining economy are generally considered to be numerous and complex, we tested a minimum mechanics hypothesis that only three variables are needed for broad, accurate prediction: speed, surface grade, and total gravitational load. We first measured steady-state rates of oxygen uptake in 20 healthy adult subjects during unloaded treadmill trials from 0.4 to 1.6 m/s on six gradients: -6, -3, 0, 3, 6, and 9°. Next, we tested a second set of 20 subjects under three torso-loading conditions (no-load, +18, and +31% body weight) at speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates spanned a 14-fold range from supine rest to the greatest single-trial walking mean (3.1 ± 0.1 to 43.3 ± 0.5 ml O 2 ·kg -body -1 ·min -1 , respectively). As theorized, the walking portion (V̇o 2-walk  =  V̇o 2-gross - V̇o 2-supine-rest ) of the body's gross metabolic rate increased in direct proportion to load and largely in accordance with support force requirements across both speed and grade. Consequently, a single minimum-mechanics equation was derived from the data of 10 unloaded-condition subjects to predict the pooled mass-specific economy (V̇o 2-gross , ml O 2 ·kg -body + load -1 ·min -1 ) of all the remaining loaded and unloaded trials combined ( n = 1,412 trials from 90 speed/grade/load conditions). The accuracy of prediction achieved ( r 2  = 0.99, SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) leads us to conclude that human walking economy is predictably determined by the minimum mechanical requirements present across a broad range of conditions. NEW & NOTEWORTHY Introduced is a "minimum mechanics" model that predicts human walking economy across a broad range of conditions from only three variables: speed, surface grade, and body-plus-load mass. The derivation

  15. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center employees hold up signs showing their commitment to safety after crossing the finish line at the KSC Walk Run. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options on the Shuttle Landing Facility runway in the spirit of friendly competition.

  16. Walking smoothness is associated with self-reported function after accounting for gait speed.

    PubMed

    Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S

    2013-10-01

    Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.

  17. Effects of walking speed on asymmetry and bilateral coordination of gait

    PubMed Central

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (p<0.001). Stepwise regression revealed that slowed gait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  18. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    PubMed

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-12-01

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effects of obesity on lower extremity muscle function during walking at two speeds.

    PubMed

    Lerner, Zachary F; Board, Wayne J; Browning, Raymond C

    2014-03-01

    Walking is a recommended form of physical activity for obese adults, yet the effects of obesity and walking speed on the biomechanics of walking are not well understood. The purpose of this study was to examine joint kinematics, muscle force requirements and individual muscle contributions to the walking ground reaction forces (GRFs) at two speeds (1.25 ms(-1) and 1.50 ms(-1)) in obese and nonobese adults. Vasti (VAS), gluteus medius (GMED), gastrocnemius (GAST), and soleus (SOL) forces and their contributions to the GRFs were estimated using three-dimensional musculoskeletal models scaled to the anthropometrics of nine obese (35.0 (3.78 kg m(-2))); body mass index mean (SD)) and 10 nonobese (22.1 (1.02 kg m(-2))) subjects. The obese individuals walked with a straighter knee in early stance at the faster speed and greater pelvic obliquity during single limb support at both speeds. Absolute force requirements were generally greater in obese vs. nonobese adults, the main exception being VAS, which was similar between groups. At both speeds, lean mass (LM) normalized force output for GMED was greater in the obese group. Obese individuals appear to adopt a gait pattern that reduces VAS force output, especially at speeds greater than their preferred walking velocity. Greater relative GMED force requirements in obese individuals may contribute to altered kinematics and increased risk of musculoskeletal injury/pathology. Our results suggest that obese individuals may have relative weakness of the VAS and hip abductor muscles, specifically GMED, which may act to increase their risk of musculoskeletal injury/pathology during walking, and therefore may benefit from targeted muscle strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance.

    PubMed

    Awai, Lea; Curt, Armin

    2016-08-01

    Recovery of locomotor function after incomplete spinal cord injury (iSCI) is clinically assessed through walking speed and distance, while improvements in these measures might not be in line with a normalization of gait quality and are, on their own, insensitive at revealing potential mechanisms underlying recovery. The objective of this study was to relate changes of gait parameters to the recovery of walking speed while distinguishing between parameters that rather reflect speed improvements from factors contributing to overall recovery. Kinematic data of 16 iSCI subjects were repeatedly recorded during in-patient rehabilitation. The responsiveness of gait parameters to walking speed was assessed by linear regression. Principal component analysis (PCA) was applied on the multivariate data across time to identify factors that contribute to recovery after iSCI. Parameters of gait cycle and movement dynamics were both responsive and closely related to the recovery of walking speed, which increased by 96%. Multivariate analysis revealed specific gait parameters (intralimb shape normality and consistency) that, although less related to speed increments, loaded highly on principal component one (PC1) (58.6%) explaining the highest proportion of variance (i.e., recovery of outcome over time). Interestingly, measures of hip, knee, and ankle range of motion showed varying degrees of responsiveness (from very high to very low) while not contributing to gait recovery as revealed by PCA. The conjunct application of two analysis methods distinguishes gait parameters that simply reflect increased walking speed from parameters that actually contribute to gait recovery in iSCI. This distinction may be of value for the evaluation of interventions for locomotor recovery.

  1. Ground reaction forces in shallow water running are affected by immersion level, running speed and gender.

    PubMed

    Haupenthal, Alessandro; Fontana, Heiliane de Brito; Ruschel, Caroline; dos Santos, Daniela Pacheco; Roesler, Helio

    2013-07-01

    To analyze the effect of depth of immersion, running speed and gender on ground reaction forces during water running. Controlled laboratory study. Twenty adults (ten male and ten female) participated by running at two levels of immersion (hip and chest) and two speed conditions (slow and fast). Data were collected using an underwater force platform. The following variables were analyzed: vertical force peak (Fy), loading rate (LR) and anterior force peak (Fx anterior). Three-factor mixed ANOVA was used to analyze data. Significant effects of immersion level, speed and gender on Fy were observed, without interaction between factors. Fy was greater when females ran fast at the hip level. There was a significant increase in LR with a reduction in the level of immersion regardless of the speed and gender. No effect of speed or gender on LR was observed. Regarding Fx anterior, significant interaction between speed and immersion level was found: in the slow condition, participants presented greater values at chest immersion, whereas, during the fast running condition, greater values were observed at hip level. The effect of gender was only significant during fast water running, with Fx anterior being greater in the men group. Increasing speed raised Fx anterior significantly irrespective of the level of immersion and gender. The magnitude of ground reaction forces during shallow water running are affected by immersion level, running speed and gender and, for this reason, these factors should be taken into account during exercise prescription. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Effectiveness of functional electrical stimulation on walking speed, functional walking category, and clinically meaningful changes for people with multiple sclerosis.

    PubMed

    Street, Tamsyn; Taylor, Paul; Swain, Ian

    2015-04-01

    To determine the effectiveness of functional electrical stimulation (FES) on drop foot in patients with multiple sclerosis (MS), using data from standard clinical practice. Case series with a consecutive sample of FES users collected between 2008 and 2013. Specialist FES center at a district general hospital. Patients with MS who have drop foot (N=187) (117 women, 70 men; mean age, 55y [range, 27-80y]; mean duration since diagnosis, 11.7y [range, 1-56y]). A total of 166 patients were still using FES after 20 weeks, with 153 patients completing the follow-up measures. FES of the common peroneal nerve (178 unilateral, 9 bilateral FES users). Clinically meaningful changes (ie, >.05m/s and >0.1m/s) and functional walking category derived from 10-m walking speed. An increase in walking speed was found to be highly significant (P<.001), both initially where a minimum clinically meaningful change was observed (.07m/s) and after 20 weeks with a substantial clinically meaningful change (.11m/s). After 20 weeks, treatment responders displayed a 27% average improvement in their walking speed. No significant training effect was found. Overall functional walking category was maintained or improved in 95% of treatment responders. FES of the dorsiflexors is a well-accepted intervention that enables clinically meaningful changes in walking speed, leading to a preserved or an increased functional walking category. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. The Effects of Walking Speed on Tibiofemoral Loading Estimated Via Musculoskeletal Modeling

    PubMed Central

    Lerner, Zachary F.; Haight, Derek J.; DeMers, Matthew S.; Board, Wayne J.; Browning, Raymond C.

    2015-01-01

    Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak early-stance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM. PMID:23878264

  4. SLF Run/Walk for Safety and Health Month

    NASA Image and Video Library

    2018-03-13

    From his vantage point atop a stepladder near the finish line, Kennedy Space Center Director Bob Cabana speaks to center employees and guests before the KSC Walk Run on the Shuttle Landing Facility runway. The annual event, part of Kennedy’s Safety and Health Days, offers 10K, 5K and 2-mile options in the spirit of friendly competition.

  5. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    PubMed

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by

  6. Preliminary exploration of the measurement of walking speed for the apoplectic people based on UHF RFID.

    PubMed

    Huang Hua-Lin; Mo Ling-Fei; Liu Ying-Jie; Li Cheng-Yang; Xu Qi-Meng; Wu Zhi-Tong

    2015-08-01

    The number of the apoplectic people is increasing while population aging is quickening its own pace. The precise measurement of walking speed is very important to the rehabilitation guidance of the apoplectic people. The precision of traditional measuring methods on speed such as stopwatch is relatively low, and high precision measurement instruments because of the high cost cannot be used widely. What's more, these methods have difficulty in measuring the walking speed of the apoplectic people accurately. UHF RFID tag has the advantages of small volume, low price, long reading distance etc, and as a wearable sensor, it is suitable to measure walking speed accurately for the apoplectic people. In order to measure the human walking speed, this paper uses four reader antennas with a certain distance to reads the signal strength of RFID tag. Because RFID tag has different RSSI (Received Signal Strength Indicator) in different distances away from the reader, researches on the changes of RSSI with time have been done by this paper to calculate walking speed. The verification results show that the precise measurement of walking speed can be realized by signal processing method with Gaussian Fitting-Kalman Filter. Depending on the variance of walking speed, doctors can predict the rehabilitation training result of the apoplectic people and give the appropriate rehabilitation guidance.

  7. Physical activity monitoring: addressing the difficulties of accurately detecting slow walking speeds.

    PubMed

    Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J

    2013-01-01

    To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Impact of a Pilot Videogame-Based Physical Activity Program on Walking Speed in Adults with Schizophrenia.

    PubMed

    Leutwyler, H; Hubbard, E; Cooper, B A; Dowling, G

    2017-11-10

    The purpose of this report is to describe the impact of a videogame-based physical activity program using the Kinect for Xbox 360 game system (Microsoft, Redmond, WA) on walking speed in adults with schizophrenia. In this randomized controlled trial, 28 participants played either an active videogame for 30 min (intervention group) or played a sedentary videogame for 30 min (control group), once a week for 6 weeks. Walking speed was measured objectively with the Short Physical Performance Battery at enrollment and at the end of the 6-week program. The intervention group (n = 13) showed an average improvement in walking speed of 0.08 m/s and the control group (n = 15) showed an average improvement in walking speed of 0.03 m/s. Although the change in walking speed was not statistically significant, the intervention group had between a small and substantial clinically meaningful change. The results suggest a videogame based physical activity program provides clinically meaningful improvement in walking speed, an important indicator of health status.

  9. Short-distance walking speed tests in people with Parkinson disease: reliability, responsiveness, and validity.

    PubMed

    Combs, Stephanie A; Diehl, M Dyer; Filip, Jacqueline; Long, Erin

    2014-02-01

    The aims of this study were to determine test-retest reliability and responsiveness of short-distance walking speed tests for persons with Parkinson disease (PD). Discriminant and convergent validity of walking speed tests were also examined. Eighty-eight participants with PD (mean age, 66 years) with mild to moderate severity (stages 1-4 on the Hoehn and Yahr Scale) were tested on medications. Measures of activity included the comfortable and fast 10-m walk tests (CWT, FWT), 6-min walk test (6MWT), mini balance evaluations systems test (mini-BEST Test), fear of falling (FoF), and the Activity-Specific Balance Confidence Scale (ABC). The mobility subsection of the PD quality of life-39 (PDQ39-M) served as a participation-based measure. Test-retest reliability was high for both walking speed measures (CWT, ICC(2,1) = 0.98; FWT, ICC(2,1) = 0.99). Minimal detectable change (MDC(95)) for the CWT and FWT was 0.09 m/s and 0.13 m/s respectively. Participants at Hoehn & Yahr levels 3/4 demonstrated significantly slower walking speed with the CWT and FWT than participants at Hoehn & Yahr levels 1 and 2 (P < .01). The CWT and FWT were both significantly (P ≤ .002) correlated with all activity and participation-based measures. Short-distance walking speed tests are clinically useful measures for persons with PD. The CWT and FWT are highly reliable and responsive to change in persons with PD. Short distance walking speed can be used to discriminate differences in gait function between persons with mild and moderate PD severity. The CWT and FWT had moderate to strong associations with other activity and participation based measures demonstrating convergent validity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke.

    PubMed

    Dobkin, Bruce H; Xu, Xiaoyu; Batalin, Maxim; Thomas, Seth; Kaiser, William

    2011-08-01

    Outcome measures of mobility for large stroke trials are limited to timed walks for short distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and outcome measurements of the type and quantity of activity in the community would provide direct data about daily performance, including compliance with exercise and skills practice during routine care and clinical trials. Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs. A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001) and for repeated measures of algorithm-derived walking speed (P=0.01). Bouts of walking >5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios. Test-retest reliability and concurrent and construct validity are high for activity pattern-recognition Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies.

  11. Arm Swing during Walking at Different Speeds in Children with Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Meyns, Pieter; Van Gestel, Leen; Massaad, Firas; Desloovere, Kaat; Molenaers, Guy; Duysens, Jacques

    2011-01-01

    Children with Cerebral Palsy (CP) have difficulties walking at a normal or high speed. It is known that arm movements play an important role to achieve higher walking speeds in healthy subjects. However, the role played by arm movements while walking at different speeds has received no attention in children with CP. Therefore we investigated the…

  12. Distinct sets of locomotor modules control the speed and modes of human locomotion

    PubMed Central

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  13. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions.

    PubMed

    Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S

    2016-10-01

    Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking. Copyright © 2016. Published by Elsevier B.V.

  14. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    PubMed

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  15. The Effect of Priming with Photographs of Environmental Settings on Walking Speed in an Outdoor Environment.

    PubMed

    Franěk, Marek; Režný, Lukáš

    2017-01-01

    This study examined the effect of priming with photographs of various environmental settings on the speed of a subsequent outdoor walk in an urban environment. Either photographs of urban greenery, conifer forests, or shopping malls were presented or no prime was employed. Three experiments were conducted ( N = 126, N = 88, and N = 121). After being exposed to the priming or no-priming conditions, the participants were asked to walk along an urban route 1.9 km long with vegetation and mature trees (Experiment 1, Experiment 3) or along a route in a modern suburb (Experiment 2). In accord with the concept of approach-avoidance behavior, it was expected that priming with photographs congruent with the environmental setting of the walking route would result in slower walking speed. Conversely, priming with photographs incongruent with the environmental setting should result in faster walking speed. The results showed that priming with the photographs with vegetation caused a decrease in overall walking speed on the route relative to other experimental conditions. However, priming with incongruent primes did not lead to a significant increase in walking speed. In all experimental conditions, the slowest walking speed was found in sections with the highest natural character. The results are explained in terms of congruency between the prime and the environment, as well as by the positive psychological effects of viewing nature.

  16. The Effect of Priming with Photographs of Environmental Settings on Walking Speed in an Outdoor Environment

    PubMed Central

    Franěk, Marek; Režný, Lukáš

    2017-01-01

    This study examined the effect of priming with photographs of various environmental settings on the speed of a subsequent outdoor walk in an urban environment. Either photographs of urban greenery, conifer forests, or shopping malls were presented or no prime was employed. Three experiments were conducted (N = 126, N = 88, and N = 121). After being exposed to the priming or no-priming conditions, the participants were asked to walk along an urban route 1.9 km long with vegetation and mature trees (Experiment 1, Experiment 3) or along a route in a modern suburb (Experiment 2). In accord with the concept of approach-avoidance behavior, it was expected that priming with photographs congruent with the environmental setting of the walking route would result in slower walking speed. Conversely, priming with photographs incongruent with the environmental setting should result in faster walking speed. The results showed that priming with the photographs with vegetation caused a decrease in overall walking speed on the route relative to other experimental conditions. However, priming with incongruent primes did not lead to a significant increase in walking speed. In all experimental conditions, the slowest walking speed was found in sections with the highest natural character. The results are explained in terms of congruency between the prime and the environment, as well as by the positive psychological effects of viewing nature. PMID:28184208

  17. Influence of Running and Walking on Hormonal Regulators of Appetite in Women

    PubMed Central

    Larson-Meyer, D. Enette; Palm, Sonnie; Bansal, Aasthaa; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2012-01-01

    Nine female runners and ten walkers completed a 60 min moderate-intensity (70% VO2max) run or walk, or 60 min rest in counterbalanced order. Plasma concentrations of the orexogenic peptide ghrelin, anorexogenic peptides peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and appetite ratings were measured at 30 min interval for 120 min, followed by a free-choice meal. Both orexogenic and anorexogenic peptides were elevated after running, but no changes were observed after walking. Relative energy intake (adjusted for cost of exercise/rest) was negative in the meal following running (−194 ± 206 kcal) versus walking (41 ± 196 kcal) (P = 0.015), although both were suppressed (P < 0.05) compared to rest (299 ± 308 and 284 ± 121 kcal, resp.). The average rate of change in PYY and GLP-1 over time predicted appetite in runners, but only the change in GLP-1 predicted hunger (P = 0.05) in walkers. Results provide evidence that exercise-induced alterations in appetite are likely driven by complex changes in appetite-regulating hormones rather than change in a single gut peptide. PMID:22619704

  18. Testing constitutive relations by running and walking on cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Allen, Benjamin; Brown, Eric

    2018-05-01

    The ability of a person to run on the surface of a suspension of cornstarch and water has fascinated scientists and the public alike. However, the constitutive relation obtained from traditional steady-state rheology of cornstarch and water suspensions has failed to explain this behavior. In another paper we presented an averaged constitutive relation for impact rheology consisting of an effective compressive modulus of a system-spanning dynamically jammed structure [R. Maharjan et al., this issue, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. Here we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water. The ability of the constitutive relation to predict the material behavior in a case with different forcing conditions and flow geometry than it was obtained from suggests that the constitutive relation could be applied more generally. We also present a detailed calculation of the added mass effect to show that while it may be able to explain some cases of people running or walking on the surface of cornstarch and water for pool depths H >1.2 m and foot impact velocities VI>1.7 m/s, it cannot explain observations of people walking or running on the surface of cornstarch and water for smaller H or VI.

  19. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training

    PubMed Central

    Millet, G.; Vleck, V.

    2000-01-01

    Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed—that is, steady state or stochastic power output, drafting or non-drafting—are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run

  20. [Factors associated with slow walking speed in older adults of a district in Lima, Peru].

    PubMed

    Rodríguez, Gabriela; Burga-Cisneros, Daniella; Cipriano, Gabriela; Ortiz, Pedro J; Tello, Tania; Casas, Paola; Aliaga, Elizabeth; Varela, Luis F

    2017-01-01

    To determine the factors associated with slow walking speed in older adults living in a district of Lima, Peru. Analysis of secondary data. Adults older than 60 years were included in the study, while adults with physical conditions who did not allow the evaluation of the walking speed were excluded. The dependent variable was slow walking speed (less than 1 m/s), and the independent variables were sociodemographic, clinical, and geriatric data. Raw and adjusted prevalence ratios (PR) were calculated with 95% confidence intervals (95% CI). The study sample included 416 older adults aged 60 to 99 years, and 41% of the participants met the slow walking speed criterion. The factors associated with slow walking speed in this sample were female gender (PR, 1.45; 95% CI, 1.13-1.88), age > 70 years (PR, 1.73; 95% CI, 1.30- 2.30), lower level of education (PR, 2.07, 95% CI, 1.20-3.55), social-familial problems (PR, 1.66; 95% CI, 1.08-2.54), diabetes mellitus (PR, 1.35; 95% CI, 1.01-1.80), and depression (PR, 1.41; 95% CI, 1.02-1.95). The modifiable factors associated with slow walking speed in older adults included clinical and social-familial problems, and these factors are susceptible to interventions from the early stages of life.

  1. An investigation of lower-extremity functional asymmetry for non-preferred able-bodied walking speeds

    PubMed Central

    RICE, JOHN; SEELEY, MATTHEW K.

    2010-01-01

    Functional asymmetry is an idea that is often used to explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea suggests that the non-dominant and dominant legs, considered as whole entities, contribute asymmetrically to support and propulsion during walking. The degree of functional asymmetry may depend upon walking speed. The purpose of this study was to better understand the potential relationship between functional asymmetry and walking speed. Bilateral ground reaction forces (GRF) were measured for 20 healthy subjects who walked at nine different speeds: preferred, +10%, +20%, +30%, +40, −10%, −20%, −30%, and −40%. Contribution to support was determined to be the support impulse: the time integral of the vertical GRF during stance. Contribution to propulsion was determined to be the propulsion impulse: the time integral of the anterior-posterior GRF, while this force was directed forward. Repeated measures ANOVA (α = 0.05) revealed leg × speed interactions for normalized support (p = 0.001) and propulsion (p = 0.001) impulse, indicating that speed does affect the degree of functional asymmetry during gait. Post hoc comparisons (α = 0.05) showed that support impulse was approximately 2% greater for the dominant leg, relative to the non-dominant leg, for the −10%, −20%, and −40% speeds. Propulsion impulse was 12% greater for the dominant leg than for the non-dominant leg at the +20% speed. Speed does appear to affect the magnitude of bilateral asymmetry during walking, however, only the bilateral difference for propulsion impulse at one fast speed (+20%) was supportive of the functional asymmetry idea. PMID:27182346

  2. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics.

    PubMed

    Khan, Soobia Saad; Khan, Saad Jawaid; Usman, Juliana

    2017-03-01

    Toe-out/-in gait has been prescribed in reducing knee joint load to medial knee osteoarthritis patients. This study focused on the effects of toe-out/-in at different walking speeds on first peak knee adduction moment (fKAM), second peak KAM (sKAM), knee adduction angular impulse (KAAI), net mechanical work by lower limb as well as joint-level contribution to the total limb work during level walking. Gait analysis of 20 healthy young adults was done walking at pre-defined normal (1.18m/s), slow (0.85m/s) and fast (1.43m/s) walking speeds with straight-toe (natural), toe-out (15°>natural) and toe-in (15°walking speeds (highest at normal speed) while toe-in gait reduced fKAM at all speeds (highest at fast walking speed). Toeing-in reduced KAAI at all speeds while toeing-out affected KAAI only at normal speed. Increasing walking speed generally increased fKAM for all foot positions, but it did not affect sKAM considerably. Slowing down the speed, increased KAAI significantly at all foot positions except for toe-in. At slow walking speed, hip and knee joints were found to be major energy contributors for toe-in and toe-out respectively. At higher walking speeds, these contributions were switched. The ankle joint remained unaffected by changing walking speeds and foot progression angles. Toe-out/-in gait modifications affected knee joint kinetics and lower limb energetics at all walking speeds. However, their effects were inconsistent at different speeds. Therefore, walking speed should be taken into account when prescribing toe-out/-in gait. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  4. Obesity does not impair walking economy across a range of speeds and grades.

    PubMed

    Browning, Raymond C; Reynolds, Michelle M; Board, Wayne J; Walters, Kellie A; Reiser, Raoul F

    2013-05-01

    Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m(2); mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m(2)] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50-1.75 m/s, -3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ė net/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ė net/kg was 0-6% less in obese compared with nonobese adults (P = 0.013). External work, although a primary determinant of Ė net/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ė net/kg and found that Ė net/kg was positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades.

  5. Foot clearance in walking and running in individuals with ankle instability.

    PubMed

    Brown, Cathleen

    2011-08-01

    Foot positioning before heel strike has been attributed to chronic ankle instability injury mechanics, and may play a role in developing and perpetuating chronic ankle instability. This study was undertaken to determine if a group of individuals with mechanical instability (MI) or a group with functional instability (FI) of the ankle joint demonstrate less foot-floor clearance and a more inverted and plantar flexed position of the foot during the terminal swing phase of the running and walking cycles when compared with a group of ankle sprain copers who had an injury but no residual instability. Controlled laboratory study. Three-dimensional motion analysis was performed on 3 groups (n = 11 male athletes each) differentiated based on ankle injury history and ligamentous laxity during walking and running on a raised platform. The MI group (14.8° ± 12.0°) demonstrated greater maximum foot external rotation than the FI (3.2° ± 6.0°) and coper groups (2.9° ± 11.0°) (P = .01; η(p) (2) = .25) during running and greater rotation than the coper group during walking (3.3° ± 6.1° vs -4.5° ± 4.1°; P = .03; η(p) (2) = .21). The FI group (6.1° ± 3.2°) had greater plantar flexion at minimum than the MI group (0.1° ± 3.5°) during walking (P = .02; η(p) (2) = .25). Other group differences demonstrated large effect sizes, but not statistical significance, including unstable groups having lower minimum metatarsal height than copers during running. Differences in foot and leg position during terminal swing were observed between MI and FI groups and copers. Greater plantar flexion and lower minimum metatarsal height may increase risk for inadvertent contact and thus episodes of instability. Rehabilitation programs may need to address terminal swing to improve mechanics and avoid potential episodes of giving way at the ankle.

  6. Are running speeds maximized with simple-spring stance mechanics?

    PubMed

    Clark, Kenneth P; Weyand, Peter G

    2014-09-15

    Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds (n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R(2) statistic (where an R(2) of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds (R(2) <0.85 vs. R(2) ≥ 0.91, respectively), and deviated most at top speed (R(2) = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds. Copyright © 2014 the American Physiological Society.

  7. Walking Aids Moderate Exercise Effects on Gait Speed in People With Dementia: A Randomized Controlled Trial.

    PubMed

    Toots, Annika; Littbrand, Håkan; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik

    2017-03-01

    To investigate the effects of exercise on gait speed, when tested using walking aids and without, and whether effects differed according to amount of support in the test. A cluster-randomized controlled trial. The Umeå Dementia and Exercise (UMDEX) study was set in 16 nursing homes in Umeå, Sweden. One hundred forty-one women and 45 men (mean age 85 years) with dementia, of whom 145 (78%) habitually used walking aids. Participants were randomized to the high-intensity functional exercise program or a seated attention control activity. Blinded assessors measured 4-m usual gait speed with walking aids if any gait speed (GS), and without walking aids and with minimum amount of support, at baseline, 4 months (on intervention completion), and 7 months. Linear mixed models showed no between-group effect in either gait speed test at 4 or 7 months. In interaction analyses exercise effects differed significantly between participants who walked unsupported compared with when walking aids or minimum support was used. Positive between-group exercise effects on gait speed (m/s) were found in subgroups that walked unsupported at 4 and 7 months (GS: 0.07, P = .009 and 0.13, P < .001; and GS test without walking aids: 0.05, P = .011 and 0.07, P = .029, respectively). In people with dementia living in nursing homes exercise had positive effects on gait when tested unsupported compared with when walking aids or minimum support was used. The study suggests that the use of walking aids in gait speed tests may conceal exercise effects. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  8. Walking Speed Influences the Effects of Implicit Visual Feedback Distortion on Modulation of Gait Symmetry

    PubMed Central

    Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae

    2018-01-01

    The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481

  9. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    PubMed Central

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127

  10. Energy expended and knee joint load accumulated when walking, running, or standing for the same amount of time.

    PubMed

    Miller, Ross H; Edwards, W Brent; Deluzio, Kevin J

    2015-01-01

    Evidence suggests prolonged bouts of sitting are unhealthy, and some public health messages have recently recommended replacing sitting with more standing. However, the relative benefits of replacing sitting with standing compared to locomotion are not known. Specifically, the biomechanical consequences of standing compared to other sitting-alternatives like walking and running are not well known and are usually not considered in studies on sitting. We compared the total knee joint load accumulated (TKJLA) and the total energy expended (TEE) when performing either walking, running, or standing for a common exercise bout duration (30 min). Walking and running both (unsurprisingly) had much more TEE than standing (+300% and +1100%, respectively). TKJLA was similar between walking and standing and 74% greater in running. The results suggest that standing is a poor replacement for walking and running if one wishes to increases energy expenditure, and may be particularly questionable for use in individuals at-risk for knee osteoarthritis due to its surprisingly high TKJLA (just as high as walking, 56% of the load in running) and the type of loading (continuous compression) it places on cartilage. However, standing has health benefits as an "inactivity interrupter" that extend beyond its direct energy expenditure. We suggest that future studies on standing as an inactivity intervention consider the potential biomechanical consequences of standing more often throughout the day, particularly in the case of prolonged bouts of standing. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training.

    PubMed

    Millet, G P; Vleck, V E

    2000-10-01

    Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed-that is, steady state or stochastic power output, drafting or non-drafting-are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run exercise.

  12. Neuromuscular strategies for the transitions between level and hill surfaces during walking

    PubMed Central

    Gottschall, Jinger S.; Nichols, T. Richard

    2011-01-01

    Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127

  13. Matching optical flow to motor speed in virtual reality while running on a treadmill.

    PubMed

    Caramenti, Martina; Lafortuna, Claudio L; Mugellini, Elena; Abou Khaled, Omar; Bresciani, Jean-Pierre; Dubois, Amandine

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed-i.e., treadmill's speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care.

  14. Separating Fact from Fiction: Increasing Running Speed

    ERIC Educational Resources Information Center

    Murgia, Carla

    2008-01-01

    From a biomechanical point of view, this article explores the common belief that one must increase stride length and frequency in order to increase running speed. The limb length, explosive power, and anaerobic capacity of the athlete, as well as the type of running (sprinting vs. long distance) must be considered before making such a…

  15. Effects of Age, Walking Speed, and Body Composition on Pedometer Accuracy in Children

    ERIC Educational Resources Information Center

    Duncan, J. Scott; Schofield, Grant; Duncan, Elizabeth K.; Hinckson, Erica A.

    2007-01-01

    The objective of this study was to investigate the effects of age group, walking speed, and body composition on the accuracy of pedometer-determined step counts in children. Eighty-five participants (43 boys, 42 girls), ages 5-7 and 9-11 years, walked on a treadmill for two-minute bouts at speeds of 42, 66, and 90 m[middle dot]min[superscript -1]…

  16. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.

    PubMed

    Fox, Melanie D; Delp, Scott L

    2010-05-28

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds

    PubMed Central

    Fox, Melanie D.; Delp, Scott L.

    2010-01-01

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644

  18. Matching optical flow to motor speed in virtual reality while running on a treadmill

    PubMed Central

    Lafortuna, Claudio L.; Mugellini, Elena; Abou Khaled, Omar

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care. PMID:29641564

  19. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    PubMed

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance

  20. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?

    PubMed

    Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles

    2014-04-30

    While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of Spontaneous Locomotion on the Cricket's Walking Response to a Wind Stimulus

    NASA Astrophysics Data System (ADS)

    Gras, Heribert; Bartels, Anke

    Tethered walking crickets often respond to single wind puffs (50ms duration) directed from 45° left or right to the abdominal cerci with a short running bout of about 300ms, followed by normal locomotion. To test for an effect of the current behavioral state on the running response, we applied wind stimuli when the insect attained a predefined translatorial and/or rotatorial velocity during spontaneous walking. The latency, duration, and velocity profile of the running bout always proved to be constant, representing a reflexlike all-or-nothing reaction, while the probability of this response was low after even brief standing and increased with the forward speed of spontaneous walking at the moment of stimulation. In contrast, the current rotatorial speed did not affect the stimulus response.

  2. Effects of the progressive walking-to-running technique on gait kinematics, ultrasound imaging, and motor function in spastic diplegic cerebral palsy - an experimenter-blind case study.

    PubMed

    Lee, Nam Gi; Jeong, Su Ji; You, Joshua Sung Hyun; Cho, Kang Hee; Lee, Tae Heon

    2013-01-01

    The purpose of this study was to investigate the effects of the progressive walking-to-running technique (PWRT) in a child with spastic diplegic cerebral palsy (CP). A single case study with pre-/post-test. An 11-year-old male, diagnosed with spastic diplegic CP. The PWRT was provided for 60 minutes a day, 2 times a week for 12 weeks. Gross motor function tests, ultrasound imaging, hand-held dynamometer, and the Vicon motion capture system were used to determine motor function, muscle size and strength, and gait kinematics. Gross motor function was improved after the intervention. The size of right and left rectus femoris and tibialis anterior muscles in their contracted states were enhanced by 1.36, 5.09, 83.74, and 54.37%, respectively. Associated muscle strength was also increased by 58.8, 30.8, 28.0, and 118.2% in both rectus femoris and tibialis anterior muscles. Left stride length, walking speed, maximal flexion-extension angular excursion of the hip joint were enhanced by 95.7, 87.8, and 100.4% after PWRT, respectively. Our novel walking-running training paradigm was effective for restoring gait and running ability in a child with spastic diplegic CP.

  3. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    PubMed Central

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  4. Are the average gait speeds during the 10meter and 6minute walk tests redundant in Parkinson disease?

    PubMed

    Duncan, Ryan P; Combs-Miller, Stephanie A; McNeely, Marie E; Leddy, Abigail L; Cavanaugh, James T; Dibble, Leland E; Ellis, Terry D; Ford, Matthew P; Foreman, K Bo; Earhart, Gammon M

    2017-02-01

    We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Are the Average Gait Speeds During the 10 Meter and 6 Minute Walk Tests Redundant in Parkinson Disease?

    PubMed Central

    Duncan, Ryan P.; Combs-Miller, Stephanie A.; McNeely, Marie E.; Leddy, Abigail L.; Cavanaugh, James T.; Dibble, Leland E.; Ellis, Terry D.; Ford, Matthew P.; Foreman, K. Bo; Earhart, Gammon M.

    2016-01-01

    We investigated the relationships between average gait speed collected with the 10 Meter Walk Test (Comfortable and Fast) and 6 Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10 Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r > 0.70, p < 0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10 Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II–IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10 Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. PMID:27915221

  6. Trunk muscle activation patterns during walking among persons with lower limb loss: Influences of walking speed.

    PubMed

    Butowicz, Courtney M; Acasio, Julian C; Dearth, Christopher L; Hendershot, Brad D

    2018-03-26

    Persons with lower limb amputation (LLA) walk with altered trunk-pelvic motions. The underlying trunk muscle activation patterns associated with these motions may provide insight into neuromuscular control strategies post LLA and the increased incidence of low back pain (LBP). Eight males with unilateral LLA and ten able-bodied controls (CTR) walked over ground at 1.0 m/s, 1.3 m/s, 1.6 m/s, and self-selected speeds. Trunk muscle onsets/offsets were determined from electromyographic activity of bilateral thoracic (TES) and lumbar (LES) erector spinae. Trunk-pelvic kinematics were simultaneously recorded. There were no differences in TES onset times between groups; however, LLA demonstrated a second TES onset during mid-to-terminal swing (not seen in CTR), and activation for a larger percentage of the gait cycle. LLA (vs. CTR) demonstrated an earlier onset of LES and activation for a larger percentage of the gait cycle at most speeds. LLA walked with increased frontal plane trunk ROM, and a more in-phase inter-segmental coordination at all speeds. These data collectively suggest that trunk neuromuscular control strategies secondary to LLA are driven by functional needs to generate torque proximally to advance the affected limb during gait, though this strategy may have unintended deleterious consequences such as increasing LBP risk over time. Published by Elsevier Ltd.

  7. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    PubMed Central

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  8. Accelerometric assessment of different dimensions of natural walking during the first year after stroke: Recovery of amount, distribution, quality and speed of walking.

    PubMed

    Sánchez, Marina Castel; Bussmann, Johannes; Janssen, Wim; Horemans, Herwin; Chastin, Sebastian; Heijenbrok, Majanka; Stam, Henk

    2015-09-01

    To describe the course of walking behaviour over a period of 1 year after stroke, using accelerometry, and to compare 1-year data with those from a healthy group. One-year follow-up cohort study. Twenty-three stroke patients and 20 age-matched healthy subjects. Accelerometer assessments were made in the participants' daily environment for 8 h/day during the 1st (T1), 12th (T2) and 48th (T3) weeks after stroke, and at one time-point in healthy subjects. Primary outcomes were: percentage of time walking and upright (amount); mean duration and number of walking periods (distribution); step regularity and gait symmetry (quality); and walking speed. Time walking, time upright, and number of walking bouts increased during T1 and T2 (p < 0.01) and then levelled off (p > 0.30). Mean duration of walking periods showed no significant improvements (p > 0.30) during all phases. Step regularity, gait symmetry and gait speed showed a tendency to increase consistently from T1 to T3. At T3, amount and distribution variables reached the level of the healthy group, but significant differences remained (p < 0.02) in step regularity and gait speed. In this cohort, different outcomes of walking behaviour showed different patterns and levels of recovery, which supports the multi-dimensional character of gait.

  9. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    PubMed

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  10. Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait

    PubMed Central

    Cao, Feng; Zhang, Chao; Choo, Hao Yu

    2016-01-01

    We have constructed an insect–computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g. gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e. applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. PMID:27030043

  11. Metabolic energy demand and optimal walking speed in post-polio subjects with lower limb afflictions.

    PubMed

    Ghosh, A K; Ganguli, S; Bose, K S

    1982-12-01

    The metabolic demand, using the relationship between speed and energy cost, and the optimal speed of walking, estimated by means of speed and energy cost per unit distance travelled, were studied in 16 post-polio subjects with lower limb affliction and 20 normal subjects with sedentary habits. It was observed that the post-polio subjects consumed higher energy than the normal persons at each walking speed between 0.28 and 1.26 m/s. The optimal speed of walking in post-polio subjects was lower than that of the normal persons and was associated with a higher energy demand per unit distance travelled. It was deduced that the post-polio subjects. not having used any assistive devices for a long time, have acquired severe degrees of disability which not only hindered their normal gait but also demanded extra energy from them.

  12. Improvement of walking speed and gait symmetry in older patients after hip arthroplasty: a prospective cohort study.

    PubMed

    Rapp, Walter; Brauner, Torsten; Weber, Linda; Grau, Stefan; Mündermann, Annegret; Horstmann, Thomas

    2015-10-12

    Retraining walking in patients after hip or knee arthroplasty is an important component of rehabilitation especially in older persons whose social interactions are influenced by their level of mobility. The objective of this study was to test the effect of an intensive inpatient rehabilitation program on walking speed and gait symmetry in patients after hip arthroplasty (THA) using inertial sensor technology. Twenty-nine patients undergoing a 4-week inpatient rehabilitation program following THA and 30 age-matched healthy subjects participated in this study. Walking speed and gait symmetry parameters were measured using inertial sensor device for standardized walking trials (2*20.3 m in a gym) at their self-selected normal and fast walking speeds on postoperative days 15, 21, and 27 in patients and in a single session in control subjects. Walking speed was measured using timing lights. Gait symmetry was determined using autocorrelation calculation of the cranio-caudal (CC) acceleration signals from an inertial sensor placed at the lower spine. Walking speed and gait symmetry improved from postoperative days 15-27 (speed, female: 3.2 and 4.5 m/s; male: 4.2 and 5.2 m/s; autocorrelation, female: 0.77 and 0.81; male: 0.70 and 0.79; P <0.001 for all). After the 4-week rehabilitation program, walking speed and gait symmetry were still lower than those in control subjects (speed, female 4.5 m/s vs. 5.7 m/s; male: 5.2 m/s vs. 5.3 m/s; autocorrelation, female: 0.81 vs. 0.88; male: 0.79 vs. 0.90; P <0.001 for all). While patients with THA improved their walking capacity during a 4-week inpatient rehabilitation program, subsequent intensive gait training is warranted for achieving normal gait symmetry. Inertial sensor technology may be a useful tool for evaluating the rehabilitation process during the post-inpatient period.

  13. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force

    PubMed Central

    Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.

    2015-01-01

    Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576

  14. Race Differences: Use of Walking Speed to Identify Community-Dwelling Women at Risk for Poor Health Outcomes--Osteoarthritis Initiative Study.

    PubMed

    Kirkness, Carmen S; Ren, Jinma

    2015-07-01

    Onset of disability, risk for future falls, frailty, functional decline, and mortality are strongly associated with a walking speed of less than 1.0 m/s. The study objective was to determine whether there were differences in slow walking speed (<1.0 m/s) between community-dwelling African American and white American adult women with osteoarthritis symptoms. An additional aim was to examine whether racial differences in walking speed can be attributed to age, obesity, socioeconomic factors, disease severity, or comorbidities. A cross-sectional design was used. Community-dwelling adults were recruited from Baltimore, Maryland; Columbus, Ohio; Pittsburgh, Pennsylvania; and Pawtucket, Rhode Island. Participants were 2,648 women (23% African American) who were 45 to 79 years of age and had a self-selected baseline walking speed of 20 m/s in the Osteoarthritis Initiative Study. Mixed-effects logistic regression models were used to examine racial differences in walking speed (<1.0 m/s versus ≥1.0 m/s), with adjustments for demographic factors, socioeconomic factors, disease severity, and comorbidities. Walking speed was significantly slower for African American women than for white American women (mean walking speed=1.19 and 1.33 m/s, respectively). The prevalence of a walking speed of less than 1.0 m/s in this cohort of middle-aged women was 9%; about 50% of the women with a walking speed of less than 1.0 m/s were younger than 65 years. Women with a walking speed of less than 1.0 m/s had lower values for socioeconomic factors, higher values for disease severity, and higher prevalences of obesity and comorbidities than those with a walking speed of ≥1.0 m/s. After controlling for these covariates, it was found that African American women were 3 times (odds ratio=2.9; 95% confidence interval=2.0, 4.1) more likely to have a walking speed of less than 1.0 m/s than white American women. The study design made it impossible to know whether a walking speed of less than 1.0 m

  15. Walking associated with public transit: moving toward increased physical activity in the United States.

    PubMed

    Freeland, Amy L; Banerjee, Shailendra N; Dannenberg, Andrew L; Wendel, Arthur M

    2013-03-01

    We assessed changes in transit-associated walking in the United States from 2001 to 2009 and documented their importance to public health. We examined transit walk times using the National Household Travel Survey, a telephone survey administered by the US Department of Transportation to examine travel behavior in the United States. People are more likely to transit walk if they are from lower income households, are non-White, and live in large urban areas with access to rail systems. Transit walkers in large urban areas with a rail system were 72% more likely to transit walk 30 minutes or more per day than were those without a rail system. From 2001 to 2009, the estimated number of transit walkers rose from 7.5 million to 9.6 million (a 28% increase); those whose transit-associated walking time was 30 minutes or more increased from approximately 2.6 million to 3.4 million (a 31% increase). Transit walking contributes to meeting physical activity recommendations. Study results may contribute to transportation-related health impact assessment studies evaluating the impact of proposed transit systems on physical activity, potentially influencing transportation planning decisions.

  16. Effects of a Program for Improving Biomechanical Characteristics During Walking and Running in Children Who Are Obese.

    PubMed

    Steinberg, Nili; Rubinstein, Meron; Nemet, Dan; Ayalon, Moshe; Zeev, Aviva; Pantanowitz, Michal; Brosh, Tamar; Eliakim, Alon

    2017-10-01

    To investigate the influence of a weight-reduction program with locomotion-emphasis on improving biomechanical characteristics of children who are obese (OW). Ten children who are OW participated in a 6-month multidisciplinary childhood obesity management program (GRP1); another 10 children who are OW participated in the same multidisciplinary childhood obesity management program with additional locomotion-emphasis exercises for improving biomechanical characteristics (GRP2); and 10 control children who are OW with no intervention program. Outcomes were anthropometric measurements and temporal and foot pressure parameters. GRP2 had significantly improved foot pressure in the different walking/running speeds compared with GRP1. In the temporal parameters, pretests by speed by group interactions were significantly improved for GRP2 compared with GRP1. We found evidence to support beneficial effects of combined dietary and physical activity/locomotion-emphasis exercises on the movement characteristics of children who are OW.

  17. Examination of sustained gait speed during extended walking in individuals with chronic stroke.

    PubMed

    Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A

    2013-12-01

    To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Effects of Walking Speed and Visual-Target Distance on Toe Trajectory During Swing Phase

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Brady, Rachel; Warren, Liz; Richards, Jason; Mulavara, Ajitkumar; Sung, Hsi-Guang; Bloomberg, Jacob

    2006-01-01

    After spaceflight, astronauts experience disturbances in their ability to walk and maintain postural stability (Bloomberg, et al., 1997). One of the post-flight neurovestibular assessments requires that the astronaut walk on a treadmill at 1.8 m/sec (4.0 mph), while performing a visual acuity test, set at two different distances ( far and near ). For the first few days after landing, some crewmembers can not maintain the required pace, so a lower speed may be used. The slower velocity must be considered in the kinematic analysis, because Andriacchi, et al. (1977) showed that in clinical populations, changes in gait parameters may be attributable more to slower gait speed than pathology. Studying toe trajectory gives a global view of control of the leg, since it involves coordination of muscles and joints in both the swing and stance legs (Karst, et al., 1999). Winter (1992) and Murray, et al. (1984) reported that toe clearance during overground walking increased slightly as speed increased, but not significantly. Also, toe vertical peaks in both early and late swing phase did increase significantly with increasing speed. During conventional testing of overground locomotion, subjects are usually asked to fix their gaze on the end of the walkway a far target. But target (i.e., visual fixation) distance has been shown to affect head and trunk motion during treadmill walking (Bloomberg, et al., 1992; Peters, et al., in review). Since the head and trunk can not maintain stable gaze without proper coordination with the lower body (Mulavara & Bloomberg, 2003), it would stand to reason that lower body kinematics may be altered as well when target distance is modified. The purpose of this study was to determine changes in toe vertical trajectory during treadmill walking due to changes in walking speed and target distance.

  19. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping.

    PubMed

    De Asha, Alan R; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G

    2013-10-17

    Passive prosthetic devices are set up to provide optimal function at customary walking speed and thus may function less effectively at other speeds. This partly explains why joint kinetic adaptations become more apparent in lower-limb amputees when walking at speeds other than customary. The present study determined whether a trans-tibial prosthesis incorporating a dynamic-response foot that was attached to the shank via an articulating hydraulic device (hyA-F) lessened speed-related adaptations in joint kinetics compared to when the foot was attached via a rigid, non-articulating attachment (rigF). Eight active unilateral trans-tibial amputees completed walking trials at their customary walking speed, and at speeds they deemed to be slow-comfortable and fast-comfortable whilst using each type of foot attachment. Moments and powers at the distal end of the prosthetic shank and at the intact joints of both limbs were compared between attachment conditions. There was no change in the amount of intact-limb ankle work across speed or attachment conditions. As speed level increased there was an increase on both limbs in the amount of hip and knee joint work done, and increases on the prosthetic side were greater when using the hyA-F. However, because all walking speed levels were higher when using the hyA-F, the intact-limb ankle and combined joints work per meter travelled were significantly lower; particularly so at the customary speed level. This was the case despite the hyA-F dissipating more energy during stance. In addition, the amount of eccentric work done per meter travelled became increased at the residual knee when using the hyA-F, with increases again greatest at customary speed. Findings indicate that a trans-tibial prosthesis incorporating a dynamic-response foot reduced speed-related changes in compensatory intact-limb joint kinetics when the foot was attached via an articulating hydraulic device compared to rigid attachment. As differences between

  20. Adherence to Mediterranean Diet and Decline in Walking Speed Over 8 Years Among Community-Dwelling Older Adults

    PubMed Central

    Shahar, Danit R.; Houston, Denise K.; Hue, Trisha F.; Lee, Jung-Sun; Sahyoun, Nadine R.; Tylavsky, Frances A.; Geva, Diklah; Vardi, Hillel; Harris, Tamara B.

    2012-01-01

    Background Walking speed is an indirect marker of overall mobility performance. Data regarding its association with diet is lacking. Objectives To determine the association between the Mediterranean Diet (MedDiet) score with 20m walking-speed over 8 years. Design Health-ABC cohort study beginning in 1997–1998. Setting and participants We analyzed data of 2,225 well-functioning participants aged ≥70y. Measurements Walking-speed was assessed in relation to low, medium, and high adherence to the MedDiet (0–2, 3–5, 6–9 points, respectively). Results Individuals in the highest vs. the lowest MedDiet adherence groups were more likely to be men, less likely to be smokers, with lower BMI, higher energy intake and physical activity (p<0.05). Usual and rapid 20m walking speed were highest in the high MedDiet adherence group compared with the other groups, 1.19±0.19, 1.16±0.21, and 1.15±0.19m/s, respectively, (p=0.02) for usual speed and 1.65±0.30, 1.59±0.32, and 1.55±0.30m/s, respectively (p=0.001) for rapid speed. Over 8y, both usual and rapid 20m walking speed declined in all MedDiet adherence groups. Higher MedDiet adherence was an independent predictor of less decline in usual 20m walking speed (p=0.049) in Generalized Estimating Equations adjusted for age, race, gender, site, education, smoking, physical activity, energy intake, health status, depression, and cognitive score. The effect decreased after adding total body-fat-percent to the model (p=0.134). Similar results were observed for MedDiet adherence and rapid 20m walking speed; the association remained significant after adjustment for total body-fat-percent (p=0.012). In all models the interaction between time and MedDiet adherence was not significant. Conclusion Walking speed over 8 years was faster among those with higher MedDiet adherence at baseline. The differences remained significant over 8y, suggesting a long-term effect of diet on mobility performance with aging. PMID:23035758

  1. Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.

    PubMed

    Phan-Ba, Rémy; Calay, Philippe; Grodent, Patrick; Delrue, Gael; Lommers, Emilie; Delvaux, Valérie; Moonen, Gustave; Belachew, Shibeshih

    2012-01-01

    Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW(+)), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+) provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.

  2. An observation of the walking speed of evacuees during a simulated tsunami evacuation in Padang, Indonesia

    NASA Astrophysics Data System (ADS)

    Yosritzal; Kemal, B. M.; Purnawan; Putra, H.

    2018-04-01

    This paper presents a simulation study to observe the walking speed of evacuee in the case of tsunami evacuation in Padang, West Sumatera, Indonesia. A number of 9 volunteers, 6 observers, 1 route with 5 segments were involved in the simulation. The chosen route is the easiest path and the volunteers were ordered to walk in hurry to a particular place which was assumed as a shelter. The observers were placed at some particular places to record the time when an evacuee passes their place. The distance between the observers were measured using a manual distance meter. The study found that the average walking speed during the evacuation was 1.419 m/s. Walking speed is varied by age and gender of the evacuee.

  3. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed

    PubMed Central

    Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco

    2018-01-01

    Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of

  4. Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care

    PubMed Central

    2013-01-01

    Background Frailty in the elderly increases their vulnerability and leads to a greater risk of adverse events. According to various studies, the prevalence of the frailty syndrome in persons age 65 and over ranges between 3% and 37%, depending on age and sex. Walking speed in itself is considered a simple indicator of health status and of survival in older persons. Detecting frailty in primary care consultations can help improve care of the elderly, and walking speed may be an indicator that could facilitate the early diagnosis of frailty in primary care. The objective of this work was to estimate frailty-syndrome prevalence and walking speed in an urban population aged 65 years and over, and to analyze the relationship between the two indicators from the perspective of early diagnosis of frailty in the primary care setting. Methods Population cohort of persons age 65 and over from two urban neighborhoods in northern Madrid (Spain). Cross-sectional analysis. Bivariate and multivariate analysis with binary logistic regression to study the variables associated with frailty. Different cut-off points between 0.4 and 1.4 m/s were used to study walking speed in this population. The relationship between frailty and walking speed was analyzed using likelihood ratios. Results The study sample comprised 1,327 individuals age 65 and older with mean age 75.41 ± 7.41 years; 53.4% were women. Estimated frailty in the study population was 10.5% [95% CI: 8.9-12.3]. Frailty increased with age (OR = 1.14; 95% CI: 1.10-1.19) and was associated with poor self-rated health (OR = 2.52; 95% CI: 1.43-4.44), number of drugs prescribed (OR = 1.17; 95% CI: 1.08-1.26) and disability (OR = 6.58; 95% CI: 3.92-11.05). Walking speed less than 0.8 m/s was found in 42.6% of cases and in 56.4% of persons age 75 and over. Walking speed greater than 0.9 m/s ruled out frailty in the study sample. Persons age 75 and older with walking speed <0.8 m/s are at particularly high

  5. Relationship between metabolic cost and muscular coactivation across running speeds.

    PubMed

    Moore, Isabel S; Jones, Andrew M; Dixon, Sharon J

    2014-11-01

    Muscular coactivation can help stabilise a joint, but contrasting results in previous gait studies highlight that it is not clear whether this is metabolically beneficial. The aim was to assess the relationship between the metabolic cost of running and muscular coactivation across different running speeds, in addition to assessing the reliability and precision of lower limb muscular coactivation. Eleven female recreational runners visited the laboratory on two separate occasions. On both occasions subjects ran at three speeds (9.1, 11 and 12 km h(-1)) for six minutes each. Oxygen consumption and electromyographic data were simultaneously recorded during the final two minutes of each speed. Temporal coactivations of lower limb muscles during the stance phase were calculated. Five muscles were assessed: rectus femoris, vastus lateralis, biceps femoris, tibialis anterior and gastrocnemius lateralis. Nonparametric correlations revealed at least one significant, positive association between lower limb muscular coactivation and the metabolic cost of running for each speed. The length of tibialis anterior activation and muscular coactivation of the biceps femoris-tibialis anterior and gastrocnemius lateralis-tibialis anterior decreased with speed. These results show that longer coactivations of the proximal (rectus femoris-biceps femoris and vastus lateralis-biceps femoris) and leg extensor (rectus femoris-gastrocnemius lateralis) muscles were related to a greater metabolic cost of running, which could be detrimental to performance. The decrease in coactivation in the flexor and distal muscles at faster speeds occurs due to the shorter duration of tibialis anterior activation as speed increases, yet stability may be maintained. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Effects of walking speed and age on the muscle forces of unimpaired gait subjects

    NASA Astrophysics Data System (ADS)

    Fliger, Carlos G.; Crespo, Marcos J.; Braidot, Ariel A.; Ravera, Emiliano P.

    2016-04-01

    Clinical gait analysis provides great contributions to the understanding of gait disorders and also provides a mean for a more comprehensive treatment plan. However, direct measures of muscle forces are difficult to obtain in clinical settings because it generally requires invasive techniques. Techniques of musculoskeletal modeling have been used for several decades to improve the benefits of clinical gait analysis, but many of the previous studies were focused on analyzing separately the muscle forces distribution of children or adult subjects with only one condition of walking speed. For these reason, the present study aims to enhance the current literature by describing the age and speed gait effects on muscle forces during walking. We used a musculoskeletal model with 23 degrees of freedom and 92 musculotendon actuators to represent 76 muscles in the lower extremities and torso. The computed muscle control algorithm was used to estimate the muscle forces from the kinematics and to adjust the model obtained in the residual reduction algorithm. We find that hamstrings has an important peak in the mid-stance phase in the adult group but this peak disappears in the children group with the same walking speed condition. Furthermore, the rectus femoris presents an increase in the muscle force during the pre- and mid-swing in concordance with the increment in the walking speed of subjects. This behavior could be associated with the role that the rectus femoris has in the acceleration of the knee joint. Finally, we show that the soleus is the muscle that perform the major force throughout the gait cycle regardless of age and walking speed.

  7. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases.

    PubMed

    Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.

  8. Effects of visual focus and gait speed on walking balance in the frontal plane.

    PubMed

    Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle

    2015-08-01

    We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system.

    PubMed

    Nüesch, Corina; Roos, Elena; Pagenstert, Geert; Mündermann, Annegret

    2017-05-24

    Inertial sensor systems are becoming increasingly popular for gait analysis because their use is simple and time efficient. This study aimed to compare joint kinematics measured by the inertial sensor system RehaGait® with those of an optoelectronic system (Vicon®) for treadmill walking and running. Additionally, the test re-test repeatability of kinematic waveforms and discrete parameters for the RehaGait® was investigated. Twenty healthy runners participated in this study. Inertial sensors and reflective markers (PlugIn Gait) were attached according to respective guidelines. The two systems were started manually at the same time. Twenty consecutive strides for walking and running were recorded and each software calculated sagittal plane ankle, knee and hip kinematics. Measurements were repeated after 20min. Ensemble means were analyzed calculating coefficients of multiple correlation for waveforms and root mean square errors (RMSE) for waveforms and discrete parameters. After correcting the offset between waveforms, the two systems/models showed good agreement with coefficients of multiple correlation above 0.950 for walking and running. RMSE of the waveforms were below 5° for walking and below 8° for running. RMSE for ranges of motion were between 4° and 9° for walking and running. Repeatability analysis of waveforms showed very good to excellent coefficients of multiple correlation (>0.937) and RMSE of 3° for walking and 3-7° for running. These results indicate that in healthy subjects sagittal plane joint kinematics measured with the RehaGait® are comparable to those using a Vicon® system/model and that the measured kinematics have a good repeatability, especially for walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Factors Contributing to 50-ft Walking Speed and Observed Ethnic Differences in Older Community-Dwelling Mexican Americans and European Americans

    PubMed Central

    Hazuda, Helen P.

    2015-01-01

    Background Mexican Americans comprise the most rapidly growing segment of the older US population and are reported to have poorer functional health than European Americans, but few studies have examined factors contributing to ethnic differences in walking speed between Mexican Americans and European Americans. Objective The purpose of this study was to examine factors that contribute to walking speed and observed ethnic differences in walking speed in older Mexican Americans and European Americans using the disablement process model (DPM) as a guide. Design This was an observational, cross-sectional study. Methods Participants were 703 Mexican American and European American older adults (aged 65 years and older) who completed the baseline examination of the San Antonio Longitudinal Study of Aging (SALSA). Hierarchical regression models were performed to identify the contribution of contextual, lifestyle/anthropometric, disease, and impairment variables to walking speed and to ethnic differences in walking speed. Results The ethic difference in unadjusted mean walking speed (Mexican Americans=1.17 m/s, European Americans=1.29 m/s) was fully explained by adjustment for contextual (ie, age, sex, education, income) and lifestyle/anthropometric (ie, body mass index, height, physical activity) variables; adjusted mean walking speed in both ethnic groups was 1.23 m/s. Contextual variables explained 20.3% of the variance in walking speed, and lifestyle/anthropometric variables explained an additional 8.4%. Diseases (ie, diabetes, stroke, chronic obstructive pulmonary disease) explained an additional 1.9% of the variance in walking speed; impairments (ie, FEV1, upper leg pain, and lower extremity strength and range of motion) contributed an additional 5.5%. Thus, both nonmodifiable (ie, contextual, height) and modifiable (ie, impairments, body mass index, physical activity) factors contributed to walking speed in older Mexican Americans and European Americans. Limitations

  11. Elastic coupling of limb joints enables faster bipedal walking

    PubMed Central

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  12. The prediction of speed and incline in outdoor running in humans using accelerometry.

    PubMed

    Herren, R; Sparti, A; Aminian, K; Schutz, Y

    1999-07-01

    To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.

  13. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami

    2004-06-17

    The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.

  14. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.

    PubMed

    Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise

    2012-08-28

    Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was

  15. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation

    PubMed Central

    2012-01-01

    Background Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio

  16. Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

    PubMed Central

    2013-01-01

    Background. Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Methods. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by 31P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). Results. In vitro St3 respiration was significantly correlated with in vivo ATPmax (r 2 = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r 2 = .33, p = .006). ATPmax (r 2 = .158, p = .03) and VO2 peak (r 2 = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r 2 = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Conclusions. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age. PMID:23051977

  17. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults.

    PubMed

    Coen, Paul M; Jubrias, Sharon A; Distefano, Giovanna; Amati, Francesca; Mackey, Dawn C; Glynn, Nancy W; Manini, Todd M; Wohlgemuth, Stephanie E; Leeuwenburgh, Christiaan; Cummings, Steven R; Newman, Anne B; Ferrucci, Luigi; Toledo, Frederico G S; Shankland, Eric; Conley, Kevin E; Goodpaster, Bret H

    2013-04-01

    Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.

  18. An exploratory qualitative study of the meaning and value of a running/walking program for women after a diagnosis of breast cancer.

    PubMed

    Brunet, Jennifer; Saunders, Stephanie; Gifford, Wendy; Thomas, Roanne; Hamilton, Ryan

    2018-05-01

    To generate insights into the personal meaning and value of a running/walking program for women after a diagnosis of breast cancer. After completing a 12-week running/walking program with a 5-km training goal, eight women were interviewed and seven participated in a focus group. The interviews and focus group were audio-recorded and transcribed verbatim. Data were thematically analyzed. Data portrayed the personal benefits and value of the clinic. Four themes were identified: (1) receiving practical information and addressing targeted concerns, (2) pushing personal limits, (3) enabling a committed mindset, and (4) seeing benefits and challenges of running/walking with a group. Findings provide initial understanding of how women experience a running/walking program after a diagnosis of breast cancer and what they find to be important about their experiences. The range of positive benefits experienced by women suggests a running/walking program can help fill a gap in care for women diagnosed with breast cancer, and thus be part of cancer rehabilitation. However, because some women felt isolated at times, future research should seek to examine how running/walking programs can be modified and tailored so that all women find it socially beneficial. Implications for Rehabilitation The diagnosis and treatment of breast cancer can result in side effects and increase the risk of long-term disability. Physical activity can help women manage the side effects and lessen the risk of long-term disability. In a relatively small sample, this study shows that participation in a running/walking program can be an important part of breast cancer recovery.

  19. Asymmetry in Determinants of Running Speed During Curved Sprinting.

    PubMed

    Ishimura, Kazuhiro; Sakurai, Shinji

    2016-08-01

    This study investigates the potential asymmetries between inside and outside legs in determinants of curved running speed. To test these asymmetries, a deterministic model of curved running speed was constructed based on components of step length and frequency, including the distances and times of different step phases, takeoff speed and angle, velocities in different directions, and relative height of the runner's center of gravity. Eighteen athletes sprinted 60 m on the curved path of a 400-m track; trials were recorded using a motion-capture system. The variables were calculated following the deterministic model. The average speeds were identical between the 2 sides; however, the step length and frequency were asymmetric. In straight sprinting, there is a trade-off relationship between the step length and frequency; however, such a trade-off relationship was not observed in each step of curved sprinting in this study. Asymmetric vertical velocity at takeoff resulted in an asymmetric flight distance and time. The runners changed the running direction significantly during the outside foot stance because of the asymmetric centripetal force. Moreover, the outside leg had a larger tangential force and shorter stance time. These asymmetries between legs indicated the outside leg plays an important role in curved sprinting.

  20. Community walking speed, sedentary or lying down time, and mortality in peripheral artery disease

    PubMed Central

    McDermott, Mary M; Guralnik, Jack M; Ferrucci, Luigi; Tian, Lu; Kibbe, Melina R; Greenland, Philip; Green, David; Liu, Kiang; Zhao, Lihui; Wilkins, John T; Huffman, Mark D; Shah, Sanjiv J; Liao, Yihua; Gao, Ying; Lloyd-Jones, Donald M; Criqui, Michael H

    2017-01-01

    We studied whether slower community walking speed and whether greater time spent lying down or sleeping were associated with higher mortality in people with lower extremity peripheral artery disease (PAD). Participants with an ankle–brachial index (ABI) < 0.90 were identified from Chicago medical centers. At baseline, participants reported their usual walking speed outside their home and the number of hours they spent lying down or sleeping per day. Cause of death was adjudicated using death certificates and medical record review. Analyses were adjusted for age, sex, race, comorbidities, ABI, and other confounders. Of 1314 PAD participants, 189 (14.4%) died, including 63 cardiovascular disease (CVD) deaths. Mean follow-up was 34.9 months ± 18.1. Relative to average or normal pace (2–3 miles/hour), slower walking speed was associated with greater CVD mortality: no walking at all: hazard ratio (HR) = 4.17, 95% confidence interval (CI) = 1.46–11.89; casual strolling (0–2 miles/hour): HR = 2.24, 95% CI = 1.16–4.32; brisk or striding (>3 miles/hour): HR = 0.55, 95% CI = 0.07–4.30. These associations were not significant after additional adjustment for the six-minute walk. Relative to sleeping or lying down for 8–9 hours, fewer or greater hours sleeping or lying down were associated with higher CVD mortality: 4–7 hours: HR = 2.08, 95% CI = 1.06–4.05; 10–11 hours: HR = 4.07, 95% CI = 1.86–8.89; ⩾12 hours: HR = 3.75, 95% CI = 1.47–9.62. These associations were maintained after adjustment for the six-minute walk. In conclusion, slower walking speed outside the home and less than 8 hours or more than 9 hours lying down per day are potentially modifiable behaviors associated with increased CVD mortality in patients with PAD. PMID:26873873

  1. Influence of Pedometer Position on Pedometer Accuracy at Various Walking Speeds: A Comparative Study

    PubMed Central

    Lovis, Christian

    2016-01-01

    Background Demographic growth in conjunction with the rise of chronic diseases is increasing the pressure on health care systems in most OECD countries. Physical activity is known to be an essential factor in improving or maintaining good health. Walking is especially recommended, as it is an activity that can easily be performed by most people without constraints. Pedometers have been extensively used as an incentive to motivate people to become more active. However, a recognized problem with these devices is their diminishing accuracy associated with decreased walking speed. The arrival on the consumer market of new devices, worn indifferently either at the waist, wrist, or as a necklace, gives rise to new questions regarding their accuracy at these different positions. Objective Our objective was to assess the performance of 4 pedometers (iHealth activity monitor, Withings Pulse O2, Misfit Shine, and Garmin vívofit) and compare their accuracy according to their position worn, and at various walking speeds. Methods We conducted this study in a controlled environment with 21 healthy adults required to walk 100 m at 3 different paces (0.4 m/s, 0.6 m/s, and 0.8 m/s) regulated by means of a string attached between their legs at the level of their ankles and a metronome ticking the cadence. To obtain baseline values, we asked the participants to walk 200 m at their own pace. Results A decrease of accuracy was positively correlated with reduced speed for all pedometers (12% mean error at self-selected pace, 27% mean error at 0.8 m/s, 52% mean error at 0.6 m/s, and 76% mean error at 0.4 m/s). Although the position of the pedometer on the person did not significantly influence its accuracy, some interesting tendencies can be highlighted in 2 settings: (1) positioning the pedometer at the waist at a speed greater than 0.8 m/s or as a necklace at preferred speed tended to produce lower mean errors than at the wrist position; and (2) at a slow speed (0.4 m/s), pedometers

  2. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    PubMed Central

    Chwała, Wiesław; Klimek, Andrzej; Mirek, Wacław

    2014-01-01

    The aim of the study was to assess energy cost and total external work (total energy) depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers. The study involved 12 competitive race walkers aged 24.9 4.10 years with 6 to 20 years of experience, who achieved a national or international sports level. Their aerobic endurance was determined by means of a direct method involving an incremental exercise test on the treadmill. The participants performed three tests walking each time with one of the three speeds according to the same protocol: an 8-minute walk with at steady speed was followed by a recovery phase until the oxygen debt was repaid. To measure exercise energy cost, an indirect method based on the volume of oxygen uptake was employed. The gait of the participants was recorded using the 3D Vicon opto-electronic motion capture system. Values of changes in potential energy and total kinetic energy in a gate cycle were determined based on vertical displacements of the centre of mass. Changes in mechanical energy amounted to the value of total external work of muscles needed to accelerate and lift the centre of mass during a normalised gait cycle. The values of average energy cost and of total external work standardised to body mass and distance covered calculated for technical speed, threshold and racing speeds turned out to be statistically significant (p 0.001). The total energy cost ranged from 51.2 kJ.m-1 during walking at technical speed to 78.3 kJ.m-1 during walking at a racing speed. Regardless of the type of speed, the total external work of muscles accounted for around 25% of total energy cost in race walking. Total external work mainly increased because of changes in the resultant kinetic energy of the centre of mass movement. PMID:25713673

  3. Reduced total and cause-specific mortality from walking and running in diabetes.

    PubMed

    Williams, Paul T

    2014-01-01

    This study aimed to assess the relationships of running and walking to mortality in diabetic subjects. We studied the mortality surveillance between January 1, 1989 and December 31, 2008, of 2160 participants of the National Walkers' and Runners' Health Studies who reported using diabetic medications at baseline. Hazard ratios (HR) and 95% confidence intervals (95% CI) were obtained from Cox proportional hazard analyses for mortality versus exercise energy expenditure (MET-hours per day, 1 MET·h ∼1-km run or a 1.5-km brisk walk). Three hundred and thirty-one diabetic individuals died during a 9.8-yr average follow-up. Merely meeting the current exercise recommendations was not associated with lower all-cause mortality (P = 0.61), whereas exceeding the recommendations was associated with lower all-cause mortality (HR = 0.64, 95% CI = 0.49-0.82, P = 0.0005). Greater MET-hours per day ran or walked was associated with 40% lower risk for all chronic kidney disease-related deaths (HR = 0.60 per MET·h·d(-1), 95% CI = 0.35-0.91, P = 0.02), 31% lower risk for all sepsis-related deaths (HR = 0.69, 0.47-0.94, P = 0.01), and 31% lower risk for all pneumonia and influenza-related deaths (HR = 0.69, 95% CI = 0.45-0.97, P = 0.03). Running or walking ≥1.8 MET·h·d(-1) was associated with 57% reduction in cardiovascular disease (CVD) as an underlying cause of death and 46% lower risk for all CVD-related deaths versus <1.07 MET·h·d. All results remained significant: 1) adjusted for baseline BMI and 2) excluding all deaths within 3 yr of baseline. These results suggest that 1) exercise is associated with significantly lower all-cause, CVD, chronic kidney disease, sepsis, and pneumonia, and influenza mortality in diabetic patients and 2) higher exercise standards may be warranted for diabetic patients than currently provided to the general population.

  4. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running.

    PubMed

    Lichtwark, G A; Wilson, A M

    2008-06-21

    Muscles generate force to resist gravitational and inertial forces and/or to undertake work, e.g. on the centre of mass. A trade-off in muscle architecture exists in muscles that do both; the fibres should be as short as possible to minimise activation cost but long enough to maintain an appropriate shortening velocity. Energetic cost is also influenced by tendon compliance which modulates the timecourse of muscle mechanical work. Here we use a Hill-type muscle model of the human medial gastrocnemius to determine the muscle fascicle length and Achilles tendon compliance that maximise efficiency during the stance phase of walking (1.2m/s) and running (3.2 and 3.9 m/s). A broad range of muscle fascicle lengths (ranging from 45 to 70 mm) and tendon stiffness values (150-500 N/mm) can achieve close to optimal efficiency at each speed of locomotion; however, efficient walking requires shorter muscle fascicles and a more compliant tendon than running. The values that maximise efficiency are within the range measured in normal populations. A non-linear toe-region region of the tendon force-length properties may further influence the optimal values, requiring a stiffer tendon with slightly longer muscle fascicles; however, it does not alter the main results. We conclude that muscle fibre length and tendon compliance combinations may be tuned to maximise efficiency under a given gait condition. Efficiency is maximised when the required volume of muscle is minimised, which may also help reduce limb inertia and basal metabolic costs.

  5. Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.

    PubMed

    Cole, Michael H; Sweeney, Matthew; Conway, Zachary J; Blackmore, Tim; Silburn, Peter A

    2017-04-01

    To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Cross-sectional cohort study. General community. Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Not applicable. Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.

    PubMed

    Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C

    2017-03-01

    Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.

  7. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds

    PubMed Central

    Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo

    2017-01-01

    This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)–center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM–COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM–COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results. PMID:28640853

  8. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds.

    PubMed

    Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo

    2017-01-01

    This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)-center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

  9. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics

    PubMed Central

    Fukuchi, Claudiane A.; Duarte, Marcos

    2017-01-01

    Background The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. Methods The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. Results A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Discussion Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study’s second objective. PMID:28503379

  10. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics.

    PubMed

    Fukuchi, Reginaldo K; Fukuchi, Claudiane A; Duarte, Marcos

    2017-01-01

    The goals of this study were (1) to present the set of data evaluating running biomechanics (kinematics and kinetics), including data on running habits, demographics, and levels of muscle strength and flexibility made available at Figshare (DOI: 10.6084/m9.figshare.4543435); and (2) to examine the effect of running speed on selected gait-biomechanics variables related to both running injuries and running economy. The lower-extremity kinematics and kinetics data of 28 regular runners were collected using a three-dimensional (3D) motion-capture system and an instrumented treadmill while the subjects ran at 2.5 m/s, 3.5 m/s, and 4.5 m/s wearing standard neutral shoes. A dataset comprising raw and processed kinematics and kinetics signals pertaining to this experiment is available in various file formats. In addition, a file of metadata, including demographics, running characteristics, foot-strike patterns, and muscle strength and flexibility measurements is provided. Overall, there was an effect of running speed on most of the gait-biomechanics variables selected for this study. However, the foot-strike patterns were not affected by running speed. Several applications of this dataset can be anticipated, including testing new methods of data reduction and variable selection; for educational purposes; and answering specific research questions. This last application was exemplified in the study's second objective.

  11. The desert ant odometer: a stride integrator that accounts for stride length and walking speed.

    PubMed

    Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald

    2007-01-01

    Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.

  12. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    PubMed Central

    Bulea, Thomas C.; Kim, Jonghyun; Damiano, Diane L.; Stanley, Christopher J.; Park, Hyung-Soon

    2015-01-01

    Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG) recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training. PMID:26029077

  13. Does public transport use prevent declines in walking speed among older adults living in England? A prospective cohort study

    PubMed Central

    Rouxel, Patrick; Webb, Elizabeth; Chandola, Tarani

    2017-01-01

    Objectives Although there is some evidence that public transport use confers public health benefits, the evidence is limited by cross-sectional study designs and health-related confounding factors. This study examines the effect of public transport use on changes in walking speed among older adults living in England, comparing frequent users of public transport to their peers who did not use public transport because of structural barriers (poor public transport infrastructure) or through choice. Design Prospective cohort study. Setting England, UK. Participants Older adults aged ≥60 years eligible for the walking speed test. 6246 individuals at wave 2 (2004–2005); 5909 individuals at wave 3 (2006–2007); 7321 individuals at wave 4 (2008–2009); 7535 individuals at wave 5 (2010–2011) and 7664 individuals at wave 6 (2012–2013) of the English Longitudinal Study of Ageing. Main outcome measure The walking speed was estimated from the time taken to walk 2.4 m. Fixed effects models and growth curve models were used to examine the associations between public transport use and walking speed. Results Older adults who did not use public transport through choice or because of structural reasons had slower walking speeds (−0.02 m/s (95% CI −0.03 to –0.003) and −0.02 m/s (95% CI −0.03 to –0.01), respectively) and took an extra 0.07 s to walk 2.4 m compared with their peers who used public transport frequently. The age-related trajectories of decline in walking speed were slower for frequent users of public transport compared with non-users. Conclusions Frequent use of public transport may prevent age-related decline in physical capability by promoting physical activity and lower limb muscle strength among older adults. The association between public transport use and slower decline in walking speed among older adults is unlikely to be confounded by health-related selection factors. Improving access to good quality public transport could improve the

  14. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.

    PubMed

    Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Meng, Qiaoling; Chen, Wenming

    2018-04-20

    The microprocessor-controlled prosthetic knees have been introduced to transfemoral amputees due to advances in biomedical engineering. A body of scientific literature has shown that the microprocessor-controlled prosthetic knees improve the gait and functional abilities of persons with transfemoral amputation. The aim of this study was to propose a new microprocessor-controlled prosthetic knee (MPK) and compare it with non-microprocessor-controlled prosthetic knees (NMPKs) under different walking speeds. The microprocessor-controlled prosthetic knee (i-KNEE) with hydraulic damper was developed. The comfortable self-selected walking speeds of 12 subjects with i-KNEE and NMPK were obtained. The maximum swing flexion knee angle and gait symmetry were compared in i-KNEE and NMPK condition. The comfortable self-selected walking speeds of some subjects were higher with i-KNEE while some were not. There was no significant difference in comfortable self-selected walking speed between the i-KNEE and the NMPK condition (P= 0.138). The peak prosthetic knee flexion during swing in the i-KNEE condition was between sixty and seventy degree under any walking speed. In the NMPK condition, the maximum swing flexion knee angle changed significantly. And it increased with walking speed. There is no significant difference in knee kinematic symmetry when the subjects wear the i-KNEE or NMPK. The results of this study indicated that the new microprocessor-controlled prosthetic knee was suitable for transfemoral amputees. The maximum swing flexion knee angle under different walking speeds showed different properties in the NMPK and i-KNEE condition. The i-KNEE was more adaptive to speed changes. There was little difference of comfortable self-selected walking speed between i-KNEE and NMPK condition.

  15. Full Step Cycle Kinematic and Kinetic Comparison of Barefoot Walking and a Traditional Shoe Walking in Healthy Youth: Insights for Barefoot Technology.

    PubMed

    Xu, Yi; Hou, Qinghua; Wang, Chuhuai; Sellers, Andrew J; Simpson, Travis; Bennett, Bradford C; Russell, Shawn D

    2017-01-01

    Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. 28 healthy university students (22 females and 6 males) were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. In the early stance phase, the knee extension moment (MK1), the first peak absorbed joint power at the knee joint (PK1), and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2), second peak extension knee moment (MK3), hip flexors absorbed power (PH2), hip flexors generated power (PH3), second peak absorbed power by knee flexors (PK2), and second peak anterior-posterior component of joint force at the hip (APFH2), knee (APFK2), and ankle (APFA2). These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.

  16. Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations.

    PubMed

    Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger

    2014-09-01

    There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Propulsion strategy in the gait of primary school children; the effect of age and speed.

    PubMed

    Lye, Jillian; Parkinson, Stephanie; Diamond, Nicola; Downs, Jenny; Morris, Susan

    2016-12-01

    The strategy used to generate power for forward propulsion in walking and running has recently been highlighted as a marker of gait maturation and elastic energy recycling. This study investigated ankle and hip power generation as a propulsion strategy (PS) during the late stance/early swing phases of walking and running in typically developing (TD) children (15: six to nine years; 17: nine to 13years) using three-dimensional gait analysis. Peak ankle power generation at push-off (peakA2), peak hip power generation in early swing (peakH3) and propulsion strategy (PS) [peakA2/(peakA2+peakH3)] were calculated to provide the relative contribution of ankle power to total propulsion. Mean PS values decreased as speed increased for comfortable walking (p<0.001), fast walking (p<0.001) and fast running (p<0.001), and less consistently during jogging (p=0.054). PS varied with age (p<0.001) only during fast walking. At any speed of fast walking, older children generated more peakA2 (p=0.001) and less peakH3 (p=0.001) than younger children. While the kinetics of running propulsion appear to be developed by age six years, the skills of fast walking appeared to require additional neuromuscular maturity. These findings support the concept that running is a skill that matures early for TD children. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Prediction Equations of Energy Expenditure in Chinese Youth Based on Step Frequency during Walking and Running

    ERIC Educational Resources Information Center

    Sun, Bo; Liu, Yu; Li, Jing Xian; Li, Haipeng; Chen, Peijie

    2013-01-01

    Purpose: This study set out to examine the relationship between step frequency and velocity to develop a step frequency-based equation to predict Chinese youth's energy expenditure (EE) during walking and running. Method: A total of 173 boys and girls aged 11 to 18 years old participated in this study. The participants walked and ran on a…

  19. Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.

    PubMed

    Balbinot, G

    2017-05-01

    Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (W ext ) and internal mechanical work (W int ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W + ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W - ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W - ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Treadmill based reference running data for healthy subjects is dependent on speed and morphological parameters.

    PubMed

    Schulze, Stephan; Schwesig, René; Edel, Melanie; Fieseler, Georg; Delank, Karl-Stefan; Hermassi, Souhail; Laudner, Kevin G

    2017-10-01

    To obtain spatiotemporal and dynamic running parameters of healthy participants and to identify relationships between running parameters, speed, and physical characteristics. A dynamometric treadmill was used to collect running data among 417 asymptomatic subjects during speeds ranging from 10 to 24km/h. Spatiotemporal and dynamic running parameters were calculated and measured. Results of the analyses showed that assessing running parameters is dependent on running speed. Body height correlated with stride length (r=0.5), cadence (r=-0.5) and plantar forefoot force (r=0.6). Body mass also had a strong relationship to plantar forefoot forces at 14 and 24km/h and plantar midfoot forces at 14 and 24km/h. This reference data base can be used in the kinematic and kinetic evaluation of running under a wide range of speeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The one-dimensional asymmetric persistent random walk

    NASA Astrophysics Data System (ADS)

    Rossetto, Vincent

    2018-04-01

    Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.

  2. Relationship between wealth and age trajectories of walking speed among older adults: evidence from the English Longitudinal Study of Ageing.

    PubMed

    Zaninotto, Paola; Sacker, Amanda; Head, Jenny

    2013-12-01

    Slow walking speed is associated with higher risk of accidents, disability, and mortality in older adults, with people in more disadvantaged socioeconomic positions being at higher risk. We explore the relationship between wealth and age trajectories of walking speed among older adults. Data come from three waves (2002-2003 to 2006-2007) of the English Longitudinal Study of Ageing. We use latent growth curve models and aging-vector graphs to explore individual changes and average population age trajectories of walking speed by wealth among 7,225 individuals aged 60 and older. For someone aged 71 in the poorest wealth quintile, the baseline mean walking speed was 0.75 m/s, which decreased to 0.71 m/s 4 years later, whereas that of a person in the richest wealth quintile was 0.91 m/s, which decreased to 0.82 m/s. Although the decline in walking speed was faster among people in the richest wealth (net of covariates), the gaps in walking speed between richest and poorest did not close. Even after accounting for covariates, people in the richest wealth only reached critical values (0.60 m/s) of walking speed at the age of 90, whereas people in the poorest wealth reached that level 6 years earlier. Our findings showed continuing gaps in physical functioning by wealth, even among people with the same health, psychosocial, and demographic conditions. As wealth reflects both past and current socioeconomic status, the implications of our findings are that reducing socioeconomic inequalities at all stages of the life course may have a positive impact on functioning in old age.

  3. Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis

    PubMed Central

    Mayorga-Vega, Daniel; Bocanegra-Parrilla, Raúl; Ornelas, Martha; Viciana, Jesús

    2016-01-01

    Objectives The main purpose of the present meta-analysis was to examine the criterion-related validity of the distance- and time-based walk/run tests for estimating cardiorespiratory fitness among apparently healthy children and adults. Materials and Methods Relevant studies were searched from seven electronic bibliographic databases up to August 2015 and through other sources. The Hunter-Schmidt’s psychometric meta-analysis approach was conducted to estimate the population criterion-related validity of the following walk/run tests: 5,000 m, 3 miles, 2 miles, 3,000 m, 1.5 miles, 1 mile, 1,000 m, ½ mile, 600 m, 600 yd, ¼ mile, 15 min, 12 min, 9 min, and 6 min. Results From the 123 included studies, a total of 200 correlation values were analyzed. The overall results showed that the criterion-related validity of the walk/run tests for estimating maximum oxygen uptake ranged from low to moderate (rp = 0.42–0.79), with the 1.5 mile (rp = 0.79, 0.73–0.85) and 12 min walk/run tests (rp = 0.78, 0.72–0.83) having the higher criterion-related validity for distance- and time-based field tests, respectively. The present meta-analysis also showed that sex, age and maximum oxygen uptake level do not seem to affect the criterion-related validity of the walk/run tests. Conclusions When the evaluation of an individual’s maximum oxygen uptake attained during a laboratory test is not feasible, the 1.5 mile and 12 min walk/run tests represent useful alternatives for estimating cardiorespiratory fitness. As in the assessment with any physical fitness field test, evaluators must be aware that the performance score of the walk/run field tests is simply an estimation and not a direct measure of cardiorespiratory fitness. PMID:26987118

  4. Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis.

    PubMed

    Mayorga-Vega, Daniel; Bocanegra-Parrilla, Raúl; Ornelas, Martha; Viciana, Jesús

    2016-01-01

    The main purpose of the present meta-analysis was to examine the criterion-related validity of the distance- and time-based walk/run tests for estimating cardiorespiratory fitness among apparently healthy children and adults. Relevant studies were searched from seven electronic bibliographic databases up to August 2015 and through other sources. The Hunter-Schmidt's psychometric meta-analysis approach was conducted to estimate the population criterion-related validity of the following walk/run tests: 5,000 m, 3 miles, 2 miles, 3,000 m, 1.5 miles, 1 mile, 1,000 m, ½ mile, 600 m, 600 yd, ¼ mile, 15 min, 12 min, 9 min, and 6 min. From the 123 included studies, a total of 200 correlation values were analyzed. The overall results showed that the criterion-related validity of the walk/run tests for estimating maximum oxygen uptake ranged from low to moderate (rp = 0.42-0.79), with the 1.5 mile (rp = 0.79, 0.73-0.85) and 12 min walk/run tests (rp = 0.78, 0.72-0.83) having the higher criterion-related validity for distance- and time-based field tests, respectively. The present meta-analysis also showed that sex, age and maximum oxygen uptake level do not seem to affect the criterion-related validity of the walk/run tests. When the evaluation of an individual's maximum oxygen uptake attained during a laboratory test is not feasible, the 1.5 mile and 12 min walk/run tests represent useful alternatives for estimating cardiorespiratory fitness. As in the assessment with any physical fitness field test, evaluators must be aware that the performance score of the walk/run field tests is simply an estimation and not a direct measure of cardiorespiratory fitness.

  5. Kinetic comparison of older men and women during walk-to-stair descent transition.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki Hoon; Kwon, Young-Hoo

    2014-09-01

    Stair walking is one of the most challenging tasks for older adults, with women reporting higher incidence of falls. The purpose of this study was to investigate the gender differences in kinetics during stair descent transition. Twenty-eight participants (12 male and 16 female; 68.5 and 69.0 years of mean age, respectively) performed stair descent from level walking in a step-over-step manner at a self-selected speed over a custom-made three-step staircase with embedded force plates. Kinematic and force data were combined using inverse dynamics to generate kinetic data for gender comparison. The top and the first step on the staircase were chosen for analysis. Women showed a higher trail leg peak hip abductor moment (-1.0 Nm/kg), lower trail leg peak knee extensor moment and eccentric power (0.74 Nm/kg and 3.15 W/kg), and lower peak concentric power at trail leg ankle joint (1.29 W/kg) as compared to men (p<0.05; -0.82 Nm/kg, 0.89 Nm/kg, 3.83 W/kg, and 1.78 W/kg, respectively). The lead leg knee eccentric power was also lower in women (p<0.05). This decreased ability to exert knee control during stair descent transition may predispose women to a higher risk of fall. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High- compared to low-arched athletes exhibit smaller knee abduction moments in walking and running.

    PubMed

    Powell, Douglas W; Andrews, Samantha; Stickley, Cris; Williams, D S Blaise

    2016-12-01

    High- (HA) and low-arched athletes (LA) experience distinct injury patterns. These injuries are the result of the interaction of structure and biomechanics. A suggested mechanism of patellofemoral pain pertains to frontal plane knee moments which may be exaggerated in LA athletes. We hypothesize that LA athletes will exhibit greater peak knee abduction moments than high-arched athletes. Twenty healthy female recreational athletes (10HA and 10LA) performed five over-ground barefoot walking and five barefoot running trials at a self-selected velocity while three-dimensional kinematics and ground reaction forces were recorded. Peak knee abduction moments and time-to-peak knee abduction moments were calculated using Visual 3D. High-arched athletes had smaller peak knee abduction moments compared to low-arched athletes during walking (KAM1: p=0.019; KAM2: p=0.015) and running (p=0.010). No differences were observed in time-to-peak knee abduction moment during walking (KAM1: p=0.360; KAM2: p=0.085) or running (p=0.359). These findings demonstrate that foot type is associated with altered frontal plane knee kinetics which may contribute to patellofemoral pain. Future research should address the efficacy of clinical interventions including orthotics and rehabilitation programs in these athletes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Running faster causes disaster: trade-offs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus).

    PubMed

    Wynn, Melissa L; Clemente, Christofer; Nasir, Ami Fadhillah Amir Abdul; Wilson, Robbie S

    2015-02-01

    Movement speed is fundamental to all animal behaviour, yet no general framework exists for understanding why animals move at the speeds they do. Even during fitness-defining behaviours like running away from predators, an animal should select a speed that balances the benefits of high speed against the increased probability of mistakes. In this study, we explored this idea by quantifying trade-offs between speed, manoeuvrability and motor control in wild northern quolls (Dasyurus hallucatus) - a medium-sized carnivorous marsupial native to northern Australia. First, we quantified how running speed affected the probability of crashes when rounding corners of 45, 90 and 135 deg. We found that the faster an individual approached a turn, the higher the probability that they would crash, and these risks were greater when negotiating tighter turns. To avoid crashes, quolls modulated their running speed when they moved through turns of varying angles. Average speed for quolls when sprinting along a straight path was around 4.5 m s(-1) but this decreased linearly to speeds of around 1.5 m s(-1) when running through 135 deg turns. Finally, we explored how an individual's morphology affects their manoeuvrability. We found that individuals with larger relative foot sizes were more manoeuvrable than individuals with smaller relative foot sizes. Thus, movement speed, even during extreme situations like escaping predation, should be based on a compromise between high speed, manoeuvrability and motor control. We advocate that optimal - rather than maximal - performance capabilities underlie fitness-defining behaviours such as escaping predators and capturing prey. © 2015. Published by The Company of Biologists Ltd.

  8. Do Transit-Oriented Developments (TODs) and Established Urban Neighborhoods Have Similar Walking Levels in Hong Kong?

    PubMed

    Lu, Yi; Gou, Zhonghua; Xiao, Yang; Sarkar, Chinmoy; Zacharias, John

    2018-03-20

    A sharp drop in physical activity and skyrocketing obesity rate has accompanied rapid urbanization in China. The urban planning concept of transit-oriented development (TOD) has been widely advocated in China to promote physical activity, especially walking. Indeed, many design features thought to promote walking-e.g., mixed land use, densification, and well-connected street network-often characterize both TODs and established urban neighborhoods. Thus, it is often assumed that TODs have similar physical activity benefits as established urban neighborhoods. To verify this assumption, this study compared walking behaviors in established urban neighborhoods and transit-oriented new towns in Hong Kong. To address the limitation of self-selection bias, we conducted a study using Hong Kong citywide public housing scheme, which assigns residents to different housing estates by flat availability and family size rather than personal preference. The results show new town residents walked less for transportation purpose than urban residents. New town residents far from the transit station (800-1200 m) walked less for recreational purpose than TOD residents close to a rail transit station (<400 m) or urban residents. The observed disparity in walking behaviors challenges the common assumption that TOD and established urban neighborhoods have similar impact on walking behavior. The results suggest the necessity for more nuanced planning strategies, taking local-level factors into account to promote walking of TOD residents who live far from transit stations.

  9. Effects of Speed and Visual-Target Distance on Toe Trajectory During the Swing Phase of Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Christopher A.; Feiveson, Al; Bloomberg, Jacob J.

    2007-01-01

    Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used.

  10. Joint kinematics and kinetics during walking and running in 32 patients with hip dysplasia 1 year after periacetabular osteotomy

    PubMed Central

    Jacobsen, Julie S; Nielsen, Dennis B; Sørensen, Henrik; Søballe, Kjeld; Mechlenburg, Inger

    2014-01-01

    Background and purpose — Hip dysplasia can be treated with periacetabular osteotomy (PAO). We compared joint angles and joint moments during walking and running in young adults with hip dysplasia prior to and 6 and 12 months after PAO with those in healthy controls. Patients and methods — Joint kinematics and kinetics were recorded using a 3-D motion capture system. The pre- and postoperative gait characteristics quantified as the peak hip extension angle and the peak joint moment of hip flexion were compared in 23 patients with hip dysplasia (18–53 years old). Similarly, the gait patterns of the patients were compared with those of 32 controls (18–54 years old). Results — During walking, the peak hip extension angle and the peak hip flexion moment were significantly smaller at baseline in the patients than in the healthy controls. The peak hip flexion moment increased 6 and 12 months after PAO relative to baseline during walking, and 6 months after PAO relative to baseline during running. For running, the improvement did not reach statistical significance at 12 months. In addition, the peak hip extension angle during walking increased 12 months after PAO, though not statistically significantly. There were no statistically significant differences in peak hip extension angle and peak hip flexion moment between the patients and the healthy controls after 12 months. Interpretation — Walking and running characteristics improved after PAO in patients with symptomatic hip dysplasia, although gait modifications were still present 12 months postoperatively. PMID:25191933

  11. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.

    PubMed

    Abe, Daijiro; Fukuoka, Yoshiyuki; Maeda, Takafumi; Horiuchi, Masahiro

    2018-06-19

    Energy cost of transport per unit distance (CoT) against speed shows U-shaped fashion in walking and linear fashion in running, indicating that there exists a specific walking speed minimizing the CoT, being defined as economical speed (ES). Another specific gait speed is the intersection speed between both fashions, being called energetically optimal transition speed (EOTS). We measured the ES, EOTS, and muscle activities during walking and running at the EOTS under hyperoxia (40% fraction of inspired oxygen) on the level and uphill gradients (+ 5%). Oxygen consumption [Formula: see text] and carbon dioxide output [Formula: see text] were measured to calculate the CoT values at eight walking speeds (2.4-7.3 km h -1 ) and four running speeds (7.3-9.4 km h - 1 ) in 17 young males. Electromyography was recorded from gastrocnemius medialis, gastrocnemius lateralis (GL), and tibialis anterior (TA) to evaluate muscle activities. Mean power frequency (MPF) was obtained to compare motor unit recruitment patterns between walking and running. [Formula: see text], [Formula: see text], and CoT values were lower under hyperoxia than normoxia at faster walking speeds and any running speeds. A faster ES on the uphill gradient and slower EOTS on both gradients were observed under hyperoxia than normoxia. GL and TA activities became lower when switching from walking to running at the EOTS under both FiO 2 conditions on both gradients, so did the MPF in the TA. ES and EOTS were influenced by reduced metabolic demands induced by hyperoxia. GL and TA activities in association with a lower shift of motor unit recruitment patterns in the TA would be related to the gait selection when walking or running at the EOTS. UMIN000017690 ( R000020501 ). Registered May 26, 2015, before the first trial.

  12. Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis

    PubMed Central

    Pond, Stuart B.; Brassey, Charlotte A.; Manning, Philip L.; Bates, Karl T.

    2017-01-01

    The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex. Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex—long argued to indicate competent running ability—would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex, and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals. PMID:28740745

  13. Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis.

    PubMed

    Sellers, William I; Pond, Stuart B; Brassey, Charlotte A; Manning, Philip L; Bates, Karl T

    2017-01-01

    The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex . Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex -long argued to indicate competent running ability-would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex , and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals.

  14. Associations of Openness and Conscientiousness With Walking Speed Decline: Findings From the Health, Aging, and Body Composition Study

    PubMed Central

    Costa, Paul T.; Terracciano, Antonio; Ferrucci, Luigi; Faulkner, Kimberly; Coday, Mathilda (Mace) C.; Ayonayon, Hilsa N.; Simonsick, Eleanor M.

    2012-01-01

    Objectives. The objective of this study was to explore the associations between openness to experience and conscientiousness, two dimensions of the five-factor model of personality, and usual gait speed and gait speed decline. Method. Baseline analyses were conducted on 907 men and women aged 71–82 years participating in the Cognitive Vitality substudy of the Health, Aging, and Body Composition study. The longitudinal analytic sample consisted of 740 participants who had walking speed assessed 3 years later. Results. At baseline, gait speed averaged 1.2 m/s, and an average decline of 5% over the 3-year follow-up period was observed. Higher conscientiousness was associated with faster initial walking speed and less decline in walking speed over the study period, independent of sociodemographic characteristics. Lifestyle factors and disease status appear to play a role in the baseline but not the longitudinal association between conscientiousness and gait speed. Openness was not associated with either initial or decline in gait speed. Discussion. These findings extend the body of evidence suggesting a protective association between conscientiousness and physical function to performance-based assessment of gait speed. Future studies are needed to confirm these associations and to explore mechanisms that underlie the conscientiousness mobility connection in aging adults. PMID:22451484

  15. Before-School Running/Walking Club and Student Physical Activity Levels: An Efficacy Study

    ERIC Educational Resources Information Center

    Stylianou, Michalis; van der Mars, Hans; Kulinna, Pamela Hodges; Adams, Marc A.; Mahar, Matthew; Amazeen, Eric

    2016-01-01

    Purpose: Before-school programs, one of the least studied student-related comprehensive school physical activity program (CSPAP) components, may be a promising strategy to help youth meet the physical activity (PA) guidelines. This study's purpose was to examine: (a) how much PA children accrued during a before-school running/walking club and…

  16. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players?

    PubMed Central

    Liebenberg, Jacobus; Woo, Jeonghyun; Park, Sang-Kyoon; Yoon, Suk-Hoon; Cheung, Roy Tsz-Hei; Ryu, Jiseon

    2018-01-01

    Background Tibial stress fracture (TSF) is a common injury in basketball players. This condition has been associated with high tibial shock and impact loading, which can be affected by running speed, footwear condition, and footstrike pattern. However, these relationships were established in runners but not in basketball players, with very little research done on impact loading and speed. Hence, this study compared tibial shock, impact loading, and foot strike pattern in basketball players running at different speeds with different shoe cushioning properties/performances. Methods Eighteen male collegiate basketball players performed straight running trials with different shoe cushioning (regular-, better-, and best-cushioning) and running speed conditions (3.0 m/s vs. 6.0 m/s) on a flat instrumented runway. Tri-axial accelerometer, force plate and motion capture system were used to determine tibial accelerations, vertical ground reaction forces and footstrike patterns in each condition, respectively. Comfort perception was indicated on a 150 mm Visual Analogue Scale. A 2 (speed) × 3 (footwear) repeated measures ANOVA was used to examine the main effects of shoe cushioning and running speeds. Results Greater tibial shock (P < 0.001; η2 = 0.80) and impact loading (P < 0.001; η2 = 0.73–0.87) were experienced at faster running speeds. Interestingly, shoes with regular-cushioning or best-cushioning resulted in greater tibial shock (P = 0.03; η2 = 0.39) and impact loading (P = 0.03; η2 = 0.38–0.68) than shoes with better-cushioning. Basketball players continued using a rearfoot strike during running, regardless of running speed and footwear cushioning conditions (P > 0.14; η2 = 0.13). Discussion There may be an optimal band of shoe cushioning for better protection against TSF. These findings may provide insights to formulate rehabilitation protocols for basketball players who are recovering from TSF. PMID:29770274

  17. Effects of superficial heating and insulation on walking speed in people with hereditary and spontaneous spastic paraparesis: A randomised crossover study.

    PubMed

    Denton, Amanda L; Hough, Alan D; Freeman, Jennifer A; Marsden, Jonathan F

    2018-03-01

    Cooling of the lower limb in people with Hereditary and Spontaneous Spastic Paraparesis (pwHSSP) has been shown to affect walking speed and neuromuscular impairments. The investigation of practical strategies, which may help to alleviate these problems is important. The potential of superficial heat to improve walking speed has not been explored in pwHSSP. Primary objective was to explore whether the application of superficial heat (hot packs) to lower limbs in pwHSSP improves walking speed. Secondary objective was to explore whether wearing insulation after heating would prolong any benefits. A randomised crossover study design with 21 pwHSSP. On two separate occasions two hot packs and an insulating wrap (Neo-G™) were applied for 30minutes to the lower limbs of pwHSSP. On one occasion the insulating wrap was maintained for a further 30minutes and on the other occasion it was removed. Measures of temperature (skin, room and core), walking speed (10 metre timed walk) and co-ordination (foot tap time) were taken at baseline (T1), after 30 mins (T2) and at one hour (T3). All 21 pwHSSP reported increased lower limb stiffness and decreased walking ability when their legs were cold. After thirty minutes of heating, improvements were seen in walking speed (12.2%, P<0.0001, effect size 0.18) and foot tap time (21.5%, P<0.0001, effect size 0.59). Continuing to wear insulation for a further 30minutes gave no additional benefit; with significant improvements in walking speed maintained at one hour (9.9%, P>0.001) in both conditions. Application of 30minutes superficial heating moderately improved walking speed in pwHSSP with effects maintained at 1hour. The use of hot packs applied to lower limbs should be the focus of further research for the clinical management of pwHSSP who report increased stiffness of limbs in cold weather and do not have sensory deficits. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?

    PubMed

    Kehler, Alyse L; Hajkova, Eliska; Holmberg, Hans-Christer; Kram, Rodger

    2014-11-01

    Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running. © 2014. Published by The Company of Biologists Ltd.

  19. Walking Perception by Walking Observers

    ERIC Educational Resources Information Center

    Jacobs, Alissa; Shiffrar, Maggie

    2005-01-01

    People frequently analyze the actions of other people for the purpose of action coordination. To understand whether such self-relative action perception differs from other-relative action perception, the authors had observers either compare their own walking speed with that of a point-light walker or compare the walking speeds of 2 point-light…

  20. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    PubMed

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    PubMed

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  2. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  3. Fitness Assessment Comparison Between the “Jackie Chan Action Run” Videogame, 1-Mile Run/Walk, and the PACER

    PubMed Central

    Siegel, Shannon; Costa, Pablo; Jarvis, Sarah; Klug, Nicholas; Medina, Ernie; Wilkin, Linda

    2012-01-01

    Abstract Objective The purpose of this study was to examine whether a correlation existed among the scores of the “Jackie Chan Studio Fitness™ Action Run” active videogame (XaviX®, SSD Company, Ltd., Kusatsu, Japan), the 1-mile run/walk, and Progressive Aerobic Cardiovascular Endurance Run (PACER) aerobic fitness tests of the FITNESSGRAM® (The Cooper Institute, Dallas, TX) in order to provide a potential alternative testing method for days that are not environmentally desirable for outdoor testing. Subjects and Methods Participants were a convenience sample from physical education classes of students between the ages of 10 and 15 years. Participants (n=108) were randomly assigned to one of three groups with the only difference being the order of testing. The tests included the “Jackie Chan Action Run” active videogame, the 1-mile run/walk, and the PACER. Testing occurred on three different days during the physical education class. Rating of perceived exertion (RPE) was reported. Results Significant correlations (r=−0.598 to 0.312) were found among the three aerobic fitness tests administered (P<0.05). The RPE for the “Jackie Chan Action Run” was lower than the RPE for the 1-mile run/walk and the PACER (3.81±1.89, 5.93±1.77, and 5.71±2.14, respectively). Conclusions The results suggest that the “Jackie Chan Action Run” test could be an alternative to the 1-mile run/walk and PACER, allowing physical education teachers to perform aerobic fitness testing in an indoor setting that requires less space. Also, children may be more willing to participate in the “Jackie Chan Action Run” based on the lower RPE. PMID:26193440

  4. Gait Parameter Adjustments for Walking on a Treadmill at Preferred, Slower, and Faster Speeds in Older Adults with Down Syndrome

    PubMed Central

    Smith, Beth A.; Kubo, Masayoshi; Ulrich, Beverly D.

    2012-01-01

    The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability. PMID:22693497

  5. Walking or Running in the Rain--A Simple Derivation of a General Solution

    ERIC Educational Resources Information Center

    Ehrmann, Andrea; Blachowicz, Tomasz

    2011-01-01

    The question whether to walk slowly or to run when it starts raining in order to stay as dry as possible has been considered for many years--and with different results, depending on the assumptions made and the mathematical descriptions for the situation. Because of the practical meaning for real life and the inconsistent results depending on the…

  6. Older adults must hurry at pedestrian lights! A cross-sectional analysis of preferred and fast walking speed under single- and dual-task conditions

    PubMed Central

    Tomovic, Sara; Münzer, Thomas; de Bruin, Eling D.

    2017-01-01

    Slow walking speed is strongly associated with adverse health outcomes, including cognitive impairment, in the older population. Moreover, adequate walking speed is crucial to maintain older pedestrians’ mobility and safety in urban areas. This study aimed to identify the proportion of Swiss older adults that didn’t reach 1.2 m/s, which reflects the requirements to cross streets within the green–yellow phase of pedestrian lights, when walking fast under cognitive challenge. A convenience sample, including 120 older women (65%) and men, was recruited from the community (88%) and from senior residences and divided into groups of 70–79 years (n = 59, 74.8 ± 0.4 y; mean ± SD) and ≥80 years (n = 61, 85.5 ± 0.5 y). Steady state walking speed was assessed under single- and dual-task conditions at preferred and fast walking speed. Additionally, functional lower extremity strength (5-chair-rises test), subjective health rating, and retrospective estimates of fall frequency were recorded. Results showed that 35.6% of the younger and 73.8% of the older participants were not able to walk faster than 1.2 m/s under the fast dual-task walking condition. Fast dual-task walking speed was higher compared to the preferred speed single- and dual-task conditions (all p < .05, r = .31 to .48). Average preferred single-task walking speed was 1.19 ± 0.24 m/s (70–79 y) and 0.94 ± 0.27 m/s (≥80 y), respectively, and correlated with performance in the 5-chair-rises test (rs = −.49, p < .001), subjective health (τ = .27, p < .001), and fall frequency (τ = −.23, p = .002). We conclude that the fitness status of many older people is inadequate to safely cross streets at pedestrian lights and maintain mobility in the community’s daily life in urban areas. Consequently, training measures to improve the older population’s cognitive and physical fitness should be promoted to enhance walking speed and safety of older pedestrians. PMID:28759587

  7. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.

    PubMed

    Rezende, Enrico L; Kelly, Scott A; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2006-01-01

    Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited

  8. Does walking speed mediate the association between visual impairment and self-report of mobility disability? The Salisbury Eye Evaluation Study.

    PubMed

    Swenor, Bonnielin K; Bandeen-Roche, Karen; Muñoz, Beatriz; West, Sheila K

    2014-08-01

    To determine whether performance speeds mediate the association between visual impairment and self-reported mobility disability over an 8-year period. Longitudinal analysis. Salisbury, Maryland. Salisbury Eye Evaluation Study participants aged 65 and older (N=2,520). Visual impairment was defined as best-corrected visual acuity worse than 20/40 in the better-seeing eye or visual field less than 20°. Self-reported mobility disability on three tasks was assessed: walking up stairs, walking down stairs, and walking 150 feet. Performance speed on three similar tasks was measured: walking up steps (steps/s), walking down steps (steps/s), and walking 4 m (m/s). For each year of observation, the odds of reporting mobility disability was significantly greater for participants who were visually impaired (VI) than for those who were not (NVI) (odds ratio (OR) difficulty walking up steps=1.58, 95% confidence interval (CI)=1.32-1.89; OR difficulty walking down steps=1.90, 95% CI=1.59-2.28; OR difficulty walking 150 feet=2.11, 95% CI=1.77-2.51). Once performance speed on a similar mobility task was included in the models, VI participants were no longer more likely to report mobility disability than those who were NVI (OR difficulty walking up steps=0.84, 95% CI=0.65-1.11; OR difficulty walking down steps=0.96, 95% CI=0.74-1.24; OR difficulty walking 150 feet=1.22, 95% CI=0.98-1.50). Slower performance speed in VI individuals largely accounted for the difference in the odds of reporting mobility disability, suggesting that VI older adults walk slower and are therefore more likely to report mobility disability than those who are NVI. Improving mobility performance in older adults with visual impairment may minimize the perception of mobility disability. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  9. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy.

    PubMed

    Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M

    2015-10-01

    While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Reliability of heart rate measures during walking before and after running maximal efforts.

    PubMed

    Boullosa, D A; Barros, E S; del Rosso, S; Nakamura, F Y; Leicht, A S

    2014-11-01

    Previous studies on HR recovery (HRR) measures have utilized the supine and the seated postures. However, the most common recovery mode in sport and clinical settings after running exercise is active walking. The aim of the current study was to examine the reliability of HR measures during walking (4 km · h(-1)) before and following a maximal test. Twelve endurance athletes performed an incremental running test on 2 days separated by 48 h. Absolute (coefficient of variation, CV, %) and relative [Intraclass correlation coefficient, (ICC)] reliability of time domain and non-linear measures of HR variability (HRV) from 3 min recordings, and HRR parameters over 5 min were assessed. Moderate to very high reliability was identified for most HRV indices with short-term components of time domain and non-linear HRV measures demonstrating the greatest reliability before (CV: 12-22%; ICC: 0.73-0.92) and after exercise (CV: 14-32%; ICC: 0.78-0.91). Most HRR indices and parameters of HRR kinetics demonstrated high to very high reliability with HR values at a given point and the asymptotic value of HR being the most reliable (CV: 2.5-10.6%; ICC: 0.81-0.97). These findings demonstrate these measures as reliable tools for the assessment of autonomic control of HR during walking before and after maximal efforts. © Georg Thieme Verlag KG Stuttgart · New York.

  11. A preliminary study of a running speed based heart rate prediction during an incremental treadmill exercise.

    PubMed

    Dae-Geun Jang; Byung-Hoon Ko; Sub Sunoo; Sang-Seok Nam; Hun-Young Park; Sang-Kon Bae

    2016-08-01

    This preliminary study investigates feasibility of a running speed based heart rate (HR) prediction. It is basically motivated from the assumption that there is a significant relationship between HR and the running speed. In order to verify the assumption, HR and running speed data from 217 subjects of varying aerobic capabilities were simultaneously collected during an incremental treadmill exercise. A running speed was defined as a treadmill speed and its corresponding heart rate was calculated by averaging the last one minute HR values of each session. The feasibility was investigated by assessing a correlation between the heart rate and the running speed using inter-subject (between-subject) and intra-subject (within-subject) datasets with regression orders of 1, 2, 3, and 4, respectively. Furthermore, HR differences between actual and predicted HRs were also employed to investigate the feasibility of the running speed in predicting heart rate. In the inter-subject analysis, a strong positive correlation and a reasonable HR difference (r = 0.866, 16.55±11.24 bpm @ 1st order; r = 0.871, 15.93±11.49 bpm @ 2nd order; r = 0.897, 13.98±10.80 bpm @ 3rd order; and r = 0.899, 13.93±10.64 bpm @ 4th order) were obtained, and a very high positive correlation and a very low HR difference (r = 0.978, 6.46±3.89 bpm @ 1st order; r = 0.987, 5.14±2.87 bpm @ 2nd order; r = 0.996, 2.61±2.03 bpm @ 3rd order; and r = 0.997, 2.04±1.73 bpm @ 4th order) were obtained in the intra-subject analysis. It can therefore be concluded that 1) heart rate is highly correlated with a running speed; 2) heart rate can be approximately estimated by a running speed with a proper statistical model (e.g., 3rd-order regression); and 3) an individual HR-speed calibration process may improve the prediction accuracy.

  12. Do Transit-Oriented Developments (TODs) and Established Urban Neighborhoods Have Similar Walking Levels in Hong Kong?

    PubMed Central

    Xiao, Yang; Sarkar, Chinmoy; Zacharias, John

    2018-01-01

    A sharp drop in physical activity and skyrocketing obesity rate has accompanied rapid urbanization in China. The urban planning concept of transit-oriented development (TOD) has been widely advocated in China to promote physical activity, especially walking. Indeed, many design features thought to promote walking—e.g., mixed land use, densification, and well-connected street network—often characterize both TODs and established urban neighborhoods. Thus, it is often assumed that TODs have similar physical activity benefits as established urban neighborhoods. To verify this assumption, this study compared walking behaviors in established urban neighborhoods and transit-oriented new towns in Hong Kong. To address the limitation of self-selection bias, we conducted a study using Hong Kong citywide public housing scheme, which assigns residents to different housing estates by flat availability and family size rather than personal preference. The results show new town residents walked less for transportation purpose than urban residents. New town residents far from the transit station (800–1200 m) walked less for recreational purpose than TOD residents close to a rail transit station (<400 m) or urban residents. The observed disparity in walking behaviors challenges the common assumption that TOD and established urban neighborhoods have similar impact on walking behavior. The results suggest the necessity for more nuanced planning strategies, taking local-level factors into account to promote walking of TOD residents who live far from transit stations. PMID:29558379

  13. Validity of the SC-StepMX pedometer during treadmill walking and running.

    PubMed

    Colley, Rachel C; Barnes, Joel D; Leblanc, Allana G; Borghese, Michael; Boyer, Charles; Tremblay, Mark S

    2013-05-01

    The purpose of this study was to examine the validity of the SC-StepMX pedometer for measuring step counts. A convenience sample of 40 participants wore 4 SC-StepMX pedometers, 2 Yamax DigiWalker pedometers, and 2 Actical accelerometers around their waist on a treadmill at 4 speeds based on each participant's self-paced walking speed (50%, 100%, 180%, and 250%; range: 1.4-14.1 km·h(-1)). The SC-StepMX demonstrated lower mean absolute percent error (-0.2%) compared with the Yamax DigiWalker (-20.5%) and the Actical (-26.1%). Mean measurement bias was lower for the SC-StepMX (0.1 ± 9.1; 95% confidence interval = -17.8 to 18.0 steps·min(-1)) when compared with both the Yamax DigiWalker (-15.9 ± 23.3; 95% confidence interval = -61.6 to 29.7 steps·min(-1)) and the Actical (-22.0 ± 36.3; 95% CI = -93.1 to 49.1 steps·min(-1)). This study demonstrates that the SC-StepMX pedometer is a valid tool for the measurement of step counts. The SC-StepMX accurately measures step counts at slower walking speeds when compared with 2 other commercially available activity monitors. This makes the SC-StepMX useful in measuring step counts in populations that are active at lower intensities (e.g., sedentary individuals, the elderly).

  14. Older Runners Retain Youthful Running Economy despite Biomechanical Differences.

    PubMed

    Beck, Owen N; Kipp, Shalaya; Roby, Jaclyn M; Grabowski, Alena M; Kram, Rodger; Ortega, Justus D

    2016-04-01

    Sixty-five years of age typically marks the onset of impaired walking economy. However, running economy has not been assessed beyond the age of 65 yr. Furthermore, a critical determinant of running economy is the spring-like storage and return of elastic energy from the leg during stance, which is related to leg stiffness. Therefore, we investigated whether runners older than 65 yr retain youthful running economy and/or leg stiffness across running speeds. Fifteen young and 15 older runners ran on a force-instrumented treadmill at 2.01, 2.46, and 2.91 m·s(-1). We measured their rates of metabolic energy consumption (i.e., metabolic power), ground reaction forces, and stride kinematics. There were only small differences in running economy between young and older runners across the range of speeds. Statistically, the older runners consumed 2% to 9% less metabolic energy than the young runners across speeds (P = 0.012). Also, the leg stiffness of older runners was 10% to 20% lower than that of young runners across the range of speeds (P = 0.002), and in contrast to the younger runners, the leg stiffness of older runners decreased with speed (P < 0.001). Runners beyond 65 yr of age maintain youthful running economy despite biomechanical differences. It may be that vigorous exercise, such as running, prevents the age related deterioration of muscular efficiency and, therefore, may make everyday activities easier.

  15. Older Runners Retain Youthful Running Economy Despite Biomechanical Differences

    PubMed Central

    Beck, Owen N.; Kipp, Shalaya; Roby, Jaclyn M.; Grabowski, Alena M.; Kram, Rodger; Ortega, Justus D.

    2015-01-01

    Purpose Sixty-five years of age typically marks the onset of impaired walking economy. However, running economy has not been assessed beyond the age of 65 years. Furthermore, a critical determinant of running economy is the spring-like storage and return of elastic energy from the leg during stance, which is related to leg stiffness. Therefore, we investigated whether runners over the age of 65 years retain youthful running economy and/or leg stiffness across running speeds. Methods Fifteen young and fifteen older runners ran on a force-instrumented treadmill at 2.01, 2.46, and 2.91 m·s−1. We measured their rates of metabolic energy consumption (i.e. metabolic power), ground reaction forces, and stride kinematics. Results There were only small differences in running economy between young and older runners across the range of speeds. Statistically, the older runners consumed 2–9% less metabolic energy than the young runners across speeds (p=0.012). Also, the leg stiffness of older runners was 10–20% lower than that of young runners across the range of speeds (p=0.002) and in contrast to the younger runners, the leg stiffness of older runners decreased with speed (p<0.001). Conclusion Runners beyond 65 years of age maintain youthful running economy despite biomechanical differences. It may be that vigorous exercise, such as running, prevents the age related deterioration of muscular efficiency, and therefore may make everyday activities easier. PMID:26587844

  16. Match-to-match variability in high-speed running activity in a professional soccer team.

    PubMed

    Carling, Christopher; Bradley, Paul; McCall, Alan; Dupont, Gregory

    2016-12-01

    This study investigated variability in competitive high-speed running performance in an elite soccer team. A semi-automated tracking system quantified running performance in 12 players over a season (median 17 matches per player, 207 observations). Variability [coefficient of variation (CV)] was compared for total sprint distance (TSD, >25.2 km/h), high-speed running (HSR, 19.8-25.2 km/h), total high-speed running (THSR, ≥19.8 km/h); THSR when the team was in and out of ball possession, in individual ball possession, in the peak 5 min activity period; and distance run according to individual maximal aerobic speed (MAS). Variability for % declines in THSR and distance covered at ≥80% MAS across halves, at the end of play (final 15 min vs. mean for all 15 min periods) and transiently (5 min period following peak 5 min activity period), was analysed. Collectively, variability was higher for TSD versus HSR and THSR and lowest for distance run at ≥80% MAS (CVs: 37.1%, 18.1%, 19.8% and 11.8%). THSR CVs when the team was in/out of ball possession, in individual ball possession and during the peak 5 min period were 31.5%, 26.1%, 60.1% and 23.9%. Variability in THSR declines across halves, at the end of play and transiently, ranged from 37.1% to 142.6%, while lower CVs were observed in these metrics for running at ≥80% MAS (20.9-53.3%).These results cast doubt on the appropriateness of general measures of high-speed activity for determining variability in an elite soccer team, although individualisation of HSR thresholds according to fitness characteristics might provide more stable indicators of running performance and fatigue occurrence.

  17. The Energy Cost and Heart Rate Response of Trained and Untrained Subjects Walking and Running in Shoes and Boots,

    DTIC Science & Technology

    1983-01-01

    CH, Morrison JF, Viljoen JH, Heyns Aj (1968) The influence of boot weight on the energy expenditure of men walking on a treadmill and climbing stairs ...speed (4.0 km "h). These data indicate that energy expenditure is increased by wearing boots. A large portion of this increase may be attributed to...both shoes and boots except at the slowest walking speed (4.0 km ° h-1 ). These data indicate that energy expenditure is increased by wearing boots

  18. Association of walking speed with sagittal spinal alignment, muscle thickness, and echo intensity of lumbar back muscles in middle-aged and elderly women.

    PubMed

    Masaki, Mitsuhiro; Ikezoe, Tome; Fukumoto, Yoshihiro; Minami, Seigo; Aoyama, Junichi; Ibuki, Satoko; Kimura, Misaka; Ichihashi, Noriaki

    2016-06-01

    Age-related change of spinal alignment in the standing position is known to be associated with decreases in walking speed, and alteration in muscle quantity (i.e., muscle mass) and muscle quality (i.e., increases in the amount of intramuscular non-contractile tissue) of lumbar back muscles. Additionally, the lumbar lordosis angle in the standing position is associated with walking speed, independent of lower-extremity muscle strength, in elderly individuals. However, it is unclear whether spinal alignment in the standing position is associated with walking speed in the elderly, independent of trunk muscle quantity and quality. The present study investigated the association of usual and maximum walking speed with age, sagittal spinal alignment in the standing position, muscle quantity measured as thickness, and quality measured as echo intensity of lumbar muscles in 35 middle-aged and elderly women. Sagittal spinal alignment in the standing position (thoracic kyphosis, lumbar lordosis, and sacral anterior inclination angle) using a spinal mouse, and muscle thickness and echo intensity of the lumbar muscles (erector spinae, psoas major, and lumbar multifidus) using an ultrasound imaging device were also measured. Stepwise regression analysis showed that only age was a significant determinant of usual walking speed. The thickness of the lumbar erector spinae muscle was a significant, independent determinant of maximal walking speed. The results of this study suggest that a decrease in maximal walking speed is associated with the decrease in lumbar erector spinae muscles thickness rather than spinal alignment in the standing position in middle-aged and elderly women.

  19. The Association of Trip Distance With Walking To Reach Public Transit: Data from the California Household Travel Survey.

    PubMed

    Durand, Casey P; Tang, Xiaohui; Gabriel, Kelley P; Sener, Ipek N; Oluyomi, Abiodun O; Knell, Gregory; Porter, Anna K; Oelscher, Deanna M; Kohl, Harold W

    2016-06-01

    Use of public transit is cited as a way to help individuals incorporate regular physical activity into their day. As a novel research topic, however, there is much we do not know. The aim of this analysis was to identify the correlation between distance to a transit stop and the probability it will be accessed by walking. We also sought to understand if this relation was moderated by trip, personal or household factors. Data from the 2012 California Household Travel Survey was used for this cross-sectional analysis. 2,573 individuals were included, representing 6,949 transit trips. Generalized estimating equations modeled the probability of actively accessing public transit as a function of distance from origin to transit stop, and multiple trip, personal and household variables. Analyses were conducted in 2014 and 2015. For each mile increase in distance from the point of origin to the transit stop, the probability of active access decreased by 12%. With other factors held equal, at two miles from a transit stop there is a 50% chance someone will walk to a stop versus non-active means. The distance-walking relation was modified by month the trips were taken. Individuals appear to be willing to walk further to reach transit than existing guidelines indicate. This implies that for any given transit stop, the zone of potential riders who will walk to reach transit is relatively large. Future research should clarify who transit-related walkers are, and why some are more willing to walk longer distances to transit than others.

  20. The Association of Trip Distance With Walking To Reach Public Transit: Data from the California Household Travel Survey

    PubMed Central

    Durand, Casey P.; Tang, Xiaohui; Gabriel, Kelley P.; Sener, Ipek N.; Oluyomi, Abiodun O.; Knell, Gregory; Porter, Anna K.; oelscher, Deanna M.; Kohl, Harold W.

    2015-01-01

    Introduction Use of public transit is cited as a way to help individuals incorporate regular physical activity into their day. As a novel research topic, however, there is much we do not know. The aim of this analysis was to identify the correlation between distance to a transit stop and the probability it will be accessed by walking. We also sought to understand if this relation was moderated by trip, personal or household factors. Methods Data from the 2012 California Household Travel Survey was used for this cross-sectional analysis. 2,573 individuals were included, representing 6,949 transit trips. Generalized estimating equations modeled the probability of actively accessing public transit as a function of distance from origin to transit stop, and multiple trip, personal and household variables. Analyses were conducted in 2014 and 2015. Results For each mile increase in distance from the point of origin to the transit stop, the probability of active access decreased by 12%. With other factors held equal, at two miles from a transit stop there is a 50% chance someone will walk to a stop versus non-active means. The distance-walking relation was modified by month the trips were taken. Conclusions Individuals appear to be willing to walk further to reach transit than existing guidelines indicate. This implies that for any given transit stop, the zone of potential riders who will walk to reach transit is relatively large. Future research should clarify who transit-related walkers are, and why some are more willing to walk longer distances to transit than others. PMID:27429905

  1. Influence of a Locomotor Training Approach on Walking Speed and Distance in People With Chronic Spinal Cord Injury: A Randomized Clinical Trial

    PubMed Central

    Roach, Kathryn E.

    2011-01-01

    Background Impaired walking limits function after spinal cord injury (SCI), but training-related improvements are possible even in people with chronic motor incomplete SCI. Objective The objective of this study was to compare changes in walking speed and distance associated with 4 locomotor training approaches. Design This study was a single-blind, randomized clinical trial. Setting This study was conducted in a rehabilitation research laboratory. Participants Participants were people with minimal walking function due to chronic SCI. Intervention Participants (n=74) trained 5 days per week for 12 weeks with the following approaches: treadmill-based training with manual assistance (TM), treadmill-based training with stimulation (TS), overground training with stimulation (OG), and treadmill-based training with robotic assistance (LR). Measurements Overground walking speed and distance were the primary outcome measures. Results In participants who completed the training (n=64), there were overall effects for speed (effect size index [d]=0.33) and distance (d=0.35). For speed, there were no significant between-group differences; however, distance gains were greatest with OG. Effect sizes for speed and distance were largest with OG (d=0.43 and d=0.40, respectively). Effect sizes for speed were the same for TM and TS (d=0.28); there was no effect for LR. The effect size for distance was greater with TS (d=0.16) than with TM or LR, for which there was no effect. Ten participants who improved with training were retested at least 6 months after training; walking speed at this time was slower than that at the conclusion of training but remained faster than before training. Limitations It is unknown whether the training dosage and the emphasis on training speed were optimal. Robotic training that requires active participation would likely yield different results. Conclusions In people with chronic motor incomplete SCI, walking speed improved with both overground training and

  2. A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking.

    PubMed

    Lohman, Everett B; Balan Sackiriyas, Kanikkai Steni; Swen, R Wesley

    2011-11-01

    Recreational running has many proven benefits which include increased cardiovascular, physical and mental health. It is no surprise that Running USA reported over 10 million individuals completed running road races in 2009 not to mention recreational joggers who do not wish to compete in organized events. Unfortunately there are numerous risks associated with running, the most common being musculoskeletal injuries attributed to incorrect shoe choice, training errors and excessive shoe wear or other biomechanical factors associated with ground reaction forces. Approximately 65% of chronic injuries in distance runners are related to routine high mileage, rapid increases in mileage, increased intensity, hills or irregular surface running, and surface firmness. Humans have been running barefooted or wearing minimally supportive footwear such as moccasins or sandals since the beginning of time while modernized running shoes were not invented until the 1970s. However, the current trend is that many runners are moving back to barefoot running or running in "minimal" shoes. The goal of this masterclass article is to examine the similarities and differences between shod and unshod (barefoot or minimally supportive running shoes) runners by examining spatiotemporal parameters, energetics, and biomechanics. These running parameters will be compared and contrasted with walking. The most obvious difference between the walking and running gait cycle is the elimination of the double limb support phase of walking gait in exchange for a float (no limb support) phase. The biggest difference between barefoot and shod runners is at the initial contact phase of gait where the barefoot and minimally supported runner initiates contact with their forefoot or midfoot instead of the rearfoot. As movement science experts, physical therapists are often called upon to assess the gait of a running athlete, their choice of footwear, and training regime. With a clearer understanding of running

  3. Changes in hippocampal theta rhythm and their correlations with speed during different phases of voluntary wheel running in rats.

    PubMed

    Li, J-Y; Kuo, T B J; Hsieh, I-T; Yang, C C H

    2012-06-28

    Hippocampal theta rhythm (4-12 Hz) can be observed during locomotor behavior, but findings on the relationship between locomotion speed and theta frequency are inconsistent if not contradictory. The inconsistency may be because of the difficulties that previous analyses and protocols have had excluding the effects of behavior training. We recorded the first or second voluntary wheel running each day, and assumed that theta frequency and activity are correlated with speed in different running phases. By simultaneously recording electroencephalography, physical activity, and wheel running speed, this experiment explored the theta oscillations during spontaneous running of the 12-h dark period. The recording was completely wireless and allowed the animal to run freely while being recorded in the wheel. Theta frequency and theta power of middle frequency were elevated before running and theta frequency, theta power of middle frequency, physical activity, and running speed maintained persistently high levels during running. The slopes of the theta frequency and theta activity (4-9.5 Hz) during the initial running were different compared to the same values during subsequent running. During the initial running, the running speed was positively correlated with theta frequency and with theta power of middle frequency. Over the 12-h dark period, the running speed did not positively correlate with theta frequency but was significantly correlated with theta power of middle frequency. Thus, theta frequency was associated with running speed only at the initiation of running. Furthermore, theta power of middle frequency was associated with speed and with physical activity during running when chronological order was not taken into consideration. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?

    PubMed Central

    Taboga, Paolo; Grabowski, Alena M.

    2017-01-01

    Limited available information describes how running-specific prostheses and running speed affect the biomechanics of athletes with bilateral transtibial amputations. Accordingly, we quantified the effects of prosthetic stiffness, height and speed on the biomechanics of five athletes with bilateral transtibial amputations during treadmill running. Each athlete performed a set of running trials with 15 different prosthetic model, stiffness and height combinations. Each set of trials began with the athlete running on a force-measuring treadmill at 3 m s−1, subsequent trials incremented by 1 m s−1 until they achieved their fastest attainable speed. We collected ground reaction forces (GRFs) during each trial. Prosthetic stiffness, height and running speed each affected biomechanics. Specifically, with stiffer prostheses, athletes exhibited greater peak and stance average vertical GRFs (β = 0.03; p < 0.001), increased overall leg stiffness (β = 0.21; p < 0.001), decreased ground contact time (β = −0.07; p < 0.001) and increased step frequency (β = 0.042; p < 0.001). Prosthetic height inversely associated with step frequency (β = −0.021; p < 0.001). Running speed inversely associated with leg stiffness (β = −0.58; p < 0.001). Moreover, at faster running speeds, the effect of prosthetic stiffness and height on biomechanics was mitigated and unchanged, respectively. Thus, prosthetic stiffness, but not height, likely influences distance running performance more than sprinting performance for athletes with bilateral transtibial amputations. PMID:28659414

  5. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-06-01

    Limited available information describes how running-specific prostheses and running speed affect the biomechanics of athletes with bilateral transtibial amputations. Accordingly, we quantified the effects of prosthetic stiffness, height and speed on the biomechanics of five athletes with bilateral transtibial amputations during treadmill running. Each athlete performed a set of running trials with 15 different prosthetic model, stiffness and height combinations. Each set of trials began with the athlete running on a force-measuring treadmill at 3 m s -1 , subsequent trials incremented by 1 m s -1 until they achieved their fastest attainable speed. We collected ground reaction forces (GRFs) during each trial. Prosthetic stiffness, height and running speed each affected biomechanics. Specifically, with stiffer prostheses, athletes exhibited greater peak and stance average vertical GRFs ( β = 0.03; p < 0.001), increased overall leg stiffness ( β = 0.21; p < 0.001), decreased ground contact time ( β = -0.07; p < 0.001) and increased step frequency ( β = 0.042; p < 0.001). Prosthetic height inversely associated with step frequency ( β = -0.021; p < 0.001). Running speed inversely associated with leg stiffness ( β = -0.58; p < 0.001). Moreover, at faster running speeds, the effect of prosthetic stiffness and height on biomechanics was mitigated and unchanged, respectively. Thus, prosthetic stiffness, but not height, likely influences distance running performance more than sprinting performance for athletes with bilateral transtibial amputations. © 2017 The Author(s).

  6. [Effect of supervised exercise training on walking speed, claudication distance and quality of life in peripheral arterial disease].

    PubMed

    Wenkstetten-Holub, Alfa; Kandioler-Honetz, Elisabeth; Kraus, Ingrid; Müller, Rudolf; Kurz, Robert Wolfgang

    2012-08-01

    Aim of the study was to evaluate the effects of supervised exercise training for peripheral arterial disease (PAD) on walking speed, claudication distance and quality of life. Ninety-four patients in stage IIa/IIb according to Fontaine underwent a six-month exercise training at the Center for Outpatient Rehabilitation Vienna (ZAW). Walking speed and Absolute Claudication Distance (ACD) improved significantly (p < 0,001 and p = 0,007 respectively). Increase of the Initial Claudication Distance (ICD) did not reach statistical significance (p = 0,14). Quality of life, as assessed by the questionnaire "PLC" manifested no significant change. The exercise training achieved considerable effects on walking speed and claudication distance. Despite these improvements, patient's quality of life revealed no relevant change. This outcome could be explained by the fact that aspects of physical functioning relevant to patients with claudicatio intermittens may be underrepresented in the PLC-questionnaire core module.

  7. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    PubMed

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Factors affecting the energy cost of level running at submaximal speed.

    PubMed

    Lacour, Jean-René; Bourdin, Muriel

    2015-04-01

    Metabolic measurement is still the criterion for investigation of the efficiency of mechanical work and for analysis of endurance performance in running. Metabolic demand may be expressed either as the energy spent per unit distance (energy cost of running, C r) or as energy demand at a given running speed (running economy). Systematic studies showed a range of costs of about 20 % between runners. Factors affecting C r include body dimensions: body mass and leg architecture, mostly calcaneal tuberosity length, responsible for 60-80 % of the variability. Children show a higher C r than adults. Higher resting metabolism and lower leg length/stature ratio are the main putative factors responsible for the difference. Elastic energy storage and reuse also contribute to the variability of C r. The increase in C r with increasing running speed due to increase in mechanical work is blunted till 6-7 m s(-1) by the increase in vertical stiffness and the decrease in ground contact time. Fatigue induced by prolonged or intense running is associated with up to 10 % increased C r; the contribution of metabolic and biomechanical factors remains unclear. Women show a C r similar to men of similar body mass, despite differences in gait pattern. The superiority of black African runners is presumably related to their leg architecture and better elastic energy storage and reuse.

  9. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.

    PubMed

    Kim, Ha Yeon; Yang, Sung Phil; Park, Gyu Lee; Kim, Eun Joo; You, Joshua Sung Hyun

    2016-01-01

    Robot-assisted and treadmill-gait training are promising neurorehabilitation techniques, with advantages over conventional gait training, but the neural substrates underpinning locomotor control remain unknown particularly during different gait training modes and speeds. The present optical imaging study compared cortical activities during conventional stepping walking (SW), treadmill walking (TW), and robot-assisted walking (RW) at different speeds. Fourteen healthy subjects (6 women, mean age 30.06, years ± 4.53) completed three walking training modes (SW, TW, and RW) at various speeds (self-selected, 1.5, 2.0, 2.5, and 3.0  km/h). A functional near-infrared spectroscopy (fNIRS) system determined cerebral hemodynamic changes associated with cortical locomotor network areas in the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). There was increased cortical activation in the SMC, PMC, and SMA during different walking training modes. More global locomotor network activation was observed during RW than TW or SW. As walking speed increased, multiple locomotor network activations were observed, and increased activation power spectrum. This is the first empirical evidence highlighting the neural substrates mediating dynamic locomotion for different gait training modes and speeds. Fast, robot-assisted gait training best facilitated cortical activation associated with locomotor control.

  10. Fixed-distance walk tests at comfortable and fast speed: Potential tools for the functional assessment of coronary patients?

    PubMed

    Morard, Marie-Doriane; Besson, Delphine; Laroche, Davy; Naaïm, Alexandre; Gremeaux, Vincent; Casillas, Jean-Marie

    2017-01-01

    There is ambiguity concerning the walk tests available for functional assessment of coronary patients, particularly for the walking speed. This study explores the psychometric properties of two walking tests, based on fixed-distance tests, at comfortable and fast velocity, in stabilized patients at the end of a cardiac rehabilitation program. At a three-day interval 58 coronary patients (mean age of 64.85±6.03 years, 50 men) performed three walk tests, the first two at a comfortable speed in a random order (6-minute walk test - 6MWT - and 400-metre comfortable walk test - 400mCWT) and the third at a brisk speed (200-metre fast walk test - 200mFWT). A modified Bruce treadmill test was associated at the end of the second phase. Monitored main parameters were: heart rate, walking velocity, VO 2 . Tolerance to the 3 tests was satisfactory. The reliability of the main parameters was good (intraclass correlation coefficient>0.8). The VO 2 concerning 6MWT and 400mCWT were not significantly different (P=0.33) and were lower to the first ventilatory threshold determined by the stress test (P<0.001): 16.2±3.0 vs. 16.5±2.6 vs. 20.7±5.1mL·min -1 ·kg -1 respectively. The VO 2 of the 200mFWT (20.2±3.7) was not different from the first ventilatory threshold. 400mCWT and 200mFWT are feasible, well-tolerated and reliable. They explore two levels of effort intensity (lower and not different to the first ventilatory threshold respectively). 400mCWT is a possible alternative to 6MWT. Associated with 200mFWT it should allow a better measurement of physical capacities and better customization of exercise training. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Pendular energy transduction within the step during human walking on slopes at different speeds

    PubMed Central

    Dewolf, Arthur H.; Ivanenko, Yuri P.; Lacquaniti, Francesco

    2017-01-01

    When ascending (descending) a slope, positive (negative) work must be performed to overcome changes in gravitational potential energy at the center of body mass (COM). This modifies the pendulum-like behavior of walking. The aim of this study is to analyze how energy exchange and mechanical work done vary within a step across slopes and speeds. Ten subjects walked on an instrumented treadmill at different slopes (from -9° to 9°), and speeds (between 0.56 and 2.22 m s-1). From the ground reaction forces, we evaluated energy of the COM, recovery (i.e. the potential-kinetic energy transduction) and pendular energy savings (i.e. the theoretical reduction in work due to this recovered energy) throughout the step. When walking uphill as compared to level, pendular energy savings increase during the first part of stance (when the COM is lifted) and decreases during the second part. Conversely in downhill walking, pendular energy savings decrease during the first part of stance and increase during the second part (when the COM is lowered). In uphill and downhill walking, the main phase of external work occurs around double support. Uphill, the positive work phase is extended during the beginning of single support to raise the body. Downhill, the negative work phase starts before double support, slowing the downward velocity of the body. Changes of the pendulum-like behavior as a function of slope can be illustrated by tilting the 'classical compass model' backwards (uphill) or forwards (downhill). PMID:29073208

  12. The influence of maximum running speed on eye size: a test of Leuckart's Law in mammals.

    PubMed

    Heard-Booth, Amber N; Kirk, E Christopher

    2012-06-01

    Vertebrate eye size is influenced by many factors, including body or head size, diet, and activity pattern. Locomotor speed has also been suggested to influence eye size in a relationship known as Leuckart's Law. Leuckart's Law proposes that animals capable of achieving fast locomotor speeds require large eyes to enhance visual acuity and avoid collisions with environmental obstacles. The selective influence of rapid flight has been invoked to explain the relatively large eyes of birds, but Leuckart's Law remains untested in nonavian vertebrates. This study investigates the relationship between eye size and maximum running speed in a diverse sample of mammals. Measures of axial eye diameter, maximum running speed, and body mass were collected from the published literature for 50 species from 10 mammalian orders. This analysis reveals that absolute eye size is significantly positively correlated with maximum running speed in mammals. Moreover, the relationship between eye size and running speed remains significant when the potentially confounding effects of body mass and phylogeny are statistically controlled. The results of this analysis are therefore consistent with the expectations of Leuckart's Law and demonstrate that faster-moving mammals have larger eyes than their slower-moving close relatives. Accordingly, we conclude that maximum running speed is one of several key selective factors that have influenced the evolution of eye size in mammals. Copyright © 2012 Wiley Periodicals, Inc.

  13. Preliminary Experiments with a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds

    PubMed Central

    Villarreal, Dario J.; Gregg, Robert D.

    2016-01-01

    This paper presents the experimental validation of a novel control strategy that unifies the entire gait cycle of a powered knee-ankle prosthetic leg without the need to switch between controllers for different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific control parameters and switching rules that must be tuned for a specific walking speed. The single controller presented is speed-invariant with a minimal number of control parameters to be tuned. A single, periodic virtual constraint is derived that exactly characterizes the desired actuated joint motion as a function of a mechanical phase variable across walking cycles. A single sensor was used to compute a phase variable related to the residual thigh angle’s phase plane, which was recently shown to robustly represent the phase of non-steady human gait. This phase variable allows the prosthesis to synchronize naturally with the human user for intuitive, biomimetic behavior. A custom powered knee-ankle prosthesis was designed and built to implement the control strategy and validate its performance. A human subject experiment was conducted across multiple walking speeds (1 to 3 miles/hour) in a continuous sequence with the single phase-based controller, demonstrating its adaptability to the user’s intended speed. PMID:28392969

  14. Biomechanical characteristics of skeletal muscles and associations between running speed and contraction time in 8- to 13-year-old children.

    PubMed

    Završnik, Jernej; Pišot, Rado; Šimunič, Boštjan; Kokol, Peter; Blažun Vošner, Helena

    2017-02-01

    Objective To investigate associations between running speeds and contraction times in 8- to 13-year-old children. Method This longitudinal study analyzed tensiomyographic measurements of vastus lateralis and biceps femoris muscles' contraction times and maximum running speeds in 107 children (53 boys, 54 girls). Data were evaluated using multiple correspondence analysis. Results A gender difference existed between the vastus lateralis contraction times and running speeds. The running speed was less dependent on vastus lateralis contraction times in boys than in girls. Analysis of biceps femoris contraction times and running speeds revealed that running speeds of boys were much more structurally associated with contraction times than those of girls, for whom the association seemed chaotic. Conclusion Joint category plots showed that contraction times of biceps femoris were associated much more closely with running speed than those of the vastus lateralis muscle. These results provide insight into a new dimension of children's development.

  15. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1964-06-20

    A "suited" test subject on the Reduced Gravity Walking Simulator located in the hanger at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in "Simulators For Manned Space Research:" "The cables which support the astronaut are supported by an overhead trolley about 150 feet above the center line of the walkway and the support is arranged so that the subject is free to walk, run, jump, and perform other self-locomotive tasks in a more-or-less normal manner, even though he is constrained to move in one place." "The studies thus far show that an astronaut should have no particular difficulty in walking in a pressurized space suit on a hard lunar surface. Rather, the pace was faster and the suit was found to be more comfortable and less fatiguing under lunar "g" than under earth "g." When the test subject wished to travel hurriedly any appreciable distance, a long loping gait at about 10 feet per second was found to be most comfortable." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 377; Francis B. Smith, "Simulators For Manned Space Research," Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966.

  16. Compact, high-speed algorithm for laying out printed circuit board runs

    NASA Astrophysics Data System (ADS)

    Zapolotskiy, D. Y.

    1985-09-01

    A high speed printed circuit connection layout algorithm is described which was developed within the framework of an interactive system for designing two-sided printed circuit broads. For this reason, algorithm speed was considered, a priori, as a requirement equally as important as the inherent demand for minimizing circuit run lengths and the number of junction openings. This resulted from the fact that, in order to provide psychological man/machine compatibility in the design process, real-time dialog during the layout phase is possible only within limited time frames (on the order of several seconds) for each circuit run. The work was carried out for use on an ARM-R automated work site complex based on an SM-4 minicomputer with a 32K-word memory. This limited memory capacity heightened the demand for algorithm speed and also tightened data file structure and size requirements. The layout algorithm's design logic is analyzed. The structure and organization of the data files are described.

  17. Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking.

    PubMed

    Chehab, E F; Andriacchi, T P; Favre, J

    2017-06-14

    The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Joseph

    Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.

  19. A Walk (or Cycle) to the Park: Active Transit to Neighborhood Amenities, the CARDIA Study

    PubMed Central

    Boone-Heinonen, Janne; Jacobs, David R.; Sidney, Stephen; Sternfeld, Barbara; Lewis, Cora E.; Gordon-Larsen, Penny

    2009-01-01

    Background Building on known associations between active commuting and reduced cardiovascular disease (CVD) risk, this study examines active transit to neighborhood amenities and differences between walking versus cycling for transportation. Method Year 20 data from the Coronary Artery Risk Development in Young Adults (CARDIA) study (3549 black and white adults aged 38–50 years in 2005–06) were analyzed in 2008–2009. Sociodemographic correlates of transportation mode (car-only, walk-only, any cycling, other) to neighborhood amenities were examined in multivariable multinomial logistic models. Gender-stratified, multivariable linear or multinomial regression models compared CVD risk factors across transit modes. Results Active transit was most common to parks and public transit stops; walking was more common than cycling. Among those who used each amenity, active transit (walk-only and any cycling versus car-only transit) was more common in men and those with no live-in partner and less than full-time employment [significant OR's (95% CI) ranging from 1.56 (1.08, 2.27) to 4.52 (1.70, 12.14)], and less common in those with children. Active transit to any neighborhood amenity was associated with more favorable BMI, waist circumference, and fitness [largest coefficient (95% CI) −1.68 (−2.81, −0.55) for BMI, −3.41 (−5.71, −1.11) for waist circumference (cm), and 36.65 (17.99, 55.31) for treadmill test duration (sec)]. Only cycling was associated with lower lifetime CVD risk classification. Conclusion Active transit to neighborhood amenities was related to sociodemographics and CVD risk factors. Variation in health-related benefits by active transit mode, if validated in prospective studies, may have implications for transportation planning and research. PMID:19765499

  20. Physical strain of comfortable walking in children with mild cerebral palsy.

    PubMed

    Dallmeijer, Annet J; Brehm, Merel-Anne

    2011-01-01

    To evaluate the physical strain of comfortable walking in children with mild cerebral palsy (CP) in comparison to typically developing (TD) children. Physical strain was defined as the oxygen uptake during walking (VO(2walk)) expressed as a percentage of their maximal aerobic capacity (VO(2peak)). Eighteen children (aged 8-16 years) participated, including eight ambulant children (four girls, four boys) with mild spastic CP (three hemiplegia, five diplegia, GMFCS I: n = 7 and II: n = 1) and 10 TD children. VO(2walk) was measured during 5 min of walking on an indoor track at comfortable walking speed. VO(2peak) was measured in a shuttle run test. VO(2walk) was significantly higher in CP (19.7 (2.8) ml/kg/min) compared to TD (16.8 (3.6) ml/kg/min, p = 0.033), while walking speed did not differ significantly between groups. VO(2peak) was significantly lower in CP (37.2 (2.2) ml/kg/min) compared to TD (45.0 (5.3) ml/kg/min, p = 0.001). Consequently, the physical strain during walking was significantly higher in CP (52 (7.7) %) compared to TD (36 (8.4) %, p = 0.001). The higher physical strain during comfortable walking of children with mild CP compared to TD children may be related to reported problems with fatigue in this population, and suggest a need for physical aerobic training programmes.

  1. Recovery of walking speed and symmetrical movement of the pelvis and lower extremity joints after unilateral THA.

    PubMed

    Miki, Hidenobu; Sugano, Nobuhiko; Hagio, Keisuke; Nishii, Takashi; Kawakami, Hideo; Kakimoto, Akihiro; Nakamura, Nobuo; Yoshikawa, Hideki

    2004-04-01

    In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.

  2. Walk, Bicycle, and Transit Trips of Transit-Dependent and Choice Riders in the 2009 United States National Household Travel Survey.

    PubMed

    Lachapelle, Ugo

    2015-08-01

    Previous research has shown that public transit use may be associated with active transportation. Access to a car may influence active transportation of transit riders. Using the 2009 United States National Household Travel Survey (NHTS), transit users ≥ 16 years old (n = 25,550) were categorized according to driver status and number of cars and drivers in the household. This typology ranged from choice transit riders (ie, "fully motorized drivers") to transit-dependent riders (ie, "unmotorized nondriver"). Transit trips, walking trips, and bicycling trips of transit users are estimated in negative binomial models against the car availability typology. Sixteen percent of participants took transit in the past month; most (86%) lived in car-owning households. As income increased, car availability also increased. Transit user groups with lower car availability were generally more likely than fully motorized drivers to take more public transit, walking, and bicycle trips. Transit riders have varying levels of vehicle access; their use of combinations of alternative modes of transportation fluctuates accordingly. Transit-dependent individuals without cars or sharing cars used active transportation more frequently than car owners. Policies to reduce vehicle ownership in households may enable increases in the use of alternative modes of transportation for transit users, even when cars are still owned.

  3. Running speed during training and percent body fat predict race time in recreational male marathoners

    PubMed Central

    Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Background Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Methods Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. Results After multivariate regression, running speed of the training units (β = −0.52, P < 0.0001) and percent body fat (β = 0.27, P < 0.0001) were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r2 = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) − 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. Conclusion The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners. PMID:24198587

  4. Running speed during training and percent body fat predict race time in recreational male marathoners.

    PubMed

    Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. After multivariate regression, running speed of the training units (β = -0.52, P < 0.0001) and percent body fat (β = 0.27, P < 0.0001) were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r (2) = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) - 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners.

  5. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury.

    PubMed

    Street, Tamsyn; Singleton, Christine

    2018-05-01

    The study aimed to investigate the presence of a training effect for rehabilitation of walking function in motor-incomplete spinal cord injury (SCI) through daily use of functional electrical stimulation (FES). A specialist FES outpatient centre. Thirty-five participants (mean age 53, SD 15, range 18-80; mean years since diagnosis 9, range 5 months - 39 years) with drop foot and motor-incomplete SCI (T12 or higher, ASIA Impairment Scale C and D) able to ambulate 10 metres with the use of a walking stick or frame. FES of the peroneal nerve, glutei and hamstrings as clinically indicated over six months in the community. The data was analysed for a training effect (difference between unassisted ten metre walking speed at baseline and after six months) and orthotic effects (difference between walking speed with and without FES) initially on day one and after six months. The data was further analysed for a minimum clinically important difference (MCID) (>0.06 m/s). A clinically meaningful, significant change was observed for initial orthotic effect (0.13m/s, CI: 0.04-0.17, P = 0.013), total orthotic effect (0.11m/s, CI: 0.04-0.18, P = 0.017) and training effect (0.09m/s, CI: 0.02-0.16, P = 0.025). The results suggest that daily independent use of FES may produce clinically meaningful changes in walking speed which are significant for motor-incomplete SCI. Further research exploring the mechanism for the presence of a training effect may be beneficial in targeting therapies for future rehabilitation.

  6. Stride-to-stride variability and complexity between novice and experienced runners during a prolonged run at anaerobic threshold speed.

    PubMed

    Mo, Shiwei; Chow, Daniel H K

    2018-05-19

    Motor control, related to running performance and running related injuries, is affected by progression of fatigue during a prolonged run. Distance runners are usually recommended to train at or slightly above anaerobic threshold (AT) speed for improving performance. However, running at AT speed may result in accelerated fatigue. It is not clear how one adapts running gait pattern during a prolonged run at AT speed and if there are differences between runners with different training experience. To compare characteristics of stride-to-stride variability and complexity during a prolonged run at AT speed between novice runners (NR) and experienced runners (ER). Both NR (n = 17) and ER (n = 17) performed a treadmill run for 31 min at his/her AT speed. Stride interval dynamics was obtained throughout the run with the middle 30 min equally divided into six time intervals (denoted as T1, T2, T3, T4, T5 and T6). Mean, coefficient of variation (CV) and scaling exponent alpha of stride intervals were calculated for each interval of each group. This study revealed mean stride interval significantly increased with running time in a non-linear trend (p<0.001). The stride interval variability (CV) maintained relatively constant for NR (p = 0.22) and changed nonlinearly for ER (p = 0.023) throughout the run. Alpha was significantly different between groups at T2, T5 and T6, and nonlinearly changed with running time for both groups with slight differences. These findings provided insights into how the motor control system adapts to progression of fatigue and evidences that long-term training enhances motor control. Although both ER and NR could regulate gait complexity to maintain AT speed throughout the prolonged run, ER also regulated stride interval variability to achieve the goal. Copyright © 2018. Published by Elsevier B.V.

  7. The start in speed skating: from running to gliding.

    PubMed

    de Koning, J J; Thomas, R; Berger, M; de Groot, G; van Ingen Schenau, G J

    1995-12-01

    The purpose of this study was to describe the push-off kinematics in speed skating using three-dimensional coordinates of elite male sprinters during the first part of a speed skating sprint. The velocity of the mass center of the skater's body VC, is decomposed into an "extension" velocity component VE, which is associated with the shortening and lengthening of the leg segment and a "rotational" velocity component Vr, which is the result of the rotation of the leg segment about the toe of the skate. It can be concluded that the mechanics of the first strokes of a sprint differ considerably from the mechanics of strokes later on. The first push-offs take place against fixed location on the ice. In these "running-like" push-offs the contribution of Vr in the forward direction is larger than the extension component Ve. Later on, the strokes are characterized by a gliding push-off in which Ve increases. In these gliding push-offs no direct relation exists between forward velocity of the skater and the extension in the joints. This allows skaters to obtain much higher velocities than can be obtained during running.

  8. Effects of an Exercise Protocol for Improving Handgrip Strength and Walking Speed on Cognitive Function in Patients with Chronic Stroke.

    PubMed

    Kim, Jaeeun; Yim, Jongeun

    2017-11-13

    BACKGROUND Handgrip strength and walking speed predict and influence cognitive function. We aimed to investigate an exercise protocol for improving handgrip strength and walking speed, applied to patients with chronic stroke who had cognitive function disorder. MATERIAL AND METHODS Twenty-nine patients with cognitive function disorder participated in this study, and were randomly divided into one of two groups: exercise group (n=14) and control group (n=15). Both groups underwent conventional physical therapy for 60 minutes per day. Additionally, the exercise group followed an exercise protocol for handgrip using the hand exerciser, power web exerciser, Digi-Flex (15 minutes); and treadmill-based weight loading training on their less-affected leg (15 minutes) using a sandbag for 30 minutes, three times per day, for six weeks. Outcomes, including cognitive function and gait ability, were measured before and after the training. RESULTS The Korean version of Montreal Cognitive Assessment (K-MoCA), Stroop test (both simple and interference), Trail Making-B, Timed Up and Go, and 10-Meter Walk tests (p<0.05) yielded improved results for the exercise group compared with the control group. Importantly, the K-MoCA, Timed Up and Go, and 10-Meter Walk test results were significantly different between the two groups (p<0.05). CONCLUSIONS The exercise protocol for improving handgrip strength and walking speed had positive effects on cognitive function in patients with chronic stroke.

  9. The validity of two Omron pedometers during treadmill walking is speed dependent.

    PubMed

    Giannakidou, Dimitra M; Kambas, Antonis; Ageloussis, Nikolaos; Fatouros, Ioannis; Christoforidis, Christos; Venetsanou, Fotini; Douroudos, Ioannis; Taxildaris, Kyriakos

    2012-01-01

    The purpose of this study was to examine the effects of walking speed on the accuracy of measurement of steps, distance, and energy expenditure of two commercially available Omron pedometers [HJ-720IT-E2 (HJ-720) and HJ-113-E (HJ-113)]. Twenty-four untrained males (age, 22.7 ± 2.8 years; BMI, 24.38 ± 2.19 kg m(-2); body fat (%), 16 ± 2.2; VO(2max), 40.2 ± 6.5 ml kg(-1) min(-1)) and 18 females (age, 22.4 ± 2.9 years; BMI, 21.68 ± 2.43 kg m(-2); body fat (%), 23% ± 1.8; VO(2max), 35.9 ± 2.8 ml kg(-1) min(-1)) walked at five different velocities (54, 67, 80, 94 and 107 m min(-1)) on a treadmill in 5-min stages while wearing three types of pedometers: (a) HJ-720, (b) HJ-113, and (c) Yamax Digi-Walker SW-200 (YAM). Step-count for each pedometer was recorded at the end of each stage and compared with the value of a hand counter. Additionally, Omron pedometers were evaluated on their distance and energy expenditure (against VO(2) measurement with a gas-exchange analyzer) accuracy during each stage. HJ-720 and HJ-113 demonstrated high accuracy (r = 0.80-0.99) at all speeds. YAM underestimated step-count only at 54 m min(-1) (r = 0.46). HJ-720 and HJ-113 overestimated distance at slower speeds and underestimated distance at faster speeds, providing mean distance values that where to within 1.5-4% at 80 m min(-1). HJ-720 and HJ-113 underestimated energy expenditure (gross kilocalories) by 28%, when compared to indirect calorimetry. These results suggest that although the Omron HJ-720 and HJ-113 pedometers are accurate in the measurement of step-count, they demonstrate limited accuracy in the assessment of traveled distance and energy expenditure in a speed-dependent manner.

  10. The 1-mile walk test is a valid predictor of VO(2max) and is a reliable alternative fitness test to the 1.5-mile run in U.S. Air Force males.

    PubMed

    Weiglein, Laura; Herrick, Jeffery; Kirk, Stacie; Kirk, Erik P

    2011-06-01

    The purpose of this study was to assess the validity of the 1-mile walk (Rockport Walk Test) as a predictor of VO(2max) and determine whether the 1-mile walk is a reliable alternative to the 1.5-mile run in moderately fit to highly fit U.S. Air Force males. Twenty-four (33.0 +/- 1.5 years) males completed a maximal treadmill VO(2max) (50.3 +/- 1.4 mL/ kg/min), 1-mile walk, and 1.5-mile run. For the 1-mile walk, there were no significant differences between measured and predicted VO(2max) (p = 0.177, r = 0.817). There were no significant differences (p = 0.573) between points scored in the Air Force Fitness Test for the 1-mile walk and 1.5-mile run tests. In conclusion, the 1-mile walk test is a valid predictor of VO(2max) and can be used as an alternative fitness test to the 1.5-mile run in assessing cardiovascular fitness in Air Force males.

  11. Relationship between oxygen cost of walking and level of walking disability after stroke: An experimental study.

    PubMed

    Polese, Janaine C; Ada, Louise; Teixeira-Salmela, Luci F

    2018-01-01

    Since physical inactivity is the major risk factor for recurrent stroke, it is important to understand how level of disability impacts oxygen uptake by people after stroke. This study investigated the nature of the relationship between level of disability and oxygen cost in people with chronic stroke. Level of walking disability was measured as comfortable walking speed using the 10-m Walk Test reported in m/s with 55 ambulatory people 2 years after stroke. Oxygen cost was measured during 3 walking tasks: overground walking at comfortable speed, overground walking at fast speed, and stair walking at comfortable speed. Oxygen cost was calculated from oxygen uptake divided by distance covered during walking and reported in ml∙kg -1 ∙m -1 . The relationship between level of walking disability and oxygen cost was curvilinear for all 3 walking tasks. One quadratic model accounted for 81% (95% CI [74, 88]) of the variance in oxygen cost during the 3 walking tasks: [Formula: see text] DISCUSSION: The oxygen cost of walking was related the level of walking disability in people with chronic stroke, such that the more disabled the individual, the higher the oxygen cost of walking; with oxygen cost rising sharply as disability became severe. An equation that relates oxygen cost during different walking tasks according to the level of walking disability allows clinicians to determine oxygen cost indirectly without the difficulty of measuring oxygen uptake directly. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Flow and free running speed characterization of dental air turbine handpieces.

    PubMed

    Dyson, J E; Darvell, B W

    1999-09-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.

  13. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.

    PubMed

    Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S

    2017-01-01

    We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.

  14. Considerations for initiating and progressing running programs in obese individuals.

    PubMed

    Vincent, Heather K; Vincent, Kevin R

    2013-06-01

    Running has rapidly increased in popularity and elicits numerous health benefits, including weight loss. At present, no practical guidelines are available for obese persons who wish to start a running program. This article is a narrative review of the emerging evidence of the musculoskeletal factors to consider in obese patients who wish to initiate a running program and increase its intensity. Main program goals should include gradual weight loss, avoidance of injury, and enjoyment of the exercise. Pre-emptive strengthening exercises can improve the strength of the foot and ankle, hip abductor, quadriceps, and trunk to help support the joints bearing the loads before starting a running program. Depending on the presence of comorbid joint pain, nonimpact exercise or walking (on a flat surface, on an incline, and at high intensity) can be used to initiate the program. For progression to running, intensity or mileage increases should be slow and consistent to prevent musculoskeletal injury. A stepwise transition to running at a rate not exceeding 5%-10% of weekly mileage or duration is reasonable for this population. Intermittent walk-jog programs are also attractive for persons who are not able to sustain running for a long period. Musculoskeletal pain should neither carry over to the next day nor be increased the day after exercising. Rest days in between running sessions may help prevent overuse injury. Patients who have undergone bariatric surgery and are now lean can also run, but special foci such as hydration and energy replacement must be considered. In summary, obese persons can run for exercise, provided they follow conservative transitions and progression, schedule rest days, and heed onset of pain symptoms. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Kinematic and Kinetic Evaluation of High Speed Backward Running

    DTIC Science & Technology

    1999-06-30

    Designed using Perform Pro , WHS/DIOR, Oct 94 KINEMATIC AND KINETIC EVALUATION OF HIGH SPEED BACKWARD RUNNING by ALAN WAYNE ARATA A DISSERTATION...Project Manager, Engineering Division, Kelly Air Force Base, Texas, 1983-86 AWARDS AND HONORS: All-American, 50yd Freestyle , 1979 Winner, Rocky...redirection #include <stdlib.h> // for exit #include <iomanip.h> // for set precision #include <string.h> // for string copy const int NUMPOINTS

  16. Effects of 1 week of unilateral ankle immobilization on plantar-flexor strength, balance, and walking speed: a pilot study in asymptomatic volunteers.

    PubMed

    Caplan, Nick; Forbes, Andrew; Radha, Sarkhell; Stewart, Su; Ewen, Alistair; St Clair Gibson, Alan; Kader, Deiary

    2015-05-01

    Ankle immobilization is often used after ankle injury. To determine the influence of 1 week's unilateral ankle immobilization on plantar-flexor strength, balance, and walking gait in asymptomatic volunteers. Repeated-measures laboratory study. University laboratory. 6 physically active male participants with no recent history of lower-limb injury. Participants completed a 1-wk period of ankle immobilization achieved through wearing a below-knee ankle cast. Before the cast was applied, as well as immediately, 24 h, and 48 h after cast removal, their plantar-flexor strength was assessed isokinetically, and they completed a single-leg balance task as a measure of proprioceptive function. An analysis of their walking gait was also completed Main Outcome Measures: Peak plantar-flexor torque and balance were used to determine any effect on muscle strength and proprioception after cast removal. Ranges of motion (3D) of the ankle, knee, and hip, as well as walking speed, were used to assess any influence on walking gait. After cast removal, plantar-flexor strength was reduced for the majority of participants (P = .063, CI = -33.98 to 1.31) and balance performance was reduced in the immobilized limb (P < .05, CI = 0.84-5.16). Both strength and balance were not significantly different from baseline levels by 48 h. Walking speed was not significantly different immediately after cast removal but increased progressively above baseline walking speed over the following 48 h. Joint ranges of motion were not significantly different at any time point. The reduction in strength and balance after such a short period of immobilization suggested compromised central and peripheral neural mechanisms. This suggestion appeared consistent with the delayed increase in walking speed that could occur as a result of the excitability of the neural pathways increasing toward baseline levels.

  17. Metabolic Power in Team Sports - Part 1: An Update.

    PubMed

    di Prampero, Pietro Enrico; Osgnach, Cristian

    2018-06-14

    Team sports are characterised by frequent episodes of accelerated/decelerated running. The corresponding energy cost can be estimated on the basis of the biomechanical equivalence between accelerated/decelerated running on flat terrain and constant speed running uphill/downhill. This approach allows one to: (i) estimate the time course of the instantaneous metabolic power requirement of any given player and (ii) infer therefrom the overall energy expenditure of any given time window of a soccer drill or match. In the original approach, walking and running were aggregated and energetically considered as running, even if in team sports several walking periods are interspersed among running bouts. However, since the transition speed between walking and running is known for any given incline of the terrain, we describe here an approach to identify walking episodes, thus utilising the corresponding energy cost which is smaller than in running. In addition, the new algorithm also takes into account the energy expenditure against the air resistance, for both walking and running. The new approach yields overall energy expenditure values, for a whole match,≈14% smaller than the original algorithm; moreover, it shows that the energy expenditure against the air resistance is≈2% of the total. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Damage to Liver and Skeletal Muscles in Marathon Runners During a 100 km Run With Regard to Age and Running Speed

    PubMed Central

    Jastrzębski, Zbigniew; Żychowska, Małgorzata; Radzimiński, Łukasz; Konieczna, Anna; Kortas, Jakub

    2015-01-01

    The purpose of this study was to determine: (1) whether damage to liver and skeletal muscles occurs during a 100 km run; (2) whether the metabolic response to extreme exertion is related to the age or running speed of the participant; (3) whether it is possible to determine the optimal running speed and distance for long-distance runners’ health by examining biochemical parameters in venous blood. Fourteen experienced male amateur ultra-marathon runners, divided into two age groups, took part in a 100 km run. Blood samples for liver and skeletal muscle damage indexes were collected from the ulnar vein just before the run, after 25, 50, 75 and 100 km, and 24 hours after termination of the run. A considerable increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was observed with the distance covered (p < 0.05), which continued during recovery. An increase in the mean values of lactate dehydrogenase (LDH), creatine kinase (CK) and C-reactive protein (CRP) (p < 0.05) was observed with each sequential course. The biggest differences between the age groups were found for the activity of liver enzymes and LDH after completing 75 km as well as after 24 hours of recovery. It can be concluded that the response to extreme exertion deteriorates with age in terms of the active movement apparatus. PMID:25964813

  19. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.

    PubMed

    Bishop, P J; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Hancock, J A; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G; Clemente, C J

    2018-01-01

    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.

  20. Body Temperature and Energy Metabolism of Brown Lemming in Relation to Running Speed,

    DTIC Science & Technology

    1979-01-01

    ADASOG 382 ARCTIC INST OF NORTH AMERICA ARLINGTON VA F/B 6/16 BOOT TEMPERATURE AND ENERGY METABOLISM OF BROWN LEMMING IN RELA--ETC(U) W4LSIID 1979 T...M CASEY N00014-75-C-0635UNCLASSIFIEDh l o I - Body temperature and energy metabolism *of brown lemming in relation to running speed) by Timothy M...Casey Dept. of E. Physiology Cook College, Rutgers University New Brunswick, New Jersey 08903 C2 Running head: Metabolism and Tb of running lemmings. ALU

  1. Achilles Tendon Adaptation During Transition to a Minimalist Running Style.

    PubMed

    Joseph, Michael F; Histen, Katherine; Arntsen, Julia; L'Hereux, Lauren; Defeo, Carmine; Lockwood, Derek; Scheer, Todd; Denegar, Craig R

    2017-04-01

    Achilles tendons (ATs) adapt to increased loading generated by long-term adoption of a minimalist shoe running style. There may be difference in the chronology and extent of adaptation between the sexes. To learn the chronology of AT adaptations in female and male runners who transitioned to a minimalist running style through a planned, progressive 12-wk transition program. Prospective cohort study of well-trained, traditionally shod runners who transitioned to minimalist shoe running. Repeated laboratory assessment at baseline and 3, 12, and 24 wk after initiating transition program. Fifteen women and 7 men (of 29 enrolled) completed the study. The authors used diagnostic ultrasound and isokinetic dynamometry to generate a force elongation curve and its derivatives at each time point. Greater adaptations were observed in men than in women, with men generating more force and having greater increases in CSA, stiffness, and Young's modulus and less elongation after 12 wk of training. Men demonstrated changes in AT properties that were consistent with increased loading of the triceps surae during exercise. The women demonstrated far smaller changes. Further investigation is warranted to understand when adaptations may occur in women and the implications of altered AT mechanical properties for performance and injury risk.

  2. Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer.

    PubMed

    Barnett, Anthony; van den Hoek, Daniel; Barnett, David; Cerin, Ester

    2016-12-08

    Accelerometry is the method of choice for objectively assessing physical activity in older adults. Many studies have used an accelerometer count cut point corresponding to 3 metabolic equivalents (METs) derived in young adults during treadmill walking and running with a resting metabolic rate (RMR) assumed at 3.5 mL · kg -1  · min -1 (corresponding to 1 MET). RMR is lower in older adults; therefore, their 3 MET level occurs at a lower absolute energy expenditure making the cut point derived from young adults inappropriate for this population. The few studies determining older adult specific moderate-to-vigorous intensity physical activity (MVPA) cut points had methodological limitations, such as not measuring RMR and using treadmill walking. This study determined a MVPA hip-worn accelerometer cut point for older adults using measured RMR and overground walking. Following determination of RMR, 45 older adults (mean age 70.2 ± 7 years, range 60-87.6 years) undertook an outdoor, overground walking protocol with accelerometer count and energy expenditure determined at five walking speeds. Mean RMR was 2.8 ± 0.6 mL · kg -1  · min -1 . The MVPA cut points (95% CI) determined using linear mixed models were: vertical axis 1013 (734, 1292) counts · min -1 ; vector magnitude 1924 (1657, 2192) counts · min -1 ; and walking speed 2.5 (2.2, 2.8) km · hr -1 . High levels of inter-individual variability in cut points were found. These MVPA accelerometer and speed cut points for walking, the most popular physical activity in older adults, were lower than those for younger adults. Using cut points determined in younger adults for older adult population studies is likely to underestimate time spent engaged in MVPA. In addition, prescription of walking speed based on the adult cut point is likely to result in older adults working at a higher intensity than intended.

  3. Validity of the Samsung Phone S Health application for assessing steps and energy expenditure during walking and running: Does phone placement matter?

    PubMed Central

    Johnson, Marquell; Turek, Jillian; Dornfeld, Chelsea; Drews, Jennifer; Hansen, Nicole

    2016-01-01

    Background The emergence of mHealth and the utilization of smartphones in physical activity interventions warrant a closer examination of validity evidence for such technology. This study examined the validity of the Samsung S Health application in measuring steps and energy expenditure. Methods Twenty-nine participants (mean age 21.69 ± 1.63) participated in the study. Participants carried a Samsung smartphone in their non-dominant hand and right pocket while walking around a 200-meter track and running on a treadmill at 2.24 m∙s−1. Steps and energy expenditure from the S Health app were compared with StepWatch 3 Step Activity Monitor steps and indirect calorimetry. Results No significant differences between S Health estimated steps and energy expenditure during walking and their respective criterion measures, regardless of placement. There was also no significant difference between S Health estimated steps and the criterion measure during treadmill running, regardless of placement. There was significant differences between S Health estimated energy expenditure and the criterion during treadmill running for both placements (both p < 0.001). Conclusions The S Health application measures steps and energy expenditure accurately during self-selected pace walking regardless of placement. Placement of the phone impacts the S Health application accuracy in measuring physical activity variables during treadmill running. PMID:29942556

  4. Effect of Different Training Methods on Stride Parameters in Speed Maintenance Phase of 100-m Sprint Running.

    PubMed

    Cetin, Emel; Hindistan, I Ethem; Ozkaya, Y Gul

    2018-05-01

    Cetin, E, Hindistan, IE, Ozkaya, YG. Effect of different training methods on stride parameters in speed maintenance phase of 100-m sprint running. J Strength Cond Res 32(5): 1263-1272, 2018-This study examined the effects of 2 different training methods relevant to sloping surface on stride parameters in speed maintenance phase of 100-m sprint running. Twenty recreationally active students were assigned into one of 3 groups: combined training (Com), horizontal training (H), and control (C) group. Com group performed uphill and downhill training on a sloping surface with an angle of 4°, whereas H group trained on a horizontal surface, 3 days a week for 8 weeks. Speed maintenance and deceleration phases were divided into distances with 10-m intervals, and running time (t), running velocity (RV), step frequency (SF), and step length (SL) were measured at preexercise, and postexercise period. After 8 weeks of training program, t was shortened by 3.97% in Com group, and 2.37% in H group. Running velocity also increased for totally 100 m of running distance by 4.13 and 2.35% in Com, and H groups, respectively. At the speed maintenance phase, although t and maximal RV (RVmax) found to be statistically unaltered during overall phase, t was found to be decreased, and RVmax was preceded by 10 m in distance in both training groups. Step length was increased at 60-70 m, and SF was decreased at 70-80 m in H group. Step length was increased with concomitant decrease in SF at 80-90 m in Com group. Both training groups maintained the RVmax with a great percentage at the speed maintenance phase. In conclusion, although both training methods resulted in an increase in running time and RV, Com training method was more prominently effective method in improving RV, and this improvement was originated from the positive changes in SL during the speed maintaining phase.

  5. Gait Evaluation of Overground Walking and Treadmill Walking Using Compass-Type Walking Model

    NASA Astrophysics Data System (ADS)

    Nagata, Yousuke; Yamamoto, Masayoshi; Funabiki, Shigeyuki

    A treadmill is a useful apparatus for the gait training and evaluation. However, many differences are reported between treadmill and overground walking. Experimental comparisons of the muscle activity of the leg and the heart rate have been carried out. However, the dynamic comparison has not been performed. The dynamic evaluation of the overground walking and the treadmill walking using a compass-type walking model (CTWM) which is a simple bipedal walking model, then their comparison is discussed. It is confirmed that the walking simulation using the CTWM can simulate the difference of that walk, it is clarified that there are the differences of the kick impulse on the ground and the turning impulse of the foot to the variation of the belt speed and then differences are the main factor of two walking.

  6. High Speed Running and Sprinting Profiles of Elite Soccer Players

    PubMed Central

    Miñano-Espin, Javier; Casáis, Luis; Lago-Peñas, Carlos; Gómez-Ruano, Miguel Ángel

    2017-01-01

    Abstract Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent) were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD) = 536, External Defenders (ED) = 491, Central Midfielders (CM) = 544, External Midfielders (EM) = 233, and Forwards (F) = 278). Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France). A repeated measures analysis of variance (ANOVA) was performed for distances covered at different intensities (sprinting (>24.0 km/h) and high-speed running (21.1-24.0 km/h) and the number of sprints (21.1-24.0 km/h and >24.0 km/h) during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p < 0.01). While ED did not show differences in their physical performance, CD (p < 0.05), CM (p < 0.01), EM (p < 0.01) and F (p > 0.01) from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition. PMID:28828087

  7. Transition from shod to barefoot alters dynamic stability during running.

    PubMed

    Ekizos, Antonis; Santuz, Alessandro; Arampatzis, Adamantios

    2017-07-01

    Barefoot running recently received increased attention, with controversial results regarding its effects on injury risk and performance. Numerous studies examined the kinetic and kinematic changes between the shod and the barefoot condition. Intrinsic parameters such as the local dynamic stability could provide new insight regarding neuromuscular control when immediately transitioning from one running condition to the other. We investigated the local dynamic stability during the change from shod to barefoot running. We further measured biomechanical parameters to examine the mechanisms governing this transition. Twenty habitually shod, young and healthy participants ran on a pressure plate-equipped treadmill and alternated between shod and barefoot running. We calculated the largest Lyapunov exponents as a measure of errors in the control of the movement. Biomechanical parameters were also collected. Local dynamic stability decreased significantly (d=0.41; 2.1%) during barefoot running indicating worse control over the movement. We measured higher cadence (d=0.35; 2.2%) and total flight time (d=0.58; 19%), lower total contact time (d=0.58; -5%), total vertical displacement (d=0.39; -4%), and vertical impulse (d=1.32; 11%) over the two minutes when running barefoot. The strike index changed significantly (d=1.29; 237%) towards the front of the foot. Immediate transition from shod to the barefoot condition resulted in an increased instability and indicates a worst control over the movement. The increased instability was associated with biomechanical changes (i.e. foot strike patterns) of the participants in the barefoot condition. Possible reasons why this instability arises, might be traced in the stance phase and particularly in the push-off. The decreased stability might affect injury risk and performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of duration of upper- and lower-extremity rehabilitation sessions and walking speed on recovery of interlimb coordination in hemiplegic gait.

    PubMed

    Kwakkel, Gert; Wagenaar, Robert C

    2002-05-01

    The effects of different durations of rehabilitation sessions for the upper extremities (UEs) and lower extremities (LEs) on the recovery of interlimb coordination in hemiplegic gait in patients who have had a stroke were investigated. Fifty-three subjects who had strokes involving their middle cerebral arteries were assigned to rehabilitation programs with (1) an emphasis on the LEs, (2) an emphasis on the paretic UE, or (3) a condition in which the paretic arm (UE) and leg (LE) were immobilized with an inflatable pressure splint (control treatment). The 3 treatment regimens were applied for 30 minutes, 5 days a week, during the first 20 weeks after onset of stroke. All subjects also participated in a rehabilitation program 5 days a week that consisted of 15 minutes of UE exercises and 15 minutes of LE exercises in addition to a weekly 11/2-hour session of training in activities of daily living. A repeated-measures design was used. Differences among the 3 treatment regimens were evaluated in terms of comfortable and maximal walking speeds. In addition, mean continuous relative phase (CRP) between paretic arm and leg (PAL) movements and nonparetic arm and leg (NAL) movements and standard deviations of CRP of both limb pairs as a measurement of stability (variability) were evaluated. Comfortable walking speed improved in the group that received interventions involving the LEs compared with the group that received interventions involving the UEs and the group that received the control treatment. No differences among the 3 treatment conditions were found for the mean CRP of NAL and PAL as well as the standard deviation of CRP of both limb pairs. With the exception of an improved comfortable walking speed as a result of a longer duration of rehabilitation sessions, no differential effects of duration of rehabilitation sessions for the LEs and UEs on the variable we measured related to hemiplegic gait were found. Increasing walking speed, however, resulted in a larger

  9. Kinetics and Muscle Activity Patterns during Unweighting and Reloading Transition Phases in Running

    PubMed Central

    Sainton, Patrick; Nicol, Caroline; Cabri, Jan; Barthèlemy-Montfort, Joëlle; Chavet, Pascale

    2016-01-01

    Amongst reduced gravity simulators, the lower body positive pressure (LBPP) treadmill is emerging as an innovative tool for both rehabilitation and fundamental research purposes as it allows running while experiencing reduced vertical ground reaction forces. The appropriate use of such a treadmill requires an improved understanding of the associated neuromechanical changes. This study concentrates on the runner’s adjustments to LBPP-induced unweighting and reloading during running. Nine healthy males performed two running series of nine minutes at natural speed. Each series comprised three sequences of three minutes at: 100% bodyweight (BW), 60 or 80% BW, and 100% BW. The progressive unweighting and reloading transitions lasted 10 to 15 s. The LBPP-induced unweighting level, vertical ground reaction force and center of mass accelerations were analyzed together with surface electromyographic activity from 6 major lower limb muscles. The analyses of stride-to-stride adjustments during each transition established highly linear relationships between the LBPP-induced progressive changes of BW and most mechanical parameters. However, the impact peak force and the loading rate systematically presented an initial 10% increase with unweighting which could result from a passive mechanism of leg retraction. Another major insight lies in the distinct neural adjustments found amongst the recorded lower-limb muscles during the pre- and post-contact phases. The preactivation phase was characterized by an overall EMG stability, the braking phase by decreased quadriceps and soleus muscle activities, and the push-off phase by decreased activities of the shank muscles. These neural changes were mirrored during reloading. These neural adjustments can be attributed in part to the lack of visual cues on the foot touchdown. These findings highlight both the rapidity and the complexity of the neuromechanical changes associated with LBPP-induced unweighting and reloading during running

  10. Effect of Body Weight-supported Walking on Exercise Capacity and Walking Speed in Patients with Knee Osteoarthritis: A Randomized Controlled Trial

    PubMed Central

    Someya, Fujiko

    2013-01-01

    Abstract Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients' functional abilities or quality of life. PMID:25792901

  11. Paediatric low speed vehicle run-over fatalities in Queensland.

    PubMed

    Griffin, Bronwyn; Watt, Kerrianne; Wallis, Belinda; Shields, Linda; Kimble, Roy

    2011-02-01

    Child pedestrian fatalities associated with motor vehicles reversing or moving at low speed are difficult to identify in surveillance data. This study aims to determine the incidence of fatalities associated with what is thought to be an under-reported and preventable fatal injury mechanism. The term low speed vehicle run-over (LSVRO) incidents encompasses pedestrian fatalities where vehicles run-over a child at low speed. Data were obtained for children aged 0-15 years in the Australian state of Queensland (January 2004-December 2008). There were 15 deaths (12 boys and 3 girls) during 2004-2008 (rate:1.67/100,000). Over half were aged 0 and 1 years of age (n=8; 53.3%, rate: 14.67/100,000), and one quarter were 2 and 3 years of age (n=4, 27%, rate 7.46/100,000). There were no LSVRO deaths recorded among 10-15 year olds. Most (13/15) of the incidents occurred on private property, and only two occurred on a street/road. Almost half of the fatalities were caused by a four wheel drive (4WD) vehicle; large family sedans were involved in four fatalities, and heavy vehicles were involved in three deaths. In 11 of the fatalities, parents were the drivers of the vehicle involved (mothers 5; fathers 6). In nine, the vehicle involved was reversing before it came in contact with the child. Fatalities occurred in each of the Socio-Economic Indexes For Areas (SEIFA) levels. The unique data provided by the child death review team has signalled that LSVRO fatalities are a significant problem in Queensland. The Commission for Children and Young People and Child Guardian (CCYPCG) continue to collect data, which, when combined, will provide outcomes that will act as an impetus for promoting intervention and child advocacy.

  12. Tracking Steps on Apple Watch at Different Walking Speeds.

    PubMed

    Veerabhadrappa, Praveen; Moran, Matthew Duffy; Renninger, Mitchell D; Rhudy, Matthew B; Dreisbach, Scott B; Gift, Kristin M

    2018-04-09

    QUESTION: How accurate are the step counts obtained from Apple Watch? In this validation study, video steps vs. Apple Watch steps (mean ± SD) were 2965 ± 144 vs. 2964 ± 145 steps; P < 0.001. Lin's concordance correlation coefficient showed a strong correlation (r = 0.96; P < 0.001) between the two measurements. There was a total error of 0.034% (1.07 steps) for the Apple Watch steps when compared with the manual counts obtained from video recordings. Our study is one of the initial studies to objectively validate the accuracy of the step counts obtained from Apple watch at different walking speeds. Apple Watch tested to be an extremely accurate device for measuring daily step counts for adults.

  13. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating

    PubMed Central

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K.

    2016-01-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key points In addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  14. A Study of Running Safety and Ride Comfort of Floating Tracks for High-Speed Train

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsutomu; Sogabe, Masamichi; Yamazaki, Takayuki

    In order to reduce train-induced vibration, many floating tracks have been used, however, for only low-speed trains because we are not sure whether riding comfort and running safety can be maintained on floating tracks for high speed train. The authors, in this study, carried out an analysis of dynamic response and running quality of various floating tracks for high-speed train like Shinkansen. We used a simulation program, DIASTARS for the analysis. In this program, the Shinkansen vehicle is represented by a model of three dimensions consisting of a body, two trucks, and four wheelsets connected to each other with springs and dampers. The floating tracks were modeled by three-dimensional finite element method. In this study, the wheel load fluctuation and vehicle body accelerations were investigated by a dynamic interaction analysis between the vehicle and track with the train speed as parameters.

  15. Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals

    DOE PAGES

    Yoon, Joonseok; Kim, Howon; Chen, Xian; ...

    2015-12-29

    Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  16. Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Joonseok; Kim, Howon; Chen, Xian

    Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  17. Invariant aspects of human locomotion in different gravitational environments.

    PubMed

    Minetti, A E

    2001-01-01

    Previous literature showed that walking gait follows the same mechanical paradigm, i.e. the straight/inverted pendulum, regardless the body size, the number of legs, and the amount of gravity acceleration. The Froude number, a dimensionless parameter originally designed to normalize the same (pendulum-like) motion in differently sized subjects, proved to be useful also in the comparison, within the same subject, of walking in heterogravity. In this paper the theory of dynamic similarity is tested by comparing the predictive power of the Froude number in terms of walking speed to previously published data on walking in hypogravity simulators. It is concluded that the Froude number is a good first predictor of the optimal walking speed and of the transition speed between walking and running in different gravitational conditions. According to the Froude number a dynamically similar walking speed on another planet can be calculated as [formula: see text] where V(Earth) is the reference speed on Earth. c 2001. Elsevier Science Ltd. All rights reserved.

  18. Quantum walk computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendon, Viv

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  19. Does dynamic stability govern propulsive force generation in human walking?

    PubMed Central

    Browne, Michael G.

    2017-01-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force (FP) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and FP generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their FP according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an FP at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds. PMID:29291129

  20. Does dynamic stability govern propulsive force generation in human walking?

    PubMed

    Browne, Michael G; Franz, Jason R

    2017-11-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.

  1. Age-related changes in the center of mass velocity control during walking.

    PubMed

    Chong, Raymond K Y; Chastan, Nathalie; Welter, Marie-Laure; Do, Manh-Cuong

    2009-07-10

    During walking, the body center of mass oscillates along the vertical plane. Its displacement is highest at mid-swing and lowest at terminal swing during the transition to double support. Its vertical velocity (CoMv) has been observed to increase as the center of mass falls between mid- and late swing but is reduced just before double support. This suggests that braking of the center of mass is achieved with active neural control. We tested whether this active control deteriorates with aging (Experiment 1) and during a concurrent cognitive task (Experiment 2). At short steps of <0.4m, CoMv control was low and similar among all age groups. All groups braked the CoMv at longer steps of >0.4m but older subjects did so to a lesser extent. During the cognitive task, young subjects increased CoMv control (i.e. increase in CoMv braking) while maintaining step length and walking speed. Older subjects on the other hand, did not increase CoMv control but rather maintain it by reducing both step length and walking speed. These results suggest that active braking of the CoM during the transition to double support predominates in steps >0.4m. It could be a manifestation of the balance control system, since the braking occurs at late stance where body weight is being shifted to the contralateral side. The active braking mechanism also appears to require some attentional resource. In aging, reducing step length and speed are strategic to maintaining effective center of mass control during the transition to double support. However, the lesser degree of control in older adults indicates a true age-related deficit.

  2. Discrete normal plantar stress variations with running speed.

    PubMed

    Gross, T S; Bunch, R P

    1989-01-01

    The distribution of force beneath the plantar foot surface during shod distance running, a kinetic descriptor of locomotion not previously reported, was recorded for ten rearfoot striking runners. Normal discrete stresses were assessed while the subjects ran on a treadmill at 2.98, 3.58, and 4.47 ms-1, with eight piezoceramic transducers secured inside the left shoe. Between 2.98 and 4.47 ms-1, mean peak stress increased significantly beneath the calcaneus (303.9-426.6 kPa), second metatarsal head (633.5-730.5 kPa), and hallux (575.1-712.4 kPa). Calcaneal stresses were notable for their rapid loading rate, averaging 10.1 kPa (ms)-1 at 3.58 ms-1. Highest stresses were measured beneath the second and third metatarsal heads and hallux. Peak first metatarsal head stress was less than peak second and third metatarsal head stresses in each of the 30 combinations of subjects and running speeds. However, lower stresses do not necessarily imply lower forces, as the force bearing surface area of each metatarsal head must be considered.

  3. The effect of waist twisting on walking speed of an amphibious salamander like robot

    NASA Astrophysics Data System (ADS)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  4. Foot bone marrow edema after a 10-wk transition to minimalist running shoes.

    PubMed

    Ridge, Sarah T; Johnson, A Wayne; Mitchell, Ulrike H; Hunter, Iain; Robinson, Eric; Rich, Brent S E; Brown, Stephen Douglas

    2013-07-01

    Minimalist running shoes are becoming a more popular choice for runners in the past few years. However, there is little conclusive evidence about the advantages or disadvantages of running in these shoes. Although performance benefits may exist, injury may also occur from the added stress of running without the benefit of cushioning under the foot. Bone marrow edema can be a manifestation of added stress on the foot. This study measured bone marrow edema in runners' feet before and after a 10-wk period of transitioning from traditional to minimalist running shoes. Thirty-six experienced recreational runners underwent magnetic resonance imaging (MRI) before and after a 10-wk period. Seventeen subjects were in the control group (ran in their traditional shoes only for 10 wk), whereas the other 19 were in the experimental group (gradually transitioned to Vibram FiveFinger running shoes for 10 wk). The severity of the bone marrow edema was scored on a range of 0-4 (0 = no bone marrow edema, 4 = edema in more than 50% of the length of the bone). A score of 4 represented a stress fracture. Pretraining MRI scores were not statistically different between the groups. The posttraining MRI scores showed that more subjects in the Vibram group (10 of 19) showed increases in bone marrow edema in at least one bone after 10 wk of running than that in the control group (P = 0.009). Runners interested in transitioning to minimalist running shoes, such as Vibram FiveFingers, should transition very slowly and gradually to avoid potential stress injury in the foot.

  5. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review.

    PubMed

    Corbetta, Davide; Imeri, Federico; Gatti, Roberto

    2015-07-01

    In people after stroke, does virtual reality based rehabilitation (VRBR) improve walking speed, balance and mobility more than the same duration of standard rehabilitation? In people after stroke, does adding extra VRBR to standard rehabilitation improve the effects on gait, balance and mobility? Systematic review with meta-analysis of randomised trials. Adults with a clinical diagnosis of stroke. Eligible trials had to include one these comparisons: VRBR replacing some or all of standard rehabilitation or VRBR used as extra rehabilitation time added to a standard rehabilitation regimen. Walking speed, balance, mobility and adverse events. In total, 15 trials involving 341 participants were included. When VRBR replaced some or all of the standard rehabilitation, there were statistically significant benefits in walking speed (MD 0.15 m/s, 95% CI 0.10 to 0.19), balance (MD 2.1 points on the Berg Balance Scale, 95% CI 1.8 to 2.5) and mobility (MD 2.3 seconds on the Timed Up and Go test, 95% CI 1.2 to 3.4). When VRBR was added to standard rehabilitation, mobility showed a significant benefit (0.7 seconds on the Timed Up and Go test, 95% CI 0.4 to 1.1), but insufficient evidence was found to comment about walking speed (one trial) and balance (high heterogeneity). Substituting some or all of a standard rehabilitation regimen with VRBR elicits greater benefits in walking speed, balance and mobility in people with stroke. Although the benefits are small, the extra cost of applying virtual reality to standard rehabilitation is also small, especially when spread over many patients in a clinic. Adding extra VRBR time to standard rehabilitation also has some benefits; further research is needed to determine if these benefits are clinically worthwhile. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  6. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    PubMed

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  7. Comparison of two 6-minute walk tests to assess walking capacity in polio survivors.

    PubMed

    Brehm, Merel-Anne; Verduijn, Suzan; Bon, Jurgen; Bredt, Nicoline; Nollet, Frans

    2017-11-21

    To compare walking dynamics and test-retest reliability for 2 frequently applied walk tests in polio survivors: the 6-minute walk test (6MWT) to walk as far as possible; and the 6-minute walking energy cost test (WECT) at comfortable speed. Observational study. Thirty-three polio survivors, able to walk ≥ 150 m. On the same day participants performed a 6MWT and a WECT, which were repeated 1-3 weeks later. For each test, distance walked, heart rate and reduction in speed were assessed. The mean distance walked and mean heart rate were significantly higher in the 6MWT (441 m (standard deviation) (SD 79.7); 118 bpm (SD 19.2)) compared with the WECT (366 m (SD 67.3); 103 bpm (SD 14.3)); p< 0.001. Furthermore, during the 6MWT, patients continuously slowed down (-6%), while during the WECT speed dropped only slightly during the first 2 min, by -1.8% in total. Test-retest reliability of both tests was excellent (intraclass correlation coefficient (ICC) ≥ 0.95; lower bound 95% confidence interval (95% CI) ≥ 0.87). The smallest detectable change for the walked distance was 42 m (9.7% change from the mean) and 50 m (13.7%) on the 6MWT and WECT, respectively. Both the 6MWT and the WECT are reliable to assess walking capacity in polio survivors, with slightly superior sensitivity to detect change for the 6MWT. Differences in walking dynamics confirm that the tests cannot be used interchangeably. The 6MWT is recommended for measuring maximal walking capacity and the WECT for measuring submaximal walking capacity.

  8. Transition from Crawling to Walking and Infants' Actions with Objects and People

    ERIC Educational Resources Information Center

    Karasik, Lana B.; Tamis-LeMonda, Catherine S.; Adolph, Karen E.

    2011-01-01

    Associations between infants' transition to walking and object activities were examined. Fifty infants were observed longitudinally during home observations. At 11 months, all infants were crawlers; at 13 months, half became walkers. Over age, infants increased their total time with objects and frequency of sharing objects with mothers.…

  9. Effects of a Flexibility and Relaxation Programme, Walking, and Nordic Walking on Parkinson's Disease

    PubMed Central

    Reuter, I.; Mehnert, S.; Leone, P.; Kaps, M.; Oechsner, M.; Engelhardt, M.

    2011-01-01

    Symptoms of Parkinson's disease (PD) progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW) on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS), and health-related quality of life (PDQ 39). 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study. PMID:21603199

  10. The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6.

    PubMed

    Serradj, Nadjet; Jamon, Marc

    2009-07-19

    The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.

  11. Walking to transit.

    DOT National Transportation Integrated Search

    2011-12-01

    Using a real-life setting, WalkBostons project focused on developing and testing techniques to broaden the scope and range of public participation in transportation planning in a large neighborhood in Boston. The team explored methods of seeking o...

  12. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.

    PubMed

    Griffin, Timothy M; Roberts, Thomas J; Kram, Rodger

    2003-07-01

    We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5-1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s ( approximately 50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient (k)] was similar across all conditions [k = 0.11 +/- 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.

  13. Humans do not have direct access to retinal flow during walking

    PubMed Central

    Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.

    2013-01-01

    Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509

  14. Instrumental and Non-Instrumental Evaluation of 4-Meter Walking Speed in Older Individuals.

    PubMed

    Maggio, Marcello; Ceda, Gian Paolo; Ticinesi, Andrea; De Vita, Francesca; Gelmini, Giovanni; Costantino, Cosimo; Meschi, Tiziana; Kressig, Reto W; Cesari, Matteo; Fabi, Massimo; Lauretani, Fulvio

    2016-01-01

    Manual measurement of 4-meter gait speed by a stopwatch is the gold standard test for functional assessment in older adults. However, the accuracy of this technique may be biased by several factors, including intra- and inter-operator variability. Instrumental techniques of measurement using accelerometers may have a higher accuracy. Studies addressing the concordance between these two techniques are missing. The aim of the present community-based observational study was to compare manual and instrumental measurements of 4-meter gait speed in older individuals and to assess their relationship with other indicators of physical performance. One-hundred seventy-two (69 men, 103 women) non-disabled community-dwellers aged ≥65 years were enrolled. They underwent a comprehensive geriatric assessment including physical function by Short Physical Performance Battery (SPPB), hand grip strength, and 6-minute walking test (6MWT). Timed usual walking speed on a 4-meter course was assessed by using both a stopwatch (4-meter manual measurement, 4-MM) and a tri-axial accelerometer (4-meter automatic measurement, 4-MA). Correlations between these performance measures were evaluated separately in men and women by partial correlation coefficients. In both genders, 4-MA was associated with 4-MM (men r = 0.62, p<0.001; women r = 0.73, p<0.001), handgrip strength (men r = 0.40, p = 0.005; women r = 0.29, p = 0.001) and 6MWT (men r = 0.50, p = 0.0004; women r = 0.22, p = 0.048). 4-MM was associated with handgrip strength and 6MWT in both men and women. Considering gait speed <0.6 m/s as diagnostic of dismobility syndrome, the two methods of assessment disagreed, with a different categorization of subjects, in 19% of men and 23% of women. The use of accelerometer resulted in 29 (13 M, 16 F) additional diagnoses of dismobility, compared with the 4-MM. In an older population, the concordance of gait speeds manually or instrumentally assessed is not optimal. The results suggest that

  15. Lower limb dynamics vary in shod runners who acutely transition to barefoot running.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Powers, Christopher M; Salem, George J

    2016-01-25

    Relative to traditional shod rear-foot strike (RFS) running, habituated barefoot running is associated with a forefoot-strike (FFS) and lower loading rates. Accordingly, barefoot running has been purported to reduce lower-extremity injury risk. Investigations, however, indicate that novice barefoot runners may not innately adopt a FFS. Therefore, the purpose of this study was to examine lower-extremity dynamics of habitually shod runners who acutely transition to barefoot running. 22 recreational RFS runners were included in this investigation. This laboratory controlled study consisted of two visits one-week apart, examining habitually shod, then novice barefoot running. Foot-strike patterns and loading rates were determined using motion analysis and force plates, and joint energy absorption was calculated using inverse dynamics. Of the 22 runners, 8 maintained a RFS, 9 adopted a MFS, and 5 adopted a FFS during novice barefoot running. All runners demonstrated a reduction in knee energy absorption when running barefoot; MFS and FFS runners also demonstrated a significant increase in ankle energy absorption. Runners who maintained a RFS presented with loading rates significantly higher than traditional shoe running, whereas FFS runners demonstrated a significant reduction in loading rate. Mid-foot strikers did not demonstrate a significant change in loading rate. These results indicate that habitually shod RFS runners demonstrate a variety of foot-strike and lower-extremity dynamic responses during the acute transition to barefoot running. Accordingly, explicit instruction regarding foot-strike patterns may be necessary if transitioning to barefoot. Long-term prospective studies are required in order to determine the influence of FFS barefoot running on injury rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of high intensity resistance aquatic training on body composition and walking speed in women with mild knee osteoarthritis: a 4-month RCT with 12-month follow-up.

    PubMed

    Waller, B; Munukka, M; Rantalainen, T; Lammentausta, E; Nieminen, M T; Kiviranta, I; Kautiainen, H; Häkkinen, A; Kujala, U M; Heinonen, A

    2017-08-01

    To investigate the effects of 4-months intensive aquatic resistance training on body composition and walking speed in post-menopausal women with mild knee osteoarthritis (OA), immediately after intervention and after 12-months follow-up. Additionally, influence of leisure time physical activity (LTPA) will be investigated. This randomised clinical trial assigned eighty-seven volunteer postmenopausal women into two study arms. The intervention group (n = 43) participated in 48 supervised intensive aquatic resistance training sessions over 4-months while the control group (n = 44) maintained normal physical activity. Eighty four participants continued into the 12-months' follow-up period. Body composition was measured with dual-energy X-ray absorptiometry (DXA). Walking speed over 2 km and the knee injury and osteoarthritis outcome score (KOOS) were measured. LTPA was recorded with self-reported diaries. After the 4-month intervention there was a significant decrease (P = 0.002) in fat mass (mean change: -1.17 kg; 95% CI: -2.00 to -0.43) and increase (P = 0.002) in walking speed (0.052 m/s; 95% CI: 0.018 to 0.086) in favour of the intervention group. Body composition returned to baseline after 12-months. In contrast, increased walking speed was maintained (0.046 m/s; 95% CI 0.006 to 0.086, P = 0.032). No change was seen in lean mass or KOOS. Daily LTPA over the 16-months had a significant effect (P = 0.007) on fat mass loss (f 2  = 0.05) but no effect on walking speed. Our findings show that high intensity aquatic resistance training decreases fat mass and improves walking speed in post-menopausal women with mild knee OA. Only improvements in walking speed were maintained at 12-months follow-up. Higher levels of LTPA were associated with fat mass loss. ISRCTN65346593. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly.

    PubMed

    Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2018-06-01

    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.

  18. Quantum Speed Limits across the Quantum-to-Classical Transition

    NASA Astrophysics Data System (ADS)

    Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A.

    2018-02-01

    Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits are set by a given norm of the generator of time evolution.

  19. Transitioning to a narrow path: the impact of fear of falling in older adults.

    PubMed

    Dunlap, Pamela; Perera, Subashan; VanSwearingen, Jessie M; Wert, David; Brach, Jennifer S

    2012-01-01

    Everyday ambulation requires navigation of variable terrain, transitions from wide to narrow pathways, and avoiding obstacles. While the effect of age on the transition to a narrow path has been examined briefly, little is known about the impact of fear of falling on gait during the transition to a narrow path. The purpose was to examine the effect of age and fear of falling on gait during transition to a narrow path. In 31 young, mean age=25.3 years, and 30 older adults, mean age=79.6 years, step length, step time, step width and gait speed were examined during usual and transition to narrow pathway using an instrumented walkway. During the transition to narrow walk condition, fearful older adults compared to young had a wider step width (0.06 m vs 0.04 m) prior to the narrow path and took shorter steps (0.53 m vs 0.72 m; p<0.001). Compared to non-fearful older adults, fearful older adults walked slower and took shorter steps during narrow path walking (gait speed: 1.1m/s vs 0.82 m/s; p=0.01; step length: 0.60 m vs 0.47 m; p=0.03). In young and non-fearful older adults narrow path gait was similar to usual gait. Whereas older adults who were fearful, walked slower (0.82 m/s vs 0.91 m/s; p=0.001) and took shorter steps (0.44 m vs 0.53 m; p=0.004) during narrow path walking compared to usual walking. Changes in gait characteristics with transitioning to a narrow pathway were greater for fear of falling than for age. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  1. Lower verbal intelligence is associated with diabetic complications and slower walking speed in people with Type 2 diabetes: the Maastricht Study.

    PubMed

    Spauwen, P J J; Martens, R J H; Stehouwer, C D A; Verhey, F R J; Schram, M T; Sep, S J S; van der Kallen, C J H; Dagnelie, P C; Henry, R M A; Schaper, N C; van Boxtel, M P J

    2016-12-01

    To determine the association of verbal intelligence, a core constituent of health literacy, with diabetic complications and walking speed in people with Type 2 diabetes. This study was performed in 228 people with Type 2 diabetes participating in the Maastricht Study, a population-based cohort study. We examined the cross-sectional associations of score on the vocabulary test of the Groningen Intelligence Test with: 1) determinants of diabetic complications (HbA 1c , blood pressure and lipid level); 2) diabetic complications: chronic kidney disease, neuropathic pain, self-reported history of cardiovascular disease and carotid intima-media thickness; and 3) walking speed. Analyses were performed using linear regression and adjusted in separate models for potential confounders and mediators. Significant age- and sex-adjusted associations were additionally adjusted for educational level in a separate model. After full adjustment, lower verbal intelligence was associated with the presence of neuropathic pain [odds ratio (OR) 1.18, 95% CI 1.02;1.36], cardiovascular disease (OR 1.14, 95% CI 1.01;1.30), and slower walking speed (regression coefficient -0.011 m/s, 95% CI -0.021; -0.002 m/s). These associations were largely explained by education. Verbal intelligence was not associated with blood pressure, glycaemic control, lipid control, chronic kidney disease or carotid intima-media thickness. Lower verbal intelligence was associated with the presence of some diabetic complications and with a slower walking speed, a measure of physical functioning. Educational level largely explained these associations. This implies that clinicians should be aware of the educational level of people with diabetes and should provide information at a level of complexity tailored to the patient. © 2016 Diabetes UK.

  2. Lower-limb dynamics and clinical outcomes for habitually shod runners who transition to barefoot running.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Sigward, Susan; Azen, Stanley P; Salem, George J

    2018-01-01

    Recent investigations have revealed lower vertical loading rates and knee energy absorption amongst experienced barefoot runners relative to those who rear-foot strike (RFS). Although this has led to an adoption of barefoot running amongst many recreational shoe runners, recent investigations indicate that the experienced barefoot pattern is not immediately realized. Therefore, the purpose this investigation was to quantify changes in lower-extremity dynamics and clinical outcomes measures for habitually shod runners who perform a transition to barefoot running. We examined lower-extremity dynamics and clinical outcomes for 26 RFS shod runners who performed an 8-10 week transition to barefoot running. Runners were evaluated at the University of Southern California's Musculoskeletal Biomechanics Research Laboratory. Foot-strike patterns, vertical load rates, and joint energetics were evaluated before and after the transition using inverse dynamics. Clinical assessments were conducted throughout the transition by two licensed clinicians. Eighteen of the 26 runners successfully completed the transition: 7 maintained a RFS, 8 adopted a mid-foot strike (MFS), and 3 adopted a forefoot strike (FFS) during novice barefoot running. Following the transition, novice MFS/FFS runners often demonstrated reversions in strike-patterns and associated reductions in ankle energetics. We report no change in loading rates and knee energy absorption across transition time points. Importantly, there were no adverse events other than transient pain and soreness. These findings indicate that runners do not innately adopt the biomechanical characteristics thought to lower injury risk in-response to an uninstructed barefoot running transition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of forefoot bending elasticity of running shoes on gait and running performance.

    PubMed

    Chen, Chia-Hsiang; Tu, Kuan-Hua; Liu, Chiang; Shiang, Tzyy-Yuang

    2014-12-01

    The aim of this study was to investigate the effects of forefoot bending elasticity of running shoes on kinetics and kinematics during walking and running. Twelve healthy male participants wore normal and elastic shoes while walking at 1.5m/s, jogging at 2.5m/s, and running at 3.5m/s. The elastic shoes were designed by modifying the stiffness of flexible shoes with elastic bands added to the forefoot part of the shoe sole. A Kistler force platform and Vicon system were used to collect kinetic and kinematic data during push-off. Electromyography was used to record the muscle activity of the medial gastrocnemius and medial tibialis anterior. A paired dependent t-test was used to compare the various shoes and the level of significance was set at α=.05. The range of motion of the ankle joint and the maximal anterior-posterior propulsive force differed significantly between elastic and flexible shoes in walking and jogging. The contact time and medial gastrocnemius muscle activation in the push-off phase were significantly lower for the elastic shoes compared with the flexible shoes in walking and jogging. The elastic forefoot region of shoes can alter movement characteristics in walking and jogging. However, for running, the elasticity used in this study was not strong enough to exert a similar effect. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Head-bobbing behavior in walking whooping cranes (Grus americana) and sandhill cranes (Grus canadensis)

    USGS Publications Warehouse

    Cronin, Thomas W.; Kinloch, Matthew R.; Olsen, Glenn H.

    2007-01-01

    Head-bobbing is a common and characteristic behavior of walking birds. While the activity could have a relatively minor biomechanical function, for balance and stabilization of gait, head-bobbing is thought to be primarily a visual behavior in which fixation of gaze alternates with a forward movement that generates visual flow. We studied head-bobbing in locomoting whooping cranes (Grus americana) and sandhill cranes (Grus canadensis), using food strewn on the ground to motivate them to walk or run. When the cranes walked, head-bobbing proceeded in a four-step sequence that was closely linked to the stepping cycle. The time available for gaze stabilization decreased with travel speed, and running cranes did not head-bob at all. As a crane extended its bill towards the ground for food, it also exhibited a series of short head-bobs that were not associated with forward travel. Head-bobbing is a flexible behavior that varies with gait and with visual search, most notably as the cranes prepare to strike with the bill.

  5. Statistical moments of quantum-walk dynamics reveal topological quantum transitions.

    PubMed

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-04-22

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems.

  6. Gender differences associated with rearfoot, midfoot, and forefoot kinematics during running.

    PubMed

    Takabayashi, Tomoya; Edama, Mutsuaki; Nakamura, Masatoshi; Nakamura, Emi; Inai, Takuma; Kubo, Masayoshi

    2017-11-01

    Females, as compared with males, have a higher proportion of injuries in the foot region. However, the reason for this gender difference regarding foot injuries remains unclear. This study aimed to investigate gender differences associated with rearfoot, midfoot, and forefoot kinematics during running. Twelve healthy males and 12 females ran on a treadmill. The running speed was set to speed which changes from walking to running. Three-dimensional kinematics of rearfoot, midfoot, and forefoot were collected and compared between males and females. Furthermore, spatiotemporal parameters (speed, cadence, and step length) were measured. In the rearfoot angle, females showed a significantly greater peak value of plantarflexion and range of motion in the sagittal plane as compared with males (effect size (ES) = 1.55 and ES = 1.12, respectively). In the midfoot angle, females showed a significantly greater peak value of dorsiflexion and range of motion in the sagittal plane as compared with males (ES = 1.49 and ES = 1.71, respectively). The forefoot peak angles and ranges of motion were not significantly different between the genders in all three planes. A previous study suggested that a gender-related difference in excessive motions of the lower extremities during running has been suggested as a contributing factor to running injuries. Therefore, the present investigation may provide insight into the reason for the high incidence of foot injuries in females.

  7. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  8. Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study.

    PubMed

    McDonald, Cody L; Kramer, Patricia A; Morgan, Sara J; Halsne, Elizabeth G; Cheever, Sarah M; Hafner, Brian J

    2018-05-01

    Energy storing feet are unable to reduce the energy required for normal locomotion among people with transtibial amputation. Crossover feet, which incorporate aspects of energy storing and running specific feet, are designed to maximize energy return while providing stability for everyday activities. Do crossover prosthetic feet reduce the energy expenditure of walking across a range of speeds, when compared with energy storing feet among people with transtibial amputation due to non-dysvascular causes? A randomized within-subject study was conducted with a volunteer sample of twenty-seven adults with unilateral transtibial amputation due to non-dysvascular causes. Participants were fit with two prostheses. One had an energy storing foot (Össur Variflex) and the other a crossover foot (Össur Cheetah Xplore). Other components, including sockets, suspension, and interface were standardized. Energy expenditure was measured with a portable respirometer (Cosmed K4b2) while participants walked on a treadmill at self-selected slow, comfortable, and fast speeds with each prosthesis. Gross oxygen consumption rates (VO 2  ml/min) were compared between foot conditions. Energy storing feet were used as the baseline condition because they are used by most people with a lower limb prosthesis. Analyses were performed to identify people who may benefit from transition to crossover feet. On average, participants had lower oxygen consumption in the crossover foot condition compared to the energy storing foot condition at each self-selected walking speed, but this difference was not statistically significant. Participants with farther six-minute walk test distances, higher daily step counts, and higher Medicare Functional Classification Levels at baseline were more likely to use less energy in the crossover foot. Crossover feet may be most beneficial for people with higher activity levels and physical fitness. Further research is needed to examine the effect of crossover feet on

  9. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    PubMed

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Theoretical considerations on maximum running speeds for large and small animals.

    PubMed

    Fuentes, Mauricio A

    2016-02-07

    Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Side-suspended High-Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    NASA Astrophysics Data System (ADS)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.

  12. The Effects of a Transition to Minimalist Shoe Running on Intrinsic Foot Muscle Size.

    PubMed

    Johnson, A W; Myrer, J W; Mitchell, U H; Hunter, I; Ridge, S T

    2016-02-01

    A proposed benefit of minimalist shoe running is an increase in intrinsic foot muscle strength. This study examined change in intrinsic foot muscle size in runners transitioning to Vibram FiveFingers™ minimalist shoes compared to a control group running in traditional running shoes. We compare pre-transition size between runners who developed bone marrow edema to those who did not. 37 runners were randomly assigned to the Vibram FiveFingers™ group (n=18) or control group (n=19). Runners' bone marrow edema and intrinsic foot muscle size were measured at baseline and after 10 weeks. Total running volume was maintained by all runners. A significant increase in abductor hallucis cross-sectional area of 10.6% occurred in the Vibram FiveFingers™ group compared to the control group (p=0.01). There was no significant change in any of the other muscles examined (p>0.05). 8 of the Vibram FiveFingers™ runners, and 1 control runner developed bone marrow edema. Those who developed bone marrow edema, primarily women, had significantly smaller size in all assessed muscles (p≤0.05). Size of intrinsic foot muscles appears to be important in safely transitioning to minimalist shoe running. Perhaps intrinsic foot muscle strengthening may benefit runners wanting to transition to minimalist shoes. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Statistical moments of quantum-walk dynamics reveal topological quantum transitions

    PubMed Central

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems. PMID:27102945

  14. Heightening Walking Above its Pedestrian Status : Walking and Travel Behavior in California

    DOT National Transportation Integrated Search

    2016-06-30

    People walk a lotto walk pets, to exercise and recreate, and to access public transit and local shops. Walk trips begin and end almost every journey, even trips made by automobile. Data from the current California Household Travel Survey (CHTS) sh...

  15. Instrumental and Non-Instrumental Evaluation of 4-Meter Walking Speed in Older Individuals

    PubMed Central

    Maggio, Marcello; Ceda, Gian Paolo; Ticinesi, Andrea; De Vita, Francesca; Gelmini, Giovanni; Costantino, Cosimo; Meschi, Tiziana; Kressig, Reto W.; Cesari, Matteo; Fabi, Massimo; Lauretani, Fulvio

    2016-01-01

    Background Manual measurement of 4-meter gait speed by a stopwatch is the gold standard test for functional assessment in older adults. However, the accuracy of this technique may be biased by several factors, including intra- and inter-operator variability. Instrumental techniques of measurement using accelerometers may have a higher accuracy. Studies addressing the concordance between these two techniques are missing. The aim of the present community-based observational study was to compare manual and instrumental measurements of 4-meter gait speed in older individuals and to assess their relationship with other indicators of physical performance. Methods One-hundred seventy-two (69 men, 103 women) non-disabled community-dwellers aged ≥65 years were enrolled. They underwent a comprehensive geriatric assessment including physical function by Short Physical Performance Battery (SPPB), hand grip strength, and 6-minute walking test (6MWT). Timed usual walking speed on a 4-meter course was assessed by using both a stopwatch (4-meter manual measurement, 4-MM) and a tri-axial accelerometer (4-meter automatic measurement, 4-MA). Correlations between these performance measures were evaluated separately in men and women by partial correlation coefficients. Results In both genders, 4-MA was associated with 4-MM (men r = 0.62, p<0.001; women r = 0.73, p<0.001), handgrip strength (men r = 0.40, p = 0.005; women r = 0.29, p = 0.001) and 6MWT (men r = 0.50, p = 0.0004; women r = 0.22, p = 0.048). 4-MM was associated with handgrip strength and 6MWT in both men and women. Considering gait speed <0.6 m/s as diagnostic of dismobility syndrome, the two methods of assessment disagreed, with a different categorization of subjects, in 19% of men and 23% of women. The use of accelerometer resulted in 29 (13 M, 16 F) additional diagnoses of dismobility, compared with the 4-MM. Conclusions In an older population, the concordance of gait speeds manually or instrumentally assessed is not

  16. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.

    PubMed

    Ferrarin, Maurizio; Rabuffetti, Marco; Geda, Elisabetta; Sirolli, Silvia; Marzegan, Alberto; Bruno, Valentina; Sacco, Katiuscia

    2018-06-01

    Several robotic devices have been developed for the rehabilitation of treadmill walking in patients with movement disorders due to injuries or diseases of the central nervous system. These robots induce coordinated multi-joint movements aimed at reproducing the physiological walking or stepping patterns. Control strategies developed for robotic locomotor training need a set of predefined lower limb joint angular trajectories as reference input for the control algorithm. Such trajectories are typically taken from normative database of overground unassisted walking. However, it has been demonstrated that gait speed and the amount of body weight support significantly influence joint trajectories during walking. Moreover, both the speed and the level of body weight support must be individually adjusted according to the rehabilitation phase and the residual locomotor abilities of the patient. In this work, 10 healthy participants (age range: 23-48 years) were asked to walk in movement analysis laboratory on a treadmill at five different speeds and four different levels of body weight support; besides, a trial with full body weight support, that is, with the subject suspended on air, was performed at two different cadences. The results confirm that lower limb kinematics during walking is affected by gait speed and by the amount of body weight support, and that on-air stepping is radically different from treadmill walking. Importantly, the results provide normative data in a numerical form to be used as reference trajectories for controlling robot-assisted body weight support walking training. An electronic addendum is provided to easily access to such reference data for different combinations of gait speeds and body weight support levels.

  17. Walking economy during cued versus non-cued treadmill walking in persons with Parkinson's disease.

    PubMed

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2013-01-01

    Gait impairment is common in Parkinson's disease (PD) and may result in greater energy expenditure, poorer walking economy, and fatigue during activities of daily living. Auditory cueing is an effective technique to improve gait; but the effects on energy expenditure are unknown. To determine whether energy expenditure differs in individuals with PD compared with healthy controls and if auditory cueing improves walking economy in PD. Twenty participants (10 PD and 10 controls) came to the laboratory for three sessions. Participants performed two, 6-minute bouts of treadmill walking at two speeds (1.12 m·sec-1 and 0.67 m·sec-1). One session used cueing and the other without cueing. A metabolic cart measured energy expenditure and walking economy was calculated (energy expenditure/power). PD had worse walking economy and higher energy expenditure than control participants during cued and non-cued walking at the 0.67 m·sec-1 speed and during non-cued walking at the 1.12 m·sec-1. With auditory cueing, energy expenditure and walking economy worsened in both participant groups. People with PD use more energy and have worse walking economy than adults without PD. Walking economy declines further with auditory cuing in persons with PD.

  18. Effectiveness of an innovative hip energy storage walking orthosis for improving paraplegic walking: A pilot randomized controlled study.

    PubMed

    Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong

    2017-09-01

    The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (P<0.05), maximum walking speed by 20.4% (P<0.05) and the comfortable walking speed by 15.3% (P<0.05), as well as decreasing energy expenditure by 13.9% (P<0.05). Our preliminary results provide support for the use of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.

  19. Running Out of Time: Why Elephants Don't Gallop

    NASA Astrophysics Data System (ADS)

    Noble, Julian V.

    2001-11-01

    The physics of high speed running implies that galloping becomes impossible for sufficiently large animals. Some authors have suggested that because the strength/weight ratio decreases with size and eventually renders large animals excessively liable to injury when they attempt to gallop. This paper suggests that large animals cannot move their limbs sufficiently rapidly to take advantage of leaving the ground, hence are restricted to walking gaits. >From this point of view the relatively low strength/weight ratio of elephants follows from their inability to gallop, rather than causing it.

  20. Effect of uphill and downhill walking on walking performance in geriatric patients using a wheeled walker.

    PubMed

    Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens

    2017-08-01

    Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p < 0.0001) or was unaffected. The use of a wheeled walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.

  1. Relationship between foot strike pattern, running speed, and footwear condition in recreational distance runners.

    PubMed

    Cheung, Roy T H; Wong, Rodney Y L; Chung, Tim K W; Choi, R T; Leung, Wendy W Y; Shek, Diana H Y

    2017-06-01

    Compared to competitive runners, recreational runners appear to be more prone to injuries, which have been associated with foot strike patterns. Surprisingly, only few studies had examined the foot strike patterns outside laboratories. Therefore, this study compared the foot strike patterns in recreational runners at outdoor tracks with previously reported data. We also investigated the relationship between foot strike pattern, speed, and footwear in this cohort. Among 434 recreational runners analysed, 89.6% of them landed with rearfoot strike (RFS). Only 6.9 and 3.5% landed with midfoot and forefoot, respectively. A significant shift towards non-RFS was observed in our cohort, when compared with previously reported data. When speed increased by 1 m/s, the odds of having forefoot strike and midfoot strike relative to RFS increased by 2.3 times and 2.6 times, respectively. Runners were 9.2 times more likely to run with a forefoot strike in minimalists compared to regular running shoes, although 70% of runners in minimalists continued to use a RFS. These findings suggest that foot strike pattern may differ across running conditions and runners should consider these factors in order to mitigate potential injury.

  2. Reliability of Leg and Vertical Stiffness During High Speed Treadmill Running.

    PubMed

    Pappas, Panagiotis; Dallas, Giorgos; Paradisis, Giorgos

    2017-04-01

    In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 m∙s -1 , and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 m∙s -1 , were highly reliable, both within and across days.

  3. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, Nicole; Arellano, Christopher J.; Grabowski, Alena M.

    2013-12-15

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightlymore » less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics.« less

  4. The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis.

    PubMed

    Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su

    2017-08-01

    [Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group.

  5. The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis

    PubMed Central

    Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su

    2017-01-01

    [Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group. PMID:28878468

  6. Speed and incline during Thoroughbred horse racing: racehorse speed supports a metabolic power constraint to incline running but not to decline running

    PubMed Central

    Self, Z. T.; Spence, A. J.

    2012-01-01

    We used a radio tracking system to examine the speed of 373 racehorses on different gradients on an undulating racecourse during 33 races, each lasting a few minutes. Horses show a speed detriment on inclines (0.68 m·s−1·1% gradient−1, r2 = 0.97), the magnitude of which corresponds to trading off the metabolic cost (power) of height gain with the metabolic cost (power) of horizontal galloping. A similar relationship can be derived from published data for human runners. The horses, however, were also slower on the decline (−0.45 m·s−1·1% gradient−1, r2 = 0.92). Human athletes run faster on a decline, which can be explained by the energy gained by the center of mass from height loss. This study has shown that horses go slower, which may be attributable to the anatomical simplicity of their front legs limiting weight support and stability when going downhill. These findings provide insight into limits to athletic performance in racehorses, which may be used to inform training regimens, as well as advancing knowledge from both veterinary and basic science perspectives. PMID:22678967

  7. Multidirectional walk test in individuals with Parkinson's disease: a validity study.

    PubMed

    Bryant, Mon S; Workman, Craig D; Jackson, George R

    2015-03-01

    Gait parameters of forward, backward, and sideways walk were studied when the participants walked overground in four directions at their self-selected speed and were compared with walking in the four directions on an instrumented GAITRite walkway. Intraclass correlation coefficients between the overground walk test measures and the instrumented walkway measures of gait speed, cadence, and stride length for the forward walk were 0.85, 0.88, and 0.87, respectively. For the backward walk, the coefficients were 0.91 for gait speed, 0.75 for cadence, and 0.93 for stride length. For the sideways walk, the coefficients were 0.92 for gait speed, 0.93 for cadence, and 0.94 for stride length. Gait parameters of forward, backward, and sideways walk obtained by the overground walk test had excellent agreement with those obtained by the instrumented walkway. The quick timed test provided quantitative data for gait evaluation and was valid for clinical use.

  8. Associations of Walking Speed, Grip Strength, and Standing Balance With Total and Cause-Specific Mortality in a General Population of Japanese Elders.

    PubMed

    Nofuji, Yu; Shinkai, Shoji; Taniguchi, Yu; Amano, Hidenori; Nishi, Mariko; Murayama, Hiroshi; Fujiwara, Yoshinori; Suzuki, Takao

    2016-02-01

    Walking speed, grip strength, and standing balance are key components of physical performance in older people. The present study aimed to evaluate (1) associations of these physical performance measures with cause-specific mortality, (2) independent associations of individual physical performance measures with mortality, and (3) the added value of combined use of the 3 physical performance measures in predicting all-cause and cause-specific mortality. Prospective cohort study with a follow-up of 10.5 years. Tokyo Metropolitan Institute of Gerontology Longitudinal Interdisciplinary Study on Aging (TMIG-LISA), Japan. A total of 1085 initially nondisabled older Japanese aged 65 to 89 years. Usual walking speed, grip strength, and standing balance were measured at baseline survey. During follow-up, 324 deaths occurred (122 of cardiovascular disease, 75 of cancer, 115 of other causes, and 12 of unknown causes). All 3 physical performance measures were significantly associated with all-cause, cardiovascular, and other-cause mortality, but not with cancer mortality, independent of potential confounders. When all 3 physical performance measures were simultaneously entered into the model, each was significantly independently associated with all-cause and cardiovascular mortality. The C statistics for all-cause and cardiovascular mortality were significantly increased by adding grip strength and standing balance to walking speed (P < .01), and the net reclassification improvement for them was estimated at 18.7% and 7.5%, respectively. Slow walking speed, weak grip strength, and poor standing balance predicted all-cause, cardiovascular, and other-cause mortality, but not cancer mortality, independent of covariates. Moreover, these 3 components of physical performance were independently associated with all-cause and cardiovascular mortality and their combined use increased prognostic power. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine

  9. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-06-01

    Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.

  10. 5K Run: 7-Week Training Schedule for Beginners

    MedlinePlus

    ... This 5K training schedule incorporates a mix of running, walking and resting. This combination helps reduce the ... you'll gradually increase the amount of time running and reduce the amount of time walking. If ...

  11. Correlations between gait speed, 6-minute walk distance, physical activity, and self-efficacy in patients with severe chronic lung disease.

    PubMed

    DePew, Zachary S; Karpman, Craig; Novotny, Paul J; Benzo, Roberto P

    2013-12-01

    Four-meter gait speed (4MGS) has been associated with functional capacity and overall mortality in elderly patients, and may easily be translated to daily practice. We evaluated the association of 4MGS with meaningful outcomes. In 70 subjects we conducted the 4MGS, 6-min walk test (6MWT), objectively measured physical activity, and assessed dyspnea, quality of life, and self-efficacy for walking and routine physical activity. 4MGS was measured in 3 separate time epochs during the 6MWT, to explore 4MGS variability. Diagnoses included COPD (51.4%), interstitial lung disease (38.6%), and other pulmonary conditions (10%). The mean ± SD values were: 4MGS 0.85 ± 0.21 m/s, 6-min walk distance (6MWD) 305 ± 115 m, and physical activity level 1.28 ± 0.17, which is consistent with severe physical inactivity. The gait speeds within the time epochs 1-2, 3-4, and 5-6 min during the 6MWT were not significantly different: 1.01 ± 0.29 m/s, 0.98 ± 0.31 m/s, and 1.00 ± 0.31 m/s, respectively. 4MGS had a significant correlation with 6MWD (r = 0.70, P < .001). 6MWD was the dominant variable for predicting 4MGS. Other significant predictors of 4MGS included dyspnea, self-efficacy, quality of life, and objectively measured physical activity. 4MGS is significantly and independently associated with 6MWD, and may serve as a reasonable simple surrogate for 6MWD in subjects with chronic lung disease. Gait speed was remarkably stable throughout the 6MWT, which supports the validity of an abbreviated walk test such as 4MGS.

  12. Transitions induced by speed in self-propelled particles system with attractive interactions

    NASA Astrophysics Data System (ADS)

    Cambui, Dorilson. S.; Rosas, Alexandre

    2018-05-01

    In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.

  13. Pedometer accuracy in slow walking older adults.

    PubMed

    Martin, Jessica B; Krč, Katarina M; Mitchell, Emily A; Eng, Janice J; Noble, Jeremy W

    2012-07-03

    The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds.

  14. Optimizing Pedestrian-Friendly Walking Path for the First and Last Mile Transit Journey by Using the Analytical Network Process (anp) Decision Model and GIS Network Analysis

    NASA Astrophysics Data System (ADS)

    Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.

    2017-10-01

    Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM) journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis). First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP) decision rules based on people's preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.

  15. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals.

    PubMed

    Raichlen, David A; Armstrong, Hunter; Lieberman, Daniel E

    2011-03-01

    The endurance running (ER) hypothesis suggests that distance running played an important role in the evolution of the genus Homo. Most researchers have focused on ER performance in modern humans, or on reconstructing ER performance in Homo erectus, however, few studies have examined ER capabilities in other members of the genus Homo. Here, we examine skeletal correlates of ER performance in modern humans in order to evaluate the energetics of running in Neandertals and early Homo sapiens. Recent research suggests that running economy (the energy cost of running at a given speed) is strongly related to the length of the Achilles tendon moment arm. Shorter moment arms allow for greater storage and release of elastic strain energy, reducing energy costs. Here, we show that a skeletal correlate of Achilles tendon moment arm length, the length of the calcaneal tuber, does not correlate with walking economy, but correlates significantly with running economy and explains a high proportion of the variance (80%) in cost between individuals. Neandertals had relatively longer calcaneal tubers than modern humans, which would have increased their energy costs of running. Calcaneal tuber lengths in early H. sapiens do not significantly differ from those of extant modern humans, suggesting Neandertal ER economy was reduced relative to contemporaneous anatomically modern humans. Endurance running is generally thought to be beneficial for gaining access to meat in hot environments, where hominins could have used pursuit hunting to run prey taxa into hyperthermia. We hypothesize that ER performance may have been reduced in Neandertals because they lived in cold climates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1992-01-01

    The main objective of this work period was to develop, acquire and apply state-of-the-art tools for the prediction of transition at high speeds at NASA Ames. Although various stability codes as well as basic state codes were acquired, the development of a new Parabolized Stability Equation (PSE) code was minimal. The time that was initially allocated for development was used on other tasks, in particular for the Leading Edge Suction problem, in acquiring proficiency in various graphics tools, and in applying these tools to evaluate various Navier-Stokes and Euler solutions. The second objective of this work period was to attend the Transition and Turbulence Workshop at NASA Langley in July and August, 1991. A report on the Workshop follows. From July 8, 1991 to August 2, 1991, the author participated in the Transition and Turbulence Workshop at NASA Langley. For purposes of interest here, analysis can be said to consist of solving simplified governing equations by various analytical methods, such as asymptotic methods, or by use of very meager computer resources. From the composition of the various groups at the Workshop, it can be seen that analytical methods are generally more popular in Great Britain than they are in the U.S., possibly due to historical factors and the lack of computer resources. Experimenters at the Workshop were mostly concerned with subsonic flows, and a number of demonstrations were provided, among which were a hot-wire experiment to probe the boundary layer on a rotating disc, a hot-wire rake to map a free shear layer behind a cylinder, and the use of heating strips on a flat plate to control instability waves and consequent transition. A highpoint of the demonstrations was the opportunity to observe the rather noisy 'quiet' supersonic pilot tunnel in operation.

  17. Lunar Landing Walking Simulator

    NASA Image and Video Library

    1965-09-03

    Lunar Landing Walking Simulator: Researchers at Langley study the ability of astronauts to walk, run and perform other tasks required during lunar exploration. The Reduced Gravity Simulator gave researchers the opportunity to look at the effects of one-sixth normal gravity on self-locomotion. Several Apollo astronauts practiced lunar waling at the facility.

  18. Emergence of Lévy walks in systems of interacting individuals

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Korabel, Nickolay

    2017-03-01

    We propose a model of superdiffusive Lévy walk as an emergent nonlinear phenomenon in systems of interacting individuals. The aim is to provide a qualitative explanation of recent experiments [G. Ariel et al., Nat. Commun. 6, 8396 (2015), 10.1038/ncomms9396] revealing an intriguing behavior: swarming bacteria fundamentally change their collective motion from simple diffusion into a superdiffusive Lévy walk dynamics. We introduce microscopic mean-field kinetic equations in which we combine two key ingredients: (1) alignment interactions between individuals and (2) non-Markovian effects. Our interacting run-and-tumble model leads to the superdiffusive growth of the mean-squared displacement and the power-law distribution of run length with infinite variance. The main result is that the superdiffusive behavior emerges as a cooperative effect without using the standard assumption of the power-law distribution of run distances from the inception. At the same time, we find that the collision and repulsion interactions lead to the density-dependent exponential tempering of power-law distributions. This qualitatively explains the experimentally observed transition from superdiffusion to the diffusion of mussels as their density increases [M. de Jager et al., Proc. R. Soc. B 281, 20132605 (2014), 10.1098/rspb.2013.2605].

  19. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial.

    PubMed

    Eich, H-J; Mach, H; Werner, C; Hesse, S

    2004-09-01

    To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p <0.001 versus p <0.001) in the experimental group. Between weeks 0 and 6, the experimental group improved walking speed and capacity by a mean of.31 m/s and 91 m, the control group by a mean of 0.16 m/s and 56 m. Between weeks 0 and 18, the experimental group improved walking speed and capacity by a mean of 0.36 m/s and 111 m, the control group by a mean of 0.15 m/s and 57 m. Gross motor function and walking quality did not differ at any time. Aerobic treadmill plus Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement

  20. FOOT PLACEMENT IN A BODY REFERENCE FRAME DURING WALKING AND ITS RELATIONSHIP TO HEMIPARETIC WALKING PERFORMANCE

    PubMed Central

    Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.

    2010-01-01

    Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972

  1. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.

    PubMed

    Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A

    2010-06-01

    Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. A brief review of some mechanisms causing boundary layer transition at high speeds

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.

    1990-01-01

    In high speed flight, the state of the boundary layer can strongly influence the design of vehicles through its effect on skin friction drag and aerodynamic heating. The major mechanisms causing boundary layer transition on high speed vehicles are briefly reviewed and some empirical relations from the unclassified literature are given for the transition Reynolds numbers.

  3. A comparative study of the speeds attained by captive cheetahs during the enrichment practice of the "cheetah run".

    PubMed

    Quirke, Thomas; O'Riordan, Ruth; Davenport, John

    2013-01-01

    The enrichment practice of the "cheetah run" is becoming increasingly popular within zoological institutions as a method to enrich captive cheetahs. A lure moving at speed represents an artificial prey item that the cursorial cheetah can pursue, therefore allowing it to perform an important hunting behavior within a captive setting. This study was conducted in order to highlight how employing different forms of this type of enrichment may influence its efficacy. This is important in relation to the future development of an optimum type of "cheetah run" enrichment which maximizes the potential beneficial effects and therefore positively impacts upon cheetah welfare in captivity. Video recordings were carried out at three separate institutions (Fota Wildlife Park, Ireland; Ann van Dyk Cheetah Centre, South Africa; Cheetah Conservation Fund, Namibia). Randomization tests were carried out to compare the highest speeds attained between males and females, trained and untrained cheetahs and also between the three institutions. Females and trained individuals reached significantly higher speeds compared with males and untrained individuals, respectively. The only significant difference between the three institutions was between the Ann van Dyk Cheetah Centre and the Cheetah Conservation Fund, where cheetahs at the Ann van Dyk center reached significantly higher speeds. The current study represents the first detailed study of any aspect of the "cheetah run" across multiple institutions. It also includes the first quantification of the speed of cheetahs in captivity in relation to differing enrichment practices. © 2013 Wiley Periodicals, Inc.

  4. Race walking gait and its influence on race walking economy in world-class race walkers.

    PubMed

    Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan

    2018-03-06

    The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.

  5. A nurse-run walk-in clinic: cost-effective alternative to non-urgent emergency department use by the uninsured.

    PubMed

    Bicki, Alexandra; Silva, Adam; Joseph, Valerie; Handoko, Ryan; Rico, Sheryl-vi; Burns, Jacqueline; Simonelli, Anna; Harrop, Jordan; Nedow, Jennifer; De Groot, Anne S

    2013-12-01

    Non-urgent healthcare problems are responsible for more than 9 million visits to the emergency department (ED) in US hospitals each year, largely due to patients' lack of access to a primary care physician. To avoid costly and unnecessary ED usage for non-urgent health problems, a walk-in clinic run by nurses (CHEER Clinic) was developed as an extension of the services provided by an existing free clinic in a low-income neighborhood of Providence, RI, with the goal of providing uninsured patients with a convenient, no-cost means of accessing healthcare. An evaluation and cost-effectiveness analysis of the clinic's first 5 months of operation were performed. During this pilot period, 256 patients were seen. When incorporating the quality-adjusted-life-year value of preventive services rendered, an estimated $1.28 million in future healthcare costs was avoided. Dividing these cost-savings by the clinic's operational cost yielded a mean return on investment of $34 per $1 invested. Adding nurse-run walk-in hours at a free clinic significantly expanded access to healthcare for uninsured patients and was cost-effective for both the clinic and the patient. Ultimately, replication of this model in community clinics serving the uninsured could reduce ED burden by treating a substantial number of non-urgent medical concerns at a lower cost than would be incurred for treatment of the same problems in EDs.

  6. Multicomponent Exercise Improves Hemodynamic Parameters and Mobility, but Not Maximal Walking Speed, Transfer Capacity, and Executive Function of Older Type II Diabetic Patients.

    PubMed

    Coelho Junior, Hélio José; Callado Sanches, Iris; Doro, Marcio; Asano, Ricardo Yukio; Feriani, Daniele Jardim; Brietzke, Cayque; Gonçalves, Ivan de Oliveira; Uchida, Marco Carlos; Capeturo, Erico Chagas; Rodrigues, Bruno

    2018-01-01

    The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP) on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM) patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed) after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.

  7. Quantitative measurement of pass-by noise radiated by vehicles running at high speeds

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Wang, Ziteng; Li, Bing; Luo, Yugong; Lian, Xiaomin

    2011-03-01

    It has been a challenge in the past to accurately locate and quantify the pass-by noise source radiated by the running vehicles. A system composed of a microphone array is developed in our current work to do this work. An acoustic-holography method for moving sound sources is designed to handle the Doppler effect effectively in the time domain. The effective sound pressure distribution is reconstructed on the surface of a running vehicle. The method has achieved a high calculation efficiency and is able to quantitatively measure the sound pressure at the sound source and identify the location of the main sound source. The method is also validated by the simulation experiments and the measurement tests with known moving speakers. Finally, the engine noise, tire noise, exhaust noise and wind noise of the vehicle running at different speeds are successfully identified by this method.

  8. Sagittal distal limb kinematics inside the hoof capsule captured using high-speed fluoroscopy in walking and trotting horses.

    PubMed

    Roach, J M; Pfau, T; Bryars, J; Unt, V; Channon, S B; Weller, R

    2014-10-01

    Kinematic evaluation of the distal limb of the horse using standard methods is challenging, mainly due to the hoof capsule restricting visualisation, but the recent development of a high-speed fluoroscopy (HSF) system has allowed in vivo cineradiographic assessment of moving skeletal structures at high speeds. The application of this non-invasive method to the equine distal limb is used to describe 'internal' distal limb kinematics including intra-horse and inter-horse variability, and variability between walk and trot. Distal limb kinematic data were collected at walk and trot from six non-lame horses using HSF set over a force plate. The dorsal proximal interphalangeal joint (PIPJ) angle and the dorsal distal interphalangeal joint (DIPJ) angle were measured at toe-on and at 25%, 50% and 75% of stance. The PIPJ and DIPJ showed overall extension through stance. The mean ± SD range of motion (ROM) during stance of the PIPJ was 9.7 ± 2.7° (walk) and 8.7 ± 3.0° (trot) and of the DIPJ was 28.6 ± 4.6° (walk) and 26.5 ± 6.3° (trot) showing significant differences between gaits and changes through stance (P < 0.001). Inter- and intra- horse variations were also significant for both joint angles (P < 0.001). HSF allowed for kinematic assessment of the distal limb within the hoof capsule. The ROM of the PIPJ observed was similar to results published in the literature whilst the ROM for the DIPJ was less than values previously reported. Future studies will use HSF to estimate strain in the tendons and ligaments within the hoof capsule, which are a common site of lameness in the horse. Copyright © 2014. Published by Elsevier Ltd.

  9. Behavioral transitions induced by speed and noise in animal aggregates

    NASA Astrophysics Data System (ADS)

    Cambui, Dorílson S.; Iliass, Tarras

    2017-04-01

    In this paper, we used a self-propelled particle model to study the transition between phases of collective behavior observed in animal aggregates. In these systems, transitions occur when individuals shift from one collective state to another. We investigated transitions induced by both the speed and the noise. Statistical quantities that characterize the phase transition driven by noise, such as order parameter, the Binder cumulant and the susceptibility were analyzed, and we used the finite-size scaling theory to estimate the critical exponent ratios β/ν and γ/ν.

  10. Pedometer accuracy in slow walking older adults

    PubMed Central

    Martin, Jessica B.; Krč, Katarina M.; Mitchell, Emily A.; Eng, Janice J.; Noble, Jeremy W.

    2013-01-01

    The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds. PMID:24795762

  11. Cross-Validation of a Recently Published Equation Predicting Energy Expenditure to Run or Walk a Mile in Normal-Weight and Overweight Adults

    ERIC Educational Resources Information Center

    Morris, Cody E.; Owens, Scott G.; Waddell, Dwight E.; Bass, Martha A.; Bentley, John P.; Loftin, Mark

    2014-01-01

    An equation published by Loftin, Waddell, Robinson, and Owens (2010) was cross-validated using ten normal-weight walkers, ten overweight walkers, and ten distance runners. Energy expenditure was measured at preferred walking (normal-weight walker and overweight walkers) or running pace (distance runners) for 5 min and corrected to a mile. Energy…

  12. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.

  13. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).

    PubMed

    Carr, Jennifer A; Ellerby, David J; Marsh, Richard L

    2011-10-15

    Physiological and anatomical evidence suggests that in birds the iliotibialis lateralis pars postacetabularis (ILPO) is functionally important for running. Incorporating regional information, we estimated the mean sarcomere strain trajectory and electromyographic (EMG) amplitude of the ILPO during level and incline walking and running. Using these data and data in the literature of muscle energy use, we examined three hypotheses: (1) active lengthening will occur on the ascending limb of the length-tension curve to avoid potential damage caused by stretch on the descending limb; (2) the active strain cycle will shift to favor active shortening when the birds run uphill and shortening will occur on the plateau and shallow ascending limb of the length-tension curve; and (3) measures of EMG intensity will correlate with energy use when the mechanical function of the muscle is similar. Supporting the first hypothesis, we found that the mean sarcomere lengths at the end of active lengthening during level locomotion were smaller than the predicted length at the start of the plateau of the length-tension curve. Supporting the second hypothesis, the magnitude of active lengthening decreased with increasing slope, whereas active shortening increased. In evaluating the relationship between EMG amplitude and energy use (hypothesis 3), we found that although increases in EMG intensity with speed, slope and loading were positively correlated with muscle energy use, the quantitative relationships between these variables differed greatly under different conditions. The relative changes in EMG intensity and energy use by the muscle probably varied because of changes in the mechanical function of the muscle that altered the ratio of muscle energy use to active muscle volume. Considering the overall function of the cycle of active lengthening and shortening of the fascicles of the ILPO, we conclude that the function of active lengthening is unlikely to be energy conservation and may

  14. Plantar loading and foot-strike pattern changes with speed during barefoot running in those with a natural rearfoot strike pattern while shod.

    PubMed

    Cooper, Danielle M; Leissring, Sarah K; Kernozek, Thomas W

    2015-06-01

    Claims of injury reduction related to barefoot running has resulted in interest from the running public; however, its risks are not well understood for those who typically wear cushioned footwear. Examine how plantar loading changes during barefoot running in a group of runners that ordinarily wear cushioned footwear and demonstrate a rearfoot strike pattern (RFSP) without cueing or feedback alter their foot strike pattern and plantar loading when asked to run barefoot at different speeds down a runway. Forty-one subjects ran barefoot at three different speeds across a pedography platform which collected plantar loading variables for 10 regions of the foot; data were analyzed using two-way mixed multivariate analysis of variance (MANOVA). A significant foot strike position (FSP)×speed interaction in each of the foot regions indicated that plantar loading differed based on FSP across the different speeds. The RFSP provided the highest total forces across the foot while the pressures displayed in subjects with a non-rearfoot strike pattern (NRFSP) was more similar between each of the metatarsals. The majority of subjects ran barefoot with a NRFSP and demonstrated lower total forces and more uniform force distribution across the metatarsal regions. This may have an influence in injuries sustained in barefoot running. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  16. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial.

    PubMed

    Nadeau, Stephen E; Wu, Samuel S; Dobkin, Bruce H; Azen, Stanley P; Rose, Dorian K; Tilson, Julie K; Cen, Steven Y; Duncan, Pamela W

    2013-05-01

    After inpatient stroke rehabilitation, many people still cannot participate in community activities because of limited walking ability. To compare the effectiveness of 2 conceptually different, early physical therapy (PT) interventions to usual care (UC) in improving walking 6 months after stroke. The locomotor experience applied post-stroke (LEAPS) study was a single-blind, randomized controlled trial conducted in 408 adults with disabling hemiparetic stroke. Participants were stratified at baseline (2 months) by impairment in walking speed: severe (<0.4 m/s) or moderate (0.4 to <0.8 m/s). Between 2 and 6 months, they received either only UC (n = 143) or UC plus 36 therapist-provided sessions of either (1) walking training on a treadmill using body-weight support and practice overground at clinics (locomotor training program [LTP], n = 139) or (2) impairment-based strength and balance exercise at home (home exercise program [HEP], n = 126). LTP participants were 18% more likely to transition to a higher functional walking level: severe to >0.4 m/s and moderate to >0.8 m/s than UC participants (95% confidence interval [CI] = 7%-29%), and HEP participants were 17% more likely to transition (95% CI = 5%-29%). Mean gain in walking speed in LTP participants was 0.13 m/s greater (95% CI = 0.09-0.18) and in HEP participants, 0.10 m/s greater (95% CI = 0.05-0.14) than in UC participants. Progressive PT, using either walking training on a treadmill and overground, conducted in a clinic, or strength and balance exercises conducted at home, was superior to UC in improving walking, regardless of severity of initial impairment.

  17. Why does walking economy improve after weight loss in obese adolescents?

    PubMed

    Peyrot, Nicolas; Thivel, David; Isacco, Laurie; Morin, Jean-Benoît; Belli, Alain; Duche, Pascale

    2012-04-01

    This study tested the hypothesis that the increase in walking economy (i.e., decrease in net metabolic rate per kilogram) after weight loss in obese adolescents is induced by a lower metabolic rate required to support the lower body weight and maintain balance during walking. Sixteen obese adolescent boys and girls were tested before and after a weight reduction program. Body composition and oxygen uptake while standing and walking at four preset speeds (0.75, 1, 1.25, and 1.5 m·s⁻¹) and at the preferred speed were quantified. Net metabolic rate and gross metabolic cost of walking-versus-speed relationships were determined. A three-compartment model was used to distinguish the respective parts of the metabolic rate associated with standing (compartment 1), maintaining balance and supporting body weight during walking (compartment 2), and muscle contractions required to move the center of mass and limbs (compartment 3). Standing metabolic rate per kilogram (compartment 1) significantly increased after weight loss, whereas net metabolic rate per kilogram during walking decreased by 9% on average across speeds. Consequently, the gross metabolic cost of walking per unit of distance-versus-speed relationship and hence preferred walking speeds did not change with weight loss. Compartment 2 of the model was significantly lower after weight loss, whereas compartment 3 did not change. The model showed that the improvement in walking economy after weight loss in obese adolescents was likely related to the lower metabolic rate of the isometric muscular contractions required to support the lower body weight and maintain balance during walking. Contrastingly, the part of the total metabolic rate associated with muscle contractions required to move the center of mass and limbs did not seem to be related to the improvement in walking economy in weight-reduced individuals.

  18. Daily intermittent hypoxia enhances walking after chronic spinal cord injury

    PubMed Central

    Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.

    2014-01-01

    Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p < 0.001). Conclusions: dAIH ± walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617

  19. Reliability, agreement, and responsiveness of a 6-minute walk/run test in patients with heart disease.

    PubMed

    Berghmans, Danielle D; Lenssen, Antoine F; Bastiaenen, Carolien H; Ilhan, Mustafa; Lencer, Nicole H; Roox, George M

    2013-02-01

    The 6-minute walk test (6 MWT) is widely used to assess exercise tolerance in cardiac rehabilitation (CR). However, previous research shows it to be insufficiently responsive, especially for patients with a relatively high maximal exercise tolerance at baseline. We therefore designed a 6-minute walk/run test (6 MWRT), which has the same duration as the 6 MWT but allows running. The objective of this study was to determine the test-retest reproducibility and responsiveness of this 6 MWRT. Responsiveness was investigated in a prospective cohort study among a group of patients entering CR at Maastricht University Medical Center, with a cross-sectional part to assess the test-retest reproducibility. Test-retest reproducibility (reliability and agreement) was investigated using the intraclass correlation (ICC) and a Bland-Altman plot of two measurements implemented in the first week of rehabilitation. Responsiveness of the 6 MWT and the 6 MWRT was calculated using the standard response mean (SRM) over a 6-week period. The first reproducibility analysis included 34 patients, the second 22 patients. The ICCs were 0.935 and 0.906, respectively, with limits of agreement of ± 79 and ± 61 m. The responsiveness analysis included 27 patients. The SRM values were 0.83 for the 6 MWT and 0.71 for the 6 MWRT. Although the 6 MWRT is a reproducible test in CR, its responsiveness is not superior to that of the 6 MWT. We therefore prefer the conventional 6 MWT as an evaluative measurement in CR and advise against using the 6 MWRT as (evaluative) measurement in CR for this purpose.

  20. Street-running LRT may not affect a neighbour's sleep

    NASA Astrophysics Data System (ADS)

    Sarkar, S. K.; Wang, J.-N.

    2003-10-01

    A comprehensive dynamic finite difference model and analysis was conducted simulating LRT running at the speed of 24 km/h on a city street. The analysis predicted ground borne vibration (GBV) to remain at or below the FTA criterion of a RMS velocity of 72 VdB (0.004 in/s) at the nearest residence. In the model, site-specific stratography and dynamic soil and rock properties were used that were determined from in situ testing. The dynamic input load from LRT vehicle running at 24 km/h was computed from actual measured data from Portland, Oregon's West Side LRT project, which used a low floor vehicle similar to the one proposed for the NJ Transit project. During initial trial runs of the LRT system, vibration and noise measurements were taken at three street locations while the vehicles were running at about the 20-24 km/h operating speed. The measurements confirmed the predictions and satisfied FTA criteria for noise and vibration for frequent events. This paper presents the analytical model, GBV predictions, site measurement data and comparison with FTA criterion.

  1. Running economy and energy cost of running with backpacks.

    PubMed

    Scheer, Volker; Cramer, Leoni; Heitkamp, Hans-Christian

    2018-05-02

    Running is a popular recreational activity and additional weight is often carried in backpacks on longer runs. Our aim was to examine running economy and other physiological parameters while running with a 1kg and 3 kg backpack at different submaximal running velocities. 10 male recreational runners (age 25 ± 4.2 years, VO2peak 60.5 ± 3.1 ml·kg-1·min-1) performed runs on a motorized treadmill of 5 minutes durations at three different submaximal speeds of 70, 80 and 90% of anaerobic lactate threshold (LT) without additional weight, and carrying a 1kg and 3 kg backpack. Oxygen consumption, heart rate, lactate and RPE were measured and analysed. Oxygen consumption, energy cost of running and heart rate increased significantly while running with a backpack weighing 3kg compared to running without additional weight at 80% of speed at lactate threshold (sLT) (p=0.026, p=0.009 and p=0.003) and at 90% sLT (p<0.001, p=0.001 and p=0.001). Running with a 1kg backpack showed a significant increase in heart rate at 80% sLT (p=0.008) and a significant increase in oxygen consumption and heart rate at 90% sLT (p=0.045 and p=0.007) compared to running without additional weight. While running at 70% sLT running economy and cardiovascular effort increased with weighted backpack running compared to running without additional weight, however these increases did not reach statistical significance. Running economy deteriorates and cardiovascular effort increases while running with additional backpack weight especially at higher submaximal running speeds. Backpack weight should therefore be kept to a minimum.

  2. Walking economy in people with Parkinson's disease.

    PubMed

    Christiansen, Cory L; Schenkman, Margaret L; McFann, Kim; Wolfe, Pamela; Kohrt, Wendy M

    2009-07-30

    Gait dysfunction is an early problem identified by patients with Parkinson's disease (PD). Alterations in gait may result in an increase in the energy cost of walking (i.e., walking economy). The purpose of this study was to determine whether walking economy is atypical in patients with PD when compared with healthy controls. A secondary purpose was to evaluate the associations of age, sex, and level of disease severity with walking economy in patients with PD. The rate of oxygen consumption (VO(2)) and other responses to treadmill walking were compared in 90 patients (64.4 +/- 10.3 years) and 44 controls (64.6 +/- 7.3 years) at several walking speeds. Pearson correlation coefficients (r) were calculated to determine relationships of age, sex, and disease state with walking economy in PD patients. Walking economy was significantly worse in PD patients than in controls at all speeds above 1.0 mph. Across all speeds, VO(2) was 6 to 10% higher in PD patients. Heart rate, minute ventilation, respiratory exchange ratio, and rating of perceived exertion were correspondingly elevated. No significant relationship of age, sex, or UPDRS score with VO(2) was found for patients with PD. The findings suggest that the physiologic stress of daily physical activities is increased in patients with early to mid-stage PD, and this may contribute to the elevated level of fatigue that is characteristic of PD. Copyright 2009 Movement Disorder Society.

  3. Development of an aerobic capacity prediction model from one-mile run/walk performance in adolescents aged 13-16 years.

    PubMed

    Burns, Ryan D; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Shultz, Barry B; Saint-Maurice, Pedro F; Welk, Gregory J; Mahar, Matthew T

    2016-01-01

    A popular algorithm to predict VO2Peak from the one-mile run/walk test (1MRW) includes body mass index (BMI), which manifests practical issues in school settings. The purpose of this study was to develop an aerobic capacity model from 1MRW in adolescents independent of BMI. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years. The 1MRW was administered on an outside track and a laboratory VO2Peak test was conducted using a maximal treadmill protocol. Multiple linear regression was employed to develop the prediction model. Results yielded the following algorithm: VO2Peak = 7.34 × (1MRW speed in m s(-1)) + 0.23 × (age × sex) + 17.75. The New Model displayed a multiple correlation and prediction error of R = 0.81, standard error of the estimate = 4.78 ml kg(-1) · min(-1), with measured VO2Peak and good criterion-referenced (CR) agreement into FITNESSGRAM's Healthy Fitness Zone (Kappa = 0.62; percentage agreement = 84.4%; Φ = 0.62). The New Model was validated using k-fold cross-validation and showed homoscedastic residuals across the range of predicted scores. The omission of BMI did not compromise accuracy of the model. In conclusion, the New Model displayed good predictive accuracy and good CR agreement with measured VO2Peak in adolescents aged 13-16 years.

  4. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.

    PubMed

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J; Malatesta, Davide

    2016-01-01

    Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP.

  5. Fatigue and Muscle Strength Involving Walking Speed in Parkinson's Disease: Insights for Developing Rehabilitation Strategy for PD.

    PubMed

    Huang, Ying-Zu; Chang, Fang-Yu; Liu, Wei-Chia; Chuang, Yu-Fen; Chuang, Li-Ling; Chang, Ya-Ju

    2017-01-01

    Background . Problems with gait in Parkinson's disease (PD) are a challenge in neurorehabilitation, partly because the mechanisms causing the walking disability are unclear. Weakness and fatigue, which may significantly influence gait, are commonly reported by patients with PD. Hence, the aim of this study was to investigate the association between weakness and fatigue and walking ability in patients with PD. Methods . We recruited 25 patients with idiopathic PD and 25 age-matched healthy adults. The maximum voluntary contraction (MVC), twitch force, and voluntary activation levels were measured before and after a knee fatigue exercise. General fatigue, central fatigue, and peripheral fatigue were quantified by exercise-induced changes in MVC, twitch force, and activation level. In addition, subjective fatigue was measured using the Multidimensional Fatigue Inventory (MFI) and Fatigue Severity Scale (FSS). Results . The patients with PD had lower activation levels, more central fatigue, and more subjective fatigue than the healthy controls. There were no significant differences in twitch force or peripheral fatigue index between the two groups. The reduction in walking speed was related to the loss of peripheral strength and PD itself. Conclusion . Fatigue and weakness of central origin were related to PD, while peripheral strength was important for walking ability. The results suggest that rehabilitation programs for PD should focus on improving both central and peripheral components of force.

  6. Nordic Walking Practice Might Improve Plantar Pressure Distribution

    ERIC Educational Resources Information Center

    Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto

    2011-01-01

    Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…

  7. How humans use visual optic flow to regulate stepping during walking.

    PubMed

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Two Independent Contributions to Step Variability during Over-Ground Human Walking

    PubMed Central

    Collins, Steven H.; Kuo, Arthur D.

    2013-01-01

    Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308

  9. Influence of shoes increasing dorsiflexion and decreasing metatarsus flexion on lower limb muscular activity during fitness exercises, walking, and running.

    PubMed

    Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg

    2008-05-01

    The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.

  10. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and

  11. The effects of gum chewing while walking on physical and physiological functions.

    PubMed

    Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi

    2018-04-01

    [Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21-69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions.

  12. Optimisation of sprinting performance in running, cycling and speed skating.

    PubMed

    van Ingen Schenau, G J; de Koning, J J; de Groot, G

    1994-04-01

    Sprinting performances rely strongly on a fast acceleration at the start of a sprint and on the capacity to maintain a high velocity in the phase following the start. Simulations based on a model developed in which the generation of metabolic power is related to the mechanical destinations of power showed that for short-lasting sprinting events, the best pacing strategy is an all out effort, even if this strategy causes a strong reduction of the velocity at the end of the race. Even pacing strategies should only be used in exercises lasting longer than 80 to 100 seconds. Sprint runners, speed skaters and cyclists need a large rate of breakdown of energy rich phosphates in the first 4 to 5 seconds of the race (mechanical equivalent > 20 W/kg) in order to accelerate their body, and a power output of more than 10 W/kg in the phase following the start to maintain a high velocity. Maximal speed in running is mainly limited by the necessity to rotate the legs forwards and backwards relative to the hip joint. The acceleration phase, however, relies on powerful extensions of all leg joints. Through a comparison of the hindlimb design of highly specialised animal sprinters (as can be found among predators) and of long distance animal runners (as found among hoofed animals), it is illustrated that these 2 phases of a sprint rely on conflicting requirements: improvement of maximal speed would require lower moments of inertia of the legs whereas a faster acceleration would require the involvement of more muscle mass (not only of the hip and knee extensors but also of the plantar flexors). Maximal speed in cycling and speed skating is not limited by the necessity to move leg segments but rather on air friction and rolling or ice friction. Since the drag coefficients found for speed skaters and cyclists (about 0.8) are considerably higher than those of more streamlined bodies, much progress can still be expected from the reduction of air friction. Speed skaters and especially

  13. Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces.

    PubMed

    Clark, Kenneth P; Ryan, Laurence J; Weyand, Peter G

    2014-06-15

    Running performance, energy requirements and musculoskeletal stresses are directly related to the action-reaction forces between the limb and the ground. For human runners, the force-time patterns from individual footfalls can vary considerably across speed, foot-strike and footwear conditions. Here, we used four human footfalls with distinctly different vertical force-time waveform patterns to evaluate whether a basic mechanical model might explain all of them. Our model partitions the body's total mass (1.0 Mb) into two invariant mass fractions (lower limb=0.08, remaining body mass=0.92) and allows the instantaneous collisional velocities of the former to vary. The best fits achieved (R(2) range=0.95-0.98, mean=0.97 ± 0.01) indicate that the model is capable of accounting for nearly all of the variability observed in the four waveform types tested: barefoot jog, rear-foot strike run, fore-foot strike run and fore-foot strike sprint. We conclude that different running ground reaction force-time patterns may have the same mechanical basis. © 2014. Published by The Company of Biologists Ltd.

  14. A testing machine for dental air-turbine handpiece characteristics: free-running speed, stall torque, bearing resistance.

    PubMed

    Darvell, Brain W; Dyson, J E

    2005-01-01

    The measurement of performance characteristics of dental air turbine handpieces is of interest with respect to product comparisons, standards specifications and monitoring of bearing longevity in clinical service. Previously, however, bulky and expensive laboratory equipment was required. A portable test machine is described for determining three key characteristics of dental air-turbine handpieces: free-running speed, stall torque and bearing resistance. It relies on a special circuit design for performing a hardware integration of a force signal with respect to rotational position, independent of the rate at which the turbine is allowed to turn during both stall torque and bearing resistance measurements. Free-running speed without the introduction of any imbalance can be readily monitored. From the essential linear relationship between torque and speed, dynamic torque and, hence, power, can then be calculated. In order for these measurements to be performed routinely with the necessary precision of location on the test stage, a detailed procedure for ensuring proper gripping of the handpiece is described. The machine may be used to verify performance claims, standard compliance checks should this be established as appropriate, monitor deterioration with time and usage in the clinical environment and for laboratory investigation of design development.

  15. At similar angles, slope walking has a greater fall risk than stair walking.

    PubMed

    Sheehan, Riley C; Gottschall, Jinger S

    2012-05-01

    According to the CDC, falls are the leading cause of injury for all age groups with over half of the falls occurring during slope and stair walking. Consequently, the purpose of this study was to compare and contrast the different factors related to fall risk as they apply to these walking tasks. More specifically, we hypothesized that compared to level walking, slope and stair walking would have greater speed standard deviation, greater ankle dorsiflexion, and earlier peak activity of the tibialis anterior. Twelve healthy, young male participants completed level, slope, and stair trials on a 25-m walkway. Overall, during slope and stair walking, medial-lateral stability was less, anterior-posterior stability was less, and toe clearance was greater in comparison to level walking. In addition, there were fewer differences between level and stair walking than there were between level and slope walking, suggesting that at similar angles, slope walking has a greater fall risk than stair walking. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. A smartphone-based system for automated detection of walking.

    DOT National Transportation Integrated Search

    2015-08-01

    Walking is the most effective mode of travel to access transit: transit hubs with higher residential and employment densities have higher : ridership levels because they serve areas where a large population is within a short walk of transit service. ...

  17. Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors

    PubMed Central

    Sellers, William I; Cain, Gemma M; Wang, Weijie; Crompton, Robin H

    2005-01-01

    This paper uses techniques from evolutionary robotics to predict the most energy-efficient upright walking gait for the early human relative Australopithecus afarensis, based on the proportions of the 3.2 million year old AL 288-1 ‘Lucy’ skeleton, and matches predictions against the nearly contemporaneous (3.5–3.6 million year old) Laetoli fossil footprint trails. The technique creates gaits de novo and uses genetic algorithm optimization to search for the most efficient patterns of simulated muscular contraction at a variety of speeds. The model was first verified by predicting gaits for living human subjects, and comparing costs, stride lengths and speeds to experimentally determined values for the same subjects. Subsequent simulations for A. afarensis yield estimates of the range of walking speeds from 0.6 to 1.3 m s−1 at a cost of 7.0 J kg−1 m−1 for the lowest speeds, falling to 5.8 J kg−1 m−1 at 1.0 m s−1, and rising to 6.2 J kg−1 m−1 at the maximum speed achieved. Speeds previously estimated for the makers of the Laetoli footprint trails (0.56 or 0.64 m s−1 for Trail 1, 0.72 or 0.75 m s−1 for Trail 2/3) may have been underestimated, substantially so for Trail 2/3, with true values in excess of 0.7 and 1.0 m s−1, respectively. The predictions conflict with suggestions that A. afarensis used a ‘shuffling’ gait, indicating rather that the species was a fully competent biped. PMID:16849203

  18. Turbulence and transition modeling for high-speed flows

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1993-01-01

    Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.

  19. The effects of gum chewing while walking on physical and physiological functions

    PubMed Central

    Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi

    2018-01-01

    [Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21–69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions. PMID:29706720

  20. Mechanical external work and recovery at preferred walking speed in obese subjects.

    PubMed

    Malatesta, Davide; Vismara, Luca; Menegoni, Francesco; Galli, Manuela; Romei, Marianna; Capodaglio, Paolo

    2009-02-01

    The aim of this study was to compare the mechanical external work (per kg) and pendular energy transduction at preferred walking speed (PWS) in obese versus normal body mass subjects to investigate whether obese adults adopt energy conserving gait mechanics. The mechanical external work (Wext) and the fraction of mechanical energy recovered by the pendular mechanism (Rstep) were computed using kinematic data acquired by an optoelectronic system and were compared in 30 obese (OG; body mass index [BMI] = 39.6 +/- 0.6 kg m(-2); 29.5 +/- 1.3 yr) and 19 normal body mass adults (NG; BMI = 21.4 +/- 0.5 kg m(-2); 31.2 +/- 1.2 yr) walking at PWS. PWS was significantly lower in OG (1.18 +/- 0.02 m s(-1)) than in NG (1.33 +/- 0.02 m s(-1); P

  1. Mechanics and energetics of human locomotion on sand.

    PubMed

    Lejeune, T M; Willems, P A; Heglund, N C

    1998-07-01

    Moving about in nature often involves walking or running on a soft yielding substratum such as sand, which has a profound effect on the mechanics and energetics of locomotion. Force platform and cinematographic analyses were used to determine the mechanical work performed by human subjects during walking and running on sand and on a hard surface. Oxygen consumption was used to determine the energetic cost of walking and running under the same conditions. Walking on sand requires 1.6-2.5 times more mechanical work than does walking on a hard surface at the same speed. In contrast, running on sand requires only 1.15 times more mechanical work than does running on a hard surface at the same speed. Walking on sand requires 2.1-2.7 times more energy expenditure than does walking on a hard surface at the same speed; while running on sand requires 1.6 times more energy expenditure than does running on a hard surface. The increase in energy cost is due primarily to two effects: the mechanical work done on the sand, and a decrease in the efficiency of positive work done by the muscles and tendons.

  2. Running promotes wakefulness and increases cataplexy in orexin knockout mice.

    PubMed

    España, Rodrigo A; McCormack, Sarah L; Mochizuki, Takatoshi; Scammell, Thomas E

    2007-11-01

    People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.

  3. Television Viewing, Walking Speed, and Grip Strength in a Prospective Cohort Study

    PubMed Central

    KEEVIL, VICTORIA L.; WIJNDAELE, KATRIEN; LUBEN, ROBERT; SAYER, AVAN A.; WAREHAM, NICHOLAS J.; KHAW, KAY-TEE

    2015-01-01

    ABSTRACT Purpose Television (TV) watching is the most prevalent sedentary leisure time activity in the United Kingdom. We examined associations between TV viewing time, measured over 10 yr, and two objective measures of physical capability, usual walking speed (UWS) and grip strength. Methods Community-based participants (n = 8623; 48–92 yr old) enrolled in the European Prospective Investigation of Cancer—Norfolk study attended a third health examination (3HC, 2006–2011) for measurement of maximum grip strength (Smedley dynamometer) and UWS. TV viewing time was estimated using a validated questionnaire (n = 6086) administered during two periods (3HC, 2006–2007; 2HC, 1998–2000). Associations between physical capability and TV viewing time category (<2, 2 < 3, 3 < 4, and ≥4 h·d−1) at the 3HC, 2HC, and using an average of the two measures were explored. Sex-stratified analyses were adjusted for age, physical activity, anthropometry, wealth, comorbidity, smoking, and alcohol intake and combined if no sex–TV viewing time interactions were identified. Results Men and women who watched the least TV at the 2HC or 3HC walked at a faster usual pace than those who watched the most TV. There was no evidence of effect modification by sex (Pinteraction = 0.09), and in combined analyses, participants who watched for <2 h·d−1 on average walked 4.29 cm·s−1 (95% confidence interval, 2.56–6.03) faster than those who watched for ≥4 h·d−1, with evidence of a dose–response association (Ptrend < 0.001). However, no strong associations with grip strength were found. Conclusions TV viewing time predicted UWS in older adults. More research is needed to inform public health policy and prospective associations between other measures of sedentariness, such as total sitting time or objectively measured sedentary time, and physical capability should be explored. PMID:25785826

  4. Motor modules in robot-aided walking

    PubMed Central

    2012-01-01

    Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. PMID:23043818

  5. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy

    PubMed Central

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J.; Malatesta, Davide

    2016-01-01

    Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP. PMID:27148062

  6. Anticipatory postural adjustments for altering direction during walking.

    PubMed

    Xu, Dali; Carlton, Les G; Rosengren, Karl S

    2004-09-01

    The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.

  7. Effect of high-speed running on hamstring strain injury risk.

    PubMed

    Duhig, Steven; Shield, Anthony J; Opar, David; Gabbett, Tim J; Ferguson, Cameron; Williams, Morgan

    2016-12-01

    Hamstring strain injuries (HSIs) are common within the Australian Football League (AFL) with most occurring during high-speed running (HSR). Therefore, this study investigated possible relationships between mean session running distances, session ratings of perceived exertion (s-RPE) and HSIs within AFL footballers. Global positioning system (GPS)-derived running distances and s-RPE for all matches and training sessions over two AFL seasons were obtained from one AFL team. All HSIs were documented and each player's running distances and s-RPE were standardised to their 2-yearly session average, then compared between injured and uninjured players in the 4 weeks (weeks -1, -2, -3 and -4) preceding each injury. Higher than 'typical' (ie, z=0) HSR session means were associated with a greater likelihood of HSI (week -1: OR=6.44, 95% CI=2.99 to 14.41, p<0.001; summed weeks -1 and -2: OR=3.06, 95% CI=2.03 to 4.75, p<0.001; summed weeks -1, -2 and -3: OR=2.22, 95% CI=1.66 to 3.04, p<0.001; and summed weeks -1, -2, -3 and -4: OR=1.96, 95% CI=1.54 to 2.51, p<0.001). However, trivial differences were observed between injured and uninjured groups for standardised s-RPE, total distance travelled and distances covered whilst accelerating and decelerating. Increasing AFL experience was associated with a decreased HSI risk (OR=0.77, 95% CI 0.57 to 0.97, p=0.02). Furthermore, HSR data modelling indicated that reducing mean distances in week -1 may decrease the probability of HSI. Exposing players to large and rapid increases in HSR distances above their 2-yearly session average increased the odds of HSI. However, reducing HSR in week -1 may offset HSI risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. The Influence of Carbohydrate Mouth Rinse on Self-Selected Intermittent Running Performance.

    PubMed

    Rollo, Ian; Homewood, George; Williams, Clyde; Carter, James; Goosey-Tolfrey, Vicky L

    2015-12-01

    This study investigated the influence of mouth rinsing a carbohydrate solution on self-selected intermittent variable-speed running performance. Eleven male amateur soccer players completed a modified version of the Loughborough Intermittent Shuttle Test (LIST) on 2 occasions separated by 1 wk. The modified LIST allowed the self-selection of running speeds during Block 6 of the protocol (75-90 min). Players rinsed and expectorated 25 ml of noncaloric placebo (PLA) or 10% maltodextrin solution (CHO) for 10 s, routinely during Block 6 of the LIST. Self-selected speeds during the walk and cruise phases of the LIST were similar between trials. Jogging speed was significantly faster during the CHO (11.3 ± 0.7 km · h(-1)) than during the PLA trial (10.5 ± 1.3 km · h(-1)) (p = .010); 15-m sprint speeds were not different between trials (PLA: 2.69 ± 0.18 s: CHO: 2.65 ± 0.13 s) (F(2, 10), p = .157), but significant benefits were observed for sprint distance covered (p = .024). The threshold for the smallest worthwhile change in sprint performance was set at 0.2 s. Inferential statistical analysis showed the chance that CHO mouth rinse was beneficial, negligible, or detrimental to repeated sprint performance was 86%, 10%, and 4%, respectively. In conclusion, mouth rinsing and expectorating a 10% maltodextrin solution was associated with a significant increase in self-selected jogging speed. Repeated 15-m sprint performance was also 86% likely to benefit from routinely mouth rinsing a carbohydrate solution in comparison with a taste-matched placebo.

  9. Effect of Running Speed and Leg Prostheses on Mediolateral Foot Placement and Its Variability

    PubMed Central

    Arellano, Christopher J.; McDermott, William J.; Kram, Rodger; Grabowski, Alena M.

    2015-01-01

    This study examined the effects of speed and leg prostheses on mediolateral (ML) foot placement and its variability in sprinters with and without transtibial amputations. We hypothesized that ML foot placement variability would: 1. increase with running speed up to maximum speed and 2. be symmetrical between the legs of non-amputee sprinters but asymmetrically greater for the affected leg of sprinters with a unilateral transtibial amputation. We measured the midline of the body (kinematic data) and center of pressure (kinetic data) in the ML direction while 12 non-amputee sprinters and 7 Paralympic sprinters with transtibial amputations (6 unilateral, 1 bilateral) ran across a range of speeds up to maximum speed on a high-speed force measuring treadmill. We quantified ML foot placement relative to the body’s midline and its variability. We interpret our results with respect to a hypothesized relation between ML foot placement variability and lateral balance. We infer that greater ML foot placement variability indicates greater challenges with maintaining lateral balance. In non-amputee sprinters, ML foot placement variability for each leg increased substantially and symmetrically across speed. In sprinters with a unilateral amputation, ML foot placement variability for the affected and unaffected leg also increased substantially, but was asymmetric across speeds. In general, ML foot placement variability for sprinters with a unilateral amputation was within the range observed in non-amputee sprinters. For the sprinter with bilateral amputations, both affected legs exhibited the greatest increase in ML foot placement variability with speed. Overall, we find that maintaining lateral balance becomes increasingly challenging at faster speeds up to maximum speed but was equally challenging for sprinters with and without a unilateral transtibial amputation. Finally, when compared to all other sprinters in our subject pool, maintaining lateral balance appears to be the

  10. Kinetic analysis of the function of the upper body for elite race walkers during official men 20 km walking race.

    PubMed

    Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu

    2016-10-01

    This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.

  11. Gait speed is limited but improves over the course of acute care physical therapy.

    PubMed

    Braden, Heather J; Hilgenberg, Sean; Bohannon, Richard W; Ko, Man-Soo; Hasson, Scott

    2012-01-01

    Gait is a common focus of physical therapists' management of patients in acute care settings. Walking speed, the distance a patient covers per unit time, has been advocated as a "sixth vital sign." However, the feasibility of measuring walking speed and the degree to which walking speed is limited or improves over the course of therapy in the acute care setting are unclear. The purpose of this study of patients undergoing physical therapy during acute care hospitalization, therefore, was to determine whether walking speed can be measured in acute care and whether walking speed is limited and changes over the course of therapy. This was an observational cross-sectional study. Participants were 46 hospital inpatients, mean age 75.0 years (SD = 7.8), referred to physical therapy and able to walk at least 20 ft. Information regarding diagnosis, comorbidities, physical assistance, device use, body height, and weight was obtained. Speed was determined during initial and final physical therapy visits while patients walked at their self-selected speed over a marked course in a hospital corridor. Therapists reported that walking speed was clinically feasible, requiring inexpensive, available resources, 4 minutes' additional time, and simple calculations for documentation. Initial walking speed was a mean of 0.33 m/s (SD = 0.21; 95% confidence interval [CI]: 0.27-0.39), whereas final speed was 0.37 m/s (SD = 0.20; 95% CI: 0.31-0.43). The Wilcoxon test showed the increase in walking speed (0.04 m/s) to be significant (P = .005) over a mean therapy period of 2.0 days (SD = 1.4) and total hospitalization period of 5.5 days (SD = 3.6). The effect size and standardized response mean were 0.19 and 0.36, respectively. Minimal detectable change was 0.18 m/s. Walking speed is a feasible measure for patients admitted to an acute care hospital. It shows that patients walk slowly relative to community requirements but that their speed improves even over a short course of therapy.

  12. Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation.

    PubMed

    Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto

    2016-07-01

    The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparison of muscle synergies for running between different foot strike patterns

    PubMed Central

    Nishida, Koji; Hagio, Shota; Kibushi, Benio; Moritani, Toshio; Kouzaki, Motoki

    2017-01-01

    It is well known that humans run with a fore-foot strike (FFS), a mid-foot strike (MFS) or a rear-foot strike (RFS). A modular neural control mechanism of human walking and running has been discussed in terms of muscle synergies. However, the neural control mechanisms for different foot strike patterns during running have been overlooked even though kinetic and kinematic differences between different foot strike patterns have been reported. Thus, we examined the differences in the neural control mechanisms of human running between FFS and RFS by comparing the muscle synergies extracted from each foot strike pattern during running. Muscle synergies were extracted using non-negative matrix factorization with electromyogram activity recorded bilaterally from 12 limb and trunk muscles in ten male subjects during FFS and RFS running at different speeds (5–15 km/h). Six muscle synergies were extracted from all conditions, and each synergy had a specific function and a single main peak of activity in a cycle. The six muscle synergies were similar between FFS and RFS as well as across subjects and speeds. However, some muscle weightings showed significant differences between FFS and RFS, especially the weightings of the tibialis anterior of the landing leg in synergies activated just before touchdown. The activation patterns of the synergies were also different for each foot strike pattern in terms of the timing, duration, and magnitude of the main peak of activity. These results suggest that the central nervous system controls running by sending a sequence of signals to six muscle synergies. Furthermore, a change in the foot strike pattern is accomplished by modulating the timing, duration and magnitude of the muscle synergy activity and by selectively activating other muscle synergies or subsets of the muscle synergies. PMID:28158258

  14. Differences in physical aging measured by walking speed: evidence from the English Longitudinal Study of Ageing.

    PubMed

    Weber, Daniela

    2016-01-28

    Physical functioning and mobility of older populations are of increasing interest when populations are aging. Lower body functioning such as walking is a fundamental part of many actions in daily life. Limitations in mobility threaten independent living as well as quality of life in old age. In this study we examine differences in physical aging and convert those differences into the everyday measure of single years of age. We use the English Longitudinal Study of Ageing, which was collected biennially between 2002 and 2012. Data on physical performance, health as well as information on economics and demographics of participants were collected. Lower body performance was assessed with two timed walks at normal pace each of 8 ft (2.4 m) of survey participants aged at least 60 years. We employed growth curve models to study differences in physical aging and followed the characteristic-based age approach to illustrate those differences in single years of age. First, we examined walking speed of about 11,700 English individuals, and identified differences in aging trajectories by sex and other characteristics (e.g. education, occupation, regional wealth). Interestingly, higher educated and non-manual workers outperformed their counterparts for both men and women. Moreover, we transformed the differences between subpopulations into single years of age to demonstrate the magnitude of those gaps, which appear particularly high at early older ages. This paper expands research on aging and physical performance. In conclusion, higher education provides an advantage in walking of up to 15 years for men and 10 years for women. Thus, enhancements in higher education have the potential to ensure better mobility and independent living in old age for a longer period.

  15. Variability in energy cost and walking gait during race walking in competitive race walkers.

    PubMed

    Brisswalter, J; Fougeron, B; Legros, P

    1998-09-01

    The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.

  16. Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher

    2012-02-01

    Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.

  17. Self-Attractive Random Walks: The Case of Critical Drifts

    NASA Astrophysics Data System (ADS)

    Ioffe, Dmitry; Velenik, Yvan

    2012-07-01

    Self-attractive random walks (polymers) undergo a phase transition in terms of the applied drift (force): If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension d ≥ 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.

  18. Comparison of spatiotemporal and energy cost of the use of 3 different walkers and unassisted walking in older adults.

    PubMed

    Protas, Elizabeth J; Raines, Mary Lynn; Tissier, Sandrine

    2007-06-01

    To compare temporal, spatial, and oxygen costs of gait while elderly subjects walked without an assistive device, with a new assistive device, and with 2 other commercially available assistive devices. Descriptive, repeated measures. University-based research laboratory. Thirteen healthy older subjects who could walk without an assistive device. Not applicable. Gait speed, normalized gait speed, cadence, stride lengths, 5-minute walk distance and gait speed, oxygen consumption (Vo2) per meter walked, respiratory exchange ratio (RER) per meter walked, and minute ventilation per meter walked. Gait speed, normalized gait speed, and stride lengths decreased when the Merry Walker device was used, compared with walking without an assistive device. Outcome measures when walking with either the wheeled walker or the WalkAbout did not differ significantly from walking without a device except for a faster cadence with the WalkAbout. The distance walked and gait speed were decreased and the RER and minute ventilation were increased during the 5-minute walk with the Merry Walker compared with normal walking. The Vo2 was higher with the wheeled walker and Merry Walker than when walking without an assistive device, but there was no difference when the WalkAbout was used. Older adults walked in the new assistive device, the WalkAbout, with parameters that did not differ significantly from their gait without a device. The oxygen demands of walking were similar to unassisted walking for the WalkAbout, but were higher for the wheeled walker and Merry Walker. These results may help guide the prescription of assistive devices for older adults.

  19. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1965-10-15

    Cable system which supports the test subject on the Reduced Gravity Walking Simulator. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil described the purpose of the simulator as follows: "When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995); A.W. Vigil, "Discussion of

  20. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    PubMed

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking

  1. Comparison of the Mini-Balance Evaluations Systems Test with the Berg Balance Scale in relationship to walking speed and motor recovery post stroke.

    PubMed

    Madhavan, Sangeetha; Bishnoi, Alka

    2017-12-01

    The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. A retrospective exploratory design. Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p = 0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers.

  2. Towards the run and walk activity classification through step detection--an android application.

    PubMed

    Oner, Melis; Pulcifer-Stump, Jeffry A; Seeling, Patrick; Kaya, Tolga

    2012-01-01

    Falling is one of the most common accidents with potentially irreversible consequences, especially considering special groups, such as the elderly or disabled. One approach to solve this issue would be an early detection of the falling event. Towards reaching the goal of early fall detection, we have worked on distinguishing and monitoring some basic human activities such as walking and running. Since we plan to implement the system mostly for seniors and the disabled, simplicity of the usage becomes very important. We have successfully implemented an algorithm that would not require the acceleration sensor to be fixed in a specific position (the smart phone itself in our application), whereas most of the previous research dictates the sensor to be fixed in a certain direction. This algorithm reviews data from the accelerometer to determine if a user has taken a step or not and keeps track of the total amount of steps. After testing, the algorithm was more accurate than a commercial pedometer in terms of comparing outputs to the actual number of steps taken by the user.

  3. Walking with springs

    NASA Astrophysics Data System (ADS)

    Sugar, Thomas G.; Hollander, Kevin W.; Hitt, Joseph K.

    2011-04-01

    Developing bionic ankles poses great challenges due to the large moment, power, and energy that are required at the ankle. Researchers have added springs in series with a motor to reduce the peak power and energy requirements of a robotic ankle. We developed a "robotic tendon" that reduces the peak power by altering the required motor speed. By changing the required speed, the spring acts as a "load variable transmission." If a simple motor/gearbox solution is used, one walking step would require 38.8J and a peak motor power of 257 W. Using an optimized robotic tendon, the energy required is 21.2 J and the peak motor power is reduced to 96.6 W. We show that adding a passive spring in parallel with the robotic tendon reduces peak loads but the power and energy increase. Adding a passive spring in series with the robotic tendon reduces the energy requirements. We have built a prosthetic ankle SPARKy, Spring Ankle with Regenerative Kinetics, that allows a user to walk forwards, backwards, ascend and descend stairs, walk up and down slopes as well as jog.

  4. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    PubMed

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Kinematic, Cardiopulmonary, and Metabolic Responses of Overweight Runners While Running at Self-Selected and Standardized Speeds

    PubMed Central

    Zdziarski, Laura Ann; Chen, Cong; Horodyski, Marybeth; Vincent, Kevin R.; Vincent, Heather K.

    2017-01-01

    Objective To determine the differences in kinematic, cardiopulmonary, and metabolic responses between overweight and healthy weight runners at a self-selected and standard running speed. Design Comparative descriptive study. Setting Tertiary care institution, university-affiliated research laboratory. Participants Overweight runners (n = 21) were matched with runners of healthy weight (n = 42). Methods Participants ran at self-selected and standardized speeds (13.6 km/h). Sagittal plane joint kinematics were captured simultaneously with cardiopulmonary and metabolic measures using a motion capture system and portable gas analyzer, respectively. Main Outcome Measurements Spatiotemporal parameters (cadence, step width and length, center of gravity displacement, stance time) joint kinematics, oxygen cost, heart rate, ventilation and energy expenditure. Results At the self-selected speed, overweight individuals ran slower (8.5 ± 1.3 versus 10.0 ± 1.6 km/h) and had slower cadence (163 versus 169 steps/min; P < .05). The sagittal plane range of motion (ROM) for flexion-extension at the ankle, knee, hip, and anterior pelvic tilt were all less in overweight runners compared to healthy weight runners (all P < .05). At self-selected speed and 13.6 km/h, energy expenditure was higher in the overweight runners compared to their healthy weight counterparts (P < .05). At 13.6 km/h, only the frontal hip and pelvis ROM were higher in the overweight versus the healthy weight runners (P < .05), and energy expenditure, net energy cost, and minute ventilation were higher in the overweight runners compared to the healthy weight runners (P < .05). Conclusion At self-selected running speeds, the overweight runners demonstrated gait strategies (less joint ROM, less vertical displacement, and shorter step lengths) that resulted in cardiopulmonary and energetic responses similar to those of healthy weight individuals. PMID:26146194

  6. Women with fibromyalgia walk with an altered muscle synergy.

    PubMed

    Pierrynowski, Michael R; Tiidus, Peter M; Galea, Victoria

    2005-11-01

    Most individuals can use different movement and muscle recruitment patterns to perform a stated task but often only one pattern is selected which optimizes an unknown global objective given the individual's neuromusculoskeletal characteristics. Patients with fibromyalgia syndrome (FS), characterized by their chronic pain, reduced physical work capacity and muscular fatigue, could exhibit a different control signature compared to asymptomatic control volunteers (CV). To test this proposal, 22 women with FS, and 11 CV, were assessed in a gait analysis laboratory. Each subject walked repeatedly at self-selected slow, comfortable, and fast walking speeds. The gait analysis provided, for each walk, each subject's stride time, length, and velocity, and ground reaction force, and lower extremity joint kinematics, moments and powers. The data were then anthropometrically scaled and velocity normalized to reduce the influence of subject mass, leg length, and walking speed on the measured gait outcomes. Similarities and differences in the two groups' scaled and normalized gait patterns were then determined. Results show that FS and CV walk with externally similar stride lengths, times, and velocities, and joint angles and ground reaction forces but they use internally different muscle recruitment patterns. Specifically, FS preferentially power gait using their hip flexors instead of their ankle plantarflexors. Interestingly, CV use a similar muscle fatiguing recruitment pattern to walk fast which parallels the common complaint of fatigue reported by FS walking at comfortable speed.

  7. Long-Term Effects of Habitual Barefoot Running and Walking: A Systematic Review.

    PubMed

    Hollander, Karsten; Heidt, Christoph; VAN DER Zwaard, Babette C; Braumann, Klaus-Michael; Zech, Astrid

    2017-04-01

    Barefoot locomotion is widely believed to be beneficial for motor development and biomechanics but are implied to be responsible for foot pathologies and running-related injuries. Although most of available studies focused on acute effects of barefoot running and walking little is known regarding the effects of long-term barefoot versus shod locomotion. The purpose of this study was to systematically review the literature to evaluate current evidence of habitual barefoot (HB) versus habitual shod locomotion on foot anthropometrics, biomechanics, motor performance, and pathologies. Four electronic databases were searched using terms related to habitually barefoot locomotion. Relevant studies were identified based on title, abstract, and full text, and a forward (citation tracking) and backward (references) search was performed. Risk of bias was assessed, data pooling, and meta-analysis (random effects model) performed and finally levels of evidence determined. Fifteen studies with 8399 participants were included. Limited evidence was found for a reduced ankle dorsiflexion at footstrike (pooled effect size, -3.47; 95% confidence interval [CI], -5.18 to -1.76) and a lower pedobarographically measured hallux angle (-1.16; 95% CI, -1.64 to -0.68). HB populations had wider (0.55; 95% CI, 0.06-1.05) but no shorter (-0.22; 95% CI, -0.51 to 0.08) feet compared with habitual shod populations. No differences in relative injury rates were found, with limited evidence for a different body part distribution of musculoskeletal injuries and more foot pathologies and less foot deformities and defects in HB runners. Only limited or very limited evidence is found for long-term effects of HB locomotion regarding biomechanics or health-related outcomes. Moreover, no evidence exists for motor performance. Future research should include prospective study designs.

  8. The effect of repeated bouts of backward walking on physiologic efficiency.

    PubMed

    Childs, John D; Gantt, Christy; Higgins, Dan; Papazis, Janet A; Franklin, Ronald; Metzler, Terri; Underwood, Frank B

    2002-08-01

    Previous studies have demonstrated an increased energy expenditure with novel tasks. With practice, the energy cost decreases as the body more efficiently recruits motor units. This study examined whether one becomes more efficient after repeated bouts of backward walking. The subjects were 7 healthy subjects between the ages of 23 and 49 years. A backward walking speed was calculated to elicit a VO(2) equal to 60% of the VO(2)max. There were 18 training sessions at the prescribed walking speed 3 d x wk(-1) for 20 min x d(-1). The backward walking speed required to elicit a fixed VO(2) increased between weeks 4 and 6 of the training period. This finding suggests that backward walking is indeed a novel task and that motor learning occurs as a result of practice, leading to a more efficient recruitment of motor units.

  9. The effect of recovery duration on running speed and stroke quality during intermittent training drills in elite tennis players.

    PubMed

    Ferrauti, A; Pluim, B M; Weber, K

    2001-04-01

    The aim of this study was to assess the effect of the recovery duration in intermittent training drills on metabolism and coordination in sport games. Ten nationally ranked male tennis players (age 25.3+/-3.7 years, height 1.83+/-0.8 m, body mass 77.8+/-7.7 kg; mean +/- sx) participated in a passing-shot drill (baseline sprint with subsequent passing shot) that aimed to improve both starting speed and stroke quality (speed and precision). Time pressure for stroke preparation was individually adjusted by a ball-machine and corresponded to 80% of maximum running speed. In two trials (T10, T15) separated by 2 weeks, the players completed 30 strokes and sprints subdivided into 6 x 5 repetitions with a 1 min rest between series. The rest between each stroke-and-sprint lasted either 10 s (T10) or 15 s (T15). The sequence of both conditions was randomized between participants. Post-exercise blood lactate concentration was significantly elevated in T10 (9.04+/-3.06 vs 5.01+/-1.35 mmol x l(-1), P < 0.01). Running time for stroke preparation (1.405+/-0.044 vs 1.376+/-0.045 s, P < 0.05) and stroke speed (106+/-12 vs 114+/-8 km x h(-1), P < 0.05) were significantly decreased in T10, while stroke precision - that is, more target hits (P < 0.1) and fewer errors (P < 0.05) - tended to be higher. We conclude that running speed and stroke quality during intermittent tennis drills are highly dependent on the duration of recovery time. Optimization of training efficacy in sport games (e.g. combined improvement of conditional and technical skills) requires skilful fine-tuning of monitoring guidelines.

  10. Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.

    PubMed

    Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou

    2018-03-01

    To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all P<.05) during pool floor walking compared with OW. A 2×2 mixed model analysis of variance revealed a significant group × condition interaction in V˙o 2 , in which the control group increased V˙o 2 from OW to pool floor walking, whereas the stroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.

  11. Compliant walking appears metabolically advantageous at extreme step lengths.

    PubMed

    Kim, Jaehoon; Bertram, John E A

    2018-05-19

    Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2  = 0.92 for normal walking; r 2  = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Validity and Reliability of Dynamic Visual Acuity (DVA) Measurement During Walking

    NASA Technical Reports Server (NTRS)

    Deshpande, Nandini; Peters, Brian T.; Bloomberg, Jacob J.

    2014-01-01

    DVA is primarily subserved by the vestibulo-ocular reflex mechanism. Individuals with vestibular hypofunction commonly experience highly debilitating illusory movement or blurring of visual images during daily activities possibly, due to impaired DVA. Even without pathologies, gradual age-related morphological deterioration is evident in all components of the vestibular system. We examined the construct validity to detect age-related differences and test-retest reliability of DVA measurements performed during walking. METHODS: Healthy adults were recruited into 3 groups: 1. young (20-39years, n=18), 2. middle-aged (40-59years, n=14), and 3. older adults (60-80years, n=15). Randomly selected seven participants from each group (n=21) participated in retesting. Participants were excluded if they had a history of vestibular or neuromuscular pathologies, dizziness/vertigo or >1 falls in the past year. Older persons with MMSE scores <29/30 were excluded to minimize cognitive errors. Participants' age, height, weight and normal walking speed were recorded. The binocular DVA was measured while walking on a treadmill at 0.8 m/s, 1.0 m/s and 1.2 m/s speeds. The walking speeds chosen represent a range of slow to moderate walking speeds for adult life span in participants who have no current mobility problems. The monitor that displayed Landolt 'C' optotypes was placed at 50 cm from the eyes for nearDVA (primary compensation by otolith organs) and at 3.0 m for farDVA (primary compensation by semicircular canals). A mixed factor ANOVA (age group x speed) was performed separately for the Near and FarDVA for detecting group differences. Intraclass correlation coefficients (ICCs) were calculated for each condition to determine test-retest reliability. RESULTS: The three age groups were not different in their height, weight and normal walking speed (p>0.05). The post hoc analyses for DVA measurements demonstrated that each group was significantly different from the other two groups

  13. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking.

    PubMed

    Donelan, J Maxwell; Kram, Rodger; Kuo, Arthur D

    2002-12-01

    In the single stance phase of walking, center of mass motion resembles that of an inverted pendulum. Theoretically, mechanical work is not necessary for producing the pendular motion, but work is needed to redirect the center of mass velocity from one pendular arc to the next during the transition between steps. A collision model predicts a rate of negative work proportional to the fourth power of step length. Positive work is required to restore the energy lost, potentially exacting a proportional metabolic cost. We tested these predictions with humans (N=9) walking over a range of step lengths (0.4-1.1 m) while keeping step frequency fixed at 1.8 Hz. We measured individual limb external mechanical work using force plates, and metabolic rate using indirect calorimetry. As predicted, average negative and positive external mechanical work rates increased with the fourth power of step length (from 1 W to 38 W; r(2)=0.96). Metabolic rate also increased with the fourth power of step length (from 7 W to 379 W; r(2)=0.95), and linearly with mechanical work rate. Mechanical work for step-to-step transitions, rather than pendular motion itself, appears to be a major determinant of the metabolic cost of walking.

  14. Walking Energetics, Fatigability, and Fatigue in Older Adults: The Study of Energy and Aging Pilot

    PubMed Central

    Richardson, Catherine A.; Glynn, Nancy W.; Ferrucci, Luigi G.

    2015-01-01

    Background. Slow gait speed increases morbidity and mortality in older adults. We examined how preferred gait speed is associated with energetic requirements of walking, fatigability, and fatigue. Methods. Older adults (n = 36, 70–89 years) were categorized as slow or fast walkers based on median 400-m gait speed. We measured VO2peak by graded treadmill exercise test and VO2 during 5-minute treadmill walking tests at standard (0.72 m/s) and preferred gait speeds. Fatigability was assessed with the Situational Fatigue Scale and the Borg rating of perceived exertion at the end of walking tests. Fatigue was assessed by questionnaire. Results. Preferred gait speed over 400 m (range: 0.75–1.58 m/s) averaged 1.34 m/s for fast walkers versus 1.05 m/s for slow walkers (p < .001). VO2peak was 26% lower (18.5 vs 25.1ml/kg/min, p = .001) in slow walkers than fast walkers. To walk at 0.72 m/s, slow walkers used a larger percentage of VO2peak (59% vs 42%, p < .001). To walk at preferred gait speed, slow walkers used more energy per unit distance (0.211 vs 0.186ml/kg/m, p = .047). Slow walkers reported higher rating of perceived exertion during walking and greater overall fatigability on the Situational Fatigue Scale, but no differences in fatigue. Conclusions. Slow walking was associated with reduced aerobic capacity, greater energetic cost of walking, and greater fatigability. Interventions to improve aerobic capacity or decrease energetic cost of walking may prevent slowing of gait speed and promote mobility in older adults. PMID:25190069

  15. Balance ability and cognitive impairment influence sustained walking in an assisted living facility.

    PubMed

    Bowen, Mary Elizabeth; Crenshaw, Jeremy; Stanhope, Steven J

    The purpose of this study was to determine the influence of cognitive impairment (CI), 1 gait quality, and balance ability on walking distance and speed in an assisted living facility. This was a longitudinal cohort study of institutionalized older adults (N = 26; 555 observations) followed for up to 8 months. Hierarchical linear modeling statistical techniques were used to examine the effects of gait quality and balance ability (using the Tinetti Gait and Balance Test) and cognitive status (using the Montreal Cognitive Assessment) on walking activity (distance, sustained distance, sustained speed). The latter were measured objectively and continuously by a real-time locating system (RTLS). A one-point increase in balance ability was associated with an 8% increase in sustained walking distance (p = 0.03) and a 4% increase in sustained gait speed (p = 0.00). Gait quality was associated with decreased sustained gait speed (p = 0.03). Residents with moderate (ERR = 2.34;p = 0.01) or severe CI (trend with an ERR = 1.62; p = 0.06) had longer sustained walking distances at slower speeds when compared to residents with no CI. After accounting for cognitive status, it was balance ability, not gait quality, that was a determinant of sustained walking distances and speeds. Therefore, balance interventions for older adults in assisted living may enable sustained walking activity. Given that CI was associated with more sustained walking, limiting sustained walking in the form of wandering behavior, especially for those with balance impairments, may prevent adverse events, including fall-related injury. Published by Elsevier B.V.

  16. Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation.

    PubMed

    Wezenberg, Daphne; van der Woude, Lucas H; Faber, Willemijn X; de Haan, Arnold; Houdijk, Han

    2013-09-01

    To determine the relative aerobic load, walking speed, and walking economy of older adults with a lower-limb prosthesis, and to predict the effect of an increased aerobic capacity on their walking ability. Cross-sectional. Human motion laboratory at a rehabilitation center. Convenience sample of older adults (n=36) who underwent lower-limb amputation because of vascular deficiency or trauma and able-bodied controls (n=21). Not applicable. Peak aerobic capacity and oxygen consumption while walking were determined. The relative aerobic load and walking economy were assessed as a function of walking speed, and a data-based model was constructed to predict the effect of an increased aerobic capacity on walking ability. People with a vascular amputation walked at a substantially higher (45.2%) relative aerobic load than people with an amputation because of trauma. The preferred walking speed in both groups of amputees was slower than that of able-bodied controls and below their most economical walking speed. We predicted that a 10% increase in peak aerobic capacity could potentially result in a reduction in the relative aerobic load of 9.1%, an increase in walking speed of 17.3% and 13.9%, and an improvement in the walking economy of 6.8% and 2.9%, for people after a vascular or traumatic amputation, respectively. Current findings corroborate the notion that, especially in people with a vascular amputation, the peak aerobic capacity is an important determinant for walking ability. The data provide quantitative predictions on the effect of aerobic training; however, future research is needed to experimentally confirm these predictions. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water.

    PubMed

    Masumoto, Kenji; Nishizaki, Yoshiko; Hamada, Ayako

    2013-06-01

    We investigated the effect of stride frequency (SF) on metabolic costs and rating of perceived exertion (RPE) during walking in water and on dry land. Eleven male subjects walked on a treadmill on dry land and on an underwater treadmill at their preferred SF (PSF) and walked at an SF which was lower and higher than the PSF (i.e., PSF ± 5, 10, and 15 strides min(-1)). Walking speed was kept constant at each subject's preferred walking speed in water and on dry land. Oxygen uptake, heart rate, RPE, PSF and preferred walking speeds were measured. Metabolic costs and RPE were significantly higher when walking at low and high SF conditions than when walking at the PSF condition both in water and on dry land (P<0.05). Additionally, the high SF condition produced significantly higher metabolic costs and RPE than the equivalent low SF condition during walking in water (P<0.01). Furthermore, metabolic costs, RPE, PSF, and the preferred walking speed were significantly lower in water than on dry land when walking at the PSF (P<0.05). These observations indicate that a change in SF influences metabolic costs and RPE during walking in water. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice

    PubMed Central

    España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.

    2007-01-01

    Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476

  19. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.

    PubMed

    Bishop, P J; Clemente, C J; Weems, R E; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G

    2017-07-01

    How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods ( p < 0.001), as well as the five tallest bird species studied ( p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history. © 2017 The Author(s).

  20. Effect of In-Vehicle Audio Warning System on Driver’s Speed Control Performance in Transition Zones from Rural Areas to Urban Areas

    PubMed Central

    Yan, Xuedong; Wang, Jiali; Wu, Jiawei

    2016-01-01

    Speeding is a major contributing factor to traffic crashes and frequently happens in areas where there is a mutation in speed limits, such as the transition zones that connect urban areas from rural areas. The purpose of this study is to investigate the effects of an in-vehicle audio warning system and lit speed limit sign on preventing drivers’ speeding behavior in transition zones. A high-fidelity driving simulator was used to establish a roadway network with the transition zone. A total of 41 participants were recruited for this experiment, and the driving speed performance data were collected from the simulator. The experimental results display that the implementation of the audio warning system could significantly reduce drivers’ operating speed before they entered the urban area, while the lit speed limit sign had a minimal effect on improving the drivers’ speed control performance. Without consideration of different types of speed limit signs, it is found that male drivers generally had a higher operating speed both upstream and in the transition zones and have a larger maximum deceleration for speed reduction than female drivers. Moreover, the drivers who had medium-level driving experience had the higher operating speed and were more likely to have speeding behaviors in the transition zones than those who had low-level and high-level driving experience in the transition zones. PMID:27347990