Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf
2013-05-01
Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.
A Spatial Agent-Based Model for the Simulation of Adults’ Daily Walking Within a City
Yang, Yong; Roux, Ana V. Diez; Auchincloss, Amy H.; Rodriguez, Daniel A.; Brown, Daniel G.
2012-01-01
Environmental effects on walking behavior have received attention in recent years because of the potential for policy interventions to increase population levels of walking. Most epidemiologic studies describe associations of walking behavior with environmental features. These analyses ignore the dynamic processes that shape walking behaviors. A spatial agent-based model (ABM) was developed to simulate peoples’ walking behaviors within a city. Each individual was assigned properties such as age, SES, walking ability, attitude toward walking and a home location. Individuals perform different activities on a regular basis such as traveling for work, for shopping, and for recreation. Whether an individual walks and the amount she or he walks is a function distance to different activities and her or his walking ability and attitude toward walking. An individual’s attitude toward walking evolves over time as a function of past experiences, walking of others along the walking route, limits on distances walked per day, and attitudes toward walking of the other individuals within her/his social network. The model was calibrated and used to examine the contributions of land use and safety to socioeconomic differences in walking. With further refinement and validation, ABMs may help to better understand the determinants of walking and identify the most promising interventions to increase walking. PMID:21335269
Yang, Yong; Diez-Roux, Ana V
2017-09-01
Studies on how the interaction of psychological and environmental characteristics influences walking are limited, and the results are inconsistent. Our aim is to examine how the attitude toward walking and neighborhood environments interacts to influence walking. Cross-sectional phone and mail survey. Participants randomly sampled from 6 study sites including Los Angeles, Chicago, Baltimore, Minneapolis, Manhattan, and Bronx Counties in New York City, and Forsyth and Davidson Counties in North Carolina. The final sample consisted of 2621 persons from 2011 to 2012. Total minutes of walking for travel or leisure, attitude toward walking, and perceptions of the neighborhood environments were self-reported. Street Smart (SS) Walk Score (a measure of walkability derived from a variety of geographic data) was obtained for each residential location. Linear regression models adjusting for age, gender, race/ethnicity, education, and income. Attitude toward walking was positively associated with walking for both purposes. Walking for travel was significantly associated with SS Walk Score, whereas walking for leisure was not. The SS Walk Score and selected perceived environment characteristics were associated with walking in people with a very positive attitude toward walking but were not associated with walking in people with a less positive attitude. Attitudes toward walking and neighborhood environments interact to affect walking behavior.
Walk Score(TM), Perceived Neighborhood Walkability, and walking in the US.
Tuckel, Peter; Milczarski, William
2015-03-01
To investigate both the Walk Score(TM) and a self-reported measure of neighborhood walkability ("Perceived Neighborhood Walkability") as estimators of transport and recreational walking among Americans. The study is based upon a survey of a nationally-representative sample of 1224 American adults. The survey gauged walking for both transport and recreation and included a self-reported measure of neighborhood walkability and each respondent's Walk Score(TM). Binary logistic and linear regression analyses were performed on the data. The Walk Score(TM) is associated with walking for transport, but not recreational walking nor total walking. Perceived Neighborhood Walkability is associated with transport, recreational and total walking. Perceived Neighborhood Walkability captures the experiential nature of walking more than the Walk Score(TM).
Protas, Elizabeth J; Raines, Mary Lynn; Tissier, Sandrine
2007-06-01
To compare temporal, spatial, and oxygen costs of gait while elderly subjects walked without an assistive device, with a new assistive device, and with 2 other commercially available assistive devices. Descriptive, repeated measures. University-based research laboratory. Thirteen healthy older subjects who could walk without an assistive device. Not applicable. Gait speed, normalized gait speed, cadence, stride lengths, 5-minute walk distance and gait speed, oxygen consumption (Vo2) per meter walked, respiratory exchange ratio (RER) per meter walked, and minute ventilation per meter walked. Gait speed, normalized gait speed, and stride lengths decreased when the Merry Walker device was used, compared with walking without an assistive device. Outcome measures when walking with either the wheeled walker or the WalkAbout did not differ significantly from walking without a device except for a faster cadence with the WalkAbout. The distance walked and gait speed were decreased and the RER and minute ventilation were increased during the 5-minute walk with the Merry Walker compared with normal walking. The Vo2 was higher with the wheeled walker and Merry Walker than when walking without an assistive device, but there was no difference when the WalkAbout was used. Older adults walked in the new assistive device, the WalkAbout, with parameters that did not differ significantly from their gait without a device. The oxygen demands of walking were similar to unassisted walking for the WalkAbout, but were higher for the wheeled walker and Merry Walker. These results may help guide the prescription of assistive devices for older adults.
ERIC Educational Resources Information Center
Steller, Jenifer J.
This manual presents a schoolwide walking program that includes aerobic fitness information, curriculum integration, and walking tours. "Discover and Understand Carolina Kids by Walking" is D.U.C.K. Walking. An aerobic walking activity, D.U.C.K. Walking has two major goals: (1) to promote regular walking as a way to exercise at any age;…
The Effect of Auditory Cueing on the Spatial and Temporal Gait Coordination in Healthy Adults.
Almarwani, Maha; Van Swearingen, Jessie M; Perera, Subashan; Sparto, Patrick J; Brach, Jennifer S
2017-12-27
Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p < .001). The walk ratio was less at faster speed with metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.
Danks, Kelly A.; Pohlig, Ryan T.; Roos, Margie; Wright, Tamara R.; Reisman, Darcy S.
2016-01-01
Background/Purpose Many factors appear to be related to physical activity after stroke, yet it is unclear how these factors interact and which ones might be the best predictors. Therefore, the purpose of this study was twofold: 1) to examine the relationship between walking capacity and walking activity, and 2) to investigate how biopsychosocial factors and self-efficacy relate to walking activity, above and beyond walking capacity impairment post-stroke. Methods Individuals greater than 3 months post-stroke (n=55) completed the Yesavage Geriatric Depression Scale (GDS), Fatigue Severity Scale (FSS), Modified Cumulative Illness Rating (MCIR) Scale, Walk 12, Activities Specific Balance Confidence (ABC) Scale, Functional Gait Assessment (FGA), and oxygen consumption testing. Walking activity data was collected via a StepWatch Activity Monitor (SAM). Predictors were grouped into 3 constructs: (1) Walking Capacity: oxygen consumption and FGA; (2) Biopsychosocial: GDS, FSS, and MCIR; (3) Self-Efficacy: Walk 12 and ABC. Moderated sequential regression models were used to examine what factors best predicted walking activity. Results Walking capacity explained 35.9% (p<0.001) of the variance in walking activity. Self-efficacy (ΔR2 = 0.15, p<0.001) and the interaction between the FGA*ABC (ΔR2 = 0.047, p<0.001) significantly increased the variability explained. FGA (β=0.37, p=0.01), MCIR (β=−0.26, p=0.01), and Walk 12 (β=−0.45, p=0.00) were each individually significantly associated with walking activity. Discussion/Conclusion While measures of walking capacity and self-efficacy significantly contributed to "real-world" walking activity, balance self-efficacy moderated the relationship between walking capacity and walking activity. Improving low balance self-efficacy may augment walking capacity and translate to improved walking activity post-stroke. PMID:27548750
Walk Score® and Transit Score® and Walking in the Multi-Ethnic Study of Atherosclerosis
Hirsch, Jana A.; Moore, Kari A.; Evenson, Kelly R.; Rodriguez, Daniel A; Diez Roux, Ana V.
2013-01-01
Background Walk Score® and Transit Score® are open-source measures of the neighborhood built environment to support walking (“walkability”) and access to transportation. Purpose To investigate associations of Street Smart Walk Score and Transit Score with self-reported transport and leisure walking using data from a large multi-city and diverse population-based sample of adults. Methods Data from a sample of 4552 residents of Baltimore MD; Chicago IL; Forsyth County NC; Los Angeles CA; New York NY; and St. Paul MN from the Multi-Ethnic Study of Atherosclerosis (2010–2012) were linked to Walk Score and Transit Score (collected in 2012). Logistic and linear regression models estimated ORs of not walking and mean differences in minutes walked, respectively, associated with continuous and categoric Walk Score and Transit Score. All analyses were conducted in 2012. Results After adjustment for site, key sociodemographic, and health variables, a higher Walk Score was associated with lower odds of not walking for transport and more minutes/week of transport walking. Compared to those in a “walker’s paradise,” lower categories of Walk Score were associated with a linear increase in odds of not transport walking and a decline in minutes of leisure walking. An increase in Transit Score was associated with lower odds of not transport walking or leisure walking, and additional minutes/week of leisure walking. Conclusions Walk Score and Transit Score appear to be useful as measures of walkability in analyses of neighborhood effects. PMID:23867022
Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.
Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon
2015-09-01
[Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2014-01-01
Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.
A Novel Treadmill with a Function of Simulating Walkway-Walking
NASA Astrophysics Data System (ADS)
Funabiki, Shigeyuki; Nishiyama, Shinji; Tanaka, Toshihiko; Fujihara, Jun-Ichi; Maniwa, Sokichi; Sakai, Yasuo
There are differences between walkway walking and walking on a treadmill. It is considered that these differences are based on the fact that the walking on the treadmill is a passive motion, while the walkway walking is an active motion. The differences in walking between on a floor and on a treadmill are investigated using the electromyograph and on the oral questionnaires from subjects. The obtained knowledge is as follows. (1) The muscular activity of the legs in walking on the treadmill without the tractive force is smaller than that in walking on the floor. (2) The walking on the treadmill with 60% of the tractive force being equivalent to the walkway walking from the rear downward of 30 degrees becomes similar to the usual walking on the floor. This paper proposes a novel treadmill with a function of simulating walkway-walking. The developed treadmill has a walking-load device towing the subject from the rear downward and controlling the walking speed according to the position of subject on the treadmill. The verification experiment of walking on the developed treadmill shows the availability to gait training and rehabilitation.
Neogi, Tuhina; King, Wendy C.; LaValley, Michael P.; Kritchevsky, Stephen B.; Nevitt, Michael C.; Harris, Tamara B.; Ferrucci, Luigi; Simonsick, Eleanor M.; Satterfield, Suzanne; Strotmeyer, Elsa S.; Zhang, Yuqing
2014-01-01
Background The ability to walk for short and prolonged periods of time is often measured with separate walking tests. It is unclear whether decline in the 2-minute walk coincides with decline in a shorter 20-m walk among older adults. Objective The aim of this study was to describe patterns of change in the 20-m walk and 2-minute walk over 8 years among a large cohort of older adults. Should change be similar between tests of walking ability, separate retesting of prolonged walking may need to be reconsidered. Design A longitudinal, observational cohort study was conducted. Methods Data were from 1,893 older adults who were well-functioning (≥70 years of age). The 20-m walk and 2-minute walk were repeatedly measured over 8 years to measure change during short and prolonged periods of walking, respectively. Change was examined using a dual group-based trajectory model (dual model), and agreement between walking trajectories was quantified with a weighted kappa statistic. Results Three trajectory groups for the 20-m walk and 2-minute walk were identified. More than 86% of the participants were in similar trajectory groups for both tests from the dual model. There was high chance-corrected agreement (kappa=.84; 95% confidence interval=.82, .86) between the 20-m walk and 2-minute walk trajectory groups. Limitations One-third of the original Health, Aging and Body Composition (Health ABC) study cohort was excluded from analysis due to missing clinic visits, followed by being excluded for health reasons for performing the 2-minute walk, limiting generalizability to healthy older adults. Conclusions Patterns of change in the 2-minute walk are similar to those in the 20-m walk. Thus, separate retesting of the 2-minute walk may need to be reconsidered to gauge change in prolonged walking. PMID:24786943
Karusisi, Noëlla; Thomas, Frédérique; Méline, Julie; Brondeel, Ruben; Chaix, Basile
2014-01-01
Assessing the contextual factors that influence walking for transportation is important to develop more walkable environments and promote physical activity. To advance previous research focused on residential environments and overall walking for transportation, the present study investigates objective environmental factors assessed around the residence, the workplace, the home--work itinerary, and the home--supermarket itinerary, and considered overall walking for transportation but also walking to work and to shops. Data from the RECORD Study involving 7290 participants recruited in 2007-2008, aged 30-79 years, and residing in the Paris metropolitan area were analyzed. Multilevel ordinal regression analyses were conducted to investigate environmental characteristics associated with self-reported overall walking for transportation, walking to work, and walking to shops. High individual education was associated with overall walking for transportation, with walking to work, and walking to shops. Among workers, a high residential neighborhood education was associated with increased overall walking for transportation, while a high workplace neighborhood education was related to an increased time spent walking to work. The residential density of destinations was positively associated with overall walking for transportation, with walking to work, and with walking to shops, while the workplace density of destinations was positively associated with overall walking for transportation among workers. Environmental factors assessed around the itineraries were not associated with walking to work or to the shops. This research improves our understanding of the role of the environments on walking for transportation by accounting for some of the environments visited beyond the residential neighborhood. It shows that workers' walking habits are more influenced by the density of destinations around the workplace than around the residence. These results provide insight for the development of policies and programs to encourage population level active commuting.
Shared and task-specific muscle synergies of Nordic walking and conventional walking.
Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B
2018-03-01
Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Polese, Janaine C; Ada, Louise; Teixeira-Salmela, Luci F
2018-01-01
Since physical inactivity is the major risk factor for recurrent stroke, it is important to understand how level of disability impacts oxygen uptake by people after stroke. This study investigated the nature of the relationship between level of disability and oxygen cost in people with chronic stroke. Level of walking disability was measured as comfortable walking speed using the 10-m Walk Test reported in m/s with 55 ambulatory people 2 years after stroke. Oxygen cost was measured during 3 walking tasks: overground walking at comfortable speed, overground walking at fast speed, and stair walking at comfortable speed. Oxygen cost was calculated from oxygen uptake divided by distance covered during walking and reported in ml∙kg -1 ∙m -1 . The relationship between level of walking disability and oxygen cost was curvilinear for all 3 walking tasks. One quadratic model accounted for 81% (95% CI [74, 88]) of the variance in oxygen cost during the 3 walking tasks: [Formula: see text] DISCUSSION: The oxygen cost of walking was related the level of walking disability in people with chronic stroke, such that the more disabled the individual, the higher the oxygen cost of walking; with oxygen cost rising sharply as disability became severe. An equation that relates oxygen cost during different walking tasks according to the level of walking disability allows clinicians to determine oxygen cost indirectly without the difficulty of measuring oxygen uptake directly. Copyright © 2017 John Wiley & Sons, Ltd.
Reeves, Mathew J; Rafferty, Ann P; Miller, Corinne E; Lyon-Callo, Sarah K
2011-03-01
The extent to which dog walking promotes leisure-time physical activity (LTPA) remains unresolved. We describe the characteristics of people who walk their dog, and assess the impact on LTPA. Information on dog ownership, dog walking patterns, total walking activity and LTPA were assessed in the 2005 Michigan Behavioral Risk Factor Survey. Multiple logistic regression was used to generate adjusted odds ratios (AOR) for the effect of dog walking on total walking and LTPA. Of 5902 respondents 41% owned a dog, and of these, 61% walked their dog for at least 10 minutes at a time. However, only 27% walked their dog at least 150 minutes per week. Dog walking was associated with a significant increase in walking activity and LTPA. Compared with non-dog owners, the odds of obtaining at least 150 minutes per week of total walking were 34% higher for dog walkers (AOR = 1.34, 95% CI = 1.13 to 1.59), and the odds of doing any LTPA were 69% higher (AOR = 1.69, 95% CI = 1.33 to 2.15). Dog walking was associated with more walking and LTPA, however a substantial proportion of dog owners do not walk their dog. The promotion of dog walking could help increase LTPA.
Walking for Transportation and Leisure Among U.S. Adults--National Health Interview Survey 2010.
Paul, Prabasaj; Carlson, Susan A; Carroll, Dianna D; Berrigan, David; Fulton, Janet E
2015-06-16
Walking, the most commonly reported physical activity among U.S. adults, is undertaken in various domains, including transportation and leisure. This study examined prevalence, bout length, and mean amount of walking in the last week for transportation and leisure, by selected characteristics. Self-reported data from the 2010 National Health Interview Survey (N = 24,017) were analyzed. Prevalence of transportation walking was 29.4% (95% CI: 28.6%-30.3%) and of leisure walking was 50.0% (95% CI: 49.1%-51.0%). Prevalence of transportation walking was higher among men; prevalence of leisure walking was higher among women. Most (52.4%) transportation walking bouts were 10 to 15 minutes; leisure walking bouts were distributed more evenly (28.0%, 10-15 minutes; 17.1%, 41-60 minutes). Mean time spent in transportation walking was higher among men, decreased with increasing BMI, and varied by race/ethnicity and region of residence. Mean time spent leisure walking increased with increasing age and with decreasing BMI. Demographic correlates and patterns of walking differ by domain. Interventions focusing on either leisure or transportation walking should consider correlates for the specific walking domain. Assessing prevalence, bout length, and mean time of walking for transportation and leisure separately allows for more comprehensive surveillance of walking.
Give your ideas some legs: the positive effect of walking on creative thinking.
Oppezzo, Marily; Schwartz, Daniel L
2014-07-01
Four experiments demonstrate that walking boosts creative ideation in real time and shortly after. In Experiment 1, while seated and then when walking on a treadmill, adults completed Guilford's alternate uses (GAU) test of creative divergent thinking and the compound remote associates (CRA) test of convergent thinking. Walking increased 81% of participants' creativity on the GAU, but only increased 23% of participants' scores for the CRA. In Experiment 2, participants completed the GAU when seated and then walking, when walking and then seated, or when seated twice. Again, walking led to higher GAU scores. Moreover, when seated after walking, participants exhibited a residual creative boost. Experiment 3 generalized the prior effects to outdoor walking. Experiment 4 tested the effect of walking on creative analogy generation. Participants sat inside, walked on a treadmill inside, walked outside, or were rolled outside in a wheelchair. Walking outside produced the most novel and highest quality analogies. The effects of outdoor stimulation and walking were separable. Walking opens up the free flow of ideas, and it is a simple and robust solution to the goals of increasing creativity and increasing physical activity. PsycINFO Database Record (c) 2014 APA, all rights reserved.
The effects of gum chewing while walking on physical and physiological functions.
Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi
2018-04-01
[Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21-69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions.
Kuo, Chun-Yu; Yeh, Yei-Yu
2016-01-01
Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults. PMID:27790178
The effects of gum chewing while walking on physical and physiological functions
Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi
2018-01-01
[Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21–69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions. PMID:29706720
Procter-Gray, Elizabeth; Leveille, Suzanne G.; Hannan, Marian T.; Cheng, Jie; Kane, Kevin; Li, Wenjun
2015-01-01
Background. Regular walking is critical to maintaining health in older age. We examined influences of individual and community factors on walking habits in older adults. Methods. We analyzed walking habits among participants of a prospective cohort study of 745 community-dwelling men and women, mainly aged 70 years or older. We estimated community variations in utilitarian and recreational walking, and examined whether the variations were attributable to community differences in individual and environmental factors. Results. Prevalence of recreational walking was relatively uniform while prevalence of utilitarian walking varied across the 16 communities in the study area. Both types of walking were associated with individual health and physical abilities. However, utilitarian walking was also strongly associated with several measures of neighborhood socioeconomic status and access to amenities while recreational walking was not. Conclusions. Utilitarian walking is strongly influenced by neighborhood environment, but intrinsic factors may be more important for recreational walking. Communities with the highest overall walking prevalence were those with the most utilitarian walkers. Public health promotion of regular walking should take this into account. PMID:26339507
Walking Beliefs in Women With Fibromyalgia: Clinical Profile and Impact on Walking Behavior.
Peñacoba, Cecilia; Pastor, María-Ángeles; López-Roig, Sofía; Velasco, Lilian; Lledo, Ana
2017-10-01
Although exercise is essential for the treatment of fibromyalgia, adherence is low. Walking, as a form of physical exercise, has significant advantages. The aim of this article is to describe, in 920 women with fibromyalgia, the prevalence of certain walking beliefs and analyze their effects both on the walking behavior itself and on the associated symptoms when patients walk according to a clinically recommended way. The results highlight the high prevalence of beliefs related to pain and fatigue as walking-inhibitors. In the whole sample, beliefs are associated with an increased perception that comorbidity prevents walking, and with higher levels of pain and fatigue. In patients who walk regularly, beliefs are only associated with the perception that comorbidity prevents them from walking. It is necessary to promote walking according to the established way (including breaks to prevent fatigue) and to implement interventions on the most prevalent beliefs that inhibit walking.
Rosa, Fernanda Warken; Camelier, Aquiles; Mayer, Anamaria; Jardim, José Roberto
2006-01-01
To evaluate the applicability of the incremental (shuttle) walk test in patients with chronic obstructive pulmonary disease and compare the performance of those patients on the shuttle walk test to that of the same patients on the encouraged 6-minute walk test. A cross-sectional study was conducted, in which 24 patients with chronic obstructive pulmonary disease were selected. In random order, patients were, after an initial practice period, submitted to a shuttle walk test and an encouraged 6-minute walk test. The patients obtained a higher heart rate (expressed as a percentage of that predicted based on gender and age) on the encouraged 6-minute walk test (84.1 +/- 11.4%) than on the shuttle walk test (76.4 +/- 9.7%) (p = 0.003). The post-test sensation of dyspnea (Borg scale) was also higher on the encouraged 6-minute walk test. On average, the patients walked 307.0 +/- 89.3 meters on the shuttle walk test and 515.5 +/- 102.3 meters on the encouraged 6-minute walk test (p < 0.001). There was a good correlation between the two tests in terms of the distance walked (r = 0.80, p < 0.001). The shuttle walk test is simple and easy to implement in patients with chronic obstructive pulmonary disease. The encouraged 6-minute walk test produced higher post-test heart rate and greater post-test sensation of dyspnea than did the shuttle walk test.
Walking for Transportation and Leisure Among U.S. Adults—National Health Interview Survey 2010
Paul, Prabasaj; Carlson, Susan A.; Carroll, Dianna D.; Berrigan, David; Fulton, Janet E.
2015-01-01
Background Walking, the most commonly reported physical activity among U.S. adults, is undertaken in various domains, including transportation and leisure. Methods This study examined prevalence, bout length, and mean amount of walking in the last week for transportation and leisure, by selected characteristics. Self-reported data from the 2010 National Health Interview Survey (N = 24,017) were analyzed. Results Prevalence of transportation walking was 29.4% (95% CI: 28.6%–30.3%) and of leisure walking was 50.0% (95% CI: 49.1%–51.0%). Prevalence of transportation walking was higher among men; prevalence of leisure walking was higher among women. Most (52.4%) transportation walking bouts were 10 to 15 minutes; leisure walking bouts were distributed more evenly (28.0%, 10–15 minutes; 17.1%, 41–60 minutes). Mean time spent in transportation walking was higher among men, decreased with increasing BMI, and varied by race/ethnicity and region of residence. Mean time spent leisure walking increased with increasing age and with decreasing BMI. Conclusion Demographic correlates and patterns of walking differ by domain. Interventions focusing on either leisure or transportation walking should consider correlates for the specific walking domain. Assessing prevalence, bout length, and mean time of walking for transportation and leisure separately allows for more comprehensive surveillance of walking. PMID:25133651
The Relationship Between Objectively Measured Walking and Risk of Pedestrian–Motor Vehicle Collision
Quistberg, D. Alex; Howard, Eric J.; Hurvitz, Philip M.; Moudon, Anne V.; Ebel, Beth E.; Rivara, Frederick P.; Saelens, Brian E.
2017-01-01
Abstract Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian–motor vehicle collision is unknown. We examined associations between individuals’ walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008–2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes. PMID:28338921
Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F
2014-01-01
To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.
Simonsick, E M; Guralnik, J M; Fried, L P
1999-06-01
To determine how severity of walking difficulty and sociodemographic, psychosocial, and health-related factors influence walking behavior in disabled older women. Cross-sectional analyses of baseline data from the Women's Health and Aging Study (WHAS). An urban community encompassing 12 contiguous zip code areas in the eastern portion of Baltimore City and part of Baltimore County, Maryland. A total of 920 moderately to severely disabled community-resident women, aged 65 years and older, identified from an age-stratified random sample of Medicare beneficiaries. Walking behavior was defined as minutes walked for exercise and total blocks walked per week. Independent variables included self-reported walking difficulty, sociodemographic factors, psychological status (depression, mastery, anxiety, and cognition), and health-related factors (falls and fear of falling, fatigue, vision and balance problems, weight, smoking, and cane use). Walking at least 8 blocks per week was strongly negatively related to severity of walking difficulty. Independent of difficulty level, older age, black race, fatigue, obesity, and cane use were also negatively associated with walking; living alone and high mastery had a positive association with walking. Even among functionally limited women, sociocultural, psychological, and health-related factors were independently associated with walking behavior. Thus, programs aimed at improving walking ability need to address these factors in addition to walking difficulties to maximize participation and compliance.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
Prevalence of transportation and leisure walking among U.S. adults.
Kruger, Judy; Ham, Sandra A; Berrigan, David; Ballard-Barbash, Rachel
2008-09-01
This paper aims to contrast the demographic correlates of leisure and transportation walking. Using data from the 2005 National Health Interview Survey (n=31,482), this paper reports on the prevalence of transportation walking and leisure walking for U.S. adults and examines the variation in prevalence across different socio-demographic groups. The prevalence of transportation walking and leisure walking for U.S. adults (> or =5 days/week for > or =30 min/day) was calculated using data from the 2005 National Health Interview Survey. In the United States, 41.5% of adults walked for leisure and 28.2% walked for transportation in intervals of at least 10 min. The highest prevalence of transportation walking was among black non-Hispanic men (36.0%) and Asian/Native Hawaiian/Pacific Islander women (40.5%). The highest prevalence of leisure walking was among Asian/Native Hawaiian/Pacific Islander men (42.0%) and white non-Hispanic women (46.6%). Leisure walking was most prevalent among respondents with higher incomes and education levels, whereas transportation walking increased in prevalence with education level but decreased with income level. Based on the findings, 6% of U.S. adults were considered regularly active (> or =5 days/week for > or =30 min/day) by walking for transportation and 9% were regularly active by walking for leisure. Leisure and transportation walking have distinctly different demographic correlates. These differences should guide interventions aimed at influencing walking for different purposes.
Seethapathi, Nidhi; Srinivasan, Manoj
2015-09-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).
Seethapathi, Nidhi; Srinivasan, Manoj
2015-01-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072
Walking adaptability after a stroke and its assessment in clinical settings.
Balasubramanian, Chitralakshmi K; Clark, David J; Fox, Emily J
2014-01-01
Control of walking has been described by a tripartite model consisting of stepping, equilibrium, and adaptability. This review focuses on walking adaptability, which is defined as the ability to modify walking to meet task goals and environmental demands. Walking adaptability is crucial to safe ambulation in the home and community environments and is often severely compromised after a stroke. Yet quantification of walking adaptability after stroke has received relatively little attention in the clinical setting. The objectives of this review were to examine the conceptual challenges for clinical measurement of walking adaptability and summarize the current state of clinical assessment for walking adaptability. We created nine domains of walking adaptability from dimensions of community mobility to address the conceptual challenges in measurement and reviewed performance-based clinical assessments of walking to determine if the assessments measure walking adaptability in these domains. Our literature review suggests the lack of a comprehensive well-tested clinical assessment tool for measuring walking adaptability. Accordingly, recommendations for the development of a comprehensive clinical assessment of walking adaptability after stroke have been presented. Such a clinical assessment will be essential for gauging recovery of walking adaptability with rehabilitation and for motivating novel strategies to enhance recovery of walking adaptability after stroke.
Walking Adaptability after a Stroke and Its Assessment in Clinical Settings
Balasubramanian, Chitralakshmi K.; Clark, David J.; Fox, Emily J.
2014-01-01
Control of walking has been described by a tripartite model consisting of stepping, equilibrium, and adaptability. This review focuses on walking adaptability, which is defined as the ability to modify walking to meet task goals and environmental demands. Walking adaptability is crucial to safe ambulation in the home and community environments and is often severely compromised after a stroke. Yet quantification of walking adaptability after stroke has received relatively little attention in the clinical setting. The objectives of this review were to examine the conceptual challenges for clinical measurement of walking adaptability and summarize the current state of clinical assessment for walking adaptability. We created nine domains of walking adaptability from dimensions of community mobility to address the conceptual challenges in measurement and reviewed performance-based clinical assessments of walking to determine if the assessments measure walking adaptability in these domains. Our literature review suggests the lack of a comprehensive well-tested clinical assessment tool for measuring walking adaptability. Accordingly, recommendations for the development of a comprehensive clinical assessment of walking adaptability after stroke have been presented. Such a clinical assessment will be essential for gauging recovery of walking adaptability with rehabilitation and for motivating novel strategies to enhance recovery of walking adaptability after stroke. PMID:25254140
Karusisi, Noëlla; Thomas, Frédérique; Méline, Julie; Brondeel, Ruben; Chaix, Basile
2014-01-01
Introduction Assessing the contextual factors that influence walking for transportation is important to develop more walkable environments and promote physical activity. To advance previous research focused on residential environments and overall walking for transportation, the present study investigates objective environmental factors assessed around the residence, the workplace, the home – work itinerary, and the home – supermarket itinerary, and considered overall walking for transportation but also walking to work and to shops. Methods Data from the RECORD Study involving 7290 participants recruited in 2007–2008, aged 30–79 years, and residing in the Paris metropolitan area were analyzed. Multilevel ordinal regression analyses were conducted to investigate environmental characteristics associated with self-reported overall walking for transportation, walking to work, and walking to shops. Results High individual education was associated with overall walking for transportation, with walking to work, and walking to shops. Among workers, a high residential neighborhood education was associated with increased overall walking for transportation, while a high workplace neighborhood education was related to an increased time spent walking to work. The residential density of destinations was positively associated with overall walking for transportation, with walking to work, and with walking to shops, while the workplace density of destinations was positively associated with overall walking for transportation among workers. Environmental factors assessed around the itineraries were not associated with walking to work or to the shops. Conclusion This research improves our understanding of the role of the environments on walking for transportation by accounting for some of the environments visited beyond the residential neighborhood. It shows that workers' walking habits are more influenced by the density of destinations around the workplace than around the residence. These results provide insight for the development of policies and programs to encourage population level active commuting. PMID:24828890
Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline
2017-07-01
With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (P<0.05). The NWG showed significantly greater walk distance than the WG (P<0.05). Both ACS and PAOD groups showed improvement, but improvement was significant for only PAOD patients. After a 4-week training period, Nordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.
Gait Evaluation of Overground Walking and Treadmill Walking Using Compass-Type Walking Model
NASA Astrophysics Data System (ADS)
Nagata, Yousuke; Yamamoto, Masayoshi; Funabiki, Shigeyuki
A treadmill is a useful apparatus for the gait training and evaluation. However, many differences are reported between treadmill and overground walking. Experimental comparisons of the muscle activity of the leg and the heart rate have been carried out. However, the dynamic comparison has not been performed. The dynamic evaluation of the overground walking and the treadmill walking using a compass-type walking model (CTWM) which is a simple bipedal walking model, then their comparison is discussed. It is confirmed that the walking simulation using the CTWM can simulate the difference of that walk, it is clarified that there are the differences of the kick impulse on the ground and the turning impulse of the foot to the variation of the belt speed and then differences are the main factor of two walking.
Running for exercise mitigates age-related deterioration of walking economy.
Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger
2014-01-01
Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461) and ∼ 26% worse walking economy than young adults (p<.0001). Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.
Holdgate, Matthew R.; Meehan, Cheryl L.; Hogan, Jennifer N.; Miller, Lance J.; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J.
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare. PMID:27414411
Holdgate, Matthew R; Meehan, Cheryl L; Hogan, Jennifer N; Miller, Lance J; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.
Wheeled and standard walkers in Parkinson's disease patients with gait freezing.
Cubo, Esther; Moore, Charity G; Leurgans, Sue; Goetz, Christopher G
2003-10-01
Compare the efficacy of two walking assistance devices (wheeled walker and standard walker) to unassisted walking for patients with PD and gait freezing. Although numerous walking devices are used clinically, their relative effects on freezing and walking speed have never been systematically tested. Nineteen PD patients (14 non-demented) walked under three conditions in randomized order: unassisted walking, standard walker, and wheeled walker. Patients walked up to three times in each condition through a standard course that included rising from a chair, walking through a doorway, straightway walking, pivoting, and return. Total walking time, freezing time and number of freezes were compared for the three conditions using mixed models (walking time) and Friedman's test (freezing). The wheeled walker was further studied by comparing the effect of an attached laser that projected a bar of light on the floor as a visual walking cue. Use of either type of device significantly slowed walking compared to unassisted walking. Neither walker reduced any index of freezing, nor the laser attachment offered any advantage to the wheeled walker. The standard walker increased freezing, and the wheeled walker had no effect on freezing. Among the non-demented subjects (n=14), the same patterns occurred, although the walking speed was less impaired by the wheeled walker than the standard walker in this group. Though walkers may stabilize patients and increase confidence, PD patients walk more slowly when using them, without reducing freezing. Because the wheeled walker was intermediate for walking time and does not aggravate freezing, if walkers are used for these subjects, this type of walker should be favored.
Roper, Jaimie A; Stegemöller, Elizabeth L; Tillman, Mark D; Hass, Chris J
2013-03-01
During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.
Equivalence of Szegedy's and coined quantum walks
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2017-09-01
Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.
At similar angles, slope walking has a greater fall risk than stair walking.
Sheehan, Riley C; Gottschall, Jinger S
2012-05-01
According to the CDC, falls are the leading cause of injury for all age groups with over half of the falls occurring during slope and stair walking. Consequently, the purpose of this study was to compare and contrast the different factors related to fall risk as they apply to these walking tasks. More specifically, we hypothesized that compared to level walking, slope and stair walking would have greater speed standard deviation, greater ankle dorsiflexion, and earlier peak activity of the tibialis anterior. Twelve healthy, young male participants completed level, slope, and stair trials on a 25-m walkway. Overall, during slope and stair walking, medial-lateral stability was less, anterior-posterior stability was less, and toe clearance was greater in comparison to level walking. In addition, there were fewer differences between level and stair walking than there were between level and slope walking, suggesting that at similar angles, slope walking has a greater fall risk than stair walking. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
2014-01-01
Background Previous studies testing the association between the built environment and walking behavior have been largely cross-sectional and have yielded mixed results. This study reports on a natural experiment in which changes to the built environment were implemented at a university campus in Hong Kong. Longitudinal data on walking behaviors were collected using surveys, one before and one after changes to the built environment, to test the influence of changes to the built environment on walking behavior. Methods Built environment data are from a university campus in Hong Kong, and include land use, campus bus services, pedestrian network, and population density data collected from campus maps, the university developmental office, and field surveys. Walking behavior data were collected at baseline in March 2012 (n = 198) and after changes to the built environment from the same cohort of subjects in December 2012 (n = 169) using a walking diary. Geographic information systems (GIS) was used to map walking routes and built environment variables, and compare each subject’s walking behaviors and built environment exposure before and after the changes to the built environment. Walking behavior outcomes were changes in: i) walking distance, ii) destination-oriented walking, and iii) walked altitude range. Multivariable linear regression models were used to test for associations between changes to the built environment and changes in walking behaviors. Results Greater pedestrian network connectivity predicted longer walking distances and an increased likelihood of walking as a means of transportation. The increased use of recreational (vs. work) buildings, largely located at mid-range altitudes, as well as increased population density predicted greater walking distances.Having more bus services and a greater population density encouraged people to increase their walked altitude range. Conclusions In this longitudinal study, changes to the built environment were associated with changes in walking behaviors. Use of GIS combined with walking diaries presents a practical method for mapping and measuring changes in the built environment and walking behaviors, respectively. Additional longitudinal studies can help clarify the relationships between the built environment and walking behaviors identified in this natural experiment. PMID:25069949
Quistberg, D Alex; Howard, Eric J; Hurvitz, Philip M; Moudon, Anne V; Ebel, Beth E; Rivara, Frederick P; Saelens, Brian E
2017-05-01
Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian-motor vehicle collision is unknown. We examined associations between individuals' walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008-2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Quantum walks with tuneable self-avoidance in one dimension
Camilleri, Elizabeth; Rohde, Peter P.; Twamley, Jason
2014-01-01
Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the analogous problem in the quantum setting – a quantum walk in one dimension with tunable levels of self-avoidance. We complement a quantum walk with a memory register that records where the walker has previously resided. The walker is then able to avoid returning back to previously visited sites or apply more general memory conditioned operations to control the walk. We characterise this walk by examining the variance of the walker's distribution against time, the standard metric for quantifying how quantum or classical a walk is. We parameterise the strength of the memory recording and the strength of the memory back-action on the walker, and investigate their effect on the dynamics of the walk. We find that by manipulating these parameters, which dictate the degree of self-avoidance, the walk can be made to reproduce ideal quantum or classical random walk statistics, or a plethora of more elaborate diffusive phenomena. In some parameter regimes we observe a close correspondence between classical self-avoiding random walks and the quantum self-avoiding walk. PMID:24762398
Neighborhood preference, walkability and walking in overweight/obese men.
Norman, Gregory J; Carlson, Jordan A; O'Mara, Stephanie; Sallis, James F; Patrick, Kevin; Frank, Lawrence D; Godbole, Suneeta V
2013-03-01
To investigate whether self-selection moderated the effects of walkability on walking in overweight and obese men. 240 overweight and obese men completed measures on importance of walkability when choosing a neighborhood (selection) and preference for walkable features in general (preference). IPAQ measured walking. A walkbility index was derived from geographic information systems (GIS). Walkability was associated with walking for transportation (p = .027) and neighborhood selection was associated with walking for transportation (p = .002) and total walking (p = .001). Preference was associated with leisure walking (p = .045) and preference moderated the relationship between walkability and total walking (p = .059). Walkability and self-selection are both important to walking behavior.
Random Walk Quantum Clustering Algorithm Based on Space
NASA Astrophysics Data System (ADS)
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
Hawkins, Kelly A; Fox, Emily J; Daly, Janis J; Rose, Dorian K; Christou, Evangelos A; McGuirk, Theresa E; Otzel, Dana M; Butera, Katie A; Chatterjee, Sudeshna A; Clark, David J
2018-06-01
Control of walking by the central nervous system includes contributions from executive control mechanisms, such as attention and motor planning resources. Executive control of walking can be estimated objectively by recording prefrontal cortical activity using functional near infrared spectroscopy (fNIRS). The primary objective of this study was to investigate group differences in prefrontal/executive control of walking among young adults, older adults, and adults post-stroke. Also assessed was the extent to which walking-related prefrontal activity fits existing cognitive frameworks of prefrontal over-activation. Participants included 24 adults post-stroke with moderate to severe walking deficits, 15 older adults with mild gait deficits, and 9 young healthy adults. Executive control of walking was quantified as oxygenated hemoglobin concentration in the prefrontal cortex measured by fNIRS. Three walking tasks were assessed: typical walking, walking over obstacles, and walking while performing a verbal fluency task. Walking performance was assessed by walking speed. There was a significant effect of group for prefrontal activity (p < 0.001) during typical and obstacles walking tasks, with young adults exhibiting the lowest level of prefrontal activity, followed by older adults, and then adults post-stroke. In young adults the prefrontal activity during typical walking was much lower than for the verbal fluency dual-task, suggesting substantial remaining prefrontal resources during typical walking. However, in older and post-stroke adults these remaining resources were significantly less (p < 0.01). Cumulatively, these results are consistent with prefrontal over-activation in the older and stroke groups, which was accompanied by a steeper drop in walking speed as task complexity increased to include obstacles (p < 0.05). There is a heightened use of prefrontal/executive control resources in older adults and post-stroke adults during walking. The level of prefrontal resource utilization, particularly during complex walking tasks like obstacle crossing, may approach the ceiling of available resources for people who have walking deficits. Prior cognitive research has revealed that prefrontal over-activation combined with limited prefrontal resources can lead to poor cognitive performance. The present study suggests a similar situation influences walking performance. Future research should further investigate the extent to which prefrontal over-activation during walking is linked to adverse mobility outcomes. Published by Elsevier B.V.
Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E
2015-10-01
Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.
Understanding Walking Behavior among University Students Using Theory of Planned Behavior
Sun, Guibo; Acheampong, Ransford A.; Lin, Hui; Pun, Vivian C.
2015-01-01
Walking has been shown to improve physical and mental well-being, yet insufficient walking among university students has been increasingly reported. This study aimed to understand walking behavior of university students using theory of planned behavior (TPB). We recruited 169 undergraduate students by university mass email of the Chinese University of Hong Kong, and first administered a salient belief elicitation survey, which was used to design the TPB questionnaire, to a subset of the study sample. Secondly, all participants completed the TPB questionnaire and walking-oriented diary in a two-day period in December 2012. We mapped the walking behavior data obtained from the diary using geographic information system, and examined the extent to which TPB constructs explained walking intentions and walking behavior using Structural equation model (SEM). We found perceived behavioral control to be the key determinant of walking intention. Shaped by participants’ perceived behavioral control, attitude toward walking and subjective norms, and behavioral intention, in turn had a moderate explanatory effect on their walking behavior. In summary, our findings suggest that walking behavior among university students can be understood within the TPB framework, and could inform walking promotion interventions on the university campuses. PMID:26516895
Duncan, Dustin T; Méline, Julie; Kestens, Yan; Day, Kristen; Elbel, Brian; Trasande, Leonardo; Chaix, Basile
2016-06-20
Few studies have used GPS data to analyze the relationship between Walk Score, transportation choice and walking. Additionally, the influence of Walk Score is understudied using trips rather than individuals as statistical units. The purpose of this study is to examine associations at the trip level between Walk Score, transportation mode choice, and walking among Paris adults who were tracked with GPS receivers and accelerometers in the RECORD GPS Study. In the RECORD GPS Study, 227 participants were tracked during seven days with GPS receivers and accelerometers. Participants were also surveyed with a GPS-based web mapping application on their activities and transportation modes for all trips (6969 trips). Walk Score, which calculates neighborhood walkability, was assessed for each origin and destination of every trip. Multilevel logistic and linear regression analyses were conducted to estimate associations between Walk Score and walking in the trip or accelerometry-assessed number of steps for each trip, after adjustment for individual/neighborhood characteristics. The mean overall Walk Scores for trip origins were 87.1 (SD = 14.4) and for trip destinations 87.1 (SD = 14.5). In adjusted trip-level associations between Walk Score and walking only in the trip, we found that a walkable neighborhood in the trip origin and trip destination was associated with increased odds of walking in the trip assessed in the survey. The odds of only walking in the trip were 3.48 (95% CI: 2.73 to 4.44) times higher when the Walk Score for the trip origin was "Walker's Paradise" compared to less walkable neighborhoods (Very/Car-Dependent or Somewhat Walkable), with an identical independent effect of trip destination Walk Score on walking. The number of steps per 10 min (as assessed with accelerometry) was cumulatively higher for trips both originating and ending in walkable neighborhoods (i.e., "Very Walkable"). Walkable neighborhoods were associated with increases in walking among adults in Paris, as documented at the trip level. Creating walkable neighborhoods (through neighborhood design increased commercial activity) may increase walking trips and, therefore, could be a relevant health promotion strategy to increase physical activity.
Duncan, Dustin T.; Méline, Julie; Kestens, Yan; Day, Kristen; Elbel, Brian; Trasande, Leonardo; Chaix, Basile
2016-01-01
Background: Few studies have used GPS data to analyze the relationship between Walk Score, transportation choice and walking. Additionally, the influence of Walk Score is understudied using trips rather than individuals as statistical units. The purpose of this study is to examine associations at the trip level between Walk Score, transportation mode choice, and walking among Paris adults who were tracked with GPS receivers and accelerometers in the RECORD GPS Study. Methods: In the RECORD GPS Study, 227 participants were tracked during seven days with GPS receivers and accelerometers. Participants were also surveyed with a GPS-based web mapping application on their activities and transportation modes for all trips (6969 trips). Walk Score, which calculates neighborhood walkability, was assessed for each origin and destination of every trip. Multilevel logistic and linear regression analyses were conducted to estimate associations between Walk Score and walking in the trip or accelerometry-assessed number of steps for each trip, after adjustment for individual/neighborhood characteristics. Results: The mean overall Walk Scores for trip origins were 87.1 (SD = 14.4) and for trip destinations 87.1 (SD = 14.5). In adjusted trip-level associations between Walk Score and walking only in the trip, we found that a walkable neighborhood in the trip origin and trip destination was associated with increased odds of walking in the trip assessed in the survey. The odds of only walking in the trip were 3.48 (95% CI: 2.73 to 4.44) times higher when the Walk Score for the trip origin was “Walker’s Paradise” compared to less walkable neighborhoods (Very/Car-Dependent or Somewhat Walkable), with an identical independent effect of trip destination Walk Score on walking. The number of steps per 10 min (as assessed with accelerometry) was cumulatively higher for trips both originating and ending in walkable neighborhoods (i.e., “Very Walkable”). Conclusions: Walkable neighborhoods were associated with increases in walking among adults in Paris, as documented at the trip level. Creating walkable neighborhoods (through neighborhood design increased commercial activity) may increase walking trips and, therefore, could be a relevant health promotion strategy to increase physical activity. PMID:27331818
Pollard, Tessa M; Wagnild, Janelle M
2017-04-20
The aim of this systematic review was to examine gender differences in walking for leisure, transport and in total in adults living in high-income countries, and to assess whether gender differences in walking practices change across the life-course. A systematic literature search was conducted of publications dated 1995 to 2015. Papers providing quantitative data on participation in walking of both men and women aged at least 18 years in a high-income country were screened for the quality of the data on gender differences in walking. Data were extracted and results were synthesised using forest plots and narrative summary. Thirty-six studies were included in the review: 18 reported on walking for leisure, 16 on walking for transport (in total, or for particular purposes), and 14 on total walking. Most (33) studies provided data comparing the proportion of men and women who walked (at all or for a minimum duration) over a defined period, usually one week. There was consistent evidence that more women than men walk for leisure, although effect sizes were small. However, this effect varies by age: more younger women than younger men walk for leisure, but the gender difference diminishes with age and appears to reverse in the oldest age groups. Taking all ages together, there was no consistent gender difference in walking for transport or in total walking, although the small number of studies reporting on walking to undertake errands suggested that more women than men walk for this purpose. While there is little evidence that levels of total walking consistently vary by gender, our findings suggest that there are consistent gender differences in participation in walking for some purposes, including for leisure, and that there are gender differences in the impact of age on walking. We conclude that more research is needed to improve our understanding of how walking fits into the lives of women and men across the life-course, especially in relation to gender differences in the impact of aging on walking. PROSPERO registration number: CRD42015025961 .
Neighborhood Preference, Walkability and Walking in Overweight/Obese Men
Norman, Gregory J.; Carlson, Jordan A.; O’Mara, Stephanie; Sallis, James F.; Patrick, Kevin; Frank, Lawrence D.; Godbole, Suneeta V.
2015-01-01
Objectives To investigate whether self-selection moderated the effects of walkability on walking in overweight and obese men. Methods 240 overweight and obese men completed measures on importance of walkability when choosing a neighborhood (selection) and preference for walkable features in general (preference). IPAQ measured walking. A walkbility index was derived from geographic information systems (GIS). Results Walkability was associated with walking for transportation (p = .027) and neighborhood selection was associated with walking for transportation (p = .002) and total walking (p = .001). Preference was associated with leisure walking (p = .045) and preference moderated the relationship between walkability and total walking (p = .059). Conclusion Walkability and self-selection are both important to walking behavior. PMID:23026109
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari
2015-01-01
Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.
Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari
2015-01-01
Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281
Learning gait of quadruped robot without prior knowledge of the environment
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Qijun
2012-09-01
Walking is the basic skill of a legged robot, and one of the promising ways to improve the walking performance and its adaptation to environment changes is to let the robot learn its walking by itself. Currently, most of the walking learning methods are based on robot vision system or some external sensing equipment to estimate the walking performance of certain walking parameters, and therefore are usually only applicable under laboratory condition, where environment can be pre-defined. Inspired by the rhythmic swing movement during walking of legged animals and the behavior of their adjusting their walking gait on different walking surfaces, a concept of walking rhythmic pattern(WRP) is proposed to evaluate the walking specialty of legged robot, which is just based on the walking dynamics of the robot. Based on the onboard acceleration sensor data, a method to calculate WRP using power spectrum in frequency domain and diverse smooth filters is also presented. Since the evaluation of WRP is only based on the walking dynamics data of the robot's body, the proposed method doesn't require prior knowledge of environment and thus can be applied in unknown environment. A gait learning approach of legged robots based on WRP and evolution algorithm(EA) is introduced. By using the proposed approach, a quadruped robot can learn its locomotion by its onboard sensing in an unknown environment, where the robot has no prior knowledge about this place. The experimental result proves proportional relationship exits between WRP match score and walking performance of legged robot, which can be used to evaluate the walking performance in walking optimization under unknown environment.
The Recovery of Walking in Stroke Patients: A Review
ERIC Educational Resources Information Center
Jang, Sung Ho
2010-01-01
We reviewed the literature on walking recovery of stroke patients as it relates to the following subjects: epidemiology of walking dysfunction, recovery course of walking, and recovery mechanism of walking (neural control of normal walking, the evaluation methods for leg motor function, and motor recovery mechanism of leg). The recovery of walking…
ERIC Educational Resources Information Center
Willey, David
2010-01-01
This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…
Reuter, I.; Mehnert, S.; Leone, P.; Kaps, M.; Oechsner, M.; Engelhardt, M.
2011-01-01
Symptoms of Parkinson's disease (PD) progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW) on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS), and health-related quality of life (PDQ 39). 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study. PMID:21603199
Generalized teleportation by quantum walks
NASA Astrophysics Data System (ADS)
Wang, Yu; Shang, Yun; Xue, Peng
2017-09-01
We develop a generalized teleportation scheme based on quantum walks with two coins. For an unknown qubit state, we use two-step quantum walks on the line and quantum walks on the cycle with four vertices for teleportation. For any d-dimensional states, quantum walks on complete graphs and quantum walks on d-regular graphs can be used for implementing teleportation. Compared with existing d-dimensional states teleportation, prior entangled state is not required and the necessary maximal entanglement resource is generated by the first step of quantum walk. Moreover, two projective measurements with d elements are needed by quantum walks on the complete graph, rather than one joint measurement with d^2 basis states. Quantum walks have many applications in quantum computation and quantum simulations. This is the first scheme of realizing communicating protocol with quantum walks, thus opening wider applications.
Does Dog Walking Predict Physical Activity Participation: Results From a National Survey.
Richards, Elizabeth A
2016-05-01
The purpose of this study is to: (1) identify characteristics associated with dog owners who walk their dog, (2) describe the frequency and duration of walking the dog, and (3) determine whether dog owners who walk their dog participate in more physical activity than dog owners who do not walk their dog and non-dog owners. A cross-sectional study design was used. The study setting was nationwide. Adults (n = 4010) participating in the 2005 ConsumerStyles mail-panel survey were the study subjects. Measures used were demographic, physical activity, dog ownership, and dog walking questions from the 2005 ConsumerStyles mail-panel survey. Chi-square tests and analyses of variance were conducted to examine participant characteristics associated with dog walking and to describe the frequency and duration of dog walking. Analysis of covariance was used to determine whether dog owners who walk their dog participate in more physical activity than dog owners who do not walk their dog and non-dog owners. Among dog owners, 42% reported some dog walking in a typical week. Dog owners walked their dog an average 4.3 ± 0.1 times and 128.8 ± 5.6 minutes per week. There were no significant differences in weekly minutes of moderate or vigorous physical activity across the dog-ownership and dog walking groups. Most dog owners did not walk their dog. Dog owners were not more active than non-dog owners, except when considering the activity obtained via dog walking. © The Author(s) 2016.
Fernández-Del-Olmo, Miguel Angel; Sanchez, Jose Andres; Bello, Olalla; Lopez-Alonso, Virginia; Márquez, Gonzalo; Morenilla, Luis; Castro, Xabier; Giraldez, Manolo; Santos-García, Diego
2014-01-01
Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson's disease (PD). In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. Twenty-two mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week). We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program) was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance during overground walking at a preferred speed) in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in PD.
Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F
2017-04-20
To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.
Dalgas, U; Langeskov-Christensen, M; Skjerbæk, A; Jensen, E; Baert, I; Romberg, A; Santoyo Medina, C; Gebara, B; Maertens de Noordhout, B; Knuts, K; Béthoux, F; Rasova, K; Severijns, D; Bibby, B M; Kalron, A; Norman, B; Van Geel, F; Wens, I; Feys, P
2018-04-15
The relationship between fatigue impact and walking capacity and perceived ability in patients with multiple sclerosis (MS) is inconclusive in the existing literature. A better understanding might guide new treatment avenues for fatigue and/or walking capacity in patients with MS. To investigate the relationship between the subjective impact of fatigue and objective walking capacity as well as subjective walking ability in MS patients. A cross-sectional multicenter study design was applied. Ambulatory MS patients (n = 189, age: 47.6 ± 10.5 years; gender: 115/74 women/men; Expanded Disability Status Scale (EDSS): 4.1 ± 1.8 [range: 0-6.5]) were tested at 11 sites. Objective tests of walking capacity included short walking tests (Timed 25-Foot Walk (T25FW), 10-Metre Walk Test (10mWT) at usual and fastest speed and the timed up and go (TUG)), and long walking tests (2- and 6-Minute Walk Tests (MWT). Subjective walking ability was tested applying the Multiple Sclerosis Walking Scale-12 (MSWS-12). Fatigue impact was measured by the self-reported modified fatigue impact scale (MFIS) consisting of a total score (MFIS total ) and three subscales (MFIS physical , MFIS cognitive and MFIS psychosocial ). Uni- and multivariate regression analysis were performed to evaluate the relation between walking and fatigue impact. MFIS total was negatively related with long (6MWT, r = -0.14, p = 0.05) and short composite (TUG, r = -0.22, p = 0.003) walking measures. MFIS physical showed a significant albeit weak relationship to walking speed in all walking capacity tests (r = -0.22 to -0.33, p < .0001), which persisted in the multivariate linear regression analysis. Subjective walking ability (MSWS-12) was related to MFIS total (r = 0.49, p < 0.0001), as well as to all other subscales of MFIS (r = 0.24-0.63, p < 0.001), showing stronger relationships than objective measures of walking. The physical impact of fatigue is weakly related to objective walking capacity, while general, physical, cognitive and psychosocial fatigue impact are weakly to moderately related to subjective walking ability, when analysed in a large heterogeneous sample of MS patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Open quantum random walk in terms of quantum Bernoulli noise
NASA Astrophysics Data System (ADS)
Wang, Caishi; Wang, Ce; Ren, Suling; Tang, Yuling
2018-03-01
In this paper, we introduce an open quantum random walk, which we call the QBN-based open walk, by means of quantum Bernoulli noise, and study its properties from a random walk point of view. We prove that, with the localized ground state as its initial state, the QBN-based open walk has the same limit probability distribution as the classical random walk. We also show that the probability distributions of the QBN-based open walk include those of the unitary quantum walk recently introduced by Wang and Ye (Quantum Inf Process 15:1897-1908, 2016) as a special case.
Ryder, Holly H; Faloon, Kathryn J; Lévesque, Lucie; McDonald, Deanna
2009-10-01
Most adults do not walk enough to obtain health benefits. Pedometers have been successfully utilized to motivate and increase walking. Given that libraries are a place where community members seek health resources, they are a logical setting for increasing community accessibility to pedometers. The purpose was to examine the feasibility of lending pedometers to library patrons to increase walking. In five Canadian public libraries, 90 pedometers were made available for 6 months. A total of 41 library patrons (33 women, 8 men, age range 18 to 65 or older) completed a survey about their walking patterns and pedometer use. More than 330 loans were made. Chisquare analysis found significant associations between walking and motivation to walk more (p < .05), walking and goal setting (p < .05), and motivation to walk more and setting a walking goal (p < .001). Results provide preliminary evidence that lending pedometers through local libraries is an effective, low-cost approach to enhance walking in community members.
Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu
2016-05-01
The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.
Wilson, Dawn K; St George, Sara M; Trumpeter, Nevelyn N; Coulon, Sandra M; Griffin, Sarah F; Wandersman, Abe; Forthofer, Melinda; Gadson, Barney; Brown, Porschia V
2013-03-05
This study describes the development of a social marketing campaign for increasing walking in a low income, high crime community as part of the Positive Action for Today's Health (PATH) trial. Focus groups were conducted with 52 African American adults (ages 18 to 65 yrs), from two underserved communities to develop themes for a social marketing campaign to promote walking. Participants responded to questions concerning social marketing principles related to product, price, place, promotion, and positioning for increasing neighbourhood walking. Focus group data informed the development of the campaign objectives that were derived from the "5 Ps" to promote physical and mental health, social connectedness, safety, and confidence in walking regularly. Focus group themes indicated that physical and mental health benefits of walking were important motivators. Walking for social reasons was also important for overcoming barriers to walking. Police support from trusted officers while walking was also essential to promoting safety for walking. Print materials were developed by the steering committee, with a 12-month calendar and door hangers delivered to residents' homes to invite them to walk. Pride Stride walks empowered community walkers to serve as peer leaders for special walking events to engage new walkers. Essential elements for developing culturally tailored social marketing interventions for promoting walking in underserved communities are outlined for future researchers.
2013-01-01
Background This study describes the development of a social marketing campaign for increasing walking in a low income, high crime community as part of the Positive Action for Today’s Health (PATH) trial. Methods Focus groups were conducted with 52 African American adults (ages 18 to 65 yrs), from two underserved communities to develop themes for a social marketing campaign to promote walking. Participants responded to questions concerning social marketing principles related to product, price, place, promotion, and positioning for increasing neighbourhood walking. Results Focus group data informed the development of the campaign objectives that were derived from the “5 Ps” to promote physical and mental health, social connectedness, safety, and confidence in walking regularly. Focus group themes indicated that physical and mental health benefits of walking were important motivators. Walking for social reasons was also important for overcoming barriers to walking. Police support from trusted officers while walking was also essential to promoting safety for walking. Print materials were developed by the steering committee, with a 12-month calendar and door hangers delivered to residents’ homes to invite them to walk. Pride Stride walks empowered community walkers to serve as peer leaders for special walking events to engage new walkers. Conclusions Essential elements for developing culturally tailored social marketing interventions for promoting walking in underserved communities are outlined for future researchers. PMID:23497164
KidsWalk-to-School: A Guide To Promote Walking to School.
ERIC Educational Resources Information Center
Center for Chronic Disease Prevention and Health Promotion (DHHS/CDC), Atlanta, GA.
This guide encourages people to create safe walking and biking routes to school, promoting four issues: physically active travel, safe and walkable routes to school, crime prevention, and health environments. The chapters include: "KidsWalk-to-School: A Guide to Promote Walking to School" (Is there a solution? Why is walking to school important?…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... auto tour route that is open year- round to vehicles, walking, bicycling, jogging, dog walking (on... slightly over 5 miles of trails that are open to walking, jogging, and dog walking (on leash only) year... will remain open year round to vehicles, walking, bicycling, jogging, dog walking (on leash only...
Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A
2014-09-01
To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p < 0.05) for all measures except activity. Improvements in participation were not demonstrated. Overgound walking training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.
Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W
2014-04-01
Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.
Dog walking: its association with physical activity guideline adherence and its correlates.
Hoerster, Katherine D; Mayer, Joni A; Sallis, James F; Pizzi, Nicole; Talley, Sandra; Pichon, Latrice C; Butler, Dalila A
2011-01-01
We examined the prevalence and correlates of dog walking among dog owners, and whether dog walking is associated with meeting the American College of Sports Medicine/American Heart Association physical activity guidelines. In March 2008, we mailed a survey to dog-owning clients from two San Diego County veterinary clinics. Useable data were obtained from 984 respondents, and 75 of these completed retest surveys. We assessed associations between potential correlates and dog walking (i.e., yes/no dog walking for at least 10 min in past week). Test-retest reliability of measures was generally high. Approximately one-third of the sample (31.5%) were not dog walkers. Proportions of dog walkers versus non-dog walkers meeting United States guidelines were 64.3% and 55.0%, respectively. Dog walking was independently associated with meeting guidelines in a multivariate model (odds ratio=1.59, p=0.004). Three variables were independently associated with dog walking in a multivariate model: dog encouragement of dog walking, dog-walking obligation, and dog-walking self-efficacy. Dog walking was associated with meeting physical activity guidelines, making it a viable method for promoting physical activity. Dog-walking obligation and self-efficacy may be important mediators of dog walking and may need to be targeted if interventions are to be successful. Published by Elsevier Inc.
Masumoto, Kenji; Nishizaki, Yoshiko; Hamada, Ayako
2013-06-01
We investigated the effect of stride frequency (SF) on metabolic costs and rating of perceived exertion (RPE) during walking in water and on dry land. Eleven male subjects walked on a treadmill on dry land and on an underwater treadmill at their preferred SF (PSF) and walked at an SF which was lower and higher than the PSF (i.e., PSF ± 5, 10, and 15 strides min(-1)). Walking speed was kept constant at each subject's preferred walking speed in water and on dry land. Oxygen uptake, heart rate, RPE, PSF and preferred walking speeds were measured. Metabolic costs and RPE were significantly higher when walking at low and high SF conditions than when walking at the PSF condition both in water and on dry land (P<0.05). Additionally, the high SF condition produced significantly higher metabolic costs and RPE than the equivalent low SF condition during walking in water (P<0.01). Furthermore, metabolic costs, RPE, PSF, and the preferred walking speed were significantly lower in water than on dry land when walking at the PSF (P<0.05). These observations indicate that a change in SF influences metabolic costs and RPE during walking in water. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of aquatic walking exercise using a walker in a chronic stroke patient.
Matsuda, Tadashi; Akezaki, Yoshiteru
2017-07-01
[Purpose] The aim of this study was to examine the usefulness of aquatic walking exercise using a walker for chronic stroke patients. We also examined the psychological effects on the study subject and the primary caregiver before and after aquatic walking exercise. [Subject and Methods] The subject was a 60-year-old male with bilateral paralysis after a cerebrovascular accident. The Fugl-Meyer Assessment (FMA) total score was 116 on the right and 115 on the left. The intervention combined aquatic and land walking exercise. A U-shaped walker was used for both water and land exercise. Continuous walking distance was the measure used to evaluate land walking ability. The psychological effects on the study subject and the primary caregiver were examined with the questionnaire. [Results] In aquatic walking, the mean time to walk 5 m showed an increase from the intervention after two months. After the aquatic walking and land walking combination, continuous walking distance also showed a prolonged trend. In the survey given to the main caregivers, improvements were observed. [Conclusion] Aquatic walking practice using a walker improved motivation in a chronic stroke patient, leading to improved walking ability, with a positive psychological influence on the participant and family caregiver.
Effects of aquatic walking exercise using a walker in a chronic stroke patient
Matsuda, Tadashi; Akezaki, Yoshiteru
2017-01-01
[Purpose] The aim of this study was to examine the usefulness of aquatic walking exercise using a walker for chronic stroke patients. We also examined the psychological effects on the study subject and the primary caregiver before and after aquatic walking exercise. [Subject and Methods] The subject was a 60-year-old male with bilateral paralysis after a cerebrovascular accident. The Fugl-Meyer Assessment (FMA) total score was 116 on the right and 115 on the left. The intervention combined aquatic and land walking exercise. A U-shaped walker was used for both water and land exercise. Continuous walking distance was the measure used to evaluate land walking ability. The psychological effects on the study subject and the primary caregiver were examined with the questionnaire. [Results] In aquatic walking, the mean time to walk 5 m showed an increase from the intervention after two months. After the aquatic walking and land walking combination, continuous walking distance also showed a prolonged trend. In the survey given to the main caregivers, improvements were observed. [Conclusion] Aquatic walking practice using a walker improved motivation in a chronic stroke patient, leading to improved walking ability, with a positive psychological influence on the participant and family caregiver. PMID:28744062
Walking-age analyzer for healthcare applications.
Jin, Bo; Thu, Tran Hoai; Baek, Eunhye; Sakong, SungHwan; Xiao, Jin; Mondal, Tapas; Deen, M Jamal
2014-05-01
This paper describes a walking-age pattern analysis and identification system using a 3-D accelerometer and a gyroscope. First, a walking pattern database from 79 volunteers of ages ranging from 10 to 83 years is constructed. Second, using feature extraction and clustering, three distinct walking-age groups, children of ages 10 and below, adults in 20-60s, and elders in 70s and 80s, were identified. For this study, low-pass filtering, empirical mode decomposition, and K-means were used to process and analyze the experimental results. Analysis shows that volunteers' walking-ages can be categorized into distinct groups based on simple walking pattern signals. This grouping can then be used to detect persons with walking patterns outside their age groups. If the walking pattern puts an individual in a higher "walking age" grouping, then this could be an indicator of potential health/walking problems, such as weak joints, poor musculoskeletal support system or a tendency to fall.
Multidirectional walk test in individuals with Parkinson's disease: a validity study.
Bryant, Mon S; Workman, Craig D; Jackson, George R
2015-03-01
Gait parameters of forward, backward, and sideways walk were studied when the participants walked overground in four directions at their self-selected speed and were compared with walking in the four directions on an instrumented GAITRite walkway. Intraclass correlation coefficients between the overground walk test measures and the instrumented walkway measures of gait speed, cadence, and stride length for the forward walk were 0.85, 0.88, and 0.87, respectively. For the backward walk, the coefficients were 0.91 for gait speed, 0.75 for cadence, and 0.93 for stride length. For the sideways walk, the coefficients were 0.92 for gait speed, 0.93 for cadence, and 0.94 for stride length. Gait parameters of forward, backward, and sideways walk obtained by the overground walk test had excellent agreement with those obtained by the instrumented walkway. The quick timed test provided quantitative data for gait evaluation and was valid for clinical use.
Safety and Feasibility of the 6-Minute Walk Test in Patients with Acute Stroke.
Kubo, Hiroki; Nozoe, Masafumi; Yamamoto, Miho; Kamo, Arisa; Noguchi, Madoka; Kanai, Masashi; Mase, Kyoshi; Shimada, Shinichi
2018-06-01
Our objective was to investigate the safety and feasibility of the 6-minute walk test in patients with acute stroke. Consecutive patients with acute stroke, admitted to the Itami Kosei Neurosurgical Hospital from September 2016 to April 2017 were enrolled. Walking capacity was assessed by a physical therapist using the 6-minute walk test in 94 patients with acute stroke within 14 days of hospital admission. The primary outcomes were safety (i.e., the prevalence of new adverse events during and after the test) and feasibility (i.e., test completion rate) of the 6-minute walk test. The 6-minute walk test was performed for a mean duration of 5.1 days (standard deviation, 2.6 days) after hospital admission. Seventy patients (74.5%) could walk without standby assistance or a walking aid, and 24 patients (25.5%) could walk without standby assistance but with a walking aid. The average distance walked by patients during the 6-minute walk test was 331 m (standard deviation, 107.2 m). Adverse events following the 6-minute walk test occurred in 6 patients (6.4%) and included stroke progression, stroke recurrence, seizures, and neurological deterioration. Heart rate increase (>120 beats/min) occurred in 3 patients (3.2%) during the test. Lastly, 6 patients (6.4%) were unable to complete the 6-minute walk test. Although performance in the 6-minute walk test was decreased in patients with acute stroke, the test itself appears to be safe and feasible in this patient population. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Brown, Scott C.; Pantin, Hilda; Lombard, Joanna; Toro, Matthew; Huang, Shi; Plater-Zyberk, Elizabeth; Perrino, Tatiana; Perez-Gomez, Gianna; Barrera-Allen, Lloyd; Szapocznik, José
2013-01-01
Background Walk Score® is a nationally and publicly available metric of neighborhood walkability based on proximity to amenities (e.g., retail, food, schools). However, few studies have examined the relationship of Walk Score to walking behavior. Purpose To examine the relationship of Walk Score to walking behavior in a sample of recent Cuban immigrants, who overwhelmingly report little choice in their selection of neighborhood built environments when they arrive in the U.S. Methods Participants were 391 recent healthy Cuban immigrants (M age=37.1 years) recruited within 90 days of arrival in the U.S., and assessed within 4 months of arrival (M=41.0 days in the U.S.), who resided throughout Miami-Dade County FL. Data on participants’ addresses, walking and sociodemographics were collected prospectively from 2008 to 2010. Analyses conducted in 2011 examined the relationship of Walk Score for each participant’s residential address in the U.S. to purposive walking, controlling for age, gender, education, BMI, days in the U.S., and habitual physical activity level in Cuba. Results For each 10-point increase in Walk Score, adjusting for covariates, there was a significant 19% increase in the likelihood of purposive walking, a 26% increase in the likelihood of meeting physical activity recommendations by walking, and 27% more minutes walked in the previous week. Conclusions Results suggest that Walk Score is associated with walking in a sample of recent immigrants who initially had little choice in where they lived in the U.S. These results support existing guidelines indicating that mixed land use (such as parks and restaurants near homes) should be included when designing walkable communities. PMID:23867028
Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian
2013-09-01
It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
Kelly, Valerie E; Shumway-Cook, Anne
2014-01-01
Gait impairments are a common and consequential motor symptom in Parkinson's disease (PD). A cognitive strategy that incorporates instructions to concentrate on specific parameters of walking is an effective approach to gait rehabilitation for persons with PD during single-task and simple dual-task walking conditions. This study examined the ability to modify dual-task walking in response to instructions during a complex walking task in people with PD compared to healthy older adults (HOA). Eleven people with PD and twelve HOA performed a cognitive task while walking with either a usual base or a narrow base of support. Dual-task walking and cognitive task performance were characterized under two conditions-when participants were instructed focus on walking and when they were instructed to focus on the cognitive task. During both usual base and narrow base walking, instructions affected cognitive task response latency, with slower performance when instructed to focus on walking compared to the cognitive task. Regardless of task or instructions, cognitive task performance was slower in participants with PD compared to HOA. During usual base walking, instructions influenced gait speed for both people with PD and HOA, with faster gait speed when instructed to focus on walking compared to the cognitive task. In contrast, during the narrow base walking, instructions affected gait speed only for HOA, but not for people with PD. This suggests that among people with PD the ability to modify walking in response to instructions depends on the complexity of the walking task.
Cardiovascular responses associated with daily walking in subacute stroke.
Prajapati, Sanjay K; Mansfield, Avril; Gage, William H; Brooks, Dina; McIlroy, William E
2013-01-01
Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1) walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%-60% heart rate reserve) or (2) heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve). Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve) and duration (>10 minutes continuously) necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.
Increasing Walking in the Hartsfield-Jackson Atlanta International Airport: The Walk to Fly Study.
Fulton, Janet E; Frederick, Ginny M; Paul, Prabasaj; Omura, John D; Carlson, Susan A; Dorn, Joan M
2017-07-01
To test the effectiveness of a point-of-decision intervention to prompt walking, versus motorized transport, in a large metropolitan airport. We installed point-of-decision prompt signage at 4 locations in the airport transportation mall at Hartsfield-Jackson Atlanta International Airport (Atlanta, GA) at the connecting corridor between airport concourses. Six ceiling-mounted infrared sensors counted travelers entering and exiting the study location. We collected traveler counts from June 2013 to May 2016 when construction was present and absent (preintervention period: June 2013-September 2014; postintervention period: September 2014-May 2016). We used a model that incorporated weekly walking variation to estimate the intervention effect on walking. There was an 11.0% to 16.7% relative increase in walking in the absence of airport construction where 580 to 810 more travelers per day chose to walk. Through May 2016, travelers completed 390 000 additional walking trips. The Walk to Fly study demonstrated a significant and sustained increase in the number of airport travelers choosing to walk. Providing signage about options to walk in busy locations where reasonable walking options are available may improve population levels of physical activity and therefore improve public health.
Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.
Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J
2016-08-26
Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will be compared between the two interventions. This study will assess the effects of treadmill-based C-Mill therapy compared with the overground FALLS program and thereby the relative importance of the amount of walking practice as a key aspect of effective intervention programs directed at improving walking speed and walking adaptability after stroke. Netherlands Trial Register NTR4030 . Registered on 11 June 2013, amendment filed on 17 June 2016.
Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens
2017-08-01
Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p < 0.0001) or was unaffected. The use of a wheeled walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.
Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints
NASA Astrophysics Data System (ADS)
Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming
2012-10-01
Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.
Naumann, Rebecca B; Dellinger, Ann M; Anderson, Melissa L; Bonomi, Amy E; Rivara, Frederick P; Thompson, Robert S
2009-10-01
There are many factors that influence older adults' travel choices. This paper explores the associations between mode of travel choice for a short trip and older adults' personal characteristics. This study included 406 drivers over the age of 64 who were enrolled in a large integrated health plan in the United States between 1991 and 2001. Bivariate analyses and generalized linear modeling were used to examine associations between choosing to walk or drive and respondents' self-reported general health, physical and functional abilities, and confidence in walking and driving. Having more confidence in their ability to walk versus drive increased an older adult's likelihood of walking to make a short trip by about 20% (PR=1.22; 95% CI: 1.06-1.40), and walking for exercise increased the likelihood by about 50% (PR=1.53; 95% CI=1.22-1.91). Reporting fair or poor health decreased the likelihood of walking, as did cutting down on the amount of driving due to a physical problem. Factors affecting a person's decision to walk for exercise may not be the same as those that influence their decision to walk as a mode of travel. It is important to understand the barriers to walking for exercise and walking for travel to develop strategies to help older adults meet both their exercise and mobility needs. Increasing walking over driving among older adults may require programs that increase confidence in walking and encourage walking for exercise.
Quantum Walks on the Line with Phase Parameters
NASA Astrophysics Data System (ADS)
Villagra, Marcos; Nakanishi, Masaki; Yamashita, Shigeru; Nakashima, Yasuhiko
In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.
Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.
Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk
2015-07-01
Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.
Effect of pretesting on intentions and behaviour: a pedometer and walking intervention.
Spence, John C; Burgess, Jenny; Rodgers, Wendy; Murray, Terra
2009-09-01
This study addressed the influence of pedometers and a pretest on walking intentions and behaviour. Using a Solomon four-group design, 63 female university students were randomly assigned to one of four conditions: pedometer and pretest (n = 16), pedometer and no pretest (n = 16), no pedometer and pretest (n = 15), no pedometer and no pretest (n = 16). The pretest conditions included questions on walking, intentions to walk 12,500 steps per day, and self-efficacy for walking 12,500 steps per day. In the pedometer conditions a Yamax Digi-Walker SW-650 pedometer was worn for one week. All participants completed posttest questions. While significant pretest x pedometer interactions would have indicated the presence of pretest sensitisation, no such interactions were observed for either intention or self-reported walking. Wearing pedometers reduced intentions for future walking and coping self-efficacy. However, after controlling for pretest self-reported walking, pedometer use resulted in more self-reported walking. We conclude that wearing a pedometer increased self-reported walking behaviour but that a pretest did not differentially influence walking intentions, behaviour, or self-efficacy.
Quantum Ultra-Walks: Walks on a Line with Spatial Disorder
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan
We discuss the model of a heterogeneous discrete-time walk on a line with spatial disorder in the form of a set of ultrametric barriers. Simulations show that such an quantum ultra-walk spreads with a walk exponent dw that ranges from ballistic (dw = 1) to complete confinement (dw = ∞) for increasing separation 1 <= 1 / ɛ < ∞ in barrier heights. We develop a formalism by which the classical random walk as well as the quantum walk can be treated in parallel using a coined walk with internal degrees of freedom. For the random walk, this amounts to a 2nd -order Markov process with a stochastic coin, better know as an (anti-)persistent walk. The exact analysis, based on the real-space renormalization group (RG), reproduces the results of the well-known model of ``ultradiffusion,'' dw = 1 -log2 ɛ for 0 < ɛ <= 1 / 2 . However, while the evaluation of the RG fixed-points proceeds virtually identical, for the corresponding quantum walk with a unitary coin it fails to reproduce the numerical results. A new way to analyze the RG is indicated. Supported by NSF-DMR 1207431.
Random walks and diffusion on networks
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud
2017-11-01
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; La Martire, Maria L.; Oliva, Doretta; Groeneweg, Jop
2012-01-01
These two case studies assessed technology-based programs for promoting walking fluency and improving foot-ground contact during walking with a man and a woman with multiple disabilities, respectively. The man showed breaks during walking and the woman presented with toe walking. The technology used in the studies included a microprocessor with…
Evaluation of the implementation of a whole-workplace walking programme using the RE-AIM framework.
Adams, Emma J; Chalkley, Anna E; Esliger, Dale W; Sherar, Lauren B
2017-05-18
Promoting walking for the journey to/from work and during the working day is one potential approach to increase physical activity in adults. Walking Works was a practice-led, whole-workplace walking programme delivered by employees (walking champions). This study aimed to evaluate the implementation of Walking Works using the RE-AIM framework and provide recommendations for future delivery of whole-workplace walking programmes. Two cross sectional surveys were conducted; 1544 (28%) employees completed the baseline survey and 918 employees (21%) completed the follow-up survey. Effectiveness was assessed using baseline and follow-up data; reach, implementation and maintenance were assessed using follow-up data only. For categorical data, Chi square tests were conducted to assess differences between surveys or groups. Continuous data were analysed to test for significant differences using a Mann-Whitney U test. Telephone interviews were conducted with the lead organisation co-ordinator, eight walking champions and three business representatives at follow-up. Interviews were transcribed verbatim and analysed to identify key themes related to adoption, implementation and maintenance. Adoption: Five workplaces participated in Walking Works. Reach: 480 (52.3%) employees were aware of activities and 221 (24.1%) participated. A variety of walking activities were delivered. Some programme components were not delivered as planned which was partly due to barriers in using walking champions to deliver activities. These included the walking champions' capacity, skills, support needs, ability to engage senior management, and the number and type of activities they could deliver. Other barriers included lack of management support, difficulties communicating information about activities and challenges embedding the programme into normal business activities. Effectiveness: No significant changes in walking to/from work or walking during the working day were observed. Maintenance: Plans to continue activities were mainly dependent on identifying continued funding. RE-AIM provided a useful framework for evaluating Walking Works. No changes in walking behaviour were observed. This may have been due to barriers in using walking champions to deliver activities, programme components not being delivered as intended, the types of activities delivered, or lack of awareness and participation by employees. Recommendations are provided for researchers and practitioners implementing future whole-workplace walking programmes.
Bonomi, Alberto G; Westerterp, Klaas R
2016-01-01
Background Physical activity is recommended to promote healthy aging. Defining the importance of activities such as walking in achieving higher levels of physical activity might provide indications for interventions. Objective To describe the importance of walking in achieving higher levels of physical activity in older adults. Methods The study included 42 healthy subjects aged between 51 and 84 years (mean body mass index 25.6 kg/m2 [SD 2.6]). Physical activity, walking, and nonwalking activity were monitored with an accelerometer for 2 weeks. Physical activity was quantified by accelerometer-derived activity counts. An algorithm based on template matching and signal power was developed to classify activity counts into nonwalking counts, short walk counts, and long walk counts. Additionally, in a subgroup of 31 subjects energy expenditure was measured using doubly labeled water to derive physical activity level (PAL). Results Subjects had a mean PAL of 1.84 (SD 0.19, range 1.43-2.36). About 20% of the activity time (21% [SD 8]) was spent walking, which accounted for about 40% of the total counts (43% [SD 11]). Short bouts composed 83% (SD 9) of walking time, providing 81% (SD 11) of walking counts. A stepwise regression model to predict PAL included nonwalking counts and short walk counts, explaining 58% of the variance of PAL (standard error of the estimate=0.12). Walking activities produced more counts per minute than nonwalking activities (P<.001). Long walks produced more counts per minute than short walks (P=.001). Nonwalking counts were independent of walking counts (r=−.05, P=.38). Conclusions Walking activities are a major contributor to physical activity in older adults. Walking activities occur at higher intensities than nonwalking activities, which might prevent individuals from engaging in more walking activity. Finally, subjects who engage in more walking activities do not tend to compensate by limiting nonwalking activities. Trial Registration ClinicalTrials.gov NCT01609764; https://clinicaltrials.gov/ct2/show/NCT01609764 (Archived by WebCite at http://www.webcitation.org/6grls0wAp) PMID:27268471
Ivanyi, Barbara; Schoenmakers, Marja; van Veen, Natasja; Maathuis, Karel; Nollet, Frans; Nederhand, Marc
2015-12-01
To date no review has been published that analyzes the efficacy of assistive devices on the walking ability of ambulant children and adolescents with spina bifida and, differentiates between the effects of treatment on gait parameters, walking capacity, and walking performance. To review the literature for evidence of the efficacy of orthotic management, footwear, and walking aids on gait and walking outcomes in ambulant children and adolescents with spina bifida. Systematic literature review. A systematic literature search was performed to identify studies that evaluated the effect of any type of lower limb orthoses, orthopedic footwear, or walking aids in ambulant children (≤18 years old) with spina bifida. Outcome measures and treatment results for gait parameters, walking capacity, and walking performance were identified using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as the reference framework. Six case-crossover studies met the criteria and were included in this systematic review. Four studies provided indications of the efficacy of the ankle-foot orthosis in improving a number of kinematic and kinetic properties of gait, stride characteristics, and the oxygen cost of walking. Two studies indicated that walking with forearm crutches may have a favorable effect on gait. The evidence level of these studies was low, and none of the studies assessed the efficacy of the intervention on walking capacity and walking performance. Some data support the efficacy of using ankle-foot orthosis and crutches for gait and walking outcomes at the body functions and structures level of the ICF-CY. Potential benefits at the activities and participation level have not been investigated. This is the first evidence-based systematic review of the efficacy of assistive devices for gait and walking outcomes for children with spina bifida. The ICF-CY is used as a reference framework to differentiate the effects of treatment on gait parameters, walking capacity, and walking performance. © The International Society for Prosthetics and Orthotics 2014.
McCaig, Cassandra M; Adams, Scott G; Dykstra, Allyson D; Jog, Mandar
2016-01-01
Previous studies have demonstrated a negative effect of concurrent walking and talking on gait in Parkinson's disease (PD) but there is limited information about the effect of concurrent walking on speech production. The present study examined the effect of sitting, standing, and three concurrent walking tasks (slow, normal, fast) on conversational speech intensity and speech rate in fifteen individuals with hypophonia related to idiopathic Parkinson's disease (PD) and fourteen age-equivalent controls. Interlocuter (talker-to-talker) distance effects and walking speed were also examined. Concurrent walking was found to produce a significant increase in speech intensity, relative to standing and sitting, in both the control and PD groups. Faster walking produced significantly greater speech intensity than slower walking. Concurrent walking had no effect on speech rate. Concurrent walking and talking produced significant reductions in walking speed in both the control and PD groups. In general, the results of the present study indicate that concurrent walking tasks and the speed of concurrent walking can have a significant positive effect on conversational speech intensity. These positive, "energizing" effects need to be given consideration in future attempts to develop a comprehensive model of speech intensity regulation and they may have important implications for the development of new evaluation and treatment procedures for individuals with hypophonia related to PD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
The CHOICE study: a "taste-test" of utilitarian vs. leisure walking among older adults.
Hekler, Eric B; Castro, Cynthia M; Buman, Matthew P; King, Abby C
2012-01-01
Utilitarian walking (e.g., walking for transport) and leisure walking (e.g., walking for health/recreation) are encouraged to promote health, yet few studies have explored specific preferences for these two forms of physical activity or factors that impact such preferences. A quasi-experimental crossover design was used to evaluate how training underactive midlife and older adults in each type of walking impacted total steps taken and how it was linked to their subsequent choice of walking types. Participants (N = 16) were midlife and older adults (M age = 64 ± 8 years) who were mostly women (81%) and white (75%). To control for order effects, participants were randomized to instruction in either utilitarian or leisure walking for 2 weeks and then the other type for 2 weeks. Participants then entered a 2-week "free choice" phase in which they chose any mixture of the walking types. Outcome variables included walking via OMRON pedometer and the ratio of utilitarian versus leisure walking during the free-choice phase. Participants completed surveys about their neighborhood (NEWS) and daily travel to multiple locations. Instruction in leisure-only, utilitarian-only, and a freely chosen mixture of the two each resulted in significant increases in steps taken relative to baseline (ps < 0.05). Having to go to multiple locations daily and traveling greater distances to locations were associated with engagement in more utilitarian walking. In contrast, good walking paths, neighborhood aesthetics, easy access to exercise facilities, and perceiving easier access to neighborhood services were associated with more leisure walking. Results from this pilot study suggest that midlife and older adults may most easily meet guidelines through either leisure only or a mixture of leisure and utilitarian walking, and tailored suggestions based on the person's neighborhood may be useful.
Morgan, Sara J; Hafner, Brian J; Kelly, Valerie E
2016-08-01
Many people with lower limb loss report the need to concentrate on walking. This may indicate increased reliance on cognitive resources when walking compared to individuals without limb loss. This study quantified changes in walking associated with addition of a concurrent cognitive task in persons with transfemoral amputation using microprocessor knees compared to age- and sex-matched controls. Observational, cross-sectional study. Quantitative motion analysis was used to assess walking under both single-task (walking alone) and dual-task (walking while performing a cognitive task) conditions. Primary outcomes were walking speed, step width, step time asymmetry, and cognitive task response latency and accuracy. Repeated-measures analysis of variance was used to examine the effects of task (single-task and dual-task) and group (transfemoral amputation and control) for each outcome. No significant interactions between task and group were observed (all p > 0.11) indicating that a cognitive task did not differentially affect walking between groups. However, walking was slower with wider steps and more asymmetry in people with transfemoral amputation compared to controls under both conditions. Although there were significant differences in walking between people with transfemoral amputation and matched controls, the effects of a concurrent cognitive task on walking were similar between groups. The addition of a concurrent task did not differentially affect walking outcomes in people with and without transfemoral amputation. However, compared to people without limb loss, people with transfemoral amputation adopted a conservative walking strategy. This strategy may reduce the need to concentrate on walking but also contributed to notable gait deviations. © The International Society for Prosthetics and Orthotics 2015.
Hsiao, HaoYuan; Zabielski, Thomas M; Palmer, Jacqueline A; Higginson, Jill S; Binder-Macleod, Stuart A
2016-12-08
Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session. Participants (N=43) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill. Propulsive impulse, peak propulsive force, and mean propulsive value (propulsive impulse divided by duration) were analyzed. In addition, each participant׳s cadence was calculated. Pearson correlation coefficients were used to determine the relationships between different measurements of propulsion versus walking speed as well as changes in propulsion versus changes in walking speed. Stepwise linear regression was used to determine which measurement of propulsion best predicted walking speed and changes in walking speed. The results showed that all 3 measurements of propulsion were correlated to walking speed, with peak propulsive force showed the strongest correlation. Similarly, when participants increased their walking speeds, changes in peak propulsive forces showed the strongest correlation to changes in walking speed. In addition, multiplying each measurement by cadence improved the correlations. The present study suggests that measuring peak propulsive force and cadence may be most appropriate of the variables studied to characterize propulsion in individuals poststroke. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abustan, M. S.; Ali, M. F. M.; Talib, S. H. A.
2018-04-01
Walking velocity is a vector quantity that can be determined by calculating the time taken and displacement of a moving objects. In Malaysia, there are very few researches that were done to determine the walking velocity of citizens to be compared with other countries such as the study about walking upstairs during evacuation process is important when emergency case happen, if there are people in underground garages, they have to walk upstairs for exits and look for shelter and the walking velocity of pedestrian in such cases are necessary to be analysed. Therefore, the objective of this study is to determine the walking speed of pedestrian during walking upstairs situation, finding the relationship between pedestrian walking speed and the characteristics of the pedestrian as well as analysing the energy reduction by comparing the walking speed of pedestrian at the beginning and at the end of staircase. In this case study, an experiment was done to determine the average walking speed of pedestrian. The pedestrian has been selected from different gender, physical character, and age. Based on the data collected, the average normal walking speed of male pedestrian was 1.03 m/s while female was 1.08 m/s. During walking upstairs, the walking speed of pedestrian decreased as the number of floor increased. The average speed for the first stairwell was 0.90 m/s and the number decreased to 0.73 m/s for the second stairwell. From the reduction of speed, the energy used has been calculated and the average kinetic energy used was 1.69 J. Hence, the data collected can be used for further research of staircase design and plan of evacuation process.
Roos, Margaret A; Rudolph, Katherine S; Reisman, Darcy S
2012-09-01
People with stroke have reduced walking activity. It is not known whether this deficit is due to a reduction in all aspects of walking activity or only in specific areas. Understanding specific walking activity deficits is necessary for the development of interventions that maximize improvements in activity after stroke. The purpose of this study was to examine walking activity in people poststroke compared with older adults without disability. A cross-sectional study was conducted. Fifty-four participants poststroke and 18 older adults without disability wore a step activity monitor for 3 days. The descriptors of walking activity calculated included steps per day (SPD), bouts per day (BPD), steps per bout (SPB), total time walking per day (TTW), percentage of time walking per day (PTW), and frequency of short, medium, and long walking bouts. Individuals classified as household and limited community ambulators (n=29) did not differ on any measure and were grouped (HHA-LCA group) for comparison with unlimited community ambulators (UCA group) (n=22) and with older adults without disability (n=14). The SPD, TTW, PTW, and BPD measurements were greatest in older adults and lowest in the HHA-LCA group. Seventy-two percent to 74% of all walking bouts were short, and this finding did not differ across groups. Walking in all categories (short, medium, and long) was lowest in the HHA-LCA group, greater in the UCA group, and greatest in older adults without disability. Three days of walking activity were captured. The specific descriptors of walking activity presented provide insight into walking deficits after stroke that cannot be ascertained by looking at steps per day alone. The deficits that were revealed could be addressed through appropriate exercise prescription, underscoring the need to analyze the structure of walking activity.
Comparison of two 6-minute walk tests to assess walking capacity in polio survivors.
Brehm, Merel-Anne; Verduijn, Suzan; Bon, Jurgen; Bredt, Nicoline; Nollet, Frans
2017-11-21
To compare walking dynamics and test-retest reliability for 2 frequently applied walk tests in polio survivors: the 6-minute walk test (6MWT) to walk as far as possible; and the 6-minute walking energy cost test (WECT) at comfortable speed. Observational study. Thirty-three polio survivors, able to walk ≥ 150 m. On the same day participants performed a 6MWT and a WECT, which were repeated 1-3 weeks later. For each test, distance walked, heart rate and reduction in speed were assessed. The mean distance walked and mean heart rate were significantly higher in the 6MWT (441 m (standard deviation) (SD 79.7); 118 bpm (SD 19.2)) compared with the WECT (366 m (SD 67.3); 103 bpm (SD 14.3)); p< 0.001. Furthermore, during the 6MWT, patients continuously slowed down (-6%), while during the WECT speed dropped only slightly during the first 2 min, by -1.8% in total. Test-retest reliability of both tests was excellent (intraclass correlation coefficient (ICC) ≥ 0.95; lower bound 95% confidence interval (95% CI) ≥ 0.87). The smallest detectable change for the walked distance was 42 m (9.7% change from the mean) and 50 m (13.7%) on the 6MWT and WECT, respectively. Both the 6MWT and the WECT are reliable to assess walking capacity in polio survivors, with slightly superior sensitivity to detect change for the 6MWT. Differences in walking dynamics confirm that the tests cannot be used interchangeably. The 6MWT is recommended for measuring maximal walking capacity and the WECT for measuring submaximal walking capacity.
Sawers, Andrew; Ting, Lena H
2015-02-01
The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
Exercise training for intermittent claudication.
McDermott, Mary M
2017-11-01
The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Kocur, Piotr; Deskur-Smielecka, Ewa; Wilk, Malgorzata; Dylewicz, Piotr
2009-11-01
To investigate the effects of Nordic Walking training supplemental to a standard, early rehabilitation programme on exercise capacity and physical fitness in men after an acute coronary syndrome. A controlled trial. Cardiac rehabilitation service of a provincial hospital. Eighty men 2-3 weeks after an acute coronary syndrome, with good exercise tolerance. Three-week, inpatient cardiac rehabilitation programme (control group) supplemented with Nordic Walking (Nordic Walking group), or with traditional walking training (walking training group). Exercise capacity was assessed as peak energy cost (in metabolic equivalents) in symptom-limited treadmill exercise test, and physical fitness with the Fullerton Functional Fitness Test. Exercise capacity after the rehabilitation programme was higher in the Nordic Walking group than in the control group (10.8 +/- 1.8 versus 9.2 +/- 2.2 metabolic equivalents, P =0.025). The improvement in exercise capacity in the Nordic Walking group was higher than in the control group (1.8 +/- 1.5 versus 0.7 +/- 1.4 metabolic equivalents, P =0.002). In contrast to the control group, the results of all components of the Fullerton test improved in the Nordic Walking and walking training groups. After the programme, lower body endurance, and dynamic balance were significantly better in the Nordic Walking group in comparison with the walking training and control groups, and upper body endurance was significantly better in the Nordic Walking and walking training groups than in the control group. Nordic Walking may improve exercise capacity, lower body endurance and coordination of movements in patients with good exercise tolerance participating in early, short-term rehabilitation after an acute coronary syndrome.
Merom, Dafna; Bauman, Adrian; Phongsavan, Philayrath; Cerin, Ester; Kassis, Mazen; Brown, Wendy; Smith, Ben J; Rissel, Chris
2009-10-01
Interventions to promote walking have rarely examined how their effects varied by the attributes of the physical environment. The purpose of this study is to examine whether perceptions of environmental walkability predicted change in walking behavior following an individual-based intervention to promote walking and whether the intervention buffered the effects of unsupportive environment for walking. Inactive adults (aged 30-65 years, 85% women) who completed a 3-month randomized control trial comparing the effect of a single mail-out of a theoretically based self-help walking program (WP, n = 102); the same program plus a pedometer (WPP, n = 105); and a "no-treatment" control group (C, n = 107). Measures included change in self-reported walking time for all purposes and in the proportion of people reporting regular walking (i.e., > or =150 min/week and > or =5 sessions/wk). Perceptions of environmental esthetics, safety from crime, proximity to destinations, access to walking facilities, traffic, streetlights, connectivity, and hilliness were assessed at baseline and dichotomized into "low" or "high" by the median score. Covariates were social support, self-efficacy, intention to change behavior, and sociodemographic characteristics. Adjusting for baseline walking, significant covariates, and study groups, walking time at follow-up was lower if streetlights or esthetics were perceived to be "low" (-24% and -22%, respectively) compared with "high" (p < 0.05). In "low" esthetic conditions, those in the WPP were significantly more likely than controls to increase total walking time (Exp (b) = 2.53, p < 0.01) and to undertake regular walking (OR = 5.85, 95% CI 2.60-12.2), whereas in esthetically pleasing environments, the between-group differences were nonsignificant. Walkability attributes can influence individual-based walking programs. Some environmental barriers for walking can be overcome by motivational aids.
Menai, Mehdi; Charreire, Hélène; Feuillet, Thierry; Salze, Paul; Weber, Christiane; Enaux, Christophe; Andreeva, Valentina A; Hercberg, Serge; Nazare, Julie-Anne; Perchoux, Camille; Simon, Chantal; Oppert, Jean-Michel
2015-12-09
Increasing active transport behavior (walking, cycling) throughout the life-course is a key element of physical activity promotion for health. There is, however, a need to better understand the correlates of specific domains of walking and cycling to identify more precisely at-risk populations for public health interventions. In addition, current knowledge of interactions between domains of walking and cycling remains limited. We assessed past-month self-reported time spent walking and cycling in three specific domains (commuting, leisure and errands) in 39,295 French adult participants (76.5% women) of the on-going NutriNet Santé web-cohort. Multivariate logistic regression models were used to investigate the associations with socio-demographic and physical activity correlates. Having a transit pass was strongly positively associated with walking for commuting and for errands but was unrelated to walking for leisure or to all domains of cycling. Having a parking space at work was strongly negatively associated with walking for commuting and cycling for commuting. BMI was negatively associated with both walking for leisure and errands, and with the three domains of cycling. Leisure-time physical activity was negatively associated with walking for commuting but was positively associated with the two other domains of walking and with cycling (three domains). Walking for commuting was positively associated with the other domains of walking; cycling for commuting was also positively associated with the other domains of cycling. Walking for commuting was not associated with cycling for commuting. In adults walking and cycling socio-demographic and physical activity correlates differ by domain (commuting, leisure and errands). Better knowledge of relationships between domains should help to develop interventions focusing not only the right population, but also the right behavior.
Poncumhak, Puttipong; Saengsuwan, Jiamjit; Amatachaya, Sugalya
2014-01-01
Background/Objectives More than half of independent ambulatory patients with spinal cord injury (SCI) need a walking device to promote levels of independence. However, long-lasting use of a walking device may introduce negative impacts for the patients. Using a standard objective test relating to the requirement of a walking device may offer a quantitative criterion to effectively monitor levels of independence of the patients. Therefore, this study investigated (1) ability of the three functional tests, including the five times sit-to-stand test (FTSST), timed up and go test (TUGT), and 10-meter walk test (10MWT) to determine the ability of walking without a walking device, and (2) the inter-tester reliability of the tests to assess functional ability in patients with SCI. Methods Sixty independent ambulatory patients with SCI, who walked with and without a walking device (30 subjects/group), were assessed cross-sectionally for their functional ability using the three tests. The first 20 subjects also participated in the inter-tester reliability test. Results The time required to complete the FTSST <14 seconds, the TUGT < 18 seconds, and the 10MWT < 6 seconds had good-to-excellent capability to determine the ability of walking without a walking device of subjects with SCI. These tests also showed excellent inter-tester reliability. Conclusions Methods of clinical evaluation for walking are likely performed using qualitative observation, which makes the results difficult to compare among testers and test intervals. Findings of this study offer a quantitative target criterion or a clear level of ability that patients with SCI could possibly walk without a walking device, which would benefit monitoring process for the patients. PMID:24621030
2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
Sagawa, Koichi; Ohkubo, Kensuke
2015-07-16
An estimation method for a two-dimensional walking trajectory during free walking, such as forward walking, side stepping and backward walking, was investigated using a tiptoe-mounted inertial sensor. The horizontal trajectory of the toe-tip is obtained by double integration of toe-tip acceleration during the moving phase in which the sensor is rotated before foot-off or after foot-contact, in addition to the swing phase. Special functions that determine the optimum moving phase as the integral duration in every one step are developed statistically using the gait cycle and the resultant angular velocity of dorsi/planter flexion, pronation/supination and inversion/eversion so that the difference between the estimated trajectory and actual one gives a minimum value during free walking with several cadences. To develop the functions, twenty healthy volunteers participated in free walking experiments in which subjects performed forward walking, side stepping to the right, side stepping to the left, and backward walking at 39 m down a straight corridor with several predetermined cadences. To confirm the effect of the developed functions, five healthy subjects participated in the free walking experiment in which each subject performed free walking with different velocities of normal, fast, and slow based on their own assessment in a square course with 7 m side. The experimentally obtained results of free walking with a combination of forward walking, backward walking, and side stepping indicate that the proposed method produces walking trajectory with high precision compared with the constant threshold method which determines swing phase using the size of the angular velocity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perceived Neighborhood Environment and Walking for Specific Purposes Among Elderly Japanese
Inoue, Shigeru; Ohya, Yumiko; Odagiri, Yuko; Takamiya, Tomoko; Kamada, Masamitsu; Okada, Shinpei; Oka, Kohichiro; Kitabatake, Yoshinori; Nakaya, Tomoki; Sallis, James F; Shimomitsu, Teruichi
2011-01-01
Background Recent research has revealed the importance of neighborhood environment as a determinant of physical activity. However, evidence among elderly adults is limited. This study examined the association between perceived neighborhood environment and walking for specific purposes among Japanese elderly adults. Methods This population-based, cross-sectional study enrolled 1921 participants (age: 65–74 years, men: 51.9%). Neighborhood environment (International Physical Activity Questionnaire Environmental Module) and walking for specific purposes (ie, transportation or recreation) were assessed by self-report. Multilevel logistic regression analyses with individuals at level 1 and neighborhoods at level 2 were conducted to examine the association between environment and walking, after adjustment for potential confounders. Results Access to exercise facilities, social environment, and aesthetics were associated with total neighborhood walking. Odds ratios (95% CI) were 1.23 (1.00–1.51), 1.39 (1.14–1.71), and 1.48 (1.21–1.81), respectively. Regarding walking for specific purposes, social environment and aesthetics were consistent correlates of both transportation walking and recreational walking. Environmental correlates differed by specific types of walking and by sex. Transportation walking significantly correlated with a greater variety of environmental attributes. Sex differences were observed, especially for transportation walking. Bicycle lanes, crime safety, traffic safety, aesthetics, and household motor vehicles were significant correlates among men, while access to shops, access to exercise facilities, and social environment were important among women. Conclusions Specific environment–walking associations differed by walking purpose and sex among elderly adults. Social environment and aesthetics were consistent correlates of both transportation walking and recreational walking. Improving these environmental features might be effective in promoting physical activity among elderly Japanese. PMID:22001543
Hirsch, Jana A.; Moore, Kari A.; Clarke, Philippa J.; Rodriguez, Daniel A.; Evenson, Kelly R.; Brines, Shannon J.; Zagorski, Melissa A.; Diez Roux, Ana V.
2014-01-01
Lack of longitudinal research hinders causal inference on the association between the built environment and walking. In the present study, we used data from 6,027 adults in the Multi-Ethnic Study of Atherosclerosis who were 45–84 years of age at baseline to investigate the association of neighborhood built environment with trends in the amount of walking between 2000 and 2012. Walking for transportation and walking for leisure were assessed at baseline and at 3 follow-up visits (median follow-up = 9.15 years). Time-varying built environment measures (measures of population density, land use, number of destinations, bus access, and street connectivity) were created using geographic information systems. We used linear mixed models to estimate the associations between baseline levels of and a change in each built environment feature and a change in the frequency of walking. After adjustment for potential confounders, we found that higher baseline levels of population density, area zoned for retail, social destinations, walking destinations, and street connectivity were associated with greater increases in walking for transportation over time. Higher baseline levels of land zoned for residential use and distance to buses were associated with less pronounced increases (or decreases) in walking for transportation over time. Increases in the number of social destinations, the number of walking destinations, and street connectivity over time were associated with greater increases in walking for transportation. Higher baseline levels of both land zoned for retail and walking destinations were associated with greater increases in leisure walking, but no changes in built environment features were associated with leisure walking. The creation of mixed-use, dense developments may encourage adults to incorporate walking for transportation into their everyday lives. PMID:25234431
2013-01-01
Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593
Heightening Walking Above its Pedestrian Status : Walking and Travel Behavior in California
DOT National Transportation Integrated Search
2016-06-30
People walk a lotto walk pets, to exercise and recreate, and to access public transit and local shops. Walk trips begin and end almost every journey, even trips made by automobile. Data from the current California Household Travel Survey (CHTS) sh...
Effect of multilayer high-compression bandaging on ankle range of motion and oxygen cost of walking
Roaldsen, K S; Elfving, B; Stanghelle, J K; Mattsson, E
2012-01-01
Objective To evaluate the effects of multilayer high-compression bandaging on ankle range of motion, oxygen consumption and subjective walking ability in healthy subjects. Method A volunteer sample of 22 healthy subjects (10 women and 12 men; aged 67 [63–83] years) were studied. The intervention included treadmill-walking at self-selected speed with and without multilayer high-compression bandaging (Proforeº), randomly selected. The primary outcome variables were ankle range of motion, oxygen consumption and subjective walking ability. Results Total ankle range of motion decreased 4% with compression. No change in oxygen cost of walking was observed. Less than half the subjects reported that walking-shoe comfort or walking distance was negatively affected. Conclusion Ankle range of motion decreased with compression but could probably be counteracted with a regular exercise programme. There were no indications that walking with compression was more exhausting than walking without. Appropriate walking shoes could seem important to secure gait efficiency when using compression garments. PMID:21810941
Oxygen cost of treadmill and over-ground walking in mildly disabled persons with multiple sclerosis
Suh, Yoojin; Dlugonski, Deirdre; Weikert, Madeline; Agiovlasitis, Stamatis; Fernhall, Bo; Goldman, Myla
2011-01-01
Walking impairment is a ubiquitous feature of multiple sclerosis (MS) and the O2 cost of walking might quantify this dysfunction in mild MS. This paper examined the difference in O2 cost of walking between persons with MS who have mild disability and healthy controls and the correlation between the O2 cost of walking and disability. Study 1 included 18 persons with mild MS and 18 controls and indicated that the O2 cost of walking was significantly higher in MS than controls and that disability was significantly associated with the O2 cost of slow, moderate, and fast treadmill walking. Study 2 included 24 persons with mild MS and indicated that disability was significantly correlated with O2 cost of comfortable, fast, and slow over-ground walking. We provide evidence that the O2 cost of walking is an indicator of walking dysfunction in mildly disabled persons with MS and should be considered in clinical research and practice. PMID:20798968
Oxygen cost of treadmill and over-ground walking in mildly disabled persons with multiple sclerosis.
Motl, Robert W; Suh, Yoojin; Dlugonski, Deirdre; Weikert, Madeline; Agiovlasitis, Stamatis; Fernhall, Bo; Goldman, Myla
2011-04-01
Walking impairment is a ubiquitous feature of multiple sclerosis (MS) and the O(2) cost of walking might quantify this dysfunction in mild MS. This paper examined the difference in O(2) cost of walking between persons with MS who have mild disability and healthy controls and the correlation between the O(2) cost of walking and disability. Study 1 included 18 persons with mild MS and 18 controls and indicated that the O(2) cost of walking was significantly higher in MS than controls and that disability was significantly associated with the O(2) cost of slow, moderate, and fast treadmill walking. Study 2 included 24 persons with mild MS and indicated that disability was significantly correlated with O(2) cost of comfortable, fast, and slow over-ground walking. We provide evidence that the O(2) cost of walking is an indicator of walking dysfunction in mildly disabled persons with MS and should be considered in clinical research and practice.
Backward-walking biological motion orients attention to moving away instead of moving toward.
Ding, Xiaowei; Yin, Jun; Shui, Rende; Zhou, Jifan; Shen, Mowei
2017-04-01
Walking direction is an important attribute of biological motion because it carries key information, such as the specific intention of the walker. Although it is known that spatial attention is guided by walking direction, it remains unclear whether this attentional shift is reflexive (i.e., constantly shifts to the walking direction) or not. A richer interpretation of this effect is that attention is guided to seek the information that is necessary to understand the motion. To investigate this issue, we examined how backward-walking biological motion orients attention because the intention of walking backward is usually to avoid something that walking forward would encounter. The results showed that attention was oriented to the walking-away direction of biological motion instead of the walking-toward direction (Experiment 1), and this effect was not due to the gaze direction of biological motion (Experiment 2). Our findings suggest that the attentional shift triggered by walking direction is not reflexive, thus providing support for the rich interpretation of these attentional effects.
Rothman, Linda; To, Teresa; Buliung, Ron; Macarthur, Colin; Howard, Andrew
2014-03-01
To estimate the proportion of children living within walking distance who walk to school in Toronto, Canada and identify built and social environmental correlates of walking. Observational counts of school travel mode were done in 2011, at 118 elementary schools. Built environment data were obtained from municipal sources and school field audits and mapped onto school attendance boundaries. The influence of social and built environmental features on walking counts was analyzed using negative binomial regression. The mean proportion observed walking was 67% (standard deviation=14.0). Child population (incidence rate ratio (IRR) 1.36), pedestrian crossover (IRR 1.32), traffic light (IRR 1.19), and intersection densities (IRR 1.03), school crossing guard (IRR 1.14) and primary language other than English (IRR 1.20) were positively correlated with walking. Crossing guard presence reduced the influence of other features on walking. This is the first large observational study examining school travel mode and the environment. Walking proportions were higher than those previously reported in Toronto, with large variability. Associations between population density and several roadway design features and walking were confirmed. School crossing guards may override the influence of roadway features on walking. Results have important implications for policies regarding walking promotion. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Walking for Transportation: What do U.S. Adults Think is a Reasonable Distance and Time?
Watson, Kathleen B; Carlson, Susan A; Humbert-Rico, Tiffany; Carroll, Dianna D.; Fulton, Janet E
2015-01-01
Background Less than one-third of U.S. adults walk for transportation. Public health strategies to increase transportation walking would benefit from knowing what adults think is a reasonable distance to walk. Our purpose was to determine (1) what adults think is a reasonable distance and amount of time to walk and (2) whether there were differences in minutes spent transportation walking by what adults think is reasonable. Methods Analyses used a cross-sectional nationwide adult sample (n=3,653) participating in the 2010 Summer ConsumerStyles mail survey. Results Most adults (>90%) think transportation walking is reasonable. However, less than half (43%) think walking a mile or more or for 20 minutes or more is reasonable. What adults think is reasonable is similar across most demographic subgroups, except for older adults (≥ 65 years) who think shorter distances and times are reasonable. Trend analysis that adjust for demographic characteristics indicates adults who think longer distances and times are reasonable walk more. Conclusions Walking for short distances is acceptable to most U.S. adults. Public health programs designed to encourage longer distance trips may wish to improve supports for transportation walking to make walking longer distances seem easier and more acceptable to most U.S. adults. PMID:25158016
Walking for Transportation: What do U.S. Adults Think is a Reasonable Distance and Time?
Watson, Kathleen B; Carlson, Susan A; Humbert-Rico, Tiffany; Carroll, Dianna D; Fulton, Janet E
2015-06-16
Less than one-third of U.S. adults walk for transportation. Public health strategies to increase transportation walking would benefit from knowing what adults think is a reasonable distance to walk. Our purpose was to determine 1) what adults think is a reasonable distance and amount of time to walk and 2) whether there were differences in minutes spent transportation walking by what adults think is reasonable. Analyses used a cross-sectional nationwide adult sample (n = 3653) participating in the 2010 Summer ConsumerStyles mail survey. Most adults (> 90%) think transportation walking is reasonable. However, less than half (43%) think walking a mile or more or for 20 minutes or more is reasonable. What adults think is reasonable is similar across most demographic subgroups, except for older adults (≥ 65 years) who think shorter distances and times are reasonable. Trend analysis that adjust for demographic characteristics indicates adults who think longer distances and times are reasonable walk more. Walking for short distances is acceptable to most U.S. adults. Public health programs designed to encourage longer distance trips may wish to improve supports for transportation walking to make walking longer distances seem easier and more acceptable to most U.S. adults.
Crowther, Robert G; Leicht, Anthony S; Spinks, Warwick L; Sangla, Kunwarjit; Quigley, Frank; Golledge, Jonathan
2012-01-01
The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal-Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.
Walking economy during cued versus non-cued treadmill walking in persons with Parkinson's disease.
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2013-01-01
Gait impairment is common in Parkinson's disease (PD) and may result in greater energy expenditure, poorer walking economy, and fatigue during activities of daily living. Auditory cueing is an effective technique to improve gait; but the effects on energy expenditure are unknown. To determine whether energy expenditure differs in individuals with PD compared with healthy controls and if auditory cueing improves walking economy in PD. Twenty participants (10 PD and 10 controls) came to the laboratory for three sessions. Participants performed two, 6-minute bouts of treadmill walking at two speeds (1.12 m·sec-1 and 0.67 m·sec-1). One session used cueing and the other without cueing. A metabolic cart measured energy expenditure and walking economy was calculated (energy expenditure/power). PD had worse walking economy and higher energy expenditure than control participants during cued and non-cued walking at the 0.67 m·sec-1 speed and during non-cued walking at the 1.12 m·sec-1. With auditory cueing, energy expenditure and walking economy worsened in both participant groups. People with PD use more energy and have worse walking economy than adults without PD. Walking economy declines further with auditory cuing in persons with PD.
Effect of walking speed on lower extremity joint loading in graded ramp walking.
Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich
2005-07-01
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.
Community walking programs for treatment of peripheral artery disease
Mays, Ryan J.; Rogers, R. Kevin; Hiatt, William R.; Regensteiner, Judith G.
2013-01-01
Background Supervised walking programs offered at medical facilities for patients with peripheral artery disease (PAD) and intermittent claudication (IC), while effective, are often not utilized due to barriers including lack of reimbursement and the need to travel to specialized locations for the training intervention. Walking programs for PAD patients that occur in community settings, such as those outside of supervised settings, may be a viable treatment option, as they are convenient and potentially bypass the need for supervised walking. This review evaluated the various methodologies and outcomes of community walking programs for PAD. Methods A literature review using appropriate search terms was conducted within PubMed/Medline and the Cochrane databases to identify studies in the English language employing community walking programs to treat PAD patients with IC. Search results were reviewed, and relevant articles were identified that form the basis of this review. The primary outcome was peak walking performance on the treadmill. Results Randomized controlled trials (n=10) examining peak walking outcomes in 558 PAD patients demonstrated that supervised exercise programs were more effective than community walking studies that consisted of general recommendations for patients with IC to walk at home. Recent community trials that incorporated more advice and feedback for PAD patients in general resulted in similar outcomes with no differences in peak walking time compared to supervised walking exercise groups. Conclusions Unstructured recommendations for patients with symptomatic PAD to exercise in the community are not efficacious. Community walking programs with more feedback and monitoring offer improvements in walking performance for patients with claudication and may bypass some obstacles associated with facility-based exercise programs. PMID:24103409
Carotenoids as protection against disability in older persons.
Lauretani, Fulvio; Semba, Richard D; Bandinelli, Stefania; Dayhoff-Brannigan, Margaret; Lauretani, Fabrizio; Corsi, Anna Maria; Guralnik, Jack M; Ferrucci, Luigi
2008-06-01
The purpose was to examine the relationship of total plasma carotenoids, an indicator of fruit and vegetable intake, with walking speed and severe walking disability in older adults. Nine hundred twenty-eight men and women aged 65 to 102 years from the Invecchiare in Chianti (Aging in the Chianti Area [InCHIANTI]) study, a population-based cohort in Tuscany, Italy, were studied. Plasma carotenoids were measured at enrollment (1998-2000), and walking speed over 4 meters and 400 meters distance were assessed at enrollment and 6 years later (2004-2006). At enrollment, 85 of 928 (9.2%) participants had severe walking disability (defined as being unable to walk or having a walking speed at the 4-meter walking test < 0.4 m/sec). After adjusting for potential confounders, participants with high total plasma carotenoids were significantly less likely to have prevalent severe walking disability (odds ration [OR] 0.59, 95% confidence interval [CI] 0.38-0.90, p = 0.01) and had higher walking speed over 4 meters (beta = 0.024, standard error [SE] = 0.011, p = 0.03) and over 400 meters (beta = 0.019, SE = 0.010, p = 0.04). Of 621 participants without severe walking disability at enrollment who were seen 6 years later, 68 (11.0%) developed severe walking disability. After adjusting for potential confounders, higher total plasma carotenoids were associated with a significantly lower risk of developing severe walking disability (OR 0.51, 95% CI 0.30-0.86, p = 0.01) and were associated with a less steep decline in 4-meter walking speed over a 6-year follow-up (n = 579; beta = 0.026, SE = 0.012, p = 0.03) and with lower incidence rates of being unable to successfully complete the 400-meter walking test at the 6-year follow-up visit (beta = -0.054, SE = 0.03, p = 0.04). High plasma carotenoids concentrations may be protective against the decline in walking speed and the development of severe walking disability in older adults.
Ito, Tomotaka; Tsubahara, Akio; Shinkoda, Koichi; Yoshimura, Yosuke; Kobara, Kenichi; Osaka, Hiroshi
2015-01-01
Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke. PMID:25688972
Chaix, Basile; Simon, Chantal; Charreire, Hélène; Thomas, Frédérique; Kestens, Yan; Karusisi, Noëlla; Vallée, Julie; Oppert, Jean-Michel; Weber, Christiane; Pannier, Bruno
2014-02-21
Preliminary evidence suggests that recreational walking has different environmental determinants than utilitarian walking. However, previous studies are limited in their assessment of environmental exposures and recreational walking and in the applied modeling strategies. Accounting for individual sociodemographic profiles and weather over the walking assessment period, the study examined whether numerous street network-based neighborhood characteristics related to the sociodemographic, physical, service, social-interactional, and symbolic environments were associated with overall recreational walking and recreational walking in one's residential neighborhood and could explain their spatial distribution. Based on the RECORD Cohort Study (Paris region, France, n=7105, 2007-2008 data), multilevel-spatial regression analyses were conducted to investigate environmental factors associated with recreational walking (evaluated by questionnaire at baseline). A risk score approach was applied to quantify the overall disparities in recreational walking that were predicted by the environmental determinants. Sixty-nine percent of the participants reported recreational walking over the past 7 days. Their mean reported recreational walking time was 3h 31mn. After individual-level adjustment, a higher neighborhood education, a higher density of destinations, green and open spaces of quality, and the absence of exposure to air traffic were associated with higher odds of recreational walking and/or a higher recreational walking time in one's residential neighborhood. As the overall disparities that were predicted by these environmental factors, the odds of reporting recreational walking and the odds of a higher recreational walking time in one's neighborhood were, respectively, 1.59 [95% confidence interval (CI): 1.56, 1.62] times and 1.81 (95% CI: 1.73, 1.87) times higher in the most vs. the least supportive environments (based on the quartiles). Providing green/open spaces of quality, building communities with services accessible from the residence, and addressing environmental nuisances such as those related to air traffic may foster recreational walking in one's environment.
2014-01-01
Background Preliminary evidence suggests that recreational walking has different environmental determinants than utilitarian walking. However, previous studies are limited in their assessment of environmental exposures and recreational walking and in the applied modeling strategies. Accounting for individual sociodemographic profiles and weather over the walking assessment period, the study examined whether numerous street network-based neighborhood characteristics related to the sociodemographic, physical, service, social-interactional, and symbolic environments were associated with overall recreational walking and recreational walking in one’s residential neighborhood and could explain their spatial distribution. Methods Based on the RECORD Cohort Study (Paris region, France, n = 7105, 2007–2008 data), multilevel-spatial regression analyses were conducted to investigate environmental factors associated with recreational walking (evaluated by questionnaire at baseline). A risk score approach was applied to quantify the overall disparities in recreational walking that were predicted by the environmental determinants. Results Sixty-nine percent of the participants reported recreational walking over the past 7 days. Their mean reported recreational walking time was 3h31mn. After individual-level adjustment, a higher neighborhood education, a higher density of destinations, green and open spaces of quality, and the absence of exposure to air traffic were associated with higher odds of recreational walking and/or a higher recreational walking time in one’s residential neighborhood. As the overall disparities that were predicted by these environmental factors, the odds of reporting recreational walking and the odds of a higher recreational walking time in one’s neighborhood were, respectively, 1.59 [95% confidence interval (CI): 1.56, 1.62] times and 1.81 (95% CI: 1.73, 1.87) times higher in the most vs. the least supportive environments (based on the quartiles). Conclusions Providing green/open spaces of quality, building communities with services accessible from the residence, and addressing environmental nuisances such as those related to air traffic may foster recreational walking in one’s environment. PMID:24555820
Esliger, Dale W.; Taylor, Ian M.; Sherar, Lauren B.
2017-01-01
Background Promoting walking for the journey to and from work (commuter walking) is a potential strategy for increasing physical activity. Understanding the factors influencing commuter walking is important for identifying target groups and designing effective interventions. This study aimed to examine individual, employment-related and psychosocial factors associated with commuter walking and to discuss the implications for targeting and future design of interventions. Methods 1,544 employees completed a baseline survey as part of the ‘Walking Works’ intervention project (33.4% male; 36.3% aged <30 years). Multivariate logistic regression was used to examine the associations of individual (age, ethnic group, educational qualifications, number of children <16 and car ownership), employment-related (distance lived from work, free car parking at work, working hours, working pattern and occupation) and psychosocial factors (perceived behavioural control, intention, social norms and social support from work colleagues) with commuter walking. Results Almost half of respondents (n = 587, 49%) were classified as commuter walkers. Those who were aged <30 years, did not have a car, had no free car parking at work, were confident of including some walking or intended to walk to or from work on a regular basis, and had support from colleagues for walking were more likely to be commuter walkers. Those who perceived they lived too far away from work to walk, thought walking was less convenient than using a car for commuting, did not have time to walk, needed a car for work or had always travelled the same way were less likely to be commuter walkers. Conclusions A number of individual, employment-related and psychosocial factors were associated with commuter walking. Target groups for interventions to promote walking to and from work may include those in older age groups and those who own or have access to a car. Multi-level interventions targeting individual level behaviour change, social support within the workplace and organisational level travel policies may be required in order to promote commuter walking. PMID:28182714
Adams, Emma J; Esliger, Dale W; Taylor, Ian M; Sherar, Lauren B
2017-01-01
Promoting walking for the journey to and from work (commuter walking) is a potential strategy for increasing physical activity. Understanding the factors influencing commuter walking is important for identifying target groups and designing effective interventions. This study aimed to examine individual, employment-related and psychosocial factors associated with commuter walking and to discuss the implications for targeting and future design of interventions. 1,544 employees completed a baseline survey as part of the 'Walking Works' intervention project (33.4% male; 36.3% aged <30 years). Multivariate logistic regression was used to examine the associations of individual (age, ethnic group, educational qualifications, number of children <16 and car ownership), employment-related (distance lived from work, free car parking at work, working hours, working pattern and occupation) and psychosocial factors (perceived behavioural control, intention, social norms and social support from work colleagues) with commuter walking. Almost half of respondents (n = 587, 49%) were classified as commuter walkers. Those who were aged <30 years, did not have a car, had no free car parking at work, were confident of including some walking or intended to walk to or from work on a regular basis, and had support from colleagues for walking were more likely to be commuter walkers. Those who perceived they lived too far away from work to walk, thought walking was less convenient than using a car for commuting, did not have time to walk, needed a car for work or had always travelled the same way were less likely to be commuter walkers. A number of individual, employment-related and psychosocial factors were associated with commuter walking. Target groups for interventions to promote walking to and from work may include those in older age groups and those who own or have access to a car. Multi-level interventions targeting individual level behaviour change, social support within the workplace and organisational level travel policies may be required in order to promote commuter walking.
Nordic Walking Practice Might Improve Plantar Pressure Distribution
ERIC Educational Resources Information Center
Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto
2011-01-01
Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…
Bouchet, J Y; Franco, A; Morzol, B; Beani, J C
1980-01-01
Two methods are used to evaluate the walking distance: physiological walking along a standard path (0% - 6 mk/h) and walking on a tread mill (10% - 3 km/h). In both tests, four data are checked: -- initial trouble distance, -- cramp or walking-distance, -- localisation of pain, -- recovery time. These tests are dependable for the diagnosis of arterial claudication, reproducible and well tolerated. Their results have been compared: there is no correlation between the initial trouble distance and the cramp distance. However there is a correlation between the cramp distance by physiological walking and on treadmill. Recovery time, if long, is a criteria of gravity. Interests of both methods are discussed.
'It was not just a walking experience': reflections on the role of care in dog-walking.
Degeling, Chris; Rock, Melanie
2013-09-01
Research into physical activity and human health has recently begun to attend to dog-walking. This study extends the literature on dog-walking as a health behaviour by conceptualizing dog-walking as a caring practice. It centres on qualitative interviews with 11 Canadian dog-owners. All participants resided in urban neighbourhoods identified through previous quantitative research as conducive to dog-walking. Canine characteristics, including breed and age, were found to influence people's physical activity. The health of the dog and its position in the life-course influenced patterns of dog-walking. Frequency, duration and spatial patterns of dog-walking all depended on relationships and people's capacity to tap into resources. In foregrounding networks of care, inclusive of pets and public spaces, a relational conceptualization of dog-walking as a practice of caring helps to make sense of heterogeneity in patterns of physical activity among dog-owners.
Reynolds, Andy M; Leprêtre, Lisa; Bohan, David A
2013-11-07
Correlated random walks are the dominant conceptual framework for modelling and interpreting organism movement patterns. Recent years have witnessed a stream of high profile publications reporting that many organisms perform Lévy walks; movement patterns that seemingly stand apart from the correlated random walk paradigm because they are discrete and scale-free rather than continuous and scale-finite. Our new study of the movement patterns of Tenebrio molitor beetles in unchanging, featureless arenas provides the first empirical support for a remarkable and deep theoretical synthesis that unites correlated random walks and Lévy walks. It demonstrates that the two models are complementary rather than competing descriptions of movement pattern data and shows that correlated random walks are a part of the Lévy walk family. It follows from this that vast numbers of Lévy walkers could be hiding in plain sight.
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-01-01
[Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy. PMID:28878480
Marselle, Melissa R.; Irvine, Katherine N.; Warber, Sara L.
2013-01-01
The benefits of walking in natural environments for well-being are increasingly understood. However, less well known are the impacts different types of natural environments have on psychological and emotional well-being. This cross-sectional study investigated whether group walks in specific types of natural environments were associated with greater psychological and emotional well-being compared to group walks in urban environments. Individuals who frequently attended a walking group once a week or more (n = 708) were surveyed on mental well-being (Warwick Edinburgh Mental Well-being Scale), depression (Major Depressive Inventory), perceived stress (Perceived Stress Scale) and emotional well-being (Positive and Negative Affect Schedule). Compared to group walks in urban environments, group walks in farmland were significantly associated with less perceived stress and negative affect, and greater mental well-being. Group walks in green corridors were significantly associated with less perceived stress and negative affect. There were no significant differences between the effect of any environment types on depression or positive affect. Outdoor walking group programs could be endorsed through “green prescriptions” to improve psychological and emotional well-being, as well as physical activity. PMID:24173142
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-08-01
[Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.
Ramari, Cintia; Moraes, Andréa G; Tauil, Carlos B; von Glehn, Felipe; Motl, Robert; de David, Ana C
2018-02-01
Physiological factors such as muscle weakness and balance could explain declines in walking distance by multiple sclerosis (MS) patients. The purpose of this study was to characterize levels and examine associations among decline in walking distance, balance and muscular strength in women with mild MS. Participants included 28 women with mild relapsing-remitting MS and 21 women without MS. We executed the 6-min walk test (6MWT) to verify declines in walking distance. Isokinetic knee flexion (KF) and extension (KE) muscle strength was measured using a dynamometer. Balance was quantified using a force platform, with eyes open and closed, on a rigid and foam surface. The MS patients presented declines in walking, lower KF muscle strength, and worse balance than controls. KF strength and balance correlated with walking in the MS group. The KF strength explained differences between groups in walking. The KF strength and balance presented as predictors of walking slowing down in the 6MWT, in mild MS. Women with mild MS have strength impairment of knee flexor muscles and balance control impairment that may explain walking related motor fatigability during prolonged walking. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Chang-Yong; Lee, Jung-Sun; Kim, Hyeong-Dong
2017-02-01
The purposes of the present study were to compare the effects of backward and lateral walking training and to identify whether additional backward or lateral walking training would be more effective in increasing the walking function of poststroke patients. Fifty-one subjects with hemiplegic stroke were randomly allocated to 3 groups, each containing 17 subjects: the control group, the backward walking training group, and the lateral walking training group. The walking abilities of each group were assessed using a 10-m walk test and the GAITRite system for spatiotemporal gait. The results show that there were significantly greater posttest increases in gait velocity (F = -12.09, P = 0.02) and stride length (F = -11.50, P = 0.02), decreases in the values of the 10-m walk test (F = -7.10, P = 0.03) (P < 0.05) and double-limb support period (F = 40.15, P = 0.000), and improvements in gait asymmetry (F = 13.88, P = 0.002) (P < 0.01) in subjects in the lateral walking training group compared with those in the other 2 groups. These findings demonstrate that asymmetric gait patterns in poststroke patients could be improved by receiving additional lateral walking training therapy rather than backward walking training. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) understand the potential benefits of backward walking (BW) and lateral walking (LW) training on improving muscle strength and gait; (2) appreciate the potential value of backward and lateral walking gait training in the treatment of hemiplegic stroke patients; and (3) appropriately incorporate backward and lateral walking gait training into the treatment plan of hemiplegic stroke patients. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this activity for a maximum of 1.5 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Daily intermittent hypoxia enhances walking after chronic spinal cord injury
Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.
2014-01-01
Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p < 0.001). Conclusions: dAIH ± walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617
Dorsch, Andrew K.; Thomas, Seth; Xu, Xiaoyu; Kaiser, William; Dobkin, Bruce H.
2014-01-01
Background Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (tri-axial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed-only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37,000 individual walking bouts, and 2.5 million steps. No significant differences were found between the two feedback groups in daily walking time (15.1±13.1min vs. 16.6±14.3min, p=0.54) or 15-meter walking speed (0.93±0.47m/s vs. 0.91±0.53m/s, p=0.96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities. PMID:25261154
Can environmental improvement change the population distribution of walking?
Panter, Jenna; Ogilvie, David
2017-06-01
Few studies have explored the impact of environmental change on walking using controlled comparisons. Even fewer have examined whose behaviour changes and how. In a natural experimental study of new walking and cycling infrastructure, we explored changes in walking, identified groups who changed in similar ways and assessed whether exposure to the infrastructure was associated with trajectories of walking. 1257 adults completed annual surveys assessing walking, sociodemographic and health characteristics and use of the infrastructure (2010-2012). Residential proximity to the new routes was assessed objectively. We used latent growth curve models to assess change in total walking, walking for recreation and for transport, used simple descriptive analysis and latent class analysis (LCA) to identify groups who changed in similar ways and examined factors associated with group membership using multinomial regression. LCA identified five trajectories, characterised by consistently low levels; consistently high levels; decreases; short-lived increases; and sustained increases. Those with lower levels of education and lower incomes were more likely to show both short-lived and sustained increases in walking for transport. However, those with lower levels of education were less likely to take up walking. Proximity to the intervention was associated with both uptake of and short-lived increases in walking for transport. Environmental improvement encouraged the less active to take up walking for transport, as well as encouraging those who were already active to walk more. Further research should disentangle the role of socioeconomic characteristics in determining use of new environments and changes in walking. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries
Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E.
2013-01-01
Purpose This study developed and tested an algorithm to classify accelerometer data as walking or non-walking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods Participants wore an accelerometer and a GPS unit, and concurrently completed a travel diary for 7 consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or non-walking based on a decision-tree algorithm consisting of 7 classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results The 706 participants’ (mean age 51 years, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4,702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified physical activity into 8,170 (58.5 %) walking bouts and 5,337 (38.2%) non-walking bouts; 464 (3.3%) bouts were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the non-walking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean duration of PA bouts classified as walking was 15.2 min (SD=12.9). On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or non-walking behavior. PMID:23439414
Alkjær, Tine; Raffalt, Peter; Petersen, Nicolas C; Simonsen, Erik B
2012-01-01
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking.
The social environment and walking behavior among low-income housing residents.
Caspi, Caitlin E; Kawachi, Ichiro; Subramanian, S V; Tucker-Seeley, Reginald; Sorensen, Glorian
2013-03-01
Walking, both for leisure and for travel/errands, counts toward meeting physical activity recommendations. Both social and physical neighborhood environmental features may encourage or inhibit walking. This study examined social capital, perceived safety, and disorder in relation to walking behavior among a population of low-income housing residents. Social and physical disorder were assessed by systematic social observation in the area surrounding 20 low-income housing sites in greater Boston. A cross-sectional survey of 828 residents of these housing sites provided data on walking behavior, socio-demographics, and individual-level social capital and perceived safety of the areas in and around the housing site. Community social capital and safety were calculated by aggregating individual scores to the level of the housing site. Generalized estimating equations were used to estimate prevalence rate ratios for walking less than 10 min per day for a) travel/errands, b) leisure and c) both travel/errands and leisure. 21.8% of participants walked for travel/errands less than 10 min per day, 34.8% for leisure, and 16.8% for both kinds of walking. In fully adjusted models, those who reported low individual-level social capital and safety also reported less overall walking and less walking for travel/errands. Unexpectedly, those who reported low social disorder also reported less walking for leisure, and those who reported high community social capital also walked less for all outcomes. Physical disorder and community safety were not associated with walking behavior. For low-income housing residents, neighborhood social environmental variables are unlikely the most important factors in determining walking behavior. Researchers should carefully weigh the respective limitations of subjective and objective measures of the social environment when linking them to health outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ireland, Aileen V; Finnegan-John, Jennifer; Hubbard, Gill; Scanlon, Karen; Kyle, Richard G
2018-03-08
Walking is widely accepted as a safe and effective method of promoting rehabilitation and a return to physical activity after a cancer diagnosis. Little research has considered the therapeutic qualities of landscape in relation to understanding women's recovery from breast cancer, and no study has considered the supportive and therapeutic benefits that walking groups might contribute to their wellbeing. Through a study of a volunteer-led walking group intervention for women living with and beyond breast cancer (Best Foot Forward) we address this gap. A mixed-methods design was used including questionnaires with walkers (n = 35) and walk leaders (n = 13); telephone interviews with walkers (n = 4) and walk leaders (n = 9); and walking interviews conducted outdoors and on the move with walkers (n = 15) and walk leaders (n = 4). Questionnaires were analysed descriptively. Interviews were audio-recorded, transcribed verbatim, and analysed thematically. Our study found that the combination of walking and talking enabled conversations to roam freely between topics and individuals, encouraging everyday and cancer-related conversation that created a form of 'shoulder-to-shoulder support' that might not occur in sedentary supportive care settings. Walking interviews pointed to three facets of the outdoor landscape - as un/natural, dis/placed and im/mobile - that walkers felt imbued it with therapeutic qualities. 'Shoulder-to-shoulder support' was therefore found to be contingent on the therapeutic assemblage of place, walk and talk. Thus, beyond the physical benefits that walking brings, it is the complex assemblage of walking and talking in combination with the fluid navigation between multiple spaces that mobilises a therapeutic assemblage that promotes wellbeing in people living with and beyond breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bird, Stephen R; Radermacher, Harriet; Sims, Jane; Feldman, Susan; Browning, Colette; Thomas, Shane
2010-07-01
This study sought to investigate the walking habits of older people from diverse cultural backgrounds, and to identify the factors associated with their walking. Three hundred and thirty three people over the age of 60 years were recruited from seven culturally diverse groups from the Western suburbs of Melbourne, Australia. A survey questionnaire recording physical activity, and various factors related to activity, was interviewer-administered in the participants' preferred language. Data were analysed using Kruskal-Wallis, chi(2) and Mann-Whitney tests. Forty-seven percent of the participants walked at least 150 min per week, with no significant difference in prevalence between genders or cultural groups. Some cultural differences were found in relation to reasons and locations for walking, and women were more likely than men to report walking in the shopping mall, whilst men were more likely than women to report walking in the park and along walking trails. Those who attained >150 min of walking were more likely to report health and fitness as reasons for walking, to perceive their walking environment as more pleasurable, to use walking trails, and to consider their environment safe and to facilitate social interaction. This study indicates that the continued advocating of walking as a health promoting activity should be central to future campaigns to increase physical activity in this age group. The provision of locations that are accessible, safe, aesthetically pleasing, and encourage social engagement are likely to facilitate older people's participation in walking. For maximum effectiveness, however, strategies may benefit from being tailored to meet specific gender and cultural preferences. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Fractal analysis of the ambulation pattern of Japanese quail.
Kembro, J M; Perillo, M A; Pury, P A; Satterlee, D G; Marín, R H
2009-03-01
1. The study examined the practicality and usefulness of fractal analyses in evaluating the temporal organisation of avian ambulatory behaviour by using female Japanese quail in their home boxes as the model system. To induce two locomotion activity levels, we tested half of the birds without disturbance (Unstimulated) and the other half when food was scattered on the floor of the home box after 3 h of feeder withdrawal (Stimulated). 2. Ambulatory activity was recorded during 40 min at a resolution of 1 s and evaluated by: (1) detrended fluctuation analyses (DFA), (2) the frequency distribution of the duration of the walking or non-walking events (FDD-W or FDD-NW, respectively), and (3) the transition probabilities between walking/non-walking states. Conventional measures of total time spent walking and average duration of the walking/non-walking events were also employed. 3. DFA showed a decreased value of the self-similarity parameter (alpha; indicative of a more complex ambulatory pattern) in Stimulated birds compared to their Unstimulated counterparts. The FDD-NW showed a more negative scaling factor in Stimulated than in Unstimulated birds. Stimulated birds also had more transitions between non-walking and walking states, consistent with stimulated exploratory activity. No differences were found between groups in the FDD-W, in percentage of total time spent walking, or in average duration of the walking events. 4. The temporal walking pattern of female Japanese quail has a fractal structure and its organisation and complexity is altered when birds are stimulated to explore. The fractal analyses detected differences between the Unstimulated and Stimulated groups that went undetected by the traditional measurements of the percentage of total time spent walking and the duration of the walking events suggesting its usefulness as a tool for behavioural studies.
Lyu, Xiafei; Li, Sheyu; Peng, Shifeng; Cai, Huimin; Liu, Guanjian; Ran, Xingwu
2016-05-01
Supervised treadmill exercise is the recommended therapy for peripheral arterial disease (PAD) patients with intermittent claudication (IC). However, most PAD patients do not exhibit typical symptoms of IC. The aim of the present study was to explore the efficacy and safety of intensive walking exercise in PAD patients with and without IC. The PubMed, Embase and Cochrane Library databases were systematically searched. Randomized controlled trials comparing the effects of intensive walking exercise with usual care in patients with PAD were included for systematic review and meta-analysis. Eighteen trials with 1200 patients were eligible for the present analysis. Compared with usual care, intensive walking exercise significantly improved the maximal walking distance (MWD), pain-free walking distance, and the 6-min walking distance in patients with PAD (P < 0.00001 for all). Subgroup analyses indicated that a lesser improvement in MWD was observed in the subgroup with more diabetes patients, and that the subgroup with better baseline walking ability exhibited greater improvement in walking performance. In addition, similar improvements in walking performance were observed for exercise programs of different durations and modalities. No significant difference was found in adverse events between the intensive walking and usual care groups (relative risk 0.84; 95% confidence interval 0.51, 1.39; P = 0.50). Regardless of exercise length and modality, regularly intensive walking exercise improves walking ability in PAD patients more than usual care. The presence of diabetes may attenuate the improvements in walking performance in patients with PAD following exercise. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Enhanced Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older Adults
Christou, Evangelos A.; Ring, Sarah A.; Williamson, John B.; Doty, Leilani
2014-01-01
Background. The coordination of steady state walking is relatively automatic in healthy humans, such that active attention to the details of task execution and performance (controlled processing) is low. Somatosensation is a crucial input to the spinal and brainstem circuits that facilitate this automaticity. Impaired somatosensation in older adults may reduce automaticity and increase controlled processing, thereby contributing to deficits in walking function. The primary objective of this study was to determine if enhancing somatosensory feedback can reduce controlled processing during walking, as assessed by prefrontal cortical activation. Methods. Fourteen older adults (age 77.1±5.56 years) with mild mobility deficits and mild somatosensory deficits participated in this study. Functional near-infrared spectroscopy was used to quantify metabolic activity (tissue oxygenation index, TOI) in the prefrontal cortex. Prefrontal activity and gait spatiotemporal data were measured during treadmill walking and overground walking while participants wore normal shoes and under two conditions of enhanced somatosensation: wearing textured insoles and no shoes. Results. Relative to walking with normal shoes, textured insoles yielded a bilateral reduction of prefrontal cortical activity for treadmill walking (ΔTOI = −0.85 and −1.19 for left and right hemispheres, respectively) and for overground walking (ΔTOI = −0.51 and −0.66 for left and right hemispheres, respectively). Relative to walking with normal shoes, no shoes yielded lower prefrontal cortical activity for treadmill walking (ΔTOI = −0.69 and −1.13 for left and right hemispheres, respectively), but not overground walking. Conclusions. Enhanced somatosensation reduces prefrontal activity during walking in older adults. This suggests a less intensive utilization of controlled processing during walking. PMID:25112494
Alkjær, Tine; Raffalt, Peter; Petersen, Nicolas C.; Simonsen, Erik B.
2012-01-01
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking. PMID:22615997
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.
Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation.
Wezenberg, Daphne; van der Woude, Lucas H; Faber, Willemijn X; de Haan, Arnold; Houdijk, Han
2013-09-01
To determine the relative aerobic load, walking speed, and walking economy of older adults with a lower-limb prosthesis, and to predict the effect of an increased aerobic capacity on their walking ability. Cross-sectional. Human motion laboratory at a rehabilitation center. Convenience sample of older adults (n=36) who underwent lower-limb amputation because of vascular deficiency or trauma and able-bodied controls (n=21). Not applicable. Peak aerobic capacity and oxygen consumption while walking were determined. The relative aerobic load and walking economy were assessed as a function of walking speed, and a data-based model was constructed to predict the effect of an increased aerobic capacity on walking ability. People with a vascular amputation walked at a substantially higher (45.2%) relative aerobic load than people with an amputation because of trauma. The preferred walking speed in both groups of amputees was slower than that of able-bodied controls and below their most economical walking speed. We predicted that a 10% increase in peak aerobic capacity could potentially result in a reduction in the relative aerobic load of 9.1%, an increase in walking speed of 17.3% and 13.9%, and an improvement in the walking economy of 6.8% and 2.9%, for people after a vascular or traumatic amputation, respectively. Current findings corroborate the notion that, especially in people with a vascular amputation, the peak aerobic capacity is an important determinant for walking ability. The data provide quantitative predictions on the effect of aerobic training; however, future research is needed to experimentally confirm these predictions. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
SPARKy - Spring Ankle with Regenerative Kinetics to Build a New Generation of Transtibial Prostheses
2010-07-01
walking on inclines/declines, and ascending/descending stairs We are able to walk continuously over ground and can walk up and down slopes and... stairs . Walking up a slope and ascending stairs needs to be improved, adding extra propulsion. The propulsion walking down stairs needs to be...bodied subjects walking on flat even surfaces, inclines/declines, and ascending/descending stairs – In Process 4. Using able bodied test data, a
Lower limb joint moment during walking in water.
Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami
2003-11-04
Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.
Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R
2017-07-01
To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.
Neighborhood design and walking trips in ten U.S. metropolitan areas.
Boer, Rob; Zheng, Yuhui; Overton, Adrian; Ridgeway, Gregory K; Cohen, Deborah A
2007-04-01
Despite substantial evidence for neighborhood characteristics correlating with walking, so far there has been limited attention to possible practical implications for neighborhood design. This study investigates to what extent design guidelines are likely to stimulate walking. Four of the New Urbanism Smart Scorecard criteria and two other measures were tested for their influence on walking. Data were obtained from the 1995 National Personal Transportation Survey, U.S. Census 2000, and InfoUSA. Propensity-score methodology was used to control for potential confounders. Higher levels of business diversity and higher percentages of four-way intersections were associated with more walking. For example, the odds ratio (OR) for walking in a neighborhood with four business types present compared to three business types was 1.24 (confidence interval [CI] 1.07-1.44) and neighborhoods with 50%-74% four-way intersections had an OR for walking of 1.4 (CI 1.09-1.78) relative to those with 25%-49% four-way intersections. The effects of housing density on walking are mixed. Higher parking pressure and older median housing age did not significantly affect walking after covariate adjustment. Block length did not appear to be associated with walking. When considering the New Urbanism Smart Scorecard from the perspective walking, some, but not all, of its criteria that appear to have a correlation with walking are likely to be useful for designing walkable communities.
Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Clijsen, Ron; Beckwée, David; Kerckhofs, Eric
2015-03-01
Little attention has been devoted to the thorax and pelvis movements during gait. The aim of this study is to compare differences in the thorax and pelvis kinematics during unassisted walking on a treadmill and during walking with robot assistance (Lokomat-system (Hocoma, Volketswil, Switzerland)). 18 healthy persons walked on a treadmill with and without the Lokomat system at 2kmph. Three different conditions of guidance force (30%, 60% and 100%) were used during robot-assisted treadmill walking (30% body weight support). The maximal movement amplitudes of the thorax and pelvis were measured (Polhemus Liberty™ (Polhemus, Colchester, Vermont, USA) (240/16)). A repeated measurement ANOVA was conducted. Robot-assisted treadmill walking with different levels of guidance force showed significantly smaller maximal movement amplitudes for thorax and pelvis, compared to treadmill walking. Only the antero-posterior tilting of the pelvis was significantly increased during robot-assisted treadmill walking compared to treadmill walking. No significant changes of kinematic parameters were found between the different levels of guidance force. With regard to the thorax and pelvis movements, robot-assisted treadmill walking is significantly different compared to treadmill walking. It can be concluded that when using robot assistance, the thorax is stimulated in a different way than during walking without robot assistance, influencing the balance training during gait. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effects of a 12-Week Walking Program on Community-Dwelling Older Adults
ERIC Educational Resources Information Center
Cheng, Shun-Ping; Tsai, Tzu-I; Lii, Yun-Kung; Yu, Shu; Chou, Chen-Liang; Chen, I-Ju
2009-01-01
Walking is a popular and easily accessible form of physical activity. However, walking instruction for older adults is based on the evidence gathered from younger populations. This study evaluated walking conditions, strength, balance, and subjective health status after a 12-week walking-training program in community-dwelling adults greater than…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... vehicles, walking, bicycling, jogging, dog walking (on leash only), cross-country skiing, and snowshoeing..., jogging, and dog walking (on leash only) year round, except for Island Pond Trail, which would be closed..., walking, bicycling, jogging, dog walking (on leash only), cross-country skiing, and snowshoeing as weather...
Gray, Michelle; Paulson, Sally; Powers, Melissa
2016-04-01
The aim of this investigation was to determine the relationship between usual and maximal walking velocities with measures of functional fitness (FF). Fifty-seven older adults (78.2 ± 6.6 years) were recruited from a local retirement community. All participants completed the following assessments: 10-m usual and maximal walk, Short Physical Performance Battery (SPPB), 6-min walk (6MW), 8-foot up-and-go (UPGO), and 30-s chair stand. Based on their SPPB performance, low (≤ 9) and high (≥ 10) FF groups were formed. Among all participants, maximal walking velocity, not usual walking velocity, was significantly correlated with SPPB (r = .35; p < .05 and r = .19; p > .05, respectively). In the high functioning group, both maximal and usual walking velocities were correlated, but correlation coefficients were stronger for all variables for maximal walking velocity. These results suggest different walking conditions may be necessary to use for high and low functioning older adults; specifically, maximal walking velocity may be a preferred measure among high functioning older adults.
Probability distributions for Markov chain based quantum walks
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.
2018-01-01
We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.
Kassavou, Aikaterini; Turner, Andrew; French, David P
2015-01-01
There is good evidence that when people's needs and expectations regarding behaviour change are met, they are satisfied with that change, and maintain those changes. Despite this, there is a dearth of research on needs and expectations of walkers when initially attending walking groups and whether and how these needs and expectations have been satisfied after a period of attendance. Equally, there is an absence of research on how people who lead these groups understand walkers' needs and walk leaders' actions to address them. The present study was aimed at addressing both of these gaps in the research. Two preliminary thematic analyses were conducted on face-to-face interviews with (a) eight walkers when they joined walking groups, five of whom were interviewed three months later, and (b) eight walk leaders. A multi-perspective analysis building upon these preliminary analyses identified similarities and differences within the themes that emerged from the interviews with walkers and walk leaders. Walkers indicated that their main needs and expectations when joining walking groups were achieving long-term social and health benefits. At the follow up interviews, walkers indicated that satisfaction with meeting similar others within the groups was the main reason for continued attendance. Their main source of dissatisfaction was not feeling integrated in the existing walking groups. Walk leaders often acknowledged the same reasons for walkers joining and maintaining attendance at walking. However, they tended to attribute dissatisfaction and drop out to uncontrollable environmental factors and/or walkers' personalities. Walk leaders reported a lack of efficacy to effectively address walkers' needs. Interventions to increase retention of walkers should train walk leaders with the skills to help them modify the underlying psychological factors affecting walkers' maintenance at walking groups. This should result in greater retention of walkers in walking groups, thereby allowing walkers to receive the long-term social and health benefits of participation in these groups.
Roos, Margaret A.; Rudolph, Katherine S.
2012-01-01
Background People with stroke have reduced walking activity. It is not known whether this deficit is due to a reduction in all aspects of walking activity or only in specific areas. Understanding specific walking activity deficits is necessary for the development of interventions that maximize improvements in activity after stroke. Objective The purpose of this study was to examine walking activity in people poststroke compared with older adults without disability. Design A cross-sectional study was conducted. Methods Fifty-four participants poststroke and 18 older adults without disability wore a step activity monitor for 3 days. The descriptors of walking activity calculated included steps per day (SPD), bouts per day (BPD), steps per bout (SPB), total time walking per day (TTW), percentage of time walking per day (PTW), and frequency of short, medium, and long walking bouts. Results Individuals classified as household and limited community ambulators (n=29) did not differ on any measure and were grouped (HHA-LCA group) for comparison with unlimited community ambulators (UCA group) (n=22) and with older adults without disability (n=14). The SPD, TTW, PTW, and BPD measurements were greatest in older adults and lowest in the HHA-LCA group. Seventy-two percent to 74% of all walking bouts were short, and this finding did not differ across groups. Walking in all categories (short, medium, and long) was lowest in the HHA-LCA group, greater in the UCA group, and greatest in older adults without disability. Limitations Three days of walking activity were captured. Conclusions The specific descriptors of walking activity presented provide insight into walking deficits after stroke that cannot be ascertained by looking at steps per day alone. The deficits that were revealed could be addressed through appropriate exercise prescription, underscoring the need to analyze the structure of walking activity. PMID:22677293
Compliant walking appears metabolically advantageous at extreme step lengths.
Kim, Jaehoon; Bertram, John E A
2018-05-19
Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2 = 0.92 for normal walking; r 2 = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.
Hirsch, Jana A; Moore, Kari A; Clarke, Philippa J; Rodriguez, Daniel A; Evenson, Kelly R; Brines, Shannon J; Zagorski, Melissa A; Diez Roux, Ana V
2014-10-15
Lack of longitudinal research hinders causal inference on the association between the built environment and walking. In the present study, we used data from 6,027 adults in the Multi-Ethnic Study of Atherosclerosis who were 45-84 years of age at baseline to investigate the association of neighborhood built environment with trends in the amount of walking between 2000 and 2012. Walking for transportation and walking for leisure were assessed at baseline and at 3 follow-up visits (median follow-up = 9.15 years). Time-varying built environment measures (measures of population density, land use, number of destinations, bus access, and street connectivity) were created using geographic information systems. We used linear mixed models to estimate the associations between baseline levels of and a change in each built environment feature and a change in the frequency of walking. After adjustment for potential confounders, we found that higher baseline levels of population density, area zoned for retail, social destinations, walking destinations, and street connectivity were associated with greater increases in walking for transportation over time. Higher baseline levels of land zoned for residential use and distance to buses were associated with less pronounced increases (or decreases) in walking for transportation over time. Increases in the number of social destinations, the number of walking destinations, and street connectivity over time were associated with greater increases in walking for transportation. Higher baseline levels of both land zoned for retail and walking destinations were associated with greater increases in leisure walking, but no changes in built environment features were associated with leisure walking. The creation of mixed-use, dense developments may encourage adults to incorporate walking for transportation into their everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An anterior ankle-foot orthosis improves walking economy in Charcot-Marie-Tooth type 1A patients.
Menotti, Federica; Laudani, Luca; Damiani, Antonello; Mignogna, Teresa; Macaluso, Andrea
2014-10-01
Ankle-foot orthoses are commonly prescribed in Charcot-Marie-Tooth type 1A disease to improve quality of walking and reduce the risk of falling due to the foot drop. This study aimed at assessing the effect of an anterior ankle-foot orthosis on walking economy in a group of Charcot-Marie-Tooth type 1A patients. Within-group comparisons. 7 Charcot-Marie-Tooth type 1A patients (four women and three men; 37 ± 11 years; age range = 22-53 years) were asked to walk on a circuit at their self-selected speeds ('slow', 'comfortable' and 'fast') in two walking conditions: (1) with shoes only and (2) with Taloelast(®) anterior elastic ankle-foot orthoses. Speed of walking and metabolic cost of walking energy cost per unit of distance were assessed at the three self-selected speeds of walking for both walking conditions. Speed of walking at the three self-selected speeds did not differ between shoes only and anterior elastic ankle-foot orthoses, whereas walking energy cost per unit of distance at comfortable speed was lower in patients using anterior elastic ankle-foot orthoses with respect to shoes only (2.39 ± 0.22 vs 2.70 ± 0.19 J kg(-1) m(-1); P < 0.05). In Charcot-Marie-Tooth type 1A patients, the use of anterior elastic ankle-foot orthoses improved walking economy by reducing the energy cost of walking per unit of distance, thus reflecting a lower level of metabolic effort and improved mechanical efficiency in comparison with shoes only. From a practical perspective, Charcot-Marie-Tooth type 1A patients with anterior elastic ankle-foot orthoses can walk for a longer duration with a lower level of physical effort. Improvements in walking economy due to ankle-foot orthoses are likely a consequence of the reduction in steppage gait. © The International Society for Prosthetics and Orthotics 2013.
Mehdizadeh, Milad; Nordfjaern, Trond; Mamdoohi, Amir Reza; Shariat Mohaymany, Afshin
2017-05-01
Walking to school could improve pupils' health condition and might also reduce the use of motorized transport modes, which leads to both traffic congestion and air pollution. The current study aims to examine the role of parental risk judgements (i.e. risk perception and worry), transport safety attitudes, transport priorities and accident experiences on pupils' walking and mode choices on school trips in Iran, a country with poor road safety records. A total of 1078 questionnaires were randomly distributed among pupils at nine public and private schools in January 2014 in Rasht, Iran. Results from valid observations (n=711) showed that parents with high probability assessments of accidents and strong worry regarding pupils' accident risk while walking were less likely to let their children walk to school. Parents with high safety knowledge were also more likely to allow their pupils to walk to school. Parents who prioritized convenience and accessibility in transport had a stronger tendency to choose motorized modes over walking modes. Also, parents who prioritized safety and security in transport were less likely to allow pupils to walk to school. Elasticities results showed that a one percent increase in priorities of convenience and accessibility, priorities of safety and security, car ownership and walking time from home to school reduced walking among pupils by a probability of 0.62, 0.20, 0.86 and 0.57%, respectively. A one percent increase in parental safety knowledge increased the walking probability by around 0.25%. A 1 unit increase in parental probability assessment and worry towards pupils' walking, decreased the probability of choosing walking mode by 0.11 and 0.05, respectively. Policy-makers who aim to promote walking to schools should improve safety and security of the walking facilities and increase parental safety knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Land Use, Residential Density, and Walking
Rodríguez, Daniel A.; Evenson, Kelly R.; Diez Roux, Ana V.; Brines, Shannon J.
2009-01-01
Background The neighborhood environment may play a role in encouraging sedentary patterns, especially for middle-aged and older adults. Purpose Associations between walking and neighborhood population density, retail availability, and land use distribution were examined using data from a cohort of adults aged 45 to 84 years old. Methods Data from a multi-ethnic sample of 5529 adult residents of Baltimore MD, Chicago IL, Forsyth County NC, Los Angeles CA, New York NY, and St. Paul MN, enrolled in the Multi-Ethnic Study of Atherosclerosis in 2000–2002 were linked to secondary land use and population data. Participant reports of access to destinations and stores and objective measures of the percentage of land area in parcels devoted to retail land uses, the population divided by land area in parcels, and the mixture of uses for areas within 200m of each participant's residence were examined. Multinomial logistic regression was used to investigate associations of self-reported and objective neighborhood characteristics with walking. All analyses were conducted in 2008 and 2009. Results After adjustment for individual-level characteristics and neighborhood connectivity, higher density, greater land area devoted to retail uses, and self-reported measures of proximity of destinations and ease of walking to places were each related to walking. In models including all land use measures, population density was positively associated with walking to places and with walking for exercise for more than 90 min/wk both relative to no walking. Availability of retail was associated with walking to places relative to not walking, having a more proportional mix of land uses was associated with walking for exercise for more than 90 min/wk, while self-reported ease of access to places was related to higher levels of exercise walking both relative to not walking. Conclusions Residential density and the presence of retail uses are related to various walking behaviors. Efforts to increase walking may benefit from attention to the intensity and type of land development. PMID:19840694
Land use, residential density, and walking. The multi-ethnic study of atherosclerosis.
Rodríguez, Daniel A; Evenson, Kelly R; Diez Roux, Ana V; Brines, Shannon J
2009-11-01
The neighborhood environment may play a role in encouraging sedentary patterns, especially for middle-aged and older adults. The aim of this study was to examine the associations between walking and neighborhood population density, retail availability, and land-use distribution using data from a cohort of adults aged 45 to 84 years. Data from a multi-ethnic sample of 5529 adult residents of Baltimore MD, Chicago IL, Forsyth County NC, Los Angeles CA, New York NY, and St. Paul MN enrolled in the Multi-Ethnic Study of Atherosclerosis in 2000-2002 were linked to secondary land-use and population data. Participant reports of access to destinations and stores and objective measures of the percentage of land area in parcels devoted to retail land uses, the population divided by land area in parcels, and the mixture of uses for areas within 200 m of each participant's residence were examined. Multinomial logistic regression was used to investigate associations of self-reported and objective neighborhood characteristics with walking. All analyses were conducted in 2008 and 2009. After adjustment for individual-level characteristics and neighborhood connectivity, it was found that higher density, greater land area devoted to retail uses, and self-reported proximity of destinations and ease of walking to places were each related to walking. In models including all land-use measures, population density was positively associated with walking to places and with walking for exercise for more than 90 minutes/week, both relative to no walking. Availability of retail was associated with walking to places relative to not walking, and having a more proportional mix of land uses was associated with walking for exercise for more than 90 minutes/week, while self-reported ease of access to places was related to higher levels of exercise walking, both relative to not walking. Residential density and the presence of retail uses are related to various walking behaviors. Efforts to increase walking may benefit from attention to the intensity and type of land development.
A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area
NASA Astrophysics Data System (ADS)
Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi
2018-03-01
Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS) for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.
Notthoff, Nanna; Carstensen, Laura L.
2015-01-01
Positively-framed messages seem to promote walking in older adults better than negatively-framed messages. This study targeted elderly people in communities unfavorable to walking. Walking was measured with pedometers during baseline (one week) and intervention (four weeks). Participants (n = 74) were either informed about the benefits of walking or the negative consequences of not walking. Perceived neighborhood walkability was assessed with a modified version of the Neighborhood Walkability Scale. When perceived walkability was high positively-framed messages were more effective than negatively-framed messages in promoting walking; when perceived walkability was low negatively-framed messages were comparably effective to positively-framed messages. PMID:26604128
Perceived barriers to walking for physical activity.
Dunton, Genevieve F; Schneider, Margaret
2006-10-01
Although the health benefits of walking for physical activity have received increasing research attention, barriers specific to walking are not well understood. In this study, questions to measure barriers to walking for physical activity were developed and tested among college students. The factor structure, test-retest and internal consistency reliability, and discriminant and criterion validity of the perceived barriers were evaluated. A total of 305 undergraduate students participated. Participants had a mean age (+/- SD) of 20.6 (+/- 3.02) years, and 70.3% were female. Participants responded to a questionnaire assessing barriers specific to walking for physical activity. Perceived barriers to vigorous exercise, walking for transportation and recreation, and participation in lifestyle activities (such as taking the stairs instead of the elevator) were also assessed. Subsamples completed the walking barriers instrument a second time after 5 days in order to determine test-retest reliability (n = 104) and wore an accelerometer to measure moderate-intensity physical activity (n = 85). Factor analyses confirmed the existence of three factors underlying the perceived barriers to walking questions: appearance (four items), footwear (three items), and situation (three items). Appearance and situational barriers demonstrated acceptable reliability, discriminant validity, and relations with physical activity criteria. After we controlled for barriers to vigorous exercise, appearance and situational barriers to walking explained additional variation in objectively-measured moderate physical activity. The prediction of walking for physical activity, especially walking that is unstructured and spontaneous, may be improved by considering appearance and situational barriers. Assessing barriers specific to walking may have important implications for interventions targeting walking as means for engaging in physical activity.
Intervention Mapping to Develop a Print Resource for Dog-Walking Promotion in Canada.
Campbell, Julia; Dwyer, John J M; Coe, Jason B
Promoting dog walking among dog owners is consistent with One Health, which focuses on the mutual health benefits of the human-animal relationship for people and animals. In this study, we used intervention mapping (a framework to develop programs and resources for health promotion) to develop a clearer understanding of the determinants of dog walking to develop curricular and educational resources for promoting regular dog walking among dog owners. Twenty-six adult dog owners in Ontario participated in a semi-structured interview about dog walking in 2014. Thematic analysis entailing open, axial, and selective coding was conducted. Among the reasons why the participating dog owners walk their dog were the obligation to the dog, the motivation from the dog, self-efficacy, the dog's health, the owner's health, socialization, a well-behaved dog, and having a routine. The main barriers to dog walking were weather, lack of time, the dog's behavior while walking, and feeling unsafe. We compared interview results to findings in previous studies of dog walking to create a list of determinants of dog walking that we used to create a matrix of change objectives. Based on these results, we developed a print resource to promote regular dog walking among dog owners. The findings can be used by veterinary educators to inform course content that specifically educates veterinary students on the promotion of dog walking among dog owners and the benefits to both humans and animals. The study also offers veterinarians a further understanding upon which to initiate a conversation and develop educational resources for promoting regular dog walking among dog-owning clients.
Bouts of Steps: The Organization of Infant Exploration
Cole, Whitney G.; Robinson, Scott R.; Adolph, Karen E.
2016-01-01
Adults primarily walk to reach a new location, but why do infants walk? Do infants, like adults, walk to travel to a distant goal? We observed 30 13-month-old and 30 19-month-old infants during natural walking in a laboratory playroom. We characterized the bout structure of walking—when infants start and stop walking—to examine why infants start and stop walking. Locomotor activity was composed largely of brief spurts of walking. Half of 13-month-olds’ bouts and 41% of 19-month-olds’ bouts consisted of three or fewer steps—too few to carry infants to a distant goal. Most bouts ended in the middle of the floor, not at a recognizable goal. Survival analyses of the distribution of steps per bout indicated that the probability of continuing to walk was independent of the length of the ongoing bout; infants were just as likely to stop walking after 5 steps as after 50 steps and they showed no bias toward bouts long enough to carry them across the room to a goal. However, 13-month-olds showed an increased probability of stopping after 1-3 steps, and they did not initiate walking more frequently to compensate for their surfeit of short bouts. We propose that infants’ natural walking is not intentionally directed at distant goals; rather, it is a stochastic process that serves exploratory functions. Relations between the bout structure of walking and other measures of walking suggest that locomotor exploration is constrained by walking skill in younger infants, but not in older infants. PMID:26497472
The influence of gait speed on the stability of walking among the elderly.
Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo
2016-06-01
Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
Ranavolo, A; Conte, C; Iavicoli, S; Serrao, M; Silvetti, A; Sandrini, G; Pierelli, F; Draicchio, F
2011-03-01
The visual system in walking serves to perceive feedback or feed-forward signals. Therefore, visually impaired persons (VIP) have biased motor control mechanisms. The use of leading indicators (LIs) and long canes helps to improve their walking efficiency. The aims of this study were to compare the walking efficiency of VIP on trapezoidal- and sinusoidal-section LIs using an optoelectronic motion analysis system. VIP displayed a significantly longer stance phase, a shorter swing phase and shorter step and stride lengths when they walked on the sinusoidal LI than when they walked on the trapezoidal LI. Compared with the trapezoidal LI, VIP walking on the sinusoidal LI displayed significantly lower joint ranges of motion. The centre of mass lateral displacement was wider for VIP walking on the sinusoidal LI than on the trapezoidal LI. Some significant differences were also found in sighted persons walking on both LIs. In conclusion, the trapezoidal shape enabled visually impaired subjects to walk more efficiently, whereas the sinusoidal shape caused dynamic balance problems. STATEMENT OF RELEVANCE: These findings suggest that VIP can walk more efficiently, with a lower risk of falls, on trapezoidal-section than on sinusoidal-section LIs. These results should be considered when choosing the most appropriate ground tactile surface indicators for widespread use.
Forthofer, Melinda; Burroughs-Girardi, Ericka; Stoisor-Olsson, Liliana; Wilcox, Sara; Sharpe, Patricia A; Pekuri, Linda M
2016-10-01
Although social support is a frequently cited enabler of physical activity, few studies have examined how to harness social support in interventions. This paper describes community-based formative research to design a walking program for mobilizing naturally occurring social networks to support increases in walking behavior. Focus group methods were used to engage community members in discussions about desired walking program features. The research was conducted with underserved communities in Sumter County, South Carolina. The majority of focus group participants were women (76%) and African American (92%). Several important themes emerged from the focus group results regarding attitudes toward walking, facilitators of and barriers to walking, ideal walking program characteristics, and strategies for encouraging community members to walk. Most noteably, the role of existing social networks as a supportive influence on physical activity was a recurring theme in our formative research and a gap in the existing evidence base. The resulting walking program focused on strategies for mobilizing, supporting and reinforcing existing social networks as mechanisms for increasing walking. Our approach to linking theory, empirical evidence and community-based formative research for the development of a walking intervention offers an example for practitioners developing intervention strategies for a wide range of behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, Victoria Mj; Varsanik, Jonathan S; Walker, Rachel A; Russo, Andrew W; Patel, Kevin R; Gabel, Wendy; Phillips, Glenn A; Kimmel, Zebadiah M; Klawiter, Eric C
2018-01-01
Gait disturbance is a major contributor to clinical disability in multiple sclerosis (MS). A sensor was developed to assess walking speed at home for people with MS using infrared technology in real-time without the use of wearables. To develop continuous in-home outcome measures to assess gait in adults with MS. Movement measurements were collected continuously for 8 months from six people with MS. Average walking speed and peak walking speed were calculated from movement data, then analyzed for variability over time, by room (location), and over the course of the day. In-home continuous gait outcomes and variability were correlated with standard in-clinic gait outcomes. Measured in-home average walking speed of participants ranged from 0.33 m/s to 0.96 m/s and peak walking speed ranged from 0.89 m/s to 1.51 m/s. Mean total within-participant coefficient of variation for daily average walking speed and peak walking speed were 10.75% and 10.93%, respectively. Average walking speed demonstrated a moderately strong correlation with baseline Timed 25-Foot Walk (r s = 0.714, P = 0.111). New non-wearable technology provides reliable and continuous in-home assessment of walking speed.
Relation between random walks and quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan; Portugal, Renato
2015-05-01
Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.
Hirsch, Jana A; Diez Roux, Ana V; Moore, Kari A; Evenson, Kelly R; Rodriguez, Daniel A
2014-03-01
We investigated whether moving to neighborhoods with closer proximity of destinations and greater street connectivity was associated with more walking, a greater probability of meeting the "Every Body Walk!" campaign goals (≥ 150 minutes/week of walking), and reductions in body mass index (BMI). We linked longitudinal data from 701 participants, who moved between 2 waves of the Multi-Ethnic Study of Atherosclerosis (2004-2012), to a neighborhood walkability measure (Street Smart Walk Score) for each residential location. We used fixed-effects models to estimate if changes in walkability resulting from relocation were associated with simultaneous changes in walking behaviors and BMI. Moving to a location with a 10-point higher Walk Score was associated with a 16.04 minutes per week (95% confidence interval [CI] = 5.13, 29.96) increase in transport walking, 11% higher odds of meeting Every Body Walk! goals through transport walking (adjusted odds ratio = 1.11; 95% CI = 1.02, 1.21), and a 0.06 kilogram per meters squared (95% CI = -0.12, -0.01) reduction in BMI. Change in walkability was not associated with change in leisure walking. Our findings illustrated the potential for neighborhood infrastructure to support health-enhancing behaviors and overall health of people in the United States.
Walking and Eating Behavior of Toddlers at 12 Months Old
ERIC Educational Resources Information Center
Koda, Naoko; Akimoto, Yuko; Hirose, Toshiya; Hinobayashi, Toshihiko; Minami, Tetsuhiro
2004-01-01
Locomotive and eating behavior of 52 toddlers was observed at 12 months old in a nursery school and investigated in relation to the acquisition of independent walking. The toddlers who acquired walking ate more by themselves using the hands than the toddlers who did not start walking. This suggested that acquisition of walking was associated with…
Urban Walking and the Pedagogies of the Street
ERIC Educational Resources Information Center
Bairner, Alan
2011-01-01
Drawing upon the extensive literature on urban walking and also on almost 60 years' experience of walking the streets, this article argues that there is a pressing need to re-assert the educational value of going for a walk. After a brief discussion of the social significance of the "flaneur," the historic pioneer of urban walking, the article…
ERIC Educational Resources Information Center
Keinänen, Mia
2016-01-01
Walking has long been associated with thinking. Anecdotal evidence from philosophers, writers, researchers, artists, business leaders and so forth testify to the powers of walking-for-thinking. This study explores walking-for-thinking among nine academics in Norway, four university professors, two research and development professionals, two…
Identifying Belief-Based Targets for the Promotion of Leisure-Time Walking
ERIC Educational Resources Information Center
Rhodes, Ryan E.; Blanchard, Chris M.; Courneya, Kerry S.; Plotnikoff, Ronald C.
2009-01-01
Walking is the most common type of physical activity (PA) and the likely target of efforts to increase PA. No studies, however, have identified the belief-level correlates for walking using the theory of planned behavior. This study elicits salient beliefs about walking and evaluates beliefs that may be most important for walking-promotion…
Ellerbe, Caitlyn; Lawson, Andrew B.; Alia, Kassandra A.; Meyers, Duncan C.; Coulon, Sandra M.; Lawman, Hannah G.
2013-01-01
Background This study examined imputational modeling effects of spatial proximity and social factors of walking in African American adults. Purpose Models were compared that examined relationships between household proximity to a walking trail and social factors in determining walking status. Methods Participants (N=133; 66% female; mean age=55 yrs) were recruited to a police-supported walking and social marketing intervention. Bayesian modeling was used to identify predictors of walking at 12 months. Results Sensitivity analysis using different imputation approaches, and spatial contextual effects, were compared. All the imputation methods showed social life and income were significant predictors of walking, however, the complete data approach was the best model indicating Age (1.04, 95% OR: 1.00, 1.08), Social Life (0.83, 95% OR: 0.69, 0.98) and Income > $10,000 (0.10, 95% OR: 0.01, 0.97) were all predictors of walking. Conclusions The complete data approach was the best model of predictors of walking in African Americans. PMID:23481250
Wilson, Dawn K; Ellerbe, Caitlyn; Lawson, Andrew B; Alia, Kassandra A; Meyers, Duncan C; Coulon, Sandra M; Lawman, Hannah G
2013-03-01
This study examined imputational modeling effects of spatial proximity and social factors of walking in African American adults. Models were compared that examined relationships between household proximity to a walking trail and social factors in determining walking status. Participants (N=133; 66% female; mean age=55 years) were recruited to a police-supported walking and social marketing intervention. Bayesian modeling was used to identify predictors of walking at 12 months. Sensitivity analysis using different imputation approaches, and spatial contextual effects, were compared. All the imputation methods showed social life and income were significant predictors of walking, however, the complete data approach was the best model indicating Age (1.04, 95% OR: 1.00, 1.08), Social Life (0.83, 95% OR: 0.69, 0.98) and Income <$10,000 (0.10, 95% OR: 0.01, 0.97) were all predictors of walking. The complete data approach was the best model of predictors of walking in African Americans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Controlling legs for locomotion-insights from robotics and neurobiology.
Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar
2015-06-29
Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.
Doescher, Mark P; Lee, Chanam; Saelens, Brian E; Lee, Chunkuen; Berke, Ethan M; Adachi-Mejia, Anna M; Patterson, Davis G; Moudon, Anne Vernez
2017-04-01
Walking among Latinos in US Micropolitan towns may vary by language spoken. In 2011-2012, we collected telephone survey and built environment (BE) data from adults in six towns located within micropolitan counties from two states with sizable Latino populations. We performed mixed-effects logistic regression modeling to examine relationships between ethnicity-language group [Spanish-speaking Latinos (SSLs); English-speaking Latinos (ESLs); and English-speaking non-Latinos (ENLs)] and utilitarian walking and recreational walking, accounting for socio-demographic, lifestyle and BE characteristics. Low-income SSLs reported higher amounts of utilitarian walking than ENLs (p = 0.007), but utilitarian walking in this group decreased as income increased. SSLs reported lower amounts of recreational walking than ENLs (p = 0.004). ESL-ENL differences were not significant. We identified no statistically significant interactions between ethnicity-language group and BE characteristics. Approaches to increase walking in micropolitan towns with sizable SSL populations may need to account for this group's differences in walking behaviors.
Craig, C L; Tudor-Locke, C; Bauman, A
2007-06-01
Canada on the Move is a national campaign to promote pedometer use and walking among adult Canadians. The purpose of this paper is to investigate the initiative's impact on sufficient walking, defined here as at least an hour daily in the week prior to the survey. Data were collected via the national Canadian Physical Activity Monitor's rolling monthly sample throughout 2004. Population prevalence rates of walking were compared using Bonferroni-adjusted confidence intervals. Correlates of sufficient walking were estimated using odds ratios adjusted for age, sex, income and education. Message recall and pedometer ownership were associated with increased odds of self-reported walking. There was evidence of a campaign effect on walking behavior independent of secular trends. The increased likelihood of sufficient walking suggests an ongoing role for nationally funded public awareness campaigns. The effectiveness of health promotion to increase walking may be enhanced by combining motivational health-related messages with the dissemination and adoption of an easy-to-use tool for self-monitoring purposes.
Cerin, Ester; Lee, Ka-yiu; Barnett, Anthony; Sit, Cindy H P; Cheung, Man-chin; Chan, Wai-man; Johnston, Janice M
2013-06-20
Walking for transport can contribute to the accrual of health-enhancing levels of physical activity in elders. Identifying destinations and environmental conditions that facilitate this type of walking has public health significance. However, most findings are limited to Western, low-density locations, while a larger proportion of the global population resides in ultra-dense Asian metropolises. We investigated relationships of within-neighborhood objectively-measured destination categories and environmental attributes with walking for transport in 484 elders from an ultra-dense metropolis (Hong Kong). We estimated relationships of diversity (number of different types) and prevalence of within-neighborhood destination categories (environmental audits of 400 m buffers surrounding residential addresses) with transport-related walking (interviewer-administered questionnaire) in 484 Chinese-speaking elders able to walk unassisted and living in 32 neighborhoods stratified by socio-economic status and transport-related walkability. We examined the moderating effects of safety and pedestrian infrastructure-related neighborhood attributes on destination-walking associations. Participants reported on average 569 and 254 min/week of overall and within-neighborhood walking for transport, respectively. The prevalence of public transit points and diversity of recreational destinations were positively related to overall walking for transport. The presence of a health clinic/service and place of worship, higher diversity in recreational destinations, and greater prevalence of non-food retails and services, food/grocery stores, and restaurants in the neighborhood were predictive of more within-neighborhood walking for transport. Neighborhood safety-related aspects moderated the relationship of overall walking for transport with the prevalence of public transit points, this being positive only in safe locations. Similar moderating effects of safety-related attributes were observed for the relationships of within-neighborhood walking for transport with diversity of recreational and entertainment destinations. Pedestrian-infrastructure attributes acted as moderators of associations of within-neighborhood walking for transport with prevalence of commercial destination categories. Composite destinations indices consisting of destination categories related to the specific measures of walking were positively associated with walking for transport. The availability of both non-commercial and commercial destinations may promote within-neighborhood walking for transport, while recreational facilities and public transit points may facilitate overall walking for transport. However, destination-rich areas need to also provide adequate levels of personal safety and a physically-unchallenging pedestrian network.
2011-01-01
Background Understanding the relationship between urban design and physical activity is a high priority. Different representations of land use diversity may impact the association between neighbourhood design and specific walking behaviours. This study examined different entropy based computations of land use mix (LUM) used in the development of walkability indices (WIs) and their association with walking behaviour. Methods Participants in the RESIDential Environments project (RESIDE) self-reported mins/week of recreational, transport and total walking using the Neighbourhood Physical Activity Questionnaire (n = 1798). Land use categories were incrementally added to test five different LUM models to identify the strongest associations with recreational, transport and total walking. Logistic regression was used to analyse associations between WIs and walking behaviour using three cut points: any (> 0 mins), ≥ 60 mins and ≥ 150 mins walking/week. Results Participants in high (vs. low) walkable neighbourhoods reported up to almost twice the amount of walking, irrespective of the LUM measure used. However, different computations of LUM were found to be relevant for different types and amounts of walking (i.e., > 0, ≥ 60 or ≥ 150 mins/week). Transport walking (≥ 60 mins/week) had the strongest and most significant association (OR = 2.24; 95% CI:1.58-3.18) with the WI when the LUM included 'residential', 'retail', 'office', 'health, welfare and community', and 'entertainment, culture and recreation'. However, any (> 0 mins/week) recreational walking was more strongly associated with the WI (OR = 1.36; 95% CI:1.04-1.78) when land use categories included 'public open space', 'sporting infrastructure' and 'primary and rural' land uses. The observed associations were generally stronger for ≥ 60 mins/week compared with > 0 mins/week of transport walking and total walking but this relationship was not seen for recreational walking. Conclusions Varying the combination of land uses in the LUM calculation of WIs affects the strength of relationships with different types (and amounts) of walking. Future research should examine the relationship between walkability and specific types and different amounts of walking. Our results provide an important first step towards developing a context-specific WI that is associated with recreational walking. Inherent problems with administrative data and the use of entropy formulas for the calculation of LUM highlight the need to explore alternative or complimentary measures of the environment. PMID:21631958
2013-01-01
Background Walking for transport can contribute to the accrual of health-enhancing levels of physical activity in elders. Identifying destinations and environmental conditions that facilitate this type of walking has public health significance. However, most findings are limited to Western, low-density locations, while a larger proportion of the global population resides in ultra-dense Asian metropolises. We investigated relationships of within-neighborhood objectively-measured destination categories and environmental attributes with walking for transport in 484 elders from an ultra-dense metropolis (Hong Kong). Methods We estimated relationships of diversity (number of different types) and prevalence of within-neighborhood destination categories (environmental audits of 400 m buffers surrounding residential addresses) with transport-related walking (interviewer–administered questionnaire) in 484 Chinese-speaking elders able to walk unassisted and living in 32 neighborhoods stratified by socio-economic status and transport-related walkability. We examined the moderating effects of safety and pedestrian infrastructure-related neighborhood attributes on destination-walking associations. Results Participants reported on average 569 and 254 min/week of overall and within-neighborhood walking for transport, respectively. The prevalence of public transit points and diversity of recreational destinations were positively related to overall walking for transport. The presence of a health clinic/service and place of worship, higher diversity in recreational destinations, and greater prevalence of non-food retails and services, food/grocery stores, and restaurants in the neighborhood were predictive of more within-neighborhood walking for transport. Neighborhood safety-related aspects moderated the relationship of overall walking for transport with the prevalence of public transit points, this being positive only in safe locations. Similar moderating effects of safety-related attributes were observed for the relationships of within-neighborhood walking for transport with diversity of recreational and entertainment destinations. Pedestrian-infrastructure attributes acted as moderators of associations of within-neighborhood walking for transport with prevalence of commercial destination categories. Composite destinations indices consisting of destination categories related to the specific measures of walking were positively associated with walking for transport. Conclusions The availability of both non-commercial and commercial destinations may promote within-neighborhood walking for transport, while recreational facilities and public transit points may facilitate overall walking for transport. However, destination-rich areas need to also provide adequate levels of personal safety and a physically-unchallenging pedestrian network. PMID:23782627
Kuys, Suzanne; Brauer, Sandra; Ada, Louise
2006-12-01
Cardiorespiratory fitness is increasingly being recognized as an impairment requiring physiotherapy intervention after stroke. The present study seeks to investigate if routine physiotherapy treatment is capable of inducing a cardiorespiratory training effect and if stroke patients attending physiotherapy who are unable to walk experience less cardiorespiratory stress during physiotherapy when compared to those who are able to walk. A descriptive, observational study, with heart rate monitoring and video-recording of physiotherapy rehabilitation, was conducted. Thirty consecutive stroke patients from a geriatric and rehabilitation unit of a tertiary metropolitan hospital, admitted for rehabilitation, and requiring physiotherapy were included in the study. The main measures of the study were duration (time) and intensity (percentage of heart rate reserve) of standing and walking activities during physiotherapy rehabilitation for non-walking and walking stroke patients. Stroke patients spent an average of 21 minutes participating in standing and walking activities that were capable of inducing a cardiorespiratory training effect. Stroke patients who were able to walk spent longer in these activities during physiotherapy rehabilitation than non-walking stroke patients (p < 0.05). An average intensity of 24% heart rate reserve (HRR) during standing and walking activities was insufficient to result in a cardiorespiratory training effect, with a maximum of 35% achieved for the stroke patients able to walk and 30% for those unable to walk. Routine physiotherapy rehabilitation had insufficient duration and intensity to result in a cardiorespiratory training effect in our group of stroke patients.
Effects of intensive therapy using gait trainer or floor walking exercises early after stroke.
Peurala, Sinikka H; Airaksinen, Olavi; Huuskonen, Pirjo; Jäkälä, Pekka; Juhakoski, Mika; Sandell, Kaisa; Tarkka, Ina M; Sivenius, Juhani
2009-02-01
To analyse the effects of gait therapy for patients after acute stroke in a randomized controlled trial. Fifty-six patients with a mean of 8 days post-stroke participated in: (i) gait trainer exercise; (ii) walking training over ground; or (iii) conventional treatment. Patients in the gait trainer exercise and walking groups practiced gait for 15 sessions over 3 weeks and received additional physiotherapy. Functional Ambulatory Category and several secondary outcome measures assessing gait and mobility were administered before and after rehabilitation and at 6-month follow-up. Patients also evaluated their own effort. Walking ability improved more with intensive walk training compared with conventional treatment; median Functional Ambulatory Category was zero in all patients at the start of the study, but it was 3 in both walk-training groups and 0.5 in the conventional treatment group at the end of the therapy. Median Functional Ambulatory Category was 4 in both walk-training groups and 2.5 in conventional treatment group at 6-month follow-up. Mean accomplished walking distance was not different between the gait trainer exercise and over ground walking groups. Borg scale indicated more effort in over ground walking. Secondary outcomes also indicated improvements. Exercise therapy with walking training improved gait function irrespective of the method used, but the time and effort required to achieve the results favour the gait trainer exercise. Early intensive gait training resulted in better walking ability than did conventional treatment.
O'Donovan, Rhona; Kennedy, Norelee
2015-01-01
Nordic Walking (NW) is growing in popularity among people with arthritis. The aim of this study was to explore the perspectives of participants with arthritis on a NW-based walking programme including factors contributing to sustained participation in the programme. Three semi-structured focus groups were conducted with a total of 27 participants with various types of arthritis. The groups consisted of participants who completed a NW-based walking programme in the previous 4 years. Only participants who had sustained involvement in the walking group were included. Groups were audio-recorded, transcribed verbatim and thematic analysis was performed. Participants reported that the walking programme offered numerous benefits. Two distinct themes emerged: (1) "four legs instead of two legs" and (2) "a support group". Theme 1 incorporates the physical, psychological and educational benefits that stem from involvement in a walking group while Theme 2 incorporates the benefits of social support in group-based activity. Several benefits of a NW-based walking programme from the perspectives of individuals with arthritis who engage in group-based walking programmes were identified. The benefits may encourage sustained participation and justify the promotion of NW as an intervention for people with arthritis. Considering how to sustain exercise participation is important to ensure continued benefits from physical activity participation. A community-based Nordic walking-based walking programme for people with arthritis improved exercise knowledge and confidence to exercise. Group exercise is valuable in providing support and motivation to continue exercising.
Effects of changing speed on knee and ankle joint load during walking and running.
de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren
2015-01-01
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.
Dynamic perception of dynamic affordances: walking on a ship at sea.
Walter, Hannah; Wagman, Jeffrey B; Stergiou, Nick; Erkmen, Nurtekin; Stoffregen, Thomas A
2017-02-01
Motion of the surface of the sea (waves, and swell) causes oscillatory motion of ships at sea. Generally, ships are longer than they are wide. One consequence of this structural difference is that oscillatory ship motion typically will be greater in roll (i.e., the ship rolling from side to side) than in pitch (i.e., the bow and stern rising and falling). For persons on ships at sea, affordances for walking on the open deck should be differentially influenced by ship motion in roll and pitch. Specifically, the minimum width of a walkable path should be greater when walking along the ship's short, or athwart axis than when walking along its long, or fore-aft axis. On a ship at sea, we evaluated the effects of walking in different directions (fore-aft vs. athwart) on actual walking performance. We did this by laying out narrow paths on the deck and asking participants (experienced maritime crewmembers) to walk as far as they could while remaining within the lateral path boundaries. As predicted, participants walked farther along the athwart path than along the fore-aft path. Before actual walking, we evaluated participants' judgments of their walking ability in the fore-aft and athwart directions. These judgments mirrored the observed differences in walking performance, and the accuracy of judgments did not differ between the two directions. We conclude that experienced maritime crewmembers were sensitive to affordances for walking in which the relevant properties of the environment were exclusively dynamic.
Dynamic perception of dynamic affordances: walking on a ship at sea
Walter, Hannah; Wagman, Jeffrey B.; Stergiou, Nick; Erkmen, Nurtekin
2017-01-01
Motion of the surface of the sea (waves, and swell) causes oscillatory motion of ships at sea. Generally, ships are longer than they are wide. One consequence of this structural difference is that oscillatory ship motion typically will be greater in roll (i.e., the ship rolling from side to side) than in pitch (i.e., the bow and stern rising and falling). For persons on ships at sea, affordances for walking on the open deck should be differentially influenced by ship motion in roll and pitch. Specifically, the minimum width of a walkable path should be greater when walking along the ship’s short, or athwart axis than when walking along its long, or fore-aft axis. On a ship at sea, we evaluated the effects of walking in different directions (fore-aft vs. athwart) on actual walking performance. We did this by laying out narrow paths on the deck and asking participants (experienced maritime crewmembers) to walk as far as they could while remaining within the lateral path boundaries. As predicted, participants walked farther along the athwart path than along the fore-aft path. Before actual walking, we evaluated participants’ judgments of their walking ability in the fore-aft and athwart directions. These judgments mirrored the observed differences in walking performance, and the accuracy of judgments did not differ between the two directions. We conclude that experienced maritime crewmembers were sensitive to affordances for walking in which the relevant properties of the environment were exclusively dynamic. PMID:27787584
Adaptive gait responses to awareness of an impending slip during treadmill walking.
Yang, Feng; Kim, JaeEun; Munoz, Jose
2016-10-01
The awareness of potential slip risk has been shown to cause protective changes to human gait during overground walking. It remains unknown if such adaptations to walking pattern also exist when ambulating on a treadmill. This study sought to determine whether and to what extent individuals, when being aware of a potential slip risk during treadmill walking, could adjust their gait pattern to improve their dynamic stability against backward balance loss in response to the impending slip hazard. Fifty-four healthy young subjects (age: 23.9±4.7years) participated in this study. Subjects' gait pattern was measured under two conditions: walking on a treadmill without (or normal walking) and with (or aware walking) the awareness of the potential slip perturbation. During both walking conditions, subjects' full body kinematics were gathered by using a motion capture system. Spatial gait parameters and the dynamic gait stability against backward balance were compared between the two walking conditions. The results revealed that subjects proactively adopted a "cautious gait" during aware walking compared with the normal walking. The cautious gait, which was achieved by taking a shorter step and a more flatfoot landing, positioned the body center of mass closer to the base of support, improving participants' dynamic stability and increasing their resistance against a possible slip-related fall. The finding from this study could provide insights into the dynamic stability control when individuals anticipate potential slip risk during treadmill walking. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduced diabetic, hypertensive, and cholesterol medication use with walking.
Williams, Paul T
2008-03-01
To assess the relationships of walking distance, frequency, and intensity to the prevalence of antidiabetic, antihypertensive, and LDL cholesterol-lowering medications use. Cross-sectional analyses of 32,683 female and 8112 male participants of the National Walkers' Health Study, of whom 2.8% and 7.4% reported antidiabetic, 14.3% and 29.0% reported antihypertensive, and 7.3% and 21.5% reported LDL cholesterol-lowering medication use, respectively. Weekly walking distance, longest walk, and walking intensity were inversely related to the prevalence of antidiabetic (males: P < 0.001, females: P < 0.0001), antihypertensive (males: P < 0.01, females: P < 0.0001), and LDL cholesterol-lowering medications (males: P < 0.01, females: P < 0.0001). Each medication remained significantly related to both walking intensity and longest weekly walk when adjusted for total weekly distance. Compared with men and women who walked at a speed of < 1.2 m.s, those who walked > 2.1 m.s had 48% and 52% lower odds for antihypertensive, 68% and 59% lower odds for antidiabetic, and 53% and 40% lower odds for LDL cholesterol-lowering medications, respectively, when adjusted for age, smoking, and diet. The longest usual weekly walk was a better discriminator of medication status than the total cumulative distance per week, particularly in men. These results are consistent with the hypothesis that antidiabetic, antihypertensive, and LDL cholesterol-lowering medication use may be reduced substantially by walking more intensely and farther each week, and by including longer walks.
Liao, Yung; Huang, Pin-Hsuan; Chen, Yi-Ling; Hsueh, Ming-Chun; Chang, Shao-Hsi
2018-04-04
This study examined the prevalence of dog ownership and dog walking and its association with leisure-time walking among metropolitan and nonmetropolitan older adults. A telephone-based cross-sectional survey targeting Taiwanese older adults was conducted in November 2016. Data related to dog ownership, time spent dog walking (categorized as non-dog owner, non-dog walkers, and dog walkers), and sociodemographic variables were obtained from 1074 older adults. Adjusted binary logistic regression was then performed. In this sample, 12% of Taiwanese older adults owned a dog and 31% of them walked their dogs for an average of 232.13 min over 5.9 days/week (standard deviation = 2.03). Older adults living in nonmetropolitan areas were more likely to own a dog (14.7% vs. 9.1%) but less likely to walk their dog (25.9% vs. 39.6%) than were those living in metropolitan areas. Compared with non-dog owners, only older adults living in nonmetropolitan areas who were dog walkers achieved 150 min of leisure-time walking (odds ratio: 3.03, 95% confidence interval: 1.05-8.77), after adjustment for potential confounders. Older Taiwanese adults living in nonmetropolitan areas who owned and walked their dogs were more likely to achieve health-enhancing levels of leisure-time walking. Tailored physical activity interventions for promoting dog walking should be developed for older adults who are dog owners living in nonmetropolitan areas and who do not engage in dog walking.
Notthoff, Nanna; Carstensen, Laura L
2017-06-01
Positively framed messages seem to promote walking in older adults better than negatively framed messages. This study targeted elderly people in communities unfavorable to walking. Walking was measured with pedometers during baseline (1 week) and intervention (4 weeks). Participants ( n = 74) were informed about either the benefits of walking or the negative consequences of not walking. Perceived neighborhood walkability was assessed with a modified version of the Neighborhood Walkability Scale. When perceived walkability was high, positively framed messages were more effective than negatively framed messages in promoting walking; when perceived walkability was low, negatively framed messages were comparably effective to positively framed messages.
ERIC Educational Resources Information Center
Bailey, Herb; Kalman, Dan
2011-01-01
Fay and Sam go for a walk. Sam walks along the left side of the street while Fay, who walks faster, starts with Sam but walks to a point on the right side of the street and then returns to meet Sam to complete one segment of their journey. We determine Fay's optimal path minimizing segment length, and thus maximizing the number of times they meet…
Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children
ERIC Educational Resources Information Center
Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala
2009-01-01
Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…
Polechoński, Jacek; Mynarski, Władysław; Nawrocka, Agnieszka
2015-11-01
[Purpose] The objective of this study was to evaluate the usefulness of pedometry and accelerometry in the measurement of the energy expenditures in Nordic walking and conventional walking as diagnostic parameters. [Subjects and Methods] The study included 20 female students (age, 24 ± 2.3 years). The study used three types of measuring devices, namely a heart rate monitor (Polar S610i), a Caltrac accelerometer, and a pedometer (Yamax SW-800). The walking pace at the level of 110 steps/min was determined by using a metronome. [Results] The students who walked with poles covered a distance of 1,000 m at a speed 36.3 sec faster and with 65.5 fewer steps than in conventional walking. Correlation analysis revealed a moderate interrelationship between the results obtained with a pedometer and those obtained with an accelerometer during Nordic walking (r = 0.55) and a high correlation during conventional walking (r = 0.85). [Conclusion] A pedometer and Caltrac accelerometer should not be used as alternative measurement instruments in the comparison of energy expenditure in Nordic walking.
Polechoński, Jacek; Mynarski, Władysław; Nawrocka, Agnieszka
2015-01-01
[Purpose] The objective of this study was to evaluate the usefulness of pedometry and accelerometry in the measurement of the energy expenditures in Nordic walking and conventional walking as diagnostic parameters. [Subjects and Methods] The study included 20 female students (age, 24 ± 2.3 years). The study used three types of measuring devices, namely a heart rate monitor (Polar S610i), a Caltrac accelerometer, and a pedometer (Yamax SW-800). The walking pace at the level of 110 steps/min was determined by using a metronome. [Results] The students who walked with poles covered a distance of 1,000 m at a speed 36.3 sec faster and with 65.5 fewer steps than in conventional walking. Correlation analysis revealed a moderate interrelationship between the results obtained with a pedometer and those obtained with an accelerometer during Nordic walking (r = 0.55) and a high correlation during conventional walking (r = 0.85). [Conclusion] A pedometer and Caltrac accelerometer should not be used as alternative measurement instruments in the comparison of energy expenditure in Nordic walking. PMID:26696730
Does dynamic stability govern propulsive force generation in human walking?
Browne, Michael G.
2017-01-01
Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force (FP) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and FP generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their FP according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an FP at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds. PMID:29291129
Does dynamic stability govern propulsive force generation in human walking?
Browne, Michael G; Franz, Jason R
2017-11-01
Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.
Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.
Chen, Jin-Ling; Gu, Dong-Yun
2013-01-01
Lower limb amputees have a higher fall risk during slope walking compared with non-amputees. However, studies on amputees' slope walking were not well addressed. The aim of this study was to identify the difference of slope walking between amputees and non-amputees. Lyapunov exponents λS was used to estimate the local dynamic stability of 7 transtibial amputees' and 7 controls' lower extremity joint kinematics during uphill and downhill walking. Compared with the controls, amputees exhibited significantly lower λS in hip (P=0.04) and ankle (P=0.01) joints of the sound limb, and hip joints (P=0.01) of the prosthetic limb during uphill walking, while they exhibited significantly lower λS in knee (P=0.02) and ankle (P=0.03) joints of the sound limb, and hip joints (P=0.03) of the prosthetic limb during downhill walking. Compared with amputees level walking, they exhibited significantly lower λS in ankle joints of the sound limb during both uphill (P=0.01) and downhill walking (P=0.01). We hypothesized that the better local dynamic stability of amputees was caused by compensation strategy during slope walking.
Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks
Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...
2013-07-01
Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less
Kinematic Adaptations of Forward And Backward Walking on Land and in Water
Cadenas-Sanchez, Cristina; Arellano, Raúl; Vanrenterghem, Jos; López-Contreras, Gracia
2015-01-01
The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg) were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05). At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs. PMID:26839602
Master, Hiral; Thoma, Louise M; Christiansen, Meredith B; Polakowski, Emily; Schmitt, Laura A; White, Daniel K
2018-07-01
Evidence of physical function difficulties, such as difficulty rising from a chair, may limit daily walking for people with knee osteoarthritis (OA). The purpose of this study was to identify minimum performance thresholds on clinical tests of physical function predictive to walking ≥6,000 steps/day. This benchmark is known to discriminate people with knee OA who develop functional limitation over time from those who do not. Using data from the Osteoarthritis Initiative, we quantified daily walking as average steps/day from an accelerometer (Actigraph GT1M) worn for ≥10 hours/day over 1 week. Physical function was quantified using 3 performance-based clinical tests: 5 times sit-to-stand test, walking speed (tested over 20 meters), and 400-meter walk test. To identify minimum performance thresholds for daily walking, we calculated physical function values corresponding to high specificity (80-95%) to predict walking ≥6,000 steps/day. Among 1,925 participants (mean ± SD age 65.1 ± 9.1 years, mean ± SD body mass index 28.4 ± 4.8 kg/m 2 , and 55% female) with valid accelerometer data, 54.9% walked ≥6,000 steps/day. High specificity thresholds of physical function for walking ≥6,000 steps/day ranged 11.4-14.0 seconds on the 5 times sit-to-stand test, 1.13-1.26 meters/second for walking speed, or 315-349 seconds on the 400-meter walk test. Not meeting these minimum performance thresholds on clinical tests of physical function may indicate inadequate physical ability to walk ≥6,000 steps/day for people with knee OA. Rehabilitation may be indicated to address underlying impairments limiting physical function. © 2017, American College of Rheumatology.
Use of self-report to predict ability to walk 400 meters in mobility-limited older adults.
Sayers, Stephen P; Brach, Jennifer S; Newman, Anne B; Heeren, Tim C; Guralnik, Jack M; Fielding, Roger A
2004-12-01
To determine whether the ability to walk 400 m could be predicted from self-reported walking habits and abilities in older adults and to develop an accurate self-report measure appropriate for observational trials of mobility when functional measures are impractical to collect. Cross-sectional. University-based human physiology laboratory. One hundred fifty community-dwelling older men and women (mean age+/-standard error= 79.8+/-0.3). An 18-item questionnaire assessing walking habits and ability was administered to each participant, followed by a 400-m walk test. Ninety-eight (65%) volunteers were able to complete the 400-m walk; 52 (35%) were unable. Logistic regression was performed using response items from a questionnaire as predictors and 400-m walk as the outcome. Three questions (Do you think you could walk one-quarter of a mile now without sitting down to rest. Because of a health or physical problem, do you have difficulty walking 1 mile? Could you walk up and down every aisle of a grocery store without sitting down to rest or leaning on a cart?) were predictive of 400-m walking ability and were included in the model. If participants answered all three questions compatible with the inability to walk 400 m, there was a 91% probability that they were unable to walk 400 m, with a sensitivity of 46% and a specificity of 97%. A three-item self-report developed in the study was able to accurately predict mobility disability. The utility of this instrument may be in evaluating self-reported mobility in large observational trials on mobility when functional mobility tasks are impractical to collect.
Mall Walking Program Environments, Features, and Participants: A Scoping Review.
Farren, Laura; Belza, Basia; Allen, Peg; Brolliar, Sarah; Brown, David R; Cormier, Marc L; Janicek, Sarah; Jones, Dina L; King, Diane K; Marquez, David X; Rosenberg, Dori E
2015-08-13
Walking is a preferred and recommended physical activity for middle-aged and older adults, but many barriers exist, including concerns about safety (ie, personal security), falling, and inclement weather. Mall walking programs may overcome these barriers. The purpose of this study was to summarize the evidence on the health-related value of mall walking and mall walking programs. We conducted a scoping review of the literature to determine the features, environments, and benefits of mall walking programs using the RE-AIM framework (reach, effectiveness, adoption, implementation, and maintenance). The inclusion criteria were articles that involved adults aged 45 years or older who walked in indoor or outdoor shopping malls. Exclusion criteria were articles that used malls as laboratory settings or focused on the mechanics of walking. We included published research studies, dissertations, theses, conference abstracts, syntheses, nonresearch articles, theoretical papers, editorials, reports, policy briefs, standards and guidelines, and nonresearch conference abstracts and proposals. Websites and articles written in a language other than English were excluded. We located 254 articles on mall walking; 32 articles met our inclusion criteria. We found that malls provided safe, accessible, and affordable exercise environments for middle-aged and older adults. Programmatic features such as program leaders, blood pressure checks, and warm-up exercises facilitated participation. Individual benefits of mall walking programs included improvements in physical, social, and emotional well-being. Limited transportation to the mall was a barrier to participation. We found the potential for mall walking programs to be implemented in various communities as a health promotion measure. However, the research on mall walking programs is limited and has weak study designs. More rigorous research is needed to define best practices for mall walking programs' reach, effectiveness, adoption, implementation, and maintenance.
Merom, D; Gebel, K; Fahey, P; Astell-Burt, T; Voukelatos, A; Rissel, C; Sherrington, C
2015-01-01
In older adults the relationships between health, fall-related risk factors, perceived neighborhood walkability, walking behavior and intervention impacts are poorly understood. To determine whether: i) health and fall-related risk factors were associated with perceptions of neighborhood walkability; ii) perceived environmental attributes, and fall-related risk factors predicted change in walking behavior at 12 months; and iii) perceived environmental attributes and fall-related risk factors moderated the effect of a self-paced walking program on walking behavior. Randomized trial on walking and falls conducted between 2009 and 2012 involving 315 community-dwelling inactive adults ≥ 65 years living in Sydney, Australia. Measures were: mobility status, fall history, injurious fall and fear of falling (i.e., fall-related risk factors), health status, walking self-efficacy and 11 items from the neighborhood walkability scale and planned walking ≥ 150 min/week at 12 months. Participants with poorer mobility, fear of falling, and poor health perceived their surroundings as less walkable. Walking at 12 months was significantly greater in "less greenery" (AOR = 3.3, 95% CI: 1.11-9.98) and "high traffic" (AOR = 1.98, 95% CI: 1.00-3.91) neighborhoods. The intervention had greater effects in neighborhoods perceived to have poorer pedestrian infrastructure (p for interaction = 0.036). Low perceived walkability was shaped by health status and did not appear to be a barrier to walking behavior. There appears to be a greater impact of, and thus, need for, interventions to encourage walking in environments perceived not to have supportive walking infrastructure. Future studies on built environments and walking should gather information on fall-related risk factors to better understand how these characteristics interact.
Mall Walking Program Environments, Features, and Participants: A Scoping Review
Belza, Basia; Allen, Peg; Brolliar, Sarah; Brown, David R.; Cormier, Marc L.; Janicek, Sarah; Jones, Dina L.; King, Diane K.; Marquez, David X.; Rosenberg, Dori E.
2015-01-01
Introduction Walking is a preferred and recommended physical activity for middle-aged and older adults, but many barriers exist, including concerns about safety (ie, personal security), falling, and inclement weather. Mall walking programs may overcome these barriers. The purpose of this study was to summarize the evidence on the health-related value of mall walking and mall walking programs. Methods We conducted a scoping review of the literature to determine the features, environments, and benefits of mall walking programs using the RE-AIM framework (reach, effectiveness, adoption, implementation, and maintenance). The inclusion criteria were articles that involved adults aged 45 years or older who walked in indoor or outdoor shopping malls. Exclusion criteria were articles that used malls as laboratory settings or focused on the mechanics of walking. We included published research studies, dissertations, theses, conference abstracts, syntheses, nonresearch articles, theoretical papers, editorials, reports, policy briefs, standards and guidelines, and nonresearch conference abstracts and proposals. Websites and articles written in a language other than English were excluded. Results We located 254 articles on mall walking; 32 articles met our inclusion criteria. We found that malls provided safe, accessible, and affordable exercise environments for middle-aged and older adults. Programmatic features such as program leaders, blood pressure checks, and warm-up exercises facilitated participation. Individual benefits of mall walking programs included improvements in physical, social, and emotional well-being. Limited transportation to the mall was a barrier to participation. Conclusion We found the potential for mall walking programs to be implemented in various communities as a health promotion measure. However, the research on mall walking programs is limited and has weak study designs. More rigorous research is needed to define best practices for mall walking programs’ reach, effectiveness, adoption, implementation, and maintenance. PMID:26270743
Urban form and psychosocial factors: do they interact for leisure-time walking?
Beenackers, Mariëlle A; Kamphuis, Carlijn B M; Prins, Richard G; Mackenbach, Johan P; Burdorf, Alex; van Lenthe, Frank J
2014-02-01
This cross-sectional study uses an adaptation of a social-ecological model on the hierarchy of walking needs to explore direct associations and interactions of urban-form characteristics and individual psychosocial factors for leisure-time walking. Questionnaire data (n = 736) from adults (25-74 yr) and systematic field observations within 14 neighborhoods in Eindhoven (the Netherlands) were used. Multilevel logistic regression models were used to relate the urban-form characteristics (accessibility, safety, comfort, and pleasurability) and individual psychosocial factors (attitude, self-efficacy, social influence, and intention) to two definitions of leisure-time walking, that is, any leisure-time walking and sufficient leisure-time walking according to the Dutch physical activity norm and to explore their interactions. Leisure-time walking was associated with psychosocial factors but not with characteristics of the urban environment. For sufficient leisure-time walking, interactions between attitude and several urban-form characteristics were found, indicating that positive urban-form characteristics contributed toward leisure-time walking only in residents with a less positive attitude toward physical activity. In contrast, living in a neighborhood that was accessible for walking was stronger associated with leisure-time walking among residents who experienced a positive social influence to engage in physical activity compared with those who reported less social influence. This study showed some evidence for an interaction between the neighborhood environment and the individual psychosocial factors in explaining leisure-time walking. The specific mechanism of interaction may depend on the specific combination of psychosocial factor and environmental factor. The lack of association between urban form and leisure-time walking could be partly due to the little variation in urban-form characteristics between neighborhoods.
NASA Astrophysics Data System (ADS)
Konno, S.; Mita, A.
2014-03-01
Recently, the demand of the building spaces to respond to increase of single aged households and the diversification of life style is increasing. Smart house is one of them, but it is difficult for them to be changed and renovated. Therefore, we suggest Biofied builing. In biofied building, we use a mobile robot to get concious and unconcious information about residents and try to make it more secure and comfort builing spaces by realizing the intraction between residents and builing spaces. Walking parameters are one of the most important unconscious information about residents. They are an indicator of autonomy of elderly, and changes of stride length and walking speed may be pridictive of a future fall and a cognitive impairment. By observing their walking and informing residents their walking state, they can forestall such dangers and it helps them to live more securely and autonomously. Many methods to estimate walking parameters have been studied. The famous ones are to use accelerometers and a motion capture camera. Walking parameters estimated by them are high precise but the sensors are attached to a human body in these method and it can make human's walk different from the original walk. Furthermore, some elderly feel it to invade them. In this work, Kinect which can get information about human untouchably was used on the mobile robot. A stride time, stride length, and walking speed were estimated from the back view of human by following him or her. Evaluation was done for 10m, 5m, 4m, and 3m in whole walking. As a result, the proposal system can estimate walking parameters of the walk more than 3m.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148
Westgarth, Carri; Christley, Robert M; Christian, Hayley E
2014-08-20
Physical inactivity and sedentary behaviour are major threats to population health. A considerable proportion of people own dogs, and there is good evidence that dog ownership is associated with higher levels of physical activity. However not all owners walk their dogs regularly. This paper comprehensively reviews the evidence for correlates of dog walking so that effective interventions may be designed to increase the physical activity of dog owners. Published findings from 1990-2012 in both the human and veterinary literature were collated and reviewed for evidence of factors associated with objective and self-reported measures of dog walking behaviour, or reported perceptions about dog walking. Study designs included cross-sectional observational, trials and qualitative interviews. There is good evidence that the strength of the dog-owner relationship, through a sense of obligation to walk the dog, and the perceived support and motivation a dog provides for walking, is strongly associated with increased walking. The perceived exercise requirements of the dog may also be a modifiable point for intervention. In addition, access to suitable walking areas with dog supportive features that fulfil dog needs such as off-leash exercise, and that also encourage human social interaction, may be incentivising. Current evidence suggests that dog walking may be most effectively encouraged through targeting the dog-owner relationship and by providing dog-supportive physical environments. More research is required to investigate the influence of individual owner and dog factors on 'intention' to walk the dog as well as the influence of human social interaction whilst walking a dog. The effects of policy and cultural practices relating to dog ownership and walking should also be investigated. Future studies must be of a higher quality methodological design, including accounting for the effects of confounding between variables, and longitudinal designs and testing of interventions in a controlled design in order to infer causality.
Licence, Sammy; Smith, Robynne; McGuigan, Miranda P.; Earnest, Conrad P.
2015-01-01
Objectives Mobile phone texting is a common daily occurrence with a paucity of research examining corresponding gait characteristics. To date, most studies have participants walk in a straight line vs. overcoming barriers and obstacles that occur during regular walking. The aim of our study is to examine the effect of mobile phone texting during periods of cognitive distraction while walking and negotiating barriers synonymous with pedestrian traffic. Methods Thirty participants (18-50y) completed three randomized, counter-balanced walking tasks over a course during: (1) normal walking (control), (2) texting and walking, and (3) texting and walking whilst being cognitively distraction via a standard mathematical test performed while negotiating the obstacle course. We analyzed gait characteristics during course negotiation using a 3-dimensional motion analysis system and a general linear model and Dunnet-Hsu post-hoc procedure the normal walking condition to assess gait characteristic differences. Primary outcomes included the overall time to complete the course time and barrier contact. Secondary outcomes included obstacle clearance height, step frequency, step time, double support phase and lateral deviation. Results Participants took significantly longer (mean ± SD) to complete the course while texting (24.96±4.20 sec) and during cognitive distraction COG (24.09±3.36 sec) vs. normal walking (19.32±2.28 sec; all, P<0.001). No significant differences were noted for barrier contacts (P = 0.28). Step frequency, step time, double support phase and lateral deviation all increased in duration during the texting and cognitive distraction trial. Texting and being cognitively distracted also increased obstacle clearance versus the walking condition (all, P<0.02). Conclusions Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern. Future research should also examine a similar study in older participants who may be at a greater risk of tripping with such walking deviations. PMID:26222430
Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?
Geva, Ronny; Orr, Edna
2016-01-01
Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human's ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants' cognitive and socio-communicative outputs prospectively from 6-18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p < .005), along with increases, counter to the general reduction trend, in skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p < .01), and speech bids before walking; r = .729, p < .01)]. Integration of these proactive changes using a computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0.001). These preliminary data suggest that representational capacities, symbolic object use, language and social developments, form an integrated adaptable composite, which possibly enables proactive internal resource reallocation, designed to support the emergence of new developmental milestones, such as walking.
Karstoft, Kristian; Winding, Kamilla; Knudsen, Sine H; Nielsen, Jens S; Thomsen, Carsten; Pedersen, Bente K; Solomon, Thomas P J
2013-02-01
To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure-matched continuous walking for improving physical fitness, body composition, and glycemic control.
Swenor, Bonnielin K; Bandeen-Roche, Karen; Muñoz, Beatriz; West, Sheila K
2014-08-01
To determine whether performance speeds mediate the association between visual impairment and self-reported mobility disability over an 8-year period. Longitudinal analysis. Salisbury, Maryland. Salisbury Eye Evaluation Study participants aged 65 and older (N=2,520). Visual impairment was defined as best-corrected visual acuity worse than 20/40 in the better-seeing eye or visual field less than 20°. Self-reported mobility disability on three tasks was assessed: walking up stairs, walking down stairs, and walking 150 feet. Performance speed on three similar tasks was measured: walking up steps (steps/s), walking down steps (steps/s), and walking 4 m (m/s). For each year of observation, the odds of reporting mobility disability was significantly greater for participants who were visually impaired (VI) than for those who were not (NVI) (odds ratio (OR) difficulty walking up steps=1.58, 95% confidence interval (CI)=1.32-1.89; OR difficulty walking down steps=1.90, 95% CI=1.59-2.28; OR difficulty walking 150 feet=2.11, 95% CI=1.77-2.51). Once performance speed on a similar mobility task was included in the models, VI participants were no longer more likely to report mobility disability than those who were NVI (OR difficulty walking up steps=0.84, 95% CI=0.65-1.11; OR difficulty walking down steps=0.96, 95% CI=0.74-1.24; OR difficulty walking 150 feet=1.22, 95% CI=0.98-1.50). Slower performance speed in VI individuals largely accounted for the difference in the odds of reporting mobility disability, suggesting that VI older adults walk slower and are therefore more likely to report mobility disability than those who are NVI. Improving mobility performance in older adults with visual impairment may minimize the perception of mobility disability. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S
2016-10-01
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking. Copyright © 2016. Published by Elsevier B.V.
Sugiyama, Takemi; Giles-Corti, Billie; Summers, Jacqui; du Toit, Lorinne; Leslie, Eva; Owen, Neville
2013-09-01
This study examined prospective relationships of green space attributes with adults initiating or maintaining recreational walking. Postal surveys were completed by 1036 adults living in Adelaide, Australia, at baseline (two time points in 2003-04) and follow-up (2007-08). Initiating or maintaining recreational walking was determined using self-reported walking frequency. Green space attributes examined were perceived presence, quality, proximity, and the objectively measured area (total and largest) and number of green spaces within a 1.6 km buffer drawn from the center of each study neighborhood. Multilevel regression analyses examined the odds of initiating or maintaining walking separately for each green space attribute. At baseline, participants were categorized into non-regular (n = 395), regular (n = 286), and irregular walkers (n = 313). Among non-regular walkers, 30% had initiated walking, while 70% of regular walkers had maintained walking at follow-up. No green space attributes were associated with initiating walking. However, positive perceptions of the presence of and proximity to green spaces and the total and largest areas of green space were significantly associated with a higher likelihood of walking maintenance over four years. Neighborhood green spaces may not assist adults to initiate walking, but their presence and proximity may facilitate them to maintain recreational walking over time. Copyright © 2013 Elsevier Inc. All rights reserved.
Positive messaging promotes walking in older adults
Notthoff, Nanna; Carstensen, Laura L.
2014-01-01
Walking is among the most cost-effective and accessible means of exercise. Mounting evidence suggests that walking may help to maintain physical and cognitive independence in old age by preventing a variety of health problems. However, older Americans fall far short of meeting the daily recommendations for walking. In two studies, we examined whether considering older adults’ preferential attention to positive information may effectively enhance interventions aimed at promoting walking. In Study 1, we compared the effectiveness of positive, negative, and neutral messages to encourage walking (as measured with pedometers). Older adults who were informed about the benefits of walking walked more than those who were informed about the negative consequences of failing to walk, whereas younger adults were unaffected by framing valence. In Study 2, we examined within-person change in walking in older adults in response to positively- or negatively-framed messages over a 28-day period. Once again, positively-framed messages more effectively promoted walking than negatively-framed messages, and the effect was sustained across the intervention period. Together, these studies suggest that consideration of age-related changes in preferences for positive and negative information may inform the design of effective interventions to promote healthy lifestyles. Future research is needed to examine the mechanisms underlying the greater effectiveness of positively as opposed to negatively framed messages and the generalizability of findings to other intervention targets and other subpopulations of older adults. PMID:24956001
Joshi, Varun; Srinivasan, Manoj
2015-02-08
Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.
Joshi, Varun; Srinivasan, Manoj
2015-01-01
Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations. PMID:25663810
Diez Roux, Ana V.; Moore, Kari A.; Evenson, Kelly R.; Rodriguez, Daniel A.
2014-01-01
Objectives. We investigated whether moving to neighborhoods with closer proximity of destinations and greater street connectivity was associated with more walking, a greater probability of meeting the “Every Body Walk!” campaign goals (≥ 150 minutes/week of walking), and reductions in body mass index (BMI). Methods. We linked longitudinal data from 701 participants, who moved between 2 waves of the Multi-Ethnic Study of Atherosclerosis (2004–2012), to a neighborhood walkability measure (Street Smart Walk Score) for each residential location. We used fixed-effects models to estimate if changes in walkability resulting from relocation were associated with simultaneous changes in walking behaviors and BMI. Results. Moving to a location with a 10-point higher Walk Score was associated with a 16.04 minutes per week (95% confidence interval [CI] = 5.13, 29.96) increase in transport walking, 11% higher odds of meeting Every Body Walk! goals through transport walking (adjusted odds ratio = 1.11; 95% CI = 1.02, 1.21), and a 0.06 kilogram per meters squared (95% CI = −0.12, −0.01) reduction in BMI. Change in walkability was not associated with change in leisure walking. Conclusions. Our findings illustrated the potential for neighborhood infrastructure to support health-enhancing behaviors and overall health of people in the United States. PMID:24432935
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Walk-in Coolers and Walk-in Freezers § 431.302...; however the terms do not include products designed and marketed exclusively for medical, scientific, or...
DOT National Transportation Integrated Search
2004-12-01
Of Americas 205 million adults, 86% took walks during the summer months of 2002, and 40% of those walkers walked more than 15 days per month. Fourteen percent of adult Americans state they never take walks. The presence of sidewalks has a ...
Jung, Jun-Young; Park, Hyunsub; Yang, Hyun-Dae; Chae, Mingi
2013-06-01
This paper presents a brief biomechanical analysis on the walking behavior of spinal cord injury (SCI) patients. It is known that SCI patients who have serious injuries to their spines cannot walk, and hence, several walking assistance lower limb exoskeleton robots have been proposed whose assistance abilities are shown to be well customized. However, these robots are not yet fully helpful to all SCI patients for several reasons. To overcome these problems, an exact analysis and evaluation of the restored walking function while the exoskeleton is worn is important. In this work, walking behavior of SCI patients wearing the rehabilitation of brain injuries (ROBIN) lower-limb walking assistant exoskeleton was analyzed in comparison to that of normal unassisted walking. The analysis method and results presented herein can be used by other researchers to improve their robots.
The Social Relations of a Health Walk Group: An Ethnographic Study.
Grant, Gordon; Pollard, Nick; Allmark, Peter; Machaczek, Kasia; Ramcharan, Paul
2017-09-01
It is already well established that regular walks are conducive to health and well-being. This article considers the production of social relations of regular, organized weekly group walks for older people. It is based on an ethnographic study of a Walking for Health group in a rural area of the United Kingdom. Different types of social relations are identified arising from the walk experience. The social relations generated are seen to be shaped by organizational factors that are constitutive of the walks; the resulting culture having implications for the sustainability of the experience. As there appears to be no single uniting theory linking group walk experiences to the production of social relations at this time, the findings are considered against therapeutic landscape, therapeutic mobility, and social capital theorizing. Finally, implications for the continuance of walking schemes for older people and for further research are considered.
Building Community: Stakeholder Perspectives on Walking in Malls and Other Venues.
Belza, Basia; Miyawaki, Christina E; Allen, Peg; King, Diane K; Marquez, David X; Jones, Dina L; Janicek, Sarah; Rosenberg, Dori; Brown, David R
2017-10-01
Mall walking has been a popular physical activity for decades. However, little is known about why mall managers support these programs or why adults choose to walk. Our study aim was to describe mall walking programs from the perspectives of walkers, managers, and leaders. Twenty-eight walkers, 16 walking program managers, and six walking program leaders from five states participated in a telephone or in-person semi-structured interview (N = 50). Interview guides were developed using a social-ecological model. Interviews were recorded, transcribed verbatim, and analyzed thematically. All informants indicated satisfaction with their program and environmental features. Differences in expectations were noted in that walkers wanted a safe, clean, and social place whereas managers and leaders felt a need to provide programmatic features. Given the favorable walking environments in malls, there is an opportunity for public health professionals, health care organizations, and providers of aging services to partner with malls to promote walking.
Corseuil Giehl, Maruí W; Hallal, Pedro C; Brownson, Ross C; d'Orsi, Eleonora
2017-02-01
To investigate the associations between perceived environment features and walking in older adults. A cross-sectional population-based study was performed in Florianopolis, Brazil, including 1,705 older adults (60+ years). Walking was measured by the International Physical Activity Questionnaire (IPAQ), and perceived environment was assessed through the Neighborhood Environment Walkability Scale. We conducted a multinomial logistic regression to examine the association between perceived environment and walking. The presence of sidewalks was related to both walking for transportation and for leisure. Existence of crosswalks in the neighborhood, safety during the day, presence of street lighting, recreational facilities, and having dog were significant predictors of walking for transportation. Safety during the day and social support were significantly associated with walking for leisure. The perceived environment may affect walking for specific purposes among older adults. Investments in the environment may increase physical activity levels of older adults in Brazil.
Motyl, Jillian M; Driban, Jeffrey B; McAdams, Erica; Price, Lori Lyn; McAlindon, Timothy E
2013-05-10
The 20-meter walk test is a physical function measure commonly used in clinical research studies and rehabilitation clinics to measure gait speed and monitor changes in patients' physical function over time. Unfortunately, the reliability and sensitivity of this walk test are not well defined and, therefore, limit our ability to evaluate real changes in gait speed not attributable to normal variability. The aim of this study was to assess the test-restest reliability and sensitivity of the 20-meter walk test, at a self-selected pace, among patients with mild to moderate knee osteoarthritis (OA) and to suggest a standardized protocol for future test administration. This was a measurement reliability study. Fifteen consecutive people enrolled in a randomized-controlled trial of intra-articular corticosteroid injections for knee OA participated in this study. All participants completed 4 trials on 2 separate days, 7 to 21 days apart (8 trials total). Each day was divided into 2 sessions, which each involved 2 walking trials. We compared walk times between trials with Wilcoxon signed-rank tests. Similar analyses compared average walk times between sessions. To confirm these analyses, we also calculated Spearman correlation coefficients to assess the relationship between sessions. Finally, smallest detectable differences (SDD) were calculated to estimate the sensitivity of the 20-meter walk test. Wilcoxon signed-rank tests between trials within the same session demonstrated that trials in session 1 were significantly different and in the subsequent 3 sessions, the median differences between trials were not significantly different. Therefore, the first session of each day was considered a practice session, and the SDD between the second session of each day were calculated. SDD was -1.59 seconds (walking slower) and 0.15 seconds (walking faster). Practice trials and a standardized protocol should be used in administration of the 20-meter walk test. Changes in walk time between -1.59 seconds (walking slower) and 0.15 seconds (walking faster) should be considered within the range of normal variability of 20-meter walking speed. The primary limitation of our study was a small sample size, which may influence the generalizability of our findings.
Treadmill training and body weight support for walking after stroke.
Mehrholz, Jan; Thomas, Simone; Elsner, Bernhard
2017-08-17
Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of the Cochrane review first published in 2003 and updated in 2005 and 2014. To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait-training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. We searched the Cochrane Stroke Group Trials Register (last searched 14 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (the Cochrane Library 2017, Issue 2), MEDLINE (1966 to 14 February 2017), Embase (1980 to 14 February 2017), CINAHL (1982 to 14 February 2017), AMED (1985 to 14 February 2017) and SPORTDiscus (1949 to 14 February 2017). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists, and contacted trialists to identify further trials. Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. Two review authors independently selected trials, extracted data, and assessed risk of bias and methodological quality. The primary outcomes investigated were walking speed, endurance, and dependency. We included 56 trials with 3105 participants in this updated review. The average age of the participants was 60 years, and the studies were carried out in both inpatient and outpatient settings. All participants had at least some walking difficulties and many could not walk without assistance. Overall, the use of treadmill training did not increase the chances of walking independently compared with other physiotherapy interventions (risk difference (RD) -0.00, 95% confidence interval (CI) -0.02 to 0.02; 18 trials, 1210 participants; P = 0.94; I² = 0%; low-quality evidence). Overall, the use of treadmill training in walking rehabilitation for people after stroke increased the walking velocity and walking endurance significantly. The pooled mean difference (MD) (random-effects model) for walking velocity was 0.06 m/s (95% CI 0.03 to 0.09; 47 trials, 2323 participants; P < 0.0001; I² = 44%; moderate-quality evidence) and the pooled MD for walking endurance was 14.19 metres (95% CI 2.92 to 25.46; 28 trials, 1680 participants; P = 0.01; I² = 27%; moderate-quality evidence). Overall, the use of treadmill training with body weight support in walking rehabilitation for people after stroke did not increase the walking velocity and walking endurance at the end of scheduled follow-up. The pooled MD (random-effects model) for walking velocity was 0.03 m/s (95% CI -0.05 to 0.10; 12 trials, 954 participants; P = 0.50; I² = 55%; low-quality evidence) and the pooled MD for walking endurance was 21.64 metres (95% CI -4.70 to 47.98; 10 trials, 882 participants; P = 0.11; I² = 47%; low-quality evidence). In 38 studies with a total of 1571 participants who were independent in walking at study onset, the use of treadmill training increased the walking velocity significantly. The pooled MD (random-effects model) for walking velocity was 0.08 m/s (95% CI 0.05 to 0.12; P < 0.00001; I 2 = 49%). There were insufficient data to comment on any effects on quality of life or activities of daily living. Adverse events and dropouts did not occur more frequently in people receiving treadmill training and these were not judged to be clinically serious events. Overall, people after stroke who receive treadmill training, with or without body weight support, are not more likely to improve their ability to walk independently compared with people after stroke not receiving treadmill training, but walking speed and walking endurance may improve slightly in the short term. Specifically, people with stroke who are able to walk (but not people who are dependent in walking at start of treatment) appear to benefit most from this type of intervention with regard to walking speed and walking endurance. This review did not find, however, that improvements in walking speed and endurance may have persisting beneficial effects. Further research should specifically investigate the effects of different frequencies, durations, or intensities (in terms of speed increments and inclination) of treadmill training, as well as the use of handrails, in ambulatory participants, but not in dependent walkers.
Walk Score™ As a Global Estimate of Neighborhood Walkability
Carr, Lucas J.; Dunsiger, Shira I.; Marcus, Bess H.
2010-01-01
Background Walk Score™ has recently been demonstrated as a valid and reliable tool for estimating access to nearby facilities, a critical component of the physical activity environment. It has not yet been determined whether Walk Score relates to other critical components of the physical activity environment including street connectivity, access to public transit, residential density and/or crime. Purpose The aim of this study is to explore the relationship between Walk Score and objective/subjective measures of the physical activity environment. Methods Walk Scores were calculated for residential addresses of 296 participants of two RCTs (2006–2009). Street connectivity, residential density, access to public transit provisions and crime were objectively measured (GIS) and cross-referenced with Walk Scores and participant's perceptions of the environment (e.g., perceived crime, access to physical activity facilities, perceived neighborhood walkability). Pairwise Pearson correlations were calculated in March 2010 to compare Walk Score to subjective/objective measures of neighborhood walkability. Results Significant positive correlations were identified between Walk Score and several objective (e.g., street connectivity, residential density and access to public transit provisions) and subjective (e.g., summed score of the physical activity environment) measures of the physical activity environment. However, positive correlations were also observed between Walk Score and crime. Conclusions Collectively, these findings support Walk Score as a free, easy to use and quick proxy of neighborhood density and access to nearby amenities. However, positive associations between Walk Score and reported crime highlight a limitation of Walk Score and warrant caution of its use. PMID:20965384
A community-wide media campaign to promote walking in a Missouri town.
Wray, Ricardo J; Jupka, Keri; Ludwig-Bell, Cathy
2005-10-01
Engaging in moderate physical activity for 30 minutes five or more times per week substantially reduces the risk of coronary heart disease, stroke, colon cancer, diabetes, high blood pressure, and obesity, and walking is an easy and accessible way to achieve this goal. A theory-based mass media campaign promoted walking and local community-sponsored wellness initiatives through four types of media (billboard, newspaper, radio, and poster advertisements) in St Joseph, Mo, over 5 months during the summer of 2003. The Walk Missouri campaign was conducted in four phases: 1) formative research, 2) program design and pretesting, 3) implementation, and 4) impact assessment. Using a postcampaign-only, cross-sectional design, a telephone survey (N = 297) was conducted in St Joseph to assess campaign impact. Study outcomes were pro-walking beliefs and behaviors. One in three survey respondents reported seeing or hearing campaign messages on one or more types of media. Reported exposure to the campaign was significantly associated with two of four pro-walking belief scales (social and pleasure benefits) and with one of three community-sponsored activities (participation in a community-sponsored walk) controlling for demographic, health status, and environmental factors. Exposure was also significantly associated with one of three general walking behaviors (number of days per week walking) when controlling for age and health status but not when beliefs were introduced into the model, consistent with an a priori theoretical mechanism: the mediating effect of pro-walking beliefs on the exposure-walking association. These results suggest that a media campaign can enhance the success of community-based efforts to promote pro-walking beliefs and behaviors.
Predictive value of age of walking for later motor performance in children with mental retardation.
Kokubun, M; Haishi, K; Okuzumi, H; Hosobuchi, T; Koike, T
1996-12-01
The purpose of the present study was to clarify the predictive value of age of walking for later motor performance in children with mental retardation. While paying due attention to other factors, our investigation focused on the relationship between a subject's age of walking, and his or her subsequent beam-walking performance. The subjects were 85 children with mental retardation with an average age of 13 years and 3 months. Beam-walking performance was measured by a procedure developed by the authors. Five low beams (5 cm) which varied in width (12.5, 10, 7.5, 5 and 2.5 cm) were employed. The performance of subjects was scored from zero to five points according to the width of the beam that they were able to walk without falling off. From the results of multiple regression analysis, three independent variables were found to be significantly related to beam-walking performance. The age of walking was the most basic variable: partial correlation coefficient (PCC) = -45; standardized partial regression coefficient (SPRC) = -0.41. The next variable in importance was walking duration (PCC = 0.38; SPRC = 0.31). The autism variable also contributed significantly (PCC = 0.28; SPRC = 0.22). Therefore, within the age range used in the present study, the age of walking in children with mental retardation was thought to have sufficient predictive value, even when the variables which might have possibly affected their subsequent performance were taken into consideration; the earlier the age of walking, the better the beam-walking performance.
Validity of Walk Score® as a measure of neighborhood walkability in Japan.
Koohsari, Mohammad Javad; Sugiyama, Takemi; Hanibuchi, Tomoya; Shibata, Ai; Ishii, Kaori; Liao, Yung; Oka, Koichiro
2018-03-01
Objective measures of environmental attributes have been used to understand how neighborhood environments relate to physical activity. However, this method relies on detailed spatial data, which are often not easily available. Walk Score® is a free, publicly available web-based tool that shows how walkable a given location is based on objectively-derived proximity to several types of local destinations and street connectivity. To date, several studies have tested the concurrent validity of Walk Score as a measure of neighborhood walkability in the USA and Canada. However, it is unknown whether Walk Score is a valid measure in other regions. The current study examined how Walk Score is correlated with objectively-derived attributes of neighborhood walkability, for residential addresses in Japan. Walk Scores were obtained for 1072 residential addresses in urban and rural areas in Japan. Five environmental attributes (residential density, intersection density, number of local destinations, sidewalk availability, and access to public transportation) were calculated using geographic information systems for each address. Pearson's correlation coefficients between Walk Score and these environmental attributes were calculated (conducted in May 2017). Significant positive correlations were observed between Walk Score and environmental attributes relevant to walking. Walk Score was most closely associated with intersection density ( r = 0.82) and with the number of local destinations ( r = 0.77). Walk Score appears to be a valid measure of neighborhood walkability in Japan. Walk Score will allow urban designers and public health practitioners to identify walkability of local areas without relying on detailed geographic data.
Nouman, Muhammad; Leelasamran, Wipawan; Chatpun, Surapong
2017-08-01
Using a total contact orthosis (TCO) is an effective method to offload in diabetic patients with foot neuropathy. However, the redistribution of peak plantar pressure is mostly observed during level walking, which may differ from other walking activities. The aim of this study was to investigate the plantar pressure from 4 regions of the foot during different walking activities (level walking, ramp ascending, ramp descending, stair ascending, and stair descending) in neuropathic diabetic patients with and without a TCO. Sixteen neuropathic diabetic patients aged 40 to 60 years with calluses and hallux valgus were included in this study and were provided with TCOs made up of multifoam, Plastazote, and microcellular rubber. The plantar pressure and contact area with the TCO and without the TCO were recorded using the Pedar X system during different walking activities. A significant reduction of plantar pressure during different walking activities at the toes and forefoot regions was observed while walking with the TCO compared with walking without the TCO (control condition). Plantar pressure increased at the midfoot region when walking with the TCO, and no significant difference was observed at the hindfoot region between the control and TCO conditions. Furthermore, maximum contact area was observed during level walking with the TCO compared with other walking activities. The TCO significantly reduced and redistributed the peak plantar pressure from the sites where the ulceration rate is higher at the toes and forefoot compared with the other regions of the foot. Therapeutic level II, lesser quality randomized controlled trial.
Exoskeleton plantarflexion assistance for elderly.
Galle, S; Derave, W; Bossuyt, F; Calders, P; Malcolm, P; De Clercq, D
2017-02-01
Elderly are confronted with reduced physical capabilities and increased metabolic energy cost of walking. Exoskeletons that assist walking have the potential to restore walking capacity by reducing the metabolic cost of walking. However, it is unclear if current exoskeletons can reduce energy cost in elderly. Our goal was to study the effect of an exoskeleton that assists plantarflexion during push-off on the metabolic energy cost of walking in physically active and healthy elderly. Seven elderly (age 69.3±3.5y) walked on treadmill (1.11ms 2 ) with normal shoes and with the exoskeleton both powered (with assistance) and powered-off (without assistance). After 20min of habituation on a prior day and 5min on the test day, subjects were able to walk with the exoskeleton and assistance of the exoskeleton resulted in a reduction in metabolic cost of 12% versus walking with the exoskeleton powered-off. Walking with the exoskeleton was perceived less fatiguing for the muscles compared to normal walking. Assistance resulted in a statistically nonsignificant reduction in metabolic cost of 4% versus walking with normal shoes, likely due to the penalty of wearing the exoskeleton powered-off. Also, exoskeleton mechanical power was relatively low compared to previously identified optimal assistance magnitude in young adults. Future exoskeleton research should focus on further optimizing exoskeleton assistance for specific populations and on considerate integration of exoskeletons in rehabilitation or in daily life. As such, exoskeletons should allow people to walk longer or faster than without assistance and could result in an increase in physical activity and resulting health benefits. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Yong; Auchincloss, Amy H.; Rodriguez, Daniel A.; Brown, Daniel G.; Riolo, Rick; Diez-Roux, Ana V.
2015-01-01
We develop an agent-based model of utilitarian walking and use the model to explore spatial and socioeconomic factors affecting adult utilitarian walking and how travel costs as well as various educational interventions aimed at changing attitudes can alter the prevalence of walking and income differentials in walking. The model is validated against US national data. We contrast realistic and extreme parameter values in our model and test effects of changing these parameters across various segregation and pricing scenarios while allowing for interactions between travel choice and place and for behavioral feedbacks. Results suggest that in addition to income differences in the perceived cost of time, the concentration of mixed land use (differential density of residences and businesses) are important determinants of income differences in walking (high income walk less), whereas safety from crime and income segregation on their own do not have large influences on income differences in walking. We also show the difficulty in altering walking behaviors for higher income groups who are insensitive to price and how adding to the cost of driving could increase the income differential in walking particularly in the context of segregation by income and land use. We show that strategies to decrease positive attitudes towards driving can interact synergistically with shifting cost structures to favor walking in increasing the percent of walking trips. Agent-based models, with their ability to capture dynamic processes and incorporate empirical data, are powerful tools to explore the influence on health behavior from multiple factors and test policy interventions. PMID:25733776
Risk of falls in older people during fast-walking--the TASCOG study.
Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K
2012-07-01
To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (p<0.05). A higher risk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (p<0.05). Tests of fast-walking may be useful in identifying older individuals at risk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.
Mind your step: metabolic energy cost while walking an enforced gait pattern.
Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H
2011-04-01
The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.
Frankel, Allan; Grillo, Sarah Pratt; Pittman, Mary; Thomas, Eric J; Horowitz, Lisa; Page, Martha; Sexton, Bryan
2008-01-01
Objective To evaluate the impact of rigorous WalkRounds on frontline caregiver assessments of safety climate, and to clarify the steps and implementation of rigorous WalkRounds. Data Sources/Study Setting Primary outcome variables were baseline and post WalkRounds safety climate scores from the Safety Attitudes Questionnaire (SAQ). Secondary outcomes were safety issues elicited through WalkRounds. Study period was August 2002 to April 2005; seven hospitals in Massachusetts agreed to participate; and the project was implemented in all patient care areas. Study Design Prospective study of the impact of rigorously applied WalkRounds on frontline caregivers assessments of safety climate in their patient care area. WalkRounds were conducted weekly and according to the seven-step WalkRounds Guide. The SAQ was administered at baseline and approximately 18 months post-WalkRounds implementation to all caregivers in patient care areas. Results Two of seven hospitals complied with the rigorous WalkRounds approach; hospital A was an academic teaching center and hospital B a community teaching hospital. Of 21 patient care areas, SAQ surveys were received from 62 percent of respondents at baseline and 60 percent post WalkRounds. At baseline, 10 of 21 care areas (48 percent) had safety climate scores below 60 percent, whereas post-WalkRounds three care areas (14 percent) had safety climate scores below 60 percent without improving by 10 points or more. Safety climate scale scores in hospital A were 62 percent at baseline and 77 percent post-WalkRounds (t=2.67, p=.03), and in hospital B were 46 percent at baseline and 56 percent post WalkRounds (t=2.06, p=.06). Main safety issues by category were equipment/facility (A [26 percent] and B [33 percent]) and communication (A [24 percent] and B [18 percent]). Conclusions WalkRounds implementation requires significant organizational will; sustainability requires outstanding project management and leadership engagement. In the patient care areas that rigorously implemented WalkRounds, frontline caregiver assessments of patient safety increased. SAQ results such as safety climate scores facilitate the triage of quality improvement efforts, and provide consensus assessments of frontline caregivers that identify themes for improvement. PMID:18671751
A Pearson Random Walk with Steps of Uniform Orientation and Dirichlet Distributed Lengths
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2010-08-01
A constrained diffusive random walk of n steps in ℝ d and a random flight in ℝ d , which are equivalent, were investigated independently in recent papers (J. Stat. Phys. 127:813, 2007; J. Theor. Probab. 20:769, 2007, and J. Stat. Phys. 131:1039, 2008). The n steps of the walk are independent and identically distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1,2,4. Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D. The previous walk is generalized by considering step lengths which have independent and identical gamma distributions with a shape parameter q>0. Given the total walk length being equal to 1, the step lengths have a Dirichlet distribution whose parameters are all equal to q. The walk and the flight above correspond to q=1. Simple analytical expressions are obtained for any d≥2 and n≥2 for the endpoint distributions of two families of walks whose q are integers or half-integers which depend solely on d. These endpoint distributions have a simple geometrical interpretation. Expressed for a two-step planar walk whose q=1, it means that the distribution of the endpoint on a disc of radius 1 is identical to the distribution of the projection on the disc of a point M uniformly distributed over the surface of the 3D unit sphere. Five additional walks, with a uniform distribution of the endpoint in the inside of a ball, are found from known finite integrals of products of powers and Bessel functions of the first kind. They include four different walks in ℝ3, two of two steps and two of three steps, and one walk of two steps in ℝ4. Pearson-Liouville random walks, obtained by distributing the total lengths of the previous Pearson-Dirichlet walks according to some specified probability law are finally discussed. Examples of unconstrained random walks, whose step lengths are gamma distributed, are more particularly considered.
Eich, H-J; Mach, H; Werner, C; Hesse, S
2004-09-01
To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p <0.001 versus p <0.001) in the experimental group. Between weeks 0 and 6, the experimental group improved walking speed and capacity by a mean of.31 m/s and 91 m, the control group by a mean of 0.16 m/s and 56 m. Between weeks 0 and 18, the experimental group improved walking speed and capacity by a mean of 0.36 m/s and 111 m, the control group by a mean of 0.15 m/s and 57 m. Gross motor function and walking quality did not differ at any time. Aerobic treadmill plus Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.
Multimedia-assisted breathwalk-aware system.
Yu, Meng-Chieh; Wu, Huan; Lee, Ming-Sui; Hung, Yi-Ping
2012-12-01
Breathwalk is a science of combining specific patterns of footsteps synchronized with the breathing. In this study, we developed a multimedia-assisted Breathwalk-aware system which detects user's walking and breathing conditions and provides appropriate multimedia guidance on the smartphone. Through the mobile device, the system enhances user's awareness of walking and breathing behaviors. As an example application in slow technology, the system could help meditator beginners learn "walking meditation," a type of meditation which aims to be as slow as possible in taking pace, to synchronize footstep with breathing, and to land every footstep with toes first. In the pilot study, we developed a walking-aware system and evaluated whether multimedia-assisted mechanism is capable of enhancing beginner's walking awareness while walking meditation. Experimental results show that it could effectively assist beginners in slowing down the walking speed and decreasing incorrect footsteps. In the second experiment, we evaluated the Breathwalk-aware system to find a better feedback mechanism for learning the techniques of Breathwalk while walking meditation. The experimental results show that the visual-auditory mechanism is a better multimedia-assisted mechanism while walking meditation than visual mechanism and auditory mechanism.
Wilson, Dawn K; Van Horn, M Lee; Siceloff, E Rebekah; Alia, Kassandra A; St George, Sara M; Lawman, Hannah G; Trumpeter, Nevelyn N; Coulon, Sandra M; Griffin, Sarah F; Wandersman, Abraham; Egan, Brent; Colabianchi, Natalie; Forthofer, Melinda; Gadson, Barney
2015-06-01
The "Positive Action for Today's Health" (PATH) trial tested an environmental intervention to increase walking in underserved communities. Three matched communities were randomized to a police-patrolled walking plus social marketing, a police-patrolled walking-only, or a no-walking intervention. The 24-month intervention addressed safety and access for physical activity (PA) and utilized social marketing to enhance environmental supports for PA. African-Americans (N=434; 62% females; aged 51±16 years) provided accelerometry and psychosocial measures at baseline and 12, 18, and 24 months. Walking attendance and trail use were obtained over 24 months. There were no significant differences across communities over 24 months for moderate-to-vigorous PA. Walking attendance in the social marketing community showed an increase from 40 to 400 walkers per month at 9 months and sustained ~200 walkers per month through 24 months. No change in attendance was observed in the walking-only community. Findings support integrating social marketing strategies to increase walking in underserved African-Americans (ClinicalTrials.gov #NCT01025726).
Dual task cost of walking is related to fall risk in persons with multiple sclerosis.
Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J
2013-12-15
Persons with multiple sclerosis (MS) commonly have walking and cognitive impairments. While walking with a simultaneous cognitive task, persons with MS experience a greater decline in walking performance than healthy controls. This change in performance is termed dual task cost or dual task interference and has been associated with fall risk in older adults. We examined whether dual task cost during walking was related to fall risk in persons with MS. Thirty-three ambulatory persons with MS performed walking tasks with and without a concurrent cognitive task (dual task condition) as well as underwent a fall risk assessment. Dual task cost was operationalized as the percent change in velocity from normal walking conditions to dual task walking conditions. Fall risk was quantified using the Physiological Profile Assessment. A Spearman correlation analysis revealed a significant positive correlation between dual task cost of walking velocity and fall risk as well as dual task cost of stride length and fall risk. Overall, the findings indicate that dual task cost is associated with fall risk and may be an important target for falls prevention strategies. © 2013.
2011-01-01
A total of 67 women with fibromyalgia were recruited to an exercise study and were randomized to moderate-to-high-intensity Nordic walking (age 48 ± 7.8 years) or to a control group engaging in supervised low-intensity walking (age 50 ± 7.6 years). A total of 58 patients completed. Significantly greater improvement in the 6-minute walk test was found in the Nordic walking group (P = 0.009), compared with the low-intensity walking group. A significantly larger decrease in exercise heart rate (P = 0.020) and significantly improved scores on the Fibromyalgia Impact Questionnaire Physical function (P = 0.027) were found in the Nordic walking group as compared with the low-intensity walking group. No between-group difference was found for the Fibromyalgia Impact Questionnaire total or pain scores. The authors conclude that moderate-to-high intensity aerobic exercise by means of Nordic walking twice a week for 15 weeks was found to be a feasible mode of exercise, resulting in improved functional capacity and a decreased level of activity limitations. PMID:21345243
Walking in circles: a modelling approach
Maus, Horst-Moritz; Seyfarth, Andre
2014-01-01
Blindfolded or disoriented people have the tendency to walk in circles rather than on a straight line even if they wanted to. Here, we use a minimalistic walking model to examine this phenomenon. The bipedal spring-loaded inverted pendulum exhibits asymptotically stable gaits with centre of mass (CoM) dynamics and ground reaction forces similar to human walking in the sagittal plane. We extend this model into three dimensions, and show that stable walking patterns persist if the leg is aligned with respect to the body (here: CoM velocity) instead of a world reference frame. Further, we demonstrate that asymmetric leg configurations, which are common in humans, will typically lead to walking in circles. The diameter of these circles depends strongly on parameter configuration, but is in line with empirical data from human walkers. Simulation results suggest that walking radius and especially direction of rotation are highly dependent on leg configuration and walking velocity, which explains inconsistent veering behaviour in repeated trials in human data. Finally, we discuss the relation between findings in the model and implications for human walking. PMID:25056215
Force Rendering and its Evaluation of a Friction-Based Walking Sensation Display for a Seated User.
Kato, Ginga; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo
2018-04-01
Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback.
Zadravec, Matjaž; Olenšek, Andrej; Matjačić, Zlatko
2017-08-09
Treadmills are used frequently in rehabilitation enabling neurologically impaired subjects to train walking while being assisted by therapists. Numerous studies compared walking on treadmill and overground for unperturbed but not also perturbed conditions. The objective of this study was to compare stepping responses (step length, step width and step time) during overground and treadmill walking in a group of healthy subjects where balance assessment robots applied perturbing pushes to the subject's pelvis in sagittal and frontal planes. During walking in both balance assessment robots (overground and treadmill-based) with applied perturbations the stepping responses of a group of seven healthy subjects were assessed with a motion tracking camera. The results show high degree of similarity of stepping responses between overground and treadmill walking for all perturbation directions. Both devices reproduced similar experimental conditions with relatively small standard deviations in the unperturbed walking as well as in perturbed walking. Based on these results we may conclude that stepping responses following perturbations can be studied on an instrumented treadmill where ground reaction forces can be readily assessed which is not the case during perturbed overground walking.
Taniguchi, Chie; Sato, Chifumi
2016-10-01
We examined the effects of home-based walking on sedentary Japanese women's pregnancy outcomes and mood. A randomized controlled trial was conducted, involving 118 women aged 22-36 years. Participants were randomly assigned to walking intervention (n = 60) or control (n = 58) groups. The walking group was instructed to walk briskly for 30 min, three times weekly from 30 weeks' gestation until delivery. Both groups counted their daily steps using pedometers. Pregnancy and delivery outcomes were assessed, participants completed the Profile of Mood States, and we used the intention-to-treat principle. Groups showed no differences regarding pregnancy or delivery outcomes. The walking group exhibited decreased scores on the depression-dejection and confusion subscales of the Profile of Mood States. Five of the 54 women in the intervention group who remained in the study (9.2%) completed 100% of the prescribed walking program; 32 (59.3%) women completed 80% or more. Unsupervised walking improves sedentary pregnant women's mood, indicating that regular walking during pregnancy should be promoted in this group. © 2016 John Wiley & Sons Australia, Ltd.
Treadmill training and body weight support for walking after stroke.
Mehrholz, Jan; Pohl, Marcus; Elsner, Bernhard
2014-01-23
Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of a Cochrane review first published in 2005. To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. We searched the Cochrane Stroke Group Trials Register (last searched June 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (The Cochrane Library 2013, Issue 7), MEDLINE (1966 to July 2013), EMBASE (1980 to July 2013), CINAHL (1982 to June 2013), AMED (1985 to July 2013) and SPORTDiscus (1949 to June 2013). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists and contacted trialists to identify further trials. Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. Two authors independently selected trials, extracted data and assessed methodological quality. The primary outcomes investigated were walking speed, endurance and dependency. We included 44 trials with 2658 participants in this updated review. Overall, the use of treadmill training with body weight support did not increase the chances of walking independently compared with other physiotherapy interventions (risk difference (RD) -0.00, 95% confidence interval (CI) -0.02 to 0.02; P = 0.94; I² = 0%). Overall, the use of treadmill training with body weight support in walking rehabilitation for patients after stroke increased the walking velocity and walking endurance significantly. The pooled mean difference (MD) (random-effects model) for walking velocity was 0.07 m/s (95% CI 0.01 to 0.12; P = 0.02; I² = 57%) and the pooled MD for walking endurance was 26.35 metres (95% CI 2.51 to 50.19; P = 0.03; I² = 60%). Overall, the use of treadmill training with body weight support in walking rehabilitation for patients after stroke did not increase the walking velocity and walking endurance at the end of scheduled follow-up significantly. The pooled MD (random-effects model) for walking velocity was 0.04 m/s (95% CI -0.06 to 0.14; P = 0.40; I² = 40%) and the pooled MD for walking endurance was 32.36 metres (95% CI -3.10 to 67.81; P = 0.07; I² = 63%). However, for ambulatory patients improvements in walking endurance lasted until the end of scheduled follow-up (MD 58.88 metres, 95% CI 29.10 to 88.66; P = 0.0001; I² = 0%). Adverse events and drop outs did not occur more frequently in people receiving treadmill training and these were not judged to be clinically serious events. Overall, people after stroke who receive treadmill training with or without body weight support are not more likely to improve their ability to walk independently compared with people after stroke not receiving treadmill training, but walking speed and walking endurance may improve. Specifically, stroke patients who are able to walk (but not people who are not able to walk) appear to benefit most from this type of intervention. This review found that improvements in walking endurance in people able to walk may have persisting beneficial effects. Further research should specifically investigate the effects of different frequencies, durations or intensities (in terms of speed increments and inclination) of treadmill training, as well as the use of handrails, in ambulatory patients, but not in dependent walkers.
Westgarth, Carri; Boddy, Lynne M; Stratton, Gareth; German, Alexander J; Gaskell, Rosalind M; Coyne, Karen P; Bundred, Peter; McCune, Sandra; Dawson, Susan
2013-09-10
Owning a pet dog could potentially improve child health through encouraging participation in physical activity, through dog walking. However, evidence to support this is limited and conflicting. In particular, little is known about children's participation in dog walking and factors that may be associated with this. The objective of this study was to describe the participation of children in dog walking, including their own and those belonging to somebody else, and investigate factors associated with regular walking with their own pet dog. Primary school children (n=1021, 9-10 years) from a deprived area of Liverpool were surveyed during a 'fitness fun day' as part of the SportsLinx project. The 'Child Lifestyle and Pets' survey included questions about pet ownership, pet attachment, and dog walking. Multivariable logistic regression models were used to investigate factors associated with walking any dog, or their own dog, several times a day or more, including level of attachment to the dog, dog type, and sociodemographic factors. Overall, 15.4% of children reported walking with any dog (their own or belonging to a friend or family member) ≥ once daily, 14.1% several times a week, 27.6% ≤ once a week, and 42.8% never. Dog owning children (37.1% of the population) more often reported dog walking 'several times a week or more' (OR=12.30, 95% CI=8.10-18.69, P<0.001) compared to those without a dog, but were less likely to report other walking without a dog. The majority (59.3%) of dog owning children indicated that they usually walked their dog, with 34.6% reporting that they walked their dog ≥ once daily. Attachment score was highly associated with the child reporting walking their dog (lower score=higher attachment; OR=0.93, 95% CI=0.89-0.96, P<0.001). There was no evidence that gender, ethnicity, sibling status or deprivation score was associated with dog walking. Children that reported owning Pit Bulls were more likely to report friends walking with their dog than those owning non-Pit bull types (OR=10.01, 95% CI=1.52-65.76, P=0.02, respectively). Promotion of supervised walking of suitable pet dogs may be an opportunity for increasing physical activity in 9-10 year old children. The identification of stronger attachment to dogs regularly walked is similar to findings in adult studies.
Julius, Leslie M.; Brach, Jennifer S.; Wert, David M.
2012-01-01
Background Although clinicians have a number of measures to use to describe walking performance, few, if any, of the measures capture a person's perceived effort in walking. Perceived effort of walking may be a factor in what a person does versus what he or she is able to do. Objective The objective of this study was to examine the relationship of perceived effort of walking with gait, function, activity, fear of falling, and confidence in walking in older adults with mobility limitations. Design This investigation was a cross-sectional, descriptive, relational study. Methods The study took place at a clinical research training center. The participants were 50 older adults (mean age=76.8 years, SD=5.5) with mobility limitations. The measurements used were the Rating of Perceived Exertion (RPE) for walking; gait speed; the Modified Gait Abnormality Rating Scale; energy cost of walking; Late Life Function and Disability Instrument (LLFDI) for total, basic, and advanced lower-extremity function and for disability limitations; activity and restriction subscales of the Survey of Activities and Fear of Falling in the Elderly (SAFFE); activity counts; SAFFE fear subscale; and Gait Efficacy Scale (GES). The relationship of the RPE of walking with gait, function, activity, fear, and confidence was determined by using Spearman rank order coefficients and an analysis of variance (adjusted for age and sex) for mean differences between groups defined by no exertion during walking and some exertion during walking. Results The RPE was related to confidence in walking (GES, R=−.326, P=.021) and activity (activity counts, R=.295, P=.044). The RPE groups (no exertion versus some exertion) differed in LLFDI scores for total (57.9 versus 53.2), basic (68.6 versus 61.4), and advanced (49.1 versus 42.6) lower-extremity function; LLFDI scores for disability limitations (74.9 versus 67.5); SAFFE fear subscale scores (0.346 versus 0.643); and GES scores (80.1 versus 67.8) (all P<.05). Limitations The range of RPE scores for the participants studied was narrow. Thus, the real correlations between RPE and gait, physical function, and psychological aspects of walking may be greater than the relationships reported. Conclusions The perceived effort of walking was associated with physical activity and confidence in walking. Reducing the perceived effort of walking may be an important target of interventions to slow the decline in function of older adults with mobility limitations. PMID:22723433
Julius, Leslie M; Brach, Jennifer S; Wert, David M; VanSwearingen, Jessie M
2012-10-01
Although clinicians have a number of measures to use to describe walking performance, few, if any, of the measures capture a person's perceived effort in walking. Perceived effort of walking may be a factor in what a person does versus what he or she is able to do. The objective of this study was to examine the relationship of perceived effort of walking with gait, function, activity, fear of falling, and confidence in walking in older adults with mobility limitations. Design This investigation was a cross-sectional, descriptive, relational study. The study took place at a clinical research training center. The participants were 50 older adults (mean age=76.8 years, SD=5.5) with mobility limitations. The measurements used were the Rating of Perceived Exertion (RPE) for walking; gait speed; the Modified Gait Abnormality Rating Scale; energy cost of walking; Late Life Function and Disability Instrument (LLFDI) for total, basic, and advanced lower-extremity function and for disability limitations; activity and restriction subscales of the Survey of Activities and Fear of Falling in the Elderly (SAFFE); activity counts; SAFFE fear subscale; and Gait Efficacy Scale (GES). The relationship of the RPE of walking with gait, function, activity, fear, and confidence was determined by using Spearman rank order coefficients and an analysis of variance (adjusted for age and sex) for mean differences between groups defined by no exertion during walking and some exertion during walking. The RPE was related to confidence in walking (GES, R=-.326, P=.021) and activity (activity counts, R=.295, P=.044). The RPE groups (no exertion versus some exertion) differed in LLFDI scores for total (57.9 versus 53.2), basic (68.6 versus 61.4), and advanced (49.1 versus 42.6) lower-extremity function; LLFDI scores for disability limitations (74.9 versus 67.5); SAFFE fear subscale scores (0.346 versus 0.643); and GES scores (80.1 versus 67.8) (all P<.05). Limitations The range of RPE scores for the participants studied was narrow. Thus, the real correlations between RPE and gait, physical function, and psychological aspects of walking may be greater than the relationships reported. The perceived effort of walking was associated with physical activity and confidence in walking. Reducing the perceived effort of walking may be an important target of interventions to slow the decline in function of older adults with mobility limitations.
2013-01-01
Background Owning a pet dog could potentially improve child health through encouraging participation in physical activity, through dog walking. However, evidence to support this is limited and conflicting. In particular, little is known about children’s participation in dog walking and factors that may be associated with this. The objective of this study was to describe the participation of children in dog walking, including their own and those belonging to somebody else, and investigate factors associated with regular walking with their own pet dog. Methods Primary school children (n=1021, 9–10 years) from a deprived area of Liverpool were surveyed during a ‘fitness fun day’ as part of the SportsLinx project. The ‘Child Lifestyle and Pets’ survey included questions about pet ownership, pet attachment, and dog walking. Multivariable logistic regression models were used to investigate factors associated with walking any dog, or their own dog, several times a day or more, including level of attachment to the dog, dog type, and sociodemographic factors. Results Overall, 15.4% of children reported walking with any dog (their own or belonging to a friend or family member) ≥ once daily, 14.1% several times a week, 27.6% ≤ once a week, and 42.8% never. Dog owning children (37.1% of the population) more often reported dog walking ‘several times a week or more’ (OR=12.30, 95% CI=8.10-18.69, P<0.001) compared to those without a dog, but were less likely to report other walking without a dog. The majority (59.3%) of dog owning children indicated that they usually walked their dog, with 34.6% reporting that they walked their dog ≥ once daily. Attachment score was highly associated with the child reporting walking their dog (lower score=higher attachment; OR=0.93, 95% CI=0.89-0.96, P<0.001). There was no evidence that gender, ethnicity, sibling status or deprivation score was associated with dog walking. Children that reported owning Pit Bulls were more likely to report friends walking with their dog than those owning non-Pit bull types (OR=10.01, 95% CI=1.52-65.76, P=0.02, respectively). Conclusions Promotion of supervised walking of suitable pet dogs may be an opportunity for increasing physical activity in 9–10 year old children. The identification of stronger attachment to dogs regularly walked is similar to findings in adult studies. PMID:24015895
Continuous-time quantum walks on star graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salimi, S.
2009-06-15
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Dog ownership, functional ability, and walking in community-dwelling older adults.
Gretebeck, Kimberlee A; Radius, Kaitlyn; Black, David R; Gretebeck, Randall J; Ziemba, Rosemary; Glickman, Lawrence T
2013-07-01
Regular walking improves overall health and functional ability of older adults, yet most are sedentary. Dog ownership/pet responsibility may increase walking in older adults. Goals of this study were to identify factors that influence older adult walking and compare physical activity, functional ability and psychosocial characteristics by dog ownership status. In this cross-sectional study, older adults (65-95 years of age, n = 1091) completed and returned questionnaires via postal mail. Measures included: Physical Activity Scale for the Elderly, Physical Functioning Questionnaire and Theory of Planned Behavior Questionnaire. Dog owner/dog walkers (n = 77) reported significantly (P < .05) more total walking, walking frequency, leisure and total physical activity and higher total functional ability than dog owner/nondog walkers (n = 83) and nondog owners (n = 931). Dog owner/nondog walkers reported lower intention and perceived behavioral control and a less positive attitude than dog owner/dog walkers (P < .05). Dog owner/ dog walkers were significantly different than the nondog walker groups in nearly every study variable. Many dog owners (48.1%) reported walking their dogs regularly and the dog owner/dog walkers participated in nearly 50% more total walking than the 2 nondog walking groups, suggesting that pet obligation may provide a purposeful activity that motivates some older dog owners to walk.
Identifying walking trips from GPS and accelerometer data in adolescent females
Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie
2013-01-01
Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163
Race walking gait and its influence on race walking economy in world-class race walkers.
Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan
2018-03-06
The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.
The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.
Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J
2016-01-01
In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.
Marvin, Garry; Perkins, Elizabeth
2017-01-01
Dog walking is a popular everyday physical activity. Dog owners are generally more active than non-owners, but some rarely walk with their dog. The strength of the dog–owner relationship is known to be correlated with dog walking, and this qualitative study investigates why. Twenty-six interviews were combined with autoethnography of dog walking experiences. Dog walking was constructed as “for the dog”, however, owners represented their dog’s needs in a way which aligned with their own. Central to the construction of need was perceptions of dog personality and behaviour. Owners reported deriving positive outcomes from dog walking, most notably, feelings of “happiness”, but these were “contingent” on the perception that their dogs were enjoying the experience. Owner physical activity and social interaction were secondary bonuses but rarely motivating. Perceptions and beliefs of owners about dog walking were continually negotiated, depending on how the needs of the owner and dog were constructed at that time. Complex social interactions with the “significant other” of a pet can strongly motivate human health behaviour. Potential interventions to promote dog walking need to account for this complexity and the effect of the dog-owner relationship on owner mental wellbeing. PMID:28825614
2012-01-01
Background Due to the inconsistent findings of prior studies, we explored the association of perceived safety and police-recorded crime measures with physical activity. Methods The study included 818 Chicago participants of the Multiethnic Study of Atherosclerosis 45 to 84 years of age. Questionnaire-assessed physical activity included a) transport walking; b) leisure walking; and c) non-walking leisure activities. Perceived safety was assessed through an interviewer-administered questionnaire. Police-recorded crime was assessed through 2-year counts of selected crimes (total and outdoor incivilities, criminal offenses, homicides) per 1000 population. Associations were examined using generalized estimating equation logistic regression models. Results Perceiving a safer neighborhood was positively associated with transport walking and perceiving lower violence was associated with leisure walking. Those in the lowest tertile of total or outdoor incivilities were more likely to report transport walking. Models with both perceived safety and police-recorded measures of crime as independent variables had superior fit for both transport walking and leisure walking outcomes. Neither perceived safety nor police-recorded measures of crime were associated with non-walking leisure activity. Conclusions Perceived and police-recorded measures had independent associations with walking and both should be considered in assessing the impact of neighborhood crime on physical activity. PMID:23245527
Record statistics of a strongly correlated time series: random walks and Lévy flights
NASA Astrophysics Data System (ADS)
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Demura, Tomohiro; Demura, Shin-ich
2011-01-01
Because elderly individuals experience marked declines in various physical functions (e.g., vision, joint function) simultaneously, it is difficult to clarify the individual effects of these functional declines on walking. However, by imposing vision and joint function restrictions on young men, the effects of these functional declines on walking can be clarified. The authors aimed to determine the effect of restricted vision and range of motion (ROM) of the knee joint on gait properties while walking and ascending or descending stairs. Fifteen healthy young adults performed level walking and stair ascent and descent during control, vision restriction, and knee joint ROM restriction conditions. During level walking, walking speed and step width decreased, and double support time increased significantly with vision and knee joint ROM restrictions. Stance time, step width, and walking angle increased only with knee joint ROM restriction. Stance time, swing time, and double support time were significantly longer in level walking, stair descent, and stair ascent, in that order. The effects of vision and knee joint ROM restrictions were significantly larger than the control conditions. In conclusion, vision and knee joint ROM restrictions affect gait during level walking and stair ascent and descent. This effect is marked in stair ascent with knee joint ROM restriction.
Rothman, Linda; Buliung, Ron; Macarthur, Colin; To, Teresa; Howard, Andrew
2014-02-01
The child active transportation literature has focused on walking, with little attention to risk associated with increased traffic exposure. This paper reviews the literature related to built environment correlates of walking and pedestrian injury in children together, to broaden the current conceptualization of walkability to include injury prevention. Two independent searches were conducted focused on walking in children and child pedestrian injury within nine electronic databases until March, 2012. Studies were included which: 1) were quantitative 2) set in motorized countries 3) were either urban or suburban 4) investigated specific built environment risk factors 5) had outcomes of either walking in children and/or child pedestrian roadway collisions (ages 0-12). Built environment features were categorized according to those related to density, land use diversity or roadway design. Results were cross-tabulated to identify how built environment features associate with walking and injury. Fifty walking and 35 child pedestrian injury studies were identified. Only traffic calming and presence of playgrounds/recreation areas were consistently associated with more walking and less pedestrian injury. Several built environment features were associated with more walking, but with increased injury. Many features had inconsistent results or had not been investigated for either outcome. The findings emphasise the importance of incorporating safety into the conversation about creating more walkable cities.
Do changes in residents' fear of crime impact their walking? Longitudinal results from RESIDE.
Foster, Sarah; Knuiman, Matthew; Hooper, Paula; Christian, Hayley; Giles-Corti, Billie
2014-05-01
To examine the influence of fear of crime on walking for participants in a longitudinal study of residents in new suburbs. Participants (n=485) in Perth, Australia, completed a questionnaire about three years after moving to their neighbourhood (2007-2008), and again four years later (2011-2012). Measures included fear of crime, neighbourhood perceptions and walking (min/week). Objective environmental measures were generated for each participant's neighbourhood, defined as the 1600 m road network distance from home, at each time-point. Linear regression models examined the impact of changes in fear of crime on changes in walking, with progressive adjustment for other changes in the built environment, neighbourhood perceptions and demographics. An increase in fear of crime was associated with a decrease in residents' walking inside the local neighbourhood. For each increase in fear of crime (i.e., one level on a five-point Likert scale) total walking decreased by 22 min/week (p=0.002), recreational walking by 13 min/week (p=0.031) and transport walking by 7 min/week (p=0.064). This study provides longitudinal evidence that changes in residents' fear of crime influence their walking behaviours. Interventions that reduce fear of crime are likely to increase walking and produce public health gains. Copyright © 2014 Elsevier Inc. All rights reserved.
Gladwell, Valerie F; Kuoppa, Pekka; Tarvainen, Mika P; Rogerson, Mike
2016-03-03
Walking within nature (Green Exercise) has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV) gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13) attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor) and was assessed at 1-2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.
Youth walking and biking rates vary by environments around 5 Louisiana schools.
Gustat, Jeanette; Richards, Katherine; Rice, Janet; Andersen, Lori; Parker-Karst, Kathryn; Cole, Shalanda
2015-01-01
The prevalence of obesity in children is high, and many do not meet physical activity recommendations. The Safe Routes to School (SRTS) program encourages school-aged children to walk and bike to school. We assessed the condition of the walking/biking environment around schools in Louisiana prior to the state's first SRTS program. Assessments were made at the neighborhood level with the Pedestrian Environmental Data Scan (PEDS) instrument, and at the school and individual levels using the National SRTS Center's teacher tallies and parent surveys. PEDS scores were developed to rate conduciveness to walking/bicycling of proposed SRTS routes. Sites' scores were compared with the percentage of students who walk/bike to school. Five schools in Louisiana were evaluated. Overall, more students walked (range: 2.4-17.4%) than biked (range: 0.3-4.5%) to school with more students walking home than to school. Predictors of walking/biking to school include distance from school, speed of traffic, school encouragement, and if a student asked permission. Sites with the highest PEDS score had the highest percentage of students who walked/biked to school. There is a role and a need for the SRTS program. The environment and other factors influence biking and walking to school. © 2014, American School Health Association.
Simieli, Lucas; Barbieri, Fabio Augusto; Orcioli-Silva, Diego; Lirani-Silva, Ellen; Stella, Florindo; Gobbi, Lilian Teresa Bucken
2015-01-01
The aim of this study was to analyze the effects of dual tasking on obstacle crossing during walking by individuals with Alzheimer's disease (AD) and by healthy older people. Thirty four elderly individuals (16 healthy subjects and 18 individuals with AD) were recruited to participate in this study. Three AD individuals and one control participant were excluded due to exclusion criteria. The participants were instructed to walk barefoot at their own speed along an 8 m long pathway. Each participant performed five trials for each condition (unobstructed walking, unobstructed walking with dual tasking, and obstacle crossing during walking with dual tasking). The trials were completely randomized for each participant. The mid-pathway stride was measured in the unobstructed walking trials and the stride that occurred during the obstacle avoidance was measured in the trials that involved obstacle crossing. The behavior of the healthy elderly subjects and individuals with AD was similar for obstacle crossing during walking with dual tasking. Both groups used the "posture first" strategy to prioritize stability and showed decreased attention to executive tasking while walking. Additionally, AD had a strong influence on the modifications that are made by the elderly while walking under different walking conditions.
Westgarth, Carri; Christley, Robert M; Marvin, Garry; Perkins, Elizabeth
2017-08-19
Dog walking is a popular everyday physical activity. Dog owners are generally more active than non-owners, but some rarely walk with their dog. The strength of the dog-owner relationship is known to be correlated with dog walking, and this qualitative study investigates why. Twenty-six interviews were combined with autoethnography of dog walking experiences. Dog walking was constructed as "for the dog", however, owners represented their dog's needs in a way which aligned with their own. Central to the construction of need was perceptions of dog personality and behaviour. Owners reported deriving positive outcomes from dog walking, most notably, feelings of "happiness", but these were "contingent" on the perception that their dogs were enjoying the experience. Owner physical activity and social interaction were secondary bonuses but rarely motivating. Perceptions and beliefs of owners about dog walking were continually negotiated, depending on how the needs of the owner and dog were constructed at that time. Complex social interactions with the "significant other" of a pet can strongly motivate human health behaviour. Potential interventions to promote dog walking need to account for this complexity and the effect of the dog-owner relationship on owner mental wellbeing.
Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S
2017-01-01
We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.
The relationship between convenience of destinations and walking levels in older women.
King, Wendy C; Brach, Jennifer S; Belle, Steven; Killingsworth, Richard; Fenton, Mark; Kriska, Andrea M
2003-01-01
To examine the relationship between physical activity and (1) convenience of destinations, measured by whether destinations (such as a park, trail, businesses, and services) are within walking distance of the home, and (2) participants' perception of the quality of their neighborhood surroundings for walking, captured with a global neighborhood "walkability" rating. Cross-sectional analysis of data obtained in 1999. Community in southwest Pennsylvania. Older Caucasian women (n = 149, mean age = 74.2 years). Response rate = 79%. Walking levels, leisure-time physical activity, and features of the neighborhood environment were measured with interviewer-administered questionnaires. Physical activity was also measured objectively with a pedometer. Living within walking distance (defined as within a 20-minute walk of home) of a park; biking or walking trail; or department, discount, or hardware store was related to higher pedometer readings (p < .01). In addition, there was a positive trend between the sum of destinations within walking distance of home and activity levels measured by pedometer and questionnaire (p < .01). There was also a positive trend between participants' neighborhood "walkability" rating and activity levels measured by pedometer and questionnaire (p < .01). These findings suggest that the ability to make utilitarian walking trips from home and the perception of having favorable neighborhood surroundings for walking are associated with increased physical activity levels in older women.
Positive messaging promotes walking in older adults.
Notthoff, Nanna; Carstensen, Laura L
2014-06-01
Walking is among the most cost-effective and accessible means of exercise. Mounting evidence suggests that walking may help to maintain physical and cognitive independence in old age by preventing a variety of health problems. However, older Americans fall far short of meeting the daily recommendations for walking. In 2 studies, we examined whether considering older adults' preferential attention to positive information may effectively enhance interventions aimed at promoting walking. In Study 1, we compared the effectiveness of positive, negative, and neutral messages to encourage walking (as measured with pedometers). Older adults who were informed about the benefits of walking walked more than those who were informed about the negative consequences of failing to walk, whereas younger adults were unaffected by framing valence. In Study 2, we examined within-person change in walking in older adults in response to positively- or negatively-framed messages over a 28-day period. Once again, positively-framed messages more effectively promoted walking than negatively-framed messages, and the effect was sustained across the intervention period. Together, these studies suggest that consideration of age-related changes in preferences for positive and negative information may inform the design of effective interventions to promote healthy lifestyles. Future research is needed to examine the mechanisms underlying the greater effectiveness of positively- as opposed to negatively-framed messages and the generalizability of findings to other intervention targets and other subpopulations of older adults. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Franceschini, Marco; Rampello, Anais; Agosti, Maurizio; Massucci, Maurizio; Bovolenta, Federica; Sale, Patrizio
2013-01-01
Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW), in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS). One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance. PMID:23468871
Functional roles of lower-limb joint moments while walking in water.
Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami
2005-02-01
To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.
Lawford, Belinda J; Walters, Julie; Ferrar, Katia
2016-06-01
To establish the effectiveness of walking alone and walking compared to other non-pharmacological management methods to improve disability, quality of life, or function in adults with chronic low back pain. A systematic search of the following databases was undertaken: Medline, Embase, CINAHL, Scopus, Pedro, SportDiscus, Cochrane Central Register of Controlled Trials. The following keywords were used: 'back pain' or 'low back pain' or 'chronic low back pain' and 'walk*' or 'ambulation' or 'treadmill*' or 'pedometer*' or 'acceleromet*' or 'recreational' and 'disability' or 'quality of life' or 'function*'. Primary research studies with an intervention focus that investigated walking as the primary intervention compared to no intervention or any other non-pharmacological method in adults with chronic low back pain (duration >3 months). Seven randomised controlled trials involving 869 participants were included in the review. There was no evidence that walking was more effective than other management methods such as usual care, specific strength exercises, medical exercise therapy, or supervised exercise classes. One study found over-ground walking to be superior to treadmill walking, and another found internet-mediated walking to be more beneficial than non-internet-mediated walking in the short term. There is low quality evidence to suggest that walking is as effective as other non-pharmacological management methods at improving disability, function, and quality of life in adults with chronic low back pain. © The Author(s) 2015.
Physical strain of comfortable walking in children with mild cerebral palsy.
Dallmeijer, Annet J; Brehm, Merel-Anne
2011-01-01
To evaluate the physical strain of comfortable walking in children with mild cerebral palsy (CP) in comparison to typically developing (TD) children. Physical strain was defined as the oxygen uptake during walking (VO(2walk)) expressed as a percentage of their maximal aerobic capacity (VO(2peak)). Eighteen children (aged 8-16 years) participated, including eight ambulant children (four girls, four boys) with mild spastic CP (three hemiplegia, five diplegia, GMFCS I: n = 7 and II: n = 1) and 10 TD children. VO(2walk) was measured during 5 min of walking on an indoor track at comfortable walking speed. VO(2peak) was measured in a shuttle run test. VO(2walk) was significantly higher in CP (19.7 (2.8) ml/kg/min) compared to TD (16.8 (3.6) ml/kg/min, p = 0.033), while walking speed did not differ significantly between groups. VO(2peak) was significantly lower in CP (37.2 (2.2) ml/kg/min) compared to TD (45.0 (5.3) ml/kg/min, p = 0.001). Consequently, the physical strain during walking was significantly higher in CP (52 (7.7) %) compared to TD (36 (8.4) %, p = 0.001). The higher physical strain during comfortable walking of children with mild CP compared to TD children may be related to reported problems with fatigue in this population, and suggest a need for physical aerobic training programmes.
Walking football as sustainable exercise for older adults - A pilot investigation.
Reddy, Peter; Dias, Irundika; Holland, Carol; Campbell, Niyah; Nagar, Iaysha; Connolly, Luke; Krustrup, Peter; Hubball, Harry
2017-06-01
The health benefits of playing football and the importance of exercise and social contact for healthy ageing are well established, but few older adults in the UK take enough exercise. Football is popular, flexible in format and draws players into engrossing, effortful and social exercise, but the physical demands of play at full speed may make it unsustainable for some older adults. Restricted to walking pace, will play still be engaging? Will health benefits be retained? Will physical demands remain manageable? This pilot study aims to investigate: (1) the experience of older adults playing walking football every week, is it sustainable and rewarding, (2) the intensity and locomotor pattern of walking football, (3) the scale and nature of walking football health benefits and (4) possible cognitive benefits of playing walking football through measures of processing speed, selective and divided attention and updating and inhibition components of executive function. 'Walking football' and 'waiting list' groups were compared before and after 12 weeks of one-hour per week football. Walking football was found to be engaging, sustainable for older adults and moderately intensive; however, selective health and cognitive benefits were not found from this brief intervention. Highlights Walking football is a lower impact but authentic form of football that enables older players to extend their active participation. Walking football is enjoyable and moderately demanding and may be a sustainable form of exercise for older adults. Health and cognitive benefits to playing walking football were not found.
Investigating walking environments in and around assisted living facilities: a facility visit study.
Lu, Zhipeng
2010-01-01
This study explores assisted living residents' walking behaviors, locations where residents prefer to walk, and walking environments in and around assisted living facilities. Regular walking is beneficial to older adults' physical and psychological health. Yet frail older residents in assisted living are usually too sedentary to achieve these benefits. The physical environment plays an important role in promoting physical activity. However, there is little research exploring this relationship in assisted living settings. The researcher visited 34 assisted living facilities in a major Texas city. Methods included walk-through observation with the Assisted Living Facility Walking Environment Checklist, and interviews with administrators by open- and close-ended questions. The data from 26 facilities were analyzed using descriptive statistics (for quantitative data) and content analysis (for qualitative data). The results indicate that (a) residents were walking both indoors and outdoors for exercise or other purposes (e.g., going to destinations); (b) assisted living facility planning and design details-such as neighborhood sidewalk conditions, facility site selection, availability of seating, walking path configuration (e.g., looped/nonlooped path), amount of shading along the path, presence of handrails, existence of signage, etc.-may influence residents' walking behaviors; and (c) current assisted living facilities need improvement in all aspects to make their environments more walkable for residents. Findings of the study provide recommendations for assisted living facilities to improve the walkability of environments and to create environmental interventions to promote regular walking among their residents. This study also implies several directions for future research.
Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A
2016-08-01
A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.
Horvath, Gabor; Farkas, Etelka; Boncz, Ildiko; Blaho, Miklos; Kriska, Gyorgy
2012-01-01
The experts of animal locomotion well know the characteristics of quadruped walking since the pioneering work of Eadweard Muybridge in the 1880s. Most of the quadrupeds advance their legs in the same lateral sequence when walking, and only the timing of their supporting feet differ more or less. How did this scientific knowledge influence the correctness of quadruped walking depictions in the fine arts? Did the proportion of erroneous quadruped walking illustrations relative to their total number (i.e. error rate) decrease after Muybridge? How correctly have cavemen (upper palaeolithic Homo sapiens) illustrated the walking of their quadruped prey in prehistoric times? The aim of this work is to answer these questions. We have analyzed 1000 prehistoric and modern artistic quadruped walking depictions and determined whether they are correct or not in respect of the limb attitudes presented, assuming that the other aspects of depictions used to determine the animals gait are illustrated correctly. The error rate of modern pre-Muybridgean quadruped walking illustrations was 83.5%, much more than the error rate of 73.3% of mere chance. It decreased to 57.9% after 1887, that is in the post-Muybridgean period. Most surprisingly, the prehistoric quadruped walking depictions had the lowest error rate of 46.2%. All these differences were statistically significant. Thus, cavemen were more keenly aware of the slower motion of their prey animals and illustrated quadruped walking more precisely than later artists. PMID:23227149
Horvath, Gabor; Farkas, Etelka; Boncz, Ildiko; Blaho, Miklos; Kriska, Gyorgy
2012-01-01
The experts of animal locomotion well know the characteristics of quadruped walking since the pioneering work of Eadweard Muybridge in the 1880s. Most of the quadrupeds advance their legs in the same lateral sequence when walking, and only the timing of their supporting feet differ more or less. How did this scientific knowledge influence the correctness of quadruped walking depictions in the fine arts? Did the proportion of erroneous quadruped walking illustrations relative to their total number (i.e. error rate) decrease after Muybridge? How correctly have cavemen (upper palaeolithic Homo sapiens) illustrated the walking of their quadruped prey in prehistoric times? The aim of this work is to answer these questions. We have analyzed 1000 prehistoric and modern artistic quadruped walking depictions and determined whether they are correct or not in respect of the limb attitudes presented, assuming that the other aspects of depictions used to determine the animals gait are illustrated correctly. The error rate of modern pre-Muybridgean quadruped walking illustrations was 83.5%, much more than the error rate of 73.3% of mere chance. It decreased to 57.9% after 1887, that is in the post-Muybridgean period. Most surprisingly, the prehistoric quadruped walking depictions had the lowest error rate of 46.2%. All these differences were statistically significant. Thus, cavemen were more keenly aware of the slower motion of their prey animals and illustrated quadruped walking more precisely than later artists.
Walking Capacity of Bariatric Surgery Candidates
King, WC; Engel, SG; Elder, KA; Chapman, WH; Eid, GM; Wolfe, BM; Belle, SH
2011-01-01
Background This study characterizes the walking limitations of bariatric surgery candidates by age and body mass index (BMI) and determines factors independently associated with walking capacity. Setting Multi-institutional at research university hospitals in the United States. Methods 2458 participants of the Longitudinal Assessment of Bariatric Surgery study (age: 18-78 y, BMI: 33-94 kg/m2) attended a pre-operative research visit. Walking capacity was measured via self-report and the 400 meter Long Distance Corridor Walk (LDCW). Results Almost two-thirds (64%) of subjects reported limitations walking several blocks, 48% had an objectively-defined mobility deficit, and 16% reported at least some walking aid use. In multivariable analysis, BMI, older age, lower income and greater bodily pain were independently associated (p<.05) with walking aid use, physical discomfort during the LDCW, inability to complete the LDCW, and slower time to complete the LDCW. Female sex, Hispanic ethnicity (but not race), higher resting heart rate, history of smoking, several comoribidities (history of stroke, ischemic heart disease, diabetes, asthma, sleep apnea, venous edema with ulcerations), and depressive symptoms were also independently related (p<.05) to at least one measure of reduced walking capacity. Conclusions Walking limitations are common in bariatric surgery candidates, even among the least severely obese and youngest patients. Physical activity counseling must be tailored to individuals' abilities. While several factors identified in this study (e.g., BMI, age, pain, comorbidities) should be considered, directly assessing walking capacity will facilitate appropriate goal-setting. PMID:21937285
Walking to the Beat of Their Own Drum: How Children and Adults Meet Timing Constraints
Gill, Simone V.
2015-01-01
Walking requires adapting to meet task constraints. Between 5- and 7-years old, children’s walking approximates adult walking without constraints. To examine how children and adults adapt to meet timing constraints, 57 5- to 7-year olds and 20 adults walked to slow and fast audio metronome paces. Both children and adults modified their walking. However, at the slow pace, children had more trouble matching the metronome compared to adults. The youngest children’s walking patterns deviated most from the slow metronome pace, and practice improved their performance. Five-year olds were the only group that did not display carryover effects to the metronome paces. Findings are discussed in relation to what contributes to the development of adaptation in children. PMID:26011538
Coined quantum walks on weighted graphs
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2017-11-01
We define a discrete-time, coined quantum walk on weighted graphs that is inspired by Szegedy’s quantum walk. Using this, we prove that many lackadaisical quantum walks, where each vertex has l integer self-loops, can be generalized to a quantum walk where each vertex has a single self-loop of real-valued weight l. We apply this real-valued lackadaisical quantum walk to two problems. First, we analyze it on the line or one-dimensional lattice, showing that it is exactly equivalent to a continuous deformation of the three-state Grover walk with faster ballistic dispersion. Second, we generalize Grover’s algorithm, or search on the complete graph, to have a weighted self-loop at each vertex, yielding an improved success probability when l < 3 + 2\\sqrt{2} ≈ 5.828 .
Quantum walk on a chimera graph
NASA Astrophysics Data System (ADS)
Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.
2018-05-01
We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.
Does the presence and mix of destinations influence walking and physical activity?
King, Tania Louise; Bentley, Rebecca Jodie; Thornton, Lukar Ezra; Kavanagh, Anne Marie
2015-09-17
Local destinations have previously been shown to be associated with higher levels of both physical activity and walking, but little is known about how specific destinations are related to activity. This study examined associations between types and mix of destinations and both walking frequency and physical activity. The sample consisted of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Using geographic information systems, seven types of destinations were examined within three network buffers (400 meters (m), 800 m and 1200 m) of respondents' homes. Multilevel logistic regression was used to estimate effects of each destination type separately, as well as destination mix (variety) on: 1) likelihood of walking for at least 10 min ≥ 4/week; 2) likelihood of being sufficiently physically active. All models were adjusted for potential confounders. All destination types were positively associated with walking frequency, and physical activity sufficiency at 1200 m. For the 800 m buffer: all destinations except transport stops and sports facilities were significantly associated with physical activity, while all except sports facilities were associated with walking frequency; at 400 m, café/takeaway food stores and transport stops were associated with walking frequency and physical activity sufficiency, and sports facilities were also associated with walking frequency. Strongest associations for both outcomes were observed for community resources and small food stores at both 800 m and 1200 m. For all buffer distances: greater mix was associated with greater walking frequency. Inclusion of walking in physical activity models led to attenuation of associations. The results of this analysis indicate that there is an association between destinations and both walking frequency and physical activity sufficiency, and that this relationship varies by destination type. It is also clear that greater mix of destinations positively predicts walking frequency and physical activity sufficiency.
Kaewkaen, Kitchana; Wongsamud, Phongphat; Ngaothanyaphat, Jiratchaya; Supawarapong, Papawarin; Uthama, Suraphong; Ruengsirarak, Worasak; Chanabun, Suthin; Kaewkaen, Pratchaya
2018-02-01
The walking gait of older adults with balance impairment is affected by dual tasking. Several studies have shown that external cues can stimulate improvement in older adults' performance. There is, however, no current evidence to support the usefulness of external cues, such as audio-visual cueing, in dual task walking in older adults. Thus, the aim of this study was to investigate the influence of an audio-visual cue (simulated traffic light) on dual task walking in healthy older adults and in older adults with balance impairments. A two-way repeated measures study was conducted on 14 healthy older adults and 14 older adults with balance impairment, who were recruited from the community in Chiang Rai, Thailand. Their walking performance was assessed using a four-metre walking test at their preferred gait speed and while walking under two further gait conditions, in randomised order: dual task walking and dual task walking with a simulated traffic light. Each participant was tested individually, with the testing taking between 15 and 20 minutes to perform, including two-minute rest periods between walking conditions. Two Kinect cameras recorded the spatio-temporal parameters using MFU gait analysis software. Each participant was tested for each condition twice. The mean parameters for each condition were analysed using a two-way repeated measures analysis of variance (ANOVA) with participant group and gait condition as factors. There was no significant between-group effect for walking speed, stride length and cadence. There were also no significant effects between gait condition and stride length or cadence. However, the effect between gait condition and walking speed was found to be significant [F(1.557, 40.485) = 4.568, P = 0.024, [Formula: see text
Schimpl, Michaela; Lederer, Christian; Daumer, Martin
2011-01-01
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure. PMID:21850254
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stenholm, Sari; Rantanen, Taina; Heliövaara, Markku; Koskinen, Seppo
2008-03-01
To study the association between different obesity indicators and walking limitation and to examine the role of C-reactive protein (CRP) and handgrip strength in that association. A cross-sectional, population-based study. The Health 2000 Survey with a representative sample of the Finnish population. Subjects aged 55 and older with complete data on body composition, CRP, handgrip strength, and walking limitation (N=2,208). Body composition, anthropometrics, CRP, medical conditions, handgrip strength, and maximal walking speed were measured in the health examination. Walking limitation was defined as maximal walking speed less than 1.2 m/s or difficulty walking half a kilometer. The two highest quartiles of body fat percentage and CRP and the two lowest quartiles of handgrip strength were all significantly associated with greater risk of walking limitation when chronic diseases and other covariates were taken into account. In addition, high CRP and low handgrip strength partially explained the association between high body fat percentage and walking limitation, but the risk of walking limitation remained significantly greater in persons in the two highest quartiles than in those in the lowest quartile of body fat percentage (odds ratio (OR)=1.75, 95% confidence interval (CI)=1.19-2.57 and OR=2.80, 95% CI 1.89-4.16). The prevalence of walking limitation was much higher in persons who simultaneously had high body fat percentage and low handgrip strength (61%) than in those with a combination of low body fat percentage and high handgrip strength (7%). Using body mass index and waist circumference as indicators of obesity yielded similar results as body fat percentage. Low-grade inflammation and muscle strength may partially mediate the association between obesity and walking limitation. Longitudinal studies and intervention trials are needed to verify this pathway.
Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.
Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K
2017-07-01
Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.
Dog walking among adolescents: Correlates and contribution to physical activity.
Engelberg, Jessa K; Carlson, Jordan A; Conway, Terry L; Cain, Kelli L; Saelens, Brian E; Glanz, Karen; Frank, Lawrence D; Sallis, James F
2016-01-01
To assess the association of dog walking with adolescents' moderate-to-vigorous physical activity (MVPA) and body mass index (BMI), and identify correlates of dog walking. Participants were 12-17year-olds (n=925) from the Baltimore, MD and Seattle, WA regions. Differences in accelerometer-assessed minutes/day of MVPA and self-reported BMI (percentile) were compared among adolescents (1) without a dog (n=441) and those with a dog who (2) did (≥1days/week, n=300) or (3) did not (n=184) walk it. Correlates of (1) dog walking (any vs. none) among adolescents with dogs (n=484), and (2) days/week of dog walking among dog walkers (n=300) were investigated. Potential correlates included: demographic, psychosocial, home environment, perceived neighborhood environment, and objective neighborhood environment factors. 52% of adolescents lived in a household with a dog, and 62% of those reported dog walking ≥1day/week. Dog walkers had 4-5 more minutes/day of MVPA than non-dog-walkers and non-dog-owners. BMI was not associated with dog walking or ownership. Among households with dogs, adolescents who lived in objectively walkable neighborhoods were 12% more likely to walk their dog than those in less walkable neighborhoods. Among dog walkers, having a multi-family home, college-educated parent, lower perceived traffic safety, higher street connectivity and less mixed use were related to more days/week of dog walking. Dog walkers had 7-8% more minutes/day of MVPA than non-dog walkers, and correlates of dog walking were found at multiple levels of influence. Results suggest multilevel interventions that include both environmental and psychosocial components to increase dog walking should be evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.
Could Sensory Mechanisms Be a Core Factor That Underlies Freezing of Gait in Parkinson’s Disease?
Ehgoetz Martens, Kaylena A.; Pieruccini-Faria, Frederico; Almeida, Quincy J.
2013-01-01
The main objective of this study was to determine how manipulating the amount of sensory information available about the body and surrounding environment influenced freezing of gait (FOG), while walking through a doorway. It was hypothesized that the more limited the sensory information, the greater the occurrence of freezing of gait. Nineteen patients with Parkinsoǹs disease who experience freezing of gait (PD-FOG) walked through a doorway or into open space in complete darkness. The three doorway conditions included: (i) FRAME (DARK) – walking through the remembered door frame; (ii) FRAME - walking through the door with the door frame illuminated; (iii) FRAME+BODY - walking through the door (both the door and the limbs illuminated). Additionally, two conditions of walking away from the doorway included: (iv) NO FRAME (DARK) - walking into open space; (v) NO FRAME+BODY - walking into open space with the limbs illuminated, to evaluate whether perception (or fear) of the doorway might account for FOG behaviour. Key outcome measures included: the number of freezing of gait episodes recorded, total duration of freezing of gait, and the percentage of time spent frozen. Significantly more freezing of gait episodes occurred when participants walked toward the doorway in complete darkness compared to walking into open space (p<0.05). Similar to previous studies, velocity (p<0.001) and step length (p<0.0001) significantly decreased when walking through the door in complete darkness, compared to all other conditions. Significant increases in step width variability were also identified but only when walking into open space (p<0.005). These results support the notion that sensory deficits may have a profound impact on freezing of gait that need to be carefully considered. PMID:23667499
Longo, Alberto; Hutchinson, W George; Hunter, Ruth F; Tully, Mark A; Kee, Frank
2015-10-01
Walking is the most common form of moderate-intensity physical activity among adults, is widely accessible and especially appealing to obese people. Most often policy makers are interested in valuing the effect on walking of changes in some characteristics of a neighbourhood, the demand response for walking, of infrastructure changes. A positive demand response to improvements in the walking environment could help meet the public health target of 150 min of at least moderate-intensity physical activity per week. We model walking in an individual's local neighbourhood as a 'weak complement' to the characteristics of the neighbourhood itself. Walking is affected by neighbourhood characteristics, substitutes, and individual's characteristics, including their opportunity cost of time. Using compensating variation, we assess the economic benefits of walking and how walking behaviour is affected by improvements to the neighbourhood. Using a sample of 1209 respondents surveyed over a 12 month period (Feb 2010-Jan 2011) in East Belfast, United Kingdom, we find that a policy that increased walkability and people's perception of access to shops and facilities would lead to an increase in walking of about 36 min/person/week, valued at £13.65/person/week. When focussing on inactive residents, a policy that improved the walkability of the area would lead to guidelines for physical activity being reached by only 12.8% of the population who are currently inactive. Additional interventions would therefore be needed to encourage inactive residents to achieve the recommended levels of physical activity, as it appears that interventions that improve the walkability of an area are particularly effective in increasing walking among already active citizens, and, among the inactive ones, the best response is found among healthier, younger and wealthier citizens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Six-minute walk test in children and adolescents with cystic fibrosis.
Cunha, Maristela Trevisan; Rozov, Tatiana; de Oliveira, Rosangela Caitano; Jardim, José R
2006-07-01
The 6-min walk test is a simple, rapid, and low-cost method that determines tolerance to exercise. We examined the reproducibility of the 6-min walk test in 16 children with cystic fibrosis (11 female, 5 male; age range, 11.0 +/- 1.9 years). We related the distance walked and the work performed (distance walked x body weight) with nutritional (body mass index and respiratory muscle strength) and clinical (degree of bronchial obstruction and Shwachman score) status. Patients were asked to walk as far as possible upon verbal command on two occasions. There was no statistical difference between distances walked (582.3 +/- 60 and 598.2 +/- 56.8 m, P = 0.31), heart rate, respiratory rate, pulse oxygen saturation, arterial blood pressure, dyspnea, and percentage of maximal heart rate for age in the two tests. Distance walked correlated (Pearson) with maximal expiratory pressure (98.6 +/- 28.1 cmH2O, r = 0.60, P < 0.01), maximal heart rate (157.9 +/- 10.1 bpm, r = 0.59, P < 0.02), Borg dyspnea scale (1.7 +/- 2.4, r = 0.55, P < 0.03), and double product (blood pressure x heart rate; r = 0.59, P < 0.02). The product of distance walked and body weight (work) correlated (Pearson) with height (r = 0.83, P = 0.000), maximal expiratory pressure (r = 0.64, P < 0.01), systolic blood pressure (r = 0.56, P < 0.02), and diastolic blood pressure (r = 0.55, P < 0.03). We conclude that the 6-min walk test is reproducible and easy to perform in children and adolescents with cystic fibrosis. The distance walked was related to the clinical variables studied. Work in the 6-min walk test may be an additional parameter in the determination of physical capacity.
The effect of light touch on balance control during overground walking in healthy young adults.
Oates, A R; Unger, J; Arnold, C M; Fung, J; Lanovaz, J L
2017-12-01
Balance control is essential for safe walking. Adding haptic input through light touch may improve walking balance; however, evidence is limited. This research investigated the effect of added haptic input through light touch in healthy young adults during challenging walking conditions. Sixteen individuals walked normally, in tandem, and on a compliant, low-lying balance beam with and without light touch on a railing. Three-dimensional kinematic data were captured to compute stride velocity (m/s), relative time spent in double support (%DS), a medial-lateral margin of stability (MOS ML ) and its variance (MOS ML CV), as well as a symmetry index (SI) for the MOS ML . Muscle activity was evaluated by integrating electromyography signals for the soleus, tibialis anterior, and gluteus medius muscles bilaterally. Adding haptic input decreased stride velocity, increased the %DS, had no effect on the MOS ML magnitude, decreased the MOS ML CV, had no effect on the SI, and increased activity of most muscles examined during normal walking. During tandem walking, stride velocity and the MOS ML CV decreased, while %DS, MOS ML magnitude, SI, and muscle activity did not change with light touch. When walking on a low-lying, compliant balance beam, light touch had no effect on walking velocity, MOS ML magnitude, or muscle activity; however, the %DS increased and the MOS ML CV and SI decreased when lightly touching a railing while walking on the balance beam. The decreases in the MOS ML CV with light touch across all walking conditions suggest that adding haptic input through light touch on a railing may improve balance control during walking through reduced variability.
Why does walking economy improve after weight loss in obese adolescents?
Peyrot, Nicolas; Thivel, David; Isacco, Laurie; Morin, Jean-Benoît; Belli, Alain; Duche, Pascale
2012-04-01
This study tested the hypothesis that the increase in walking economy (i.e., decrease in net metabolic rate per kilogram) after weight loss in obese adolescents is induced by a lower metabolic rate required to support the lower body weight and maintain balance during walking. Sixteen obese adolescent boys and girls were tested before and after a weight reduction program. Body composition and oxygen uptake while standing and walking at four preset speeds (0.75, 1, 1.25, and 1.5 m·s⁻¹) and at the preferred speed were quantified. Net metabolic rate and gross metabolic cost of walking-versus-speed relationships were determined. A three-compartment model was used to distinguish the respective parts of the metabolic rate associated with standing (compartment 1), maintaining balance and supporting body weight during walking (compartment 2), and muscle contractions required to move the center of mass and limbs (compartment 3). Standing metabolic rate per kilogram (compartment 1) significantly increased after weight loss, whereas net metabolic rate per kilogram during walking decreased by 9% on average across speeds. Consequently, the gross metabolic cost of walking per unit of distance-versus-speed relationship and hence preferred walking speeds did not change with weight loss. Compartment 2 of the model was significantly lower after weight loss, whereas compartment 3 did not change. The model showed that the improvement in walking economy after weight loss in obese adolescents was likely related to the lower metabolic rate of the isometric muscular contractions required to support the lower body weight and maintain balance during walking. Contrastingly, the part of the total metabolic rate associated with muscle contractions required to move the center of mass and limbs did not seem to be related to the improvement in walking economy in weight-reduced individuals.
Andrade-Lima, Aluísio; Cucato, Gabriel G; Domingues, Wagner J R; Germano-Soares, Antônio H; Cavalcante, Bruno R; Correia, Marilia A; Saes, Glauco F; Wolosker, Nelson; Gardner, Andrew W; Zerati, Antônio E; Ritti-Dias, Raphael M
2018-05-21
Impaired microcirculation is associated with poor walking capacity in symptomatic peripheral artery disease (PAD) patients during treadmill test, however, this test does not simulate the efforts of daily walking of these patients. Thus, the aim of the study was to describe the microcirculation responses during six-minute walk test (6MWT) and to analyze the relationship between microcirculation indicators and walking impairment in symptomatic PAD patients. Thirty-four patients were included (mean age = 67.6 ± 11.2). The clinical characteristics were collected and they performed a 6MWT in which initial claudication distance (ICD) and total walking distance (TWD) were recorded. During and after the 6MWT, calf muscle oxygen saturation (StO 2 ) parameters were monitored continuously to measure microcirculation behavior. The association between calf muscle StO 2 parameters and walking impairment was analyzed by Pearson or Spearman correlations. Walking impairment was not associated with any StO 2 parameters during exercise. In contrast, after 6MWT, recovery time of StO 2 (r = -0.472, P = .008) and recovery time to maximal StO 2 (r= -0.402, P = .019) were negatively correlated with ICD. Furthermore, the distance walked under claudication symptoms (ΔTWD - ICD) was positively correlated with recovery time to maximal StO 2 (r = 0.347, P = .048). In symptomatic PAD patients, shorter ICD values during a 6MWT are associated with a delayed recovery in calf muscle StO 2 after exercise. Calf muscle StO 2 parameters decrease subtly during 6MWT, suggesting that the degree of ischemia in the calf muscle during ground walking, simulating efforts of the daily walking, is relatively low. Copyright © 2018 Elsevier Inc. All rights reserved.
Hurt, Christopher P; Burgess, Jamie K; Brown, David A
2015-03-01
Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5±9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3±4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p=0.004) under some level of BWS (5% n=2, 10% n=3, 20% n=3) whereas nonimpaired controls did not change speed (p=0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r=0.68, p=0.003) and nonparetic braking impulses (r=-0.80, p=0.006), but were not correlated with decreased paretic braking impulses (r=0.50 p=0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb. Copyright © 2015 Elsevier B.V. All rights reserved.
Prilutsky, B I; Gregor, R J
2001-07-01
There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.
Johansson, Hanna; Lundin-Olsson, Lillemor; Littbrand, Håkan; Gustafson, Yngve; Rosendahl, Erik; Toots, Annika
2017-10-01
How forward and backward walking, both central to everyday life, relate to cognition are relatively unexplored in people with dementia. This study aimed to investigate if forward and backward walking velocity respectively, associated with global cognition and executive function in people with dementia, and whether the association differed according to walking aid use or dementia type. Using a cross-sectional design, 161 participants (77% women), a mean Mini-Mental State Examination (MMSE) score of 15, and mean age of 85.5years and living in nursing homes were included. Self-paced forward walking (FW) and backward walking (BW) velocity over 2.4m was measured. Global cognitive outcome measurements included MMSE and Alzheimer Disease Assessment Scale - Cognitive subscale (ADAS-Cog). Executive function was measured using Verbal Fluency (VF). In comprehensively adjusted multivariate linear regression analyses, FW was independently associated with VF (p=0.001), but not MMSE (p=0.126) or ADAS-Cog (p=0.818). BW was independently associated with VF (p=0.043) and MMSE (p=0.022), but not ADAS-Cog (p=0.519). Interaction analyses showed that the association between BW velocity and executive function were stronger in participants who walked without a walking aid. No associations differed according to dementia type. In conclusion, executive function appears important to walking velocity, both forward and backward, in people with dementia with mild to moderately severe cognitive impairment. Global cognitive function was associated with backward walking only, perhaps due to it being more challenging. The association between BW velocity and executive function differed according to use of walking aids, which appeared to attenuate the association. Copyright © 2017 Elsevier B.V. All rights reserved.
The Prevalence and Use of Walking Loops in Neighborhood Parks: A National Study.
Cohen, Deborah A; Han, Bing; Evenson, Kelly R; Nagel, Catherine; McKenzie, Thomas L; Marsh, Terry; Williamson, Stephanie; Harnik, Peter
2017-02-01
Previous studies indicate that the design of streets and sidewalks can influence physical activity among residents. Park features also influence park use and park-based physical activity. Although individuals can walk on streets and sidewalks, walking loops in parks offer a setting to walk in nature and to avoid interruptions from traffic. Here we describe the use of walking loops in parks and compare the number of park users and their physical activity in urban neighborhood parks with and without walking loops. We analyzed data from the National Study of Neighborhood Parks in which a representative sample of neighborhood parks (n = 174) from 25 U.S. cities with > 100,000 population were observed systematically to document facilities and park users by age group and sex. We compared the number of people and their physical activity in parks with and without walking loops, controlling for multiple factors, including park size, facilities, and population density. Overall, compared with parks without walking loops, on average during an hourly observation, parks with walking loops had 80% more users (95% CI: 42, 139%), and levels of moderate-to-vigorous physical activity were 90% higher (95% CI: 49, 145%). The additional park use and park-based physical activity occurred not only on the walking loops but throughout the park. Walking loops may be a promising means of increasing population level physical activity. Further studies are needed to confirm a causal relationship. Citation: Cohen DA, Han B, Evenson KR, Nagel C, McKenzie TL, Marsh T, Williamson S, Harnik P. 2017. The prevalence and use of walking loops in neighborhood parks: a national study. Environ Health Perspect 125:170-174; http://dx.doi.org/10.1289/EHP293.
The Prevalence and Use of Walking Loops in Neighborhood Parks: A National Study
Cohen, Deborah A.; Han, Bing; Evenson, Kelly R.; Nagel, Catherine; McKenzie, Thomas L.; Marsh, Terry; Williamson, Stephanie; Harnik, Peter
2016-01-01
Background: Previous studies indicate that the design of streets and sidewalks can influence physical activity among residents. Park features also influence park use and park-based physical activity. Although individuals can walk on streets and sidewalks, walking loops in parks offer a setting to walk in nature and to avoid interruptions from traffic. Objectives: Here we describe the use of walking loops in parks and compare the number of park users and their physical activity in urban neighborhood parks with and without walking loops. Methods: We analyzed data from the National Study of Neighborhood Parks in which a representative sample of neighborhood parks (n = 174) from 25 U.S. cities with > 100,000 population were observed systematically to document facilities and park users by age group and sex. We compared the number of people and their physical activity in parks with and without walking loops, controlling for multiple factors, including park size, facilities, and population density. Results: Overall, compared with parks without walking loops, on average during an hourly observation, parks with walking loops had 80% more users (95% CI: 42, 139%), and levels of moderate-to-vigorous physical activity were 90% higher (95% CI: 49, 145%). The additional park use and park-based physical activity occurred not only on the walking loops but throughout the park. Conclusions: Walking loops may be a promising means of increasing population level physical activity. Further studies are needed to confirm a causal relationship. Citation: Cohen DA, Han B, Evenson KR, Nagel C, McKenzie TL, Marsh T, Williamson S, Harnik P. 2017. The prevalence and use of walking loops in neighborhood parks: a national study. Environ Health Perspect 125:170–174; http://dx.doi.org/10.1289/EHP293 PMID:27517530
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911
A marching-walking hybrid induces step length adaptation and transfers to natural walking.
Long, Andrew W; Finley, James M; Bastian, Amy J
2015-06-01
Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not "walk" but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. Copyright © 2015 the American Physiological Society.
Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.
Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou
2018-03-01
To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all P<.05) during pool floor walking compared with OW. A 2×2 mixed model analysis of variance revealed a significant group × condition interaction in V˙o 2 , in which the control group increased V˙o 2 from OW to pool floor walking, whereas the stroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.
Walking and proximity to the urban growth boundary and central business district.
Brown, Scott C; Lombard, Joanna; Toro, Matthew; Huang, Shi; Perrino, Tatiana; Perez-Gomez, Gianna; Plater-Zyberk, Elizabeth; Pantin, Hilda; Affuso, Olivia; Kumar, Naresh; Wang, Kefeng; Szapocznik, José
2014-10-01
Planners have relied on the urban development boundary (UDB)/urban growth boundary (UGB) and central business district (CBD) to encourage contiguous urban development and conserve infrastructure. However, no studies have specifically examined the relationship between proximity to the UDB/UGB and CBD and walking behavior. To examine the relationship between UDB and CBD distance and walking in a sample of recent Cuban immigrants, who report little choice in where they live after arrival to the U.S. Data were collected in 2008-2010 from 391 healthy, recent Cuban immigrants recruited and assessed within 90 days of arrival to the U.S. who resided throughout Miami-Dade County FL. Analyses in 2012-2013 examined the relationship between UDB and CBD distances for each participant's residential address and purposive walking, controlling for key sociodemographics. Follow-up analyses examined whether Walk Score(®), a built-environment walkability metric based on distance to amenities such as stores and parks, mediated the relationship between purposive walking and each of UDB and CBD distance. Each one-mile increase in distance from the UDB corresponded to an 11% increase in the number of minutes of purposive walking, whereas each one-mile increase from the CBD corresponded to a 5% decrease in the amount of purposive walking. Moreover, Walk Score mediated the relationship between walking and each of UDB and CBD distance. Given the lack of walking and walkable destinations observed in proximity to the UDB/UGB boundary, a sprawl repair approach could be implemented, which strategically introduces mixed-use zoning to encourage walking throughout the boundary's zone. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Kitchen, Peter; Williams, Allison; Chowhan, James
2011-04-04
There is mounting concern over increasing rates of physical inactivity and overweight/obesity among children and adult in Canada. There is a clear link between the amount of walking a person does and his or her health. The purpose of this paper is to assess the health factors, socio-economic characteristics and urban-regional variations of walking to work among adults in Canada. Data is drawn from two cycles of the Canadian Community Health Survey: 2001 and 2005. The study population is divided into three groups: non-walkers, lower-duration walkers and high-duration walkers. Logistic regression modeling tests the association between levels of walking and health related outcomes (diabetes, high blood pressure, stress, BMI, physical activity), socio-economic characteristics (sex, age, income, education) and place of residence (selected Census Metropolitan Areas). In 2005, the presence of diabetes and high blood pressure was not associated with any form of walking. Adults within the normal weight range were more likely to be high-duration walkers. Females and younger people were more likely to be lower-duration walkers but less likely to be high-duration walkers. There was a strong association between SES (particularly relative disadvantage) and walking to work. In both 2001 and 2005, the conditions influencing walking to work were especially prevalent in Canada's largest city, Toronto, as well as in several small to medium sized urban areas including Halifax, Kingston, Hamilton, Regina, Calgary and Victoria. A number of strategies can be followed to increase levels of walking in Canada. It is clear that for many people walking to work is not possible. However, strategies can be developed to encourage adults to incorporate walking into their daily work and commuting routines. These include mass transit walking and workplace walking programs.
Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.
Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn
2017-04-01
To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.
Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A
2013-01-01
Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.
Khan, Soobia Saad; Khan, Saad Jawaid; Usman, Juliana
2017-03-01
Toe-out/-in gait has been prescribed in reducing knee joint load to medial knee osteoarthritis patients. This study focused on the effects of toe-out/-in at different walking speeds on first peak knee adduction moment (fKAM), second peak KAM (sKAM), knee adduction angular impulse (KAAI), net mechanical work by lower limb as well as joint-level contribution to the total limb work during level walking. Gait analysis of 20 healthy young adults was done walking at pre-defined normal (1.18m/s), slow (0.85m/s) and fast (1.43m/s) walking speeds with straight-toe (natural), toe-out (15°>natural) and toe-in (15°
Ko, Mansoo; Hughes, Lynne; Lewis, Harriet
2012-03-01
The impact of walking speed has not been evaluated as a feasible outcome measure associated with peak plantar pressure (PPP) distribution, which may result in tissue damage in persons with diabetic foot complications. The objective of this pilot study was to determine the walking speed and PPP distribution during barefoot walking in persons with diabetes. Nine individuals with diabetes and nine age-gender matched individuals without diabetes participated in this study. Each individual was marked at 10 anatomical landmarks for vibration and tactile pressure sensation tests to determine the severity of sensory deficits on the plantar surface of the dominant limb foot. A steady state walking speed, PPP, the fore and rear foot (F/R) PPP ratio and gait variables were measured during barefoot walking. Persons with diabetes had a significantly slower walking speed than the age-gender matched group resulting in a significant reduction of PPP at the F/R foot during barefoot walking (p < 0.05). There was no significant difference in F/R foot PPP ratio in the diabetic group compared with the age-gender matched group during barefoot walking (p > 0.05). There was a significant difference between the diabetic and non-diabetic groups for cadence, step time, toe out angle and the anterior-posterior excursion (APE) for centre of force (p < 0.05). Walking speed may be a potential indicator for persons with diabetes to identify PPP distribution during barefoot walking in a diabetic foot. However, the diabetic group demonstrated a more cautious walking pattern than the age-gender matched group by decreasing cadence, step length and APE, and increasing step time and toe in/out angle. People with diabetes may reduce the risk of foot ulcerations as long as they are able to prevent severe foot deformities such as callus, hammer toe or charcot foot. Copyright © 2011 John Wiley & Sons, Ltd.
Tempo and walking speed with music in the urban context
Franěk, Marek; van Noorden, Leon; Režný, Lukáš
2014-01-01
The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement performance. PMID:25520682
Takahashi, Paul Y; Baker, Mitzi A; Cha, Stephan; Targonski, Paul V
2012-01-01
Determine the relationship between walkability scores (using the Walk Score(®)) and activity levels (both bicycle and walking) in adults aged between 70 and 85 years in Rochester, Minnesota. This was a self-reported cross-sectional survey in adults aged over 70 years living in Rochester, Minnesota. Analysis used t-tests or chi-square analysis as appropriate. The primary endpoint was bicycle use or walking. The predictor variables were the Walk Score(®) as determined by their address, Charlson index, Duke Activity Status Index (DASI), and a 12-item short-form survey (SF-12) scores. Secondary analysis used an outcome of functional status (using the DASI) and walkability scores. Fifty-three individuals completed the surveys (48% return rate). The average age in the overall cohort was 77.02 years. Eighty-nine percent of individuals could walk at least a block and 15.1% rode their bicycles. The Walk Scores(®) did not differ between those who walked (38.9 ± 27.4) and those that did not (40.0 ± 36.08; P = 0.93). In a similar fashion, the Walk Scores(®) were not different for those who biked (36.38 ± 27.68) and those that did not (39.44 ± 28.49; P = 0.78). There was no relationship between Walk Scores(®) and DASI; however, a decreased DASI score was associated with increased age and comorbid illness (Charlson Score). In this small pilot survey, there was no difference in Walk Scores(®) between those older adults who walked or biked, compared to those that did not. The Walk Scores(®) were low in both groups, which may indicate the lack of accessibility for all older adults living in Rochester, Minnesota. The functional status seemed to be more related to age or comorbid conditions than the built environment.
Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics
Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.
2016-01-01
Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding less phase-dependent sensory processing and motor planning, as opposed to walking. PMID:26924977
Development and psychometric testing of the Dogs and WalkinG Survey (DAWGS).
Richards, Elizabeth A; McDonough, Meghan H; Edwards, Nancy E; Lyle, Roseann M; Troped, Philip J
2013-12-01
Dog owners represent 40% of the population, a promising audience to increase population levels of physical activity. The purpose of this study was to develop and test the psychometric properties of a new instrument to assess social-cognitive theory constructs related to dog walking. Dog owners (N = 431) completed the Dogs and WalkinG Survey (DAWGS). Survey items assessed dog-walking behaviors and self-efficacy, social support, outcome expectations, and outcome expectancies for dog walking. Test-retest reliability was assessed among 252 (58%) survey respondents who completed the survey twice. Factorial validity and factorial invariance by age and walking level were tested using confirmatory factor analysis. DAWGS items demonstrated moderate test-retest reliability (p = .39-.79; k = .41-.89). Acceptable model fit was found for all subscales. All subscales were invariant by age and walking level, except self-efficacy, which showed mixed evidence of invariance. The DAWGS is a psychometrically sound instrument for examining individual and interpersonal correlates of dog walking.
Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults.
Johnson, Marquell
2015-01-01
Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method : Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results : There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s -1 , all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s -1 , the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s -1 , the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion : Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace.
Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults
2015-01-01
Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method: Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results: There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s−1, all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s−1, the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s−1, the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion: Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace. PMID:28138464
Cellular telephone use during free-living walking significantly reduces average walking speed.
Barkley, Jacob E; Lepp, Andrew
2016-03-31
Cellular telephone (cell phone) use decreases walking speed in controlled laboratory experiments and there is an inverse relationship between free-living walking speed and heart failure risk. The purpose of this study was to examine the impact of cell phone use on walking speed in a free-living environment. Subjects (n = 1142) were randomly observed walking on a 50 m University campus walkway. The time it took each subject to walk 50 m was recorded and subjects were coded into categories: cell phone held to the ear (talking, n = 95), holding and looking at the cell phone (texting, n = 118), not visibly using the cell phone (no use, n = 929). Subjects took significantly (p < 0.001) longer traversing the walkway when talking (39.3 s) and texting (37.9 s) versus no use (35.3 s). As was the case with the previous laboratory experiments, cell phone use significantly reduces average speed during free-living walking.
Walking dreams in congenital and acquired paraplegia.
Saurat, Marie-Thérèse; Agbakou, Maité; Attigui, Patricia; Golmard, Jean-Louis; Arnulf, Isabelle
2011-12-01
To test if dreams contain remote or never-experienced motor skills, we collected during 6 weeks dream reports from 15 paraplegics and 15 healthy subjects. In 9/10 subjects with spinal cord injury and in 5/5 with congenital paraplegia, voluntary leg movements were reported during dream, including feelings of walking (46%), running (8.6%), dancing (8%), standing up (6.3%), bicycling (6.3%), and practicing sports (skiing, playing basketball, swimming). Paraplegia patients experienced walking dreams (38.2%) just as often as controls (28.7%). There was no correlation between the frequency of walking dreams and the duration of paraplegia. In contrast, patients were rarely paraplegic in dreams. Subjects who had never walked or stopped walking 4-64 years prior to this study still experience walking in their dreams, suggesting that a cerebral walking program, either genetic or more probably developed via mirror neurons (activated when observing others performing an action) is reactivated during sleep. Copyright © 2011 Elsevier Inc. All rights reserved.
Trapping photons on the line: controllable dynamics of a quantum walk
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao
2014-04-01
Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.
Carlson, Jordan A; Saelens, Brian E; Kerr, Jacqueline; Schipperijn, Jasper; Conway, Terry L; Frank, Lawrence D; Chapman, Jim E; Glanz, Karen; Cain, Kelli L; Sallis, James F
2015-03-01
To investigate relations of walking, bicycling and vehicle time to neighborhood walkability and total physical activity in youth. Participants (N=690) were from 380 census block groups of high/low walkability and income in two US regions. Home neighborhood residential density, intersection density, retail density, entertainment density and walkability were derived using GIS. Minutes/day of walking, bicycling and vehicle time were derived from processing algorithms applied to GPS. Accelerometers estimated total daily moderate-to-vigorous physical activity (MVPA). Models were adjusted for nesting of days (N=2987) within participants within block groups. Walking occurred on 33%, active travel on 43%, and vehicle time on 91% of the days observed. Intersection density and neighborhood walkability were positively related to walking and bicycling and negatively related to vehicle time. Residential density was positively related to walking. Increasing walking in youth could be effective in increasing total physical activity. Built environment findings suggest potential for increasing walking in youth through improving neighborhood walkability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos
2013-08-01
We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.
Study on Walking Training System using High-Performance Shoes constructed with Rubber Elements
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Kawanaka, S.; Kanezaki, K.; Doi, S.
2016-09-01
The number of accidental falls has been increasing among the elderly as society has aged. The main factor is a deteriorating center of balance due to declining physical performance. Another major factor is that the elderly tend to have bowlegged walking and their center of gravity position of the body tend to swing from side to side during walking. To find ways to counteract falls among the elderly, we developed walking training system to treat the gap in the center of balance. We also designed High-Performance Shoes that showed the status of a person's balance while walking. We also produced walk assistance from the insole in which insole stiffness corresponded to human sole distribution could be changed to correct the person's walking status. We constructed our High- Performances Shoes to detect pressure distribution during walking. Comparing normal sole distribution patterns and corrected ones, we confirmed that our assistance system helped change the user's posture, thereby reducing falls among the elderly.
Zlot, Amy I; Schmid, Tom L
2005-01-01
Compare walking and bicycling for transportation and recreation with the percentage of the community devoted to parklands. Behavioral Risk Factor Surveillance System (N = 206,992), Nationwide Personal Transportation Survey (N = 409,025), and Trust for Public Land (N = 55) data were used to estimate recreational walking and bicycling, utilitarian walking and bicycling, and parkland as a percentage of city acreage. Data were linked at the metropolitan statistical area or city level (N = 34). Pearson correlation coefficients were used to assess the associations among recreational and utilitarian walking and bicycling and parkland acreage. Utilitarian walking and bicycling and parkland acreage were significantly correlated (r = .62, p < .0001). No significant relationships were observed for leisure time walking or bicycling. Communities with more parks had significantly higher levels of walking and bicycling for transportation. Urban design features associated with leisure time physical activity might differ from those associated with transportation-related physical activity. Further studies are needed to articulate the relationships among community attributes and purposes of physical activity.
A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems.
Coffee, Neil T.; Nolan, Rebecca; Dollman, James; Sugiyama, Takemi
2017-01-01
Although the health benefits of walking are well established, participation is lower in rural areas compared to urban areas. Most studies on walkability and walking have been conducted in urban areas, thus little is known about the relevance of walkability to rural areas. A computer-assisted telephone survey of 2402 adults (aged ≥18 years) was conducted to determine walking behaviour and perceptions of neighbourhood walkability. Data were stratified by urban (n = 1738) and rural (n = 664). A greater proportion of respondents reported no walking in rural (25.8%) compared to urban areas (18.5%). Compared to urban areas, rural areas had lower walkability scores and urban residents reported higher frequency of walking. The association of perceived walkability with walking was significant only in urban areas. These results suggest that environmental factors associated with walking in urban areas may not be relevant in rural areas. Appropriate walkability measures specific to rural areas should be further researched. PMID:28846597
Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K
2015-07-12
Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce the likelihood of toe-ground contacts is to attain higher mid-swing clearance by eliminating the MTC event, i.e. demonstrating non-MTC gaits cycles.
Using built environment characteristics to predict walking for exercise
Lovasi, Gina S; Moudon, Anne V; Pearson, Amber L; Hurvitz, Philip M; Larson, Eric B; Siscovick, David S; Berke, Ethan M; Lumley, Thomas; Psaty, Bruce M
2008-01-01
Background Environments conducive to walking may help people avoid sedentary lifestyles and associated diseases. Recent studies developed walkability models combining several built environment characteristics to optimally predict walking. Developing and testing such models with the same data could lead to overestimating one's ability to predict walking in an independent sample of the population. More accurate estimates of model fit can be obtained by splitting a single study population into training and validation sets (holdout approach) or through developing and evaluating models in different populations. We used these two approaches to test whether built environment characteristics near the home predict walking for exercise. Study participants lived in western Washington State and were adult members of a health maintenance organization. The physical activity data used in this study were collected by telephone interview and were selected for their relevance to cardiovascular disease. In order to limit confounding by prior health conditions, the sample was restricted to participants in good self-reported health and without a documented history of cardiovascular disease. Results For 1,608 participants meeting the inclusion criteria, the mean age was 64 years, 90 percent were white, 37 percent had a college degree, and 62 percent of participants reported that they walked for exercise. Single built environment characteristics, such as residential density or connectivity, did not significantly predict walking for exercise. Regression models using multiple built environment characteristics to predict walking were not successful at predicting walking for exercise in an independent population sample. In the validation set, none of the logistic models had a C-statistic confidence interval excluding the null value of 0.5, and none of the linear models explained more than one percent of the variance in time spent walking for exercise. We did not detect significant differences in walking for exercise among census areas or postal codes, which were used as proxies for neighborhoods. Conclusion None of the built environment characteristics significantly predicted walking for exercise, nor did combinations of these characteristics predict walking for exercise when tested using a holdout approach. These results reflect a lack of neighborhood-level variation in walking for exercise for the population studied. PMID:18312660
Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco
2018-01-01
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815
Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?
Orr, Edna
2016-01-01
Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human’s ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants’ cognitive and socio-communicative outputs prospectively from 6–18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p < .005), along with increases, counter to the general reduction trend, in skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p < .01), and speech bids before walking; r = .729, p < .01)]. Integration of these proactive changes using a computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0.001). These preliminary data suggest that representational capacities, symbolic object use, language and social developments, form an integrated adaptable composite, which possibly enables proactive internal resource reallocation, designed to support the emergence of new developmental milestones, such as walking. PMID:27248834
Evaluating Pekin duck walking ability using a treadmill performance test.
Byrd, C J; Main, R P; Makagon, M M
2016-10-01
Gait scoring is the most popular method for assessing the walking ability of poultry species. Although inexpensive and easy to implement, gait scoring systems are often criticized for being subjective. Using a treadmill performance test we assessed whether observable differences in Pekin duck walking ability identified using a gait scoring system translated to differences in walking performance. One hundred and eighty ducks were selected using a three-category gait scoring system (GS0 = smooth gait, n = 55; GS0.5 = labored walk without easily identifiable impediment, n = 56; GS1 = obvious impediment, n = 59) and the amount of time each duck was able to sustain walking on a treadmill at a speed of 0.31 m/s was evaluated. The walking test ended when each duck met one of three elimination criteria: (1) The duck walked for a maximum time of ten minutes, (2) the duck required support from the observer's hand for more than three seconds in order to continue walking on the treadmill, or (3) the duck sat down on the treadmill and made no attempt to stand despite receiving assistance from the observer. Data were analyzed in SAS 9.4 using PROC GLM. Tukey's multiple comparison test was used to compare differences in time spent walking between gait scores. Significant differences were found between all gait scores (P < 0.05). Behavioral correlates of walking performance were investigated. Video recorded during the treadmill test was analyzed for counts of sitting, standing, and leaning behaviors. Data were analyzed in SAS 9.4 using a negative binomial model for count data. No differences were found between gait scores for counts of sitting, standing, and leaning behaviors (P > 0.05). In conclusion, the amount of time spent walking on the treadmill corresponded to gait score and was an effective measurement for quantifying Pekin duck walking ability. The test could be a valuable tool for assessing the development of walking issues or the effectiveness of treatments aimed at promoting leg health. © 2016 Poultry Science Association Inc.
Influence of water depth on energy expenditure during aquatic walking in people post stroke.
Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou
2018-05-11
This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p < .05). The participants demonstrated reduction in all variables as the water depth increased from thigh depth to chest depth. Significantly higher values in EE and VO 2 were found when the water depth increased from waist depth to chest depth. However, no significant difference was found in all variables between thigh-depth and waist-depth walking. Only thigh-depth walking revealed significant differences when compared with land walking in all variables. People post stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.
INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert
2011-01-01
We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. © 2011 IEEE
The scalable implementation of quantum walks using classical light
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas
2014-02-01
A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.
"I'm Just a'-Walking the Dog" correlates of regular dog walking.
Christian nee Cutt, Hayley; Giles-Corti, Billie; Knuiman, Matthew
2010-01-01
Intrapersonal and environmental factors associated with dog walking (N = 483) were examined. A greater proportion of regular (80%) than irregular (59%) dog walkers met the recommended 150 minutes of physical activity per week. Owners who perceived greater social support and motivation from their dogs to walk, and who had access to a dog-supportive park within their neighborhood, were more likely to regularly walk with their dogs, even after adjustment for other well-known correlates of physical activity. The higher level of physical activity of regular dog walkers can be attributed to the additional walking these owners perform with their dogs.
Wilson, Dawn K.; Van Horn, M. Lee; Siceloff, E. Rebekah; Alia, Kassandra A.; St. George, Sara M.; Lawman, Hannah G.; Trumpeter, Nevelyn N.; Coulon, Sandra M.; Griffin, Sarah F.; Wandersman, Abraham; Egan, Brent; Colabianchi, Natalie; Forthofer, Melinda; Gadson, Barney
2015-01-01
Background The “Positive Action for Today’s Health” (PATH) trial tested an environmental intervention to increase walking in underserved communities. Methods Three matched communities were randomized to a police-patrolled walking plus social marketing, a police-patrolled walking-only, or a no-walking intervention. The 24-month intervention addressed safety and access for physical activity (PA) and utilized social marketing to enhance environmental supports for PA. African-Americans (N=434; 62 % females; aged 51±16 years) provided accelerometry and psychosocial measures at baseline and 12, 18, and 24 months. Walking attendance and trail use were obtained over 24 months. Results There were no significant differences across communities over 24 months for moderate-to-vigorous PA. Walking attendance in the social marketing community showed an increase from 40 to 400 walkers per month at 9 months and sustained ~200 walkers per month through 24 months. No change in attendance was observed in the walking-only community. Conclusions Findings support integrating social marketing strategies to increase walking in underserved African-Americans (ClinicalTrials.gov #NCT01025726). PMID:25385203
Understanding the Influence of Environment on Adults' Walking Experiences: A Meta-Synthesis Study.
Dadpour, Sara; Pakzad, Jahanshah; Khankeh, Hamidreza
2016-07-20
The environment has an important impact on physical activity, especially walking. The relationship between the environment and walking is not the same as for other types of physical activity. This study seeks to comprehensively identify the environmental factors influencing walking and to show how those environmental factors impact on walking using the experiences of adults between the ages of 18 and 65. The current study is a meta-synthesis based on a systematic review. Seven databases of related disciplines were searched, including health, transportation, physical activity, architecture, and interdisciplinary databases. In addition to the databases, two journals were searched. Of the 11,777 papers identified, 10 met the eligibility criteria and quality for selection. Qualitative content analysis was used for analysis of the results. The four themes identified as influencing walking were "safety and security", "environmental aesthetics", "social relations", and "convenience and efficiency". "Convenience and efficiency" and "environmental aesthetics" could enhance the impact of "social relations" on walking in some aspects. In addition, "environmental aesthetics" and "social relations" could hinder the influence of "convenience and efficiency" on walking in some aspects. Given the results of the study, strategies are proposed to enhance the walking experience.
Walking straight into circles.
Souman, Jan L; Frissen, Ilja; Sreenivasa, Manish N; Ernst, Marc O
2009-09-29
Common belief has it that people who get lost in unfamiliar terrain often end up walking in circles. Although uncorroborated by empirical data, this belief has widely permeated popular culture. Here, we tested the ability of humans to walk on a straight course through unfamiliar terrain in two different environments: a large forest area and the Sahara desert. Walking trajectories of several hours were captured via global positioning system, showing that participants repeatedly walked in circles when they could not see the sun. Conversely, when the sun was visible, participants sometimes veered from a straight course but did not walk in circles. We tested various explanations for this walking behavior by assessing the ability of people to maintain a fixed course while blindfolded. Under these conditions, participants walked in often surprisingly small circles (diameter < 20 m), though rarely in a systematic direction. These results rule out a general explanation in terms of biomechanical asymmetries or other general biases [1-6]. Instead, they suggest that veering from a straight course is the result of accumulating noise in the sensorimotor system, which, without an external directional reference to recalibrate the subjective straight ahead, may cause people to walk in circles.
Human pair walking behavior: evaluation of cooperation strategies
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Bodova, Katarina; Kollar, Richard; Erban, Radek
2015-03-01
Human walkers are notoriously poor at keeping a direction without external cues: Experimental work by Souman et al. with blindfolded subjects told to walk in a straight line revealed intriguing circular and spiraling trajectories, which can be approximated by a stochastic process. In this work, motivated by pair walking experiments by Miglierini et al., we introduce an analysis of various strategies employed by a pair of blindfolded walkers, who are communicating via auditory cues, to maximize their efficiency at walking straight. To this end, we characterize pairs of strategies such as free walking, side-by-side walking and unconditional following from data generated by robot pair walking experiments (using computer vision techniques) and numerical simulations. We extract the mean exit distances of walker pairs from a corridor with finite width to construct phase portraits of the walking performance. We find intriguing cooperative effects leading to non-trivial enhancements of the efficiency at walking straight. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 239870; and from the Royal Society through a Research Grant.
Do Inequalities in Neighborhood Walkability Drive Disparities in Older Adults' Outdoor Walking?
Zandieh, Razieh; Flacke, Johannes; Martinez, Javier; Jones, Phil; van Maarseveen, Martin
2017-07-07
Older residents of high-deprivation areas walk less than those of low-deprivation areas. Previous research has shown that neighborhood built environment may support and encourage outdoor walking. The extent to which the built environment supports and encourages walking is called "walkability". This study examines inequalities in neighborhood walkability in high- versus low-deprivation areas and their possible influences on disparities in older adults' outdoor walking levels. For this purpose, it focuses on specific neighborhood built environment attributes (residential density, land-use mix and intensity, street connectivity, and retail density) relevant to neighborhood walkability. It applied a mixed-method approach, included 173 participants (≥65 years), and used a Geographic Information System (GIS) and walking interviews (with a sub-sample) to objectively and subjectively measure neighborhood built environment attributes. Outdoor walking levels were measured by using the Geographic Positioning System (GPS) technology. Data on personal characteristics was collected by completing a questionnaire. The results show that inequalities in certain land-use intensity (i.e., green spaces, recreation centers, schools and industries) in high- versus low-deprivation areas may influence disparities in older adults' outdoor walking levels. Modifying neighborhood land use intensity may help to encourage outdoor walking in high-deprivation areas.
Neighborhood Walkability and Walking for Transport Among South Asians in the MASALA Study.
Kelley, Elizabeth A; Kandula, Namratha R; Kanaya, Alka M; Yen, Irene H
2016-05-01
The neighborhood built environment can have a strong influence on physical activity levels, particularly walking for transport. In examining racial/ethnic differences in physical activity, one important and understudied group is South Asians. This study aims to describe the association between neighborhood walkability and walking for transport among South Asian men and women in the United States in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study. A cross-sectional study was conducted in 2014 using the baseline dataset of the MASALA study (N = 906). Mean age was 55 years old and 54% of the sample was male. Weekly minutes spent walking for transport was assessed using a questionnaire adapted from the Cross-Cultural Activity Participation Study. Neighborhood walkability was measured using Walk Score, a composite index of walkability. After adjusting for covariates, with each 10-point increase in Walk Score, South Asian American men engaged in 13 additional minutes per week of walking for transport (P = .008). No association was observed between walkability and walking for transport in South Asian American women. Results provide new evidence for how the effects of environmental influences on walking for transport may vary between South Asian men and women.
Limited Transfer of Newly Acquired Movement Patterns across Walking and Running in Humans
Ogawa, Tetsuya; Kawashima, Noritaka; Ogata, Toru; Nakazawa, Kimitaka
2012-01-01
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes. PMID:23029490
Kimoto, Minoru; Okada, Kyoji; Sakamoto, Hitoshi; Kondou, Takanori
2017-05-01
[Purpose] To improve walking efficiency could be useful for reducing fatigue and extending possible period of walking in children with cerebral palsy (CP). For this purpose, current study compared conventional parameters of gross motor performance, step length, and cadence in the evaluation of walking efficiency in children with CP. [Subjects and Methods] Thirty-one children with CP (21 boys, 10 girls; mean age, 12.3 ± 2.7 years) participated. Parameters of gross motor performance, including the maximum step length (MSL), maximum side step length, step number, lateral step up number, and single leg standing time, were measured in both dominant and non-dominant sides. Spatio-temporal parameters of walking, including speed, step length, and cadence, were calculated. Total heart beat index (THBI), a parameter of walking efficiency, was also calculated from heartbeats and walking distance in 10 minutes of walking. To analyze the relationships between these parameters and the THBI, the coefficients of determination were calculated using stepwise analysis. [Results] The MSL of the dominant side best accounted for the THBI (R 2 =0.759). [Conclusion] The MSL of the dominant side was the best explanatory parameter for walking efficiency in children with CP.
New mothers' views of weight and exercise.
Groth, Susan W; David, Tamala
2008-01-01
To describe the attitudes and preferences of ethnically diverse new mothers on weight and exercise. Exploratory, qualitative study. Forty-nine ethnically diverse women were interviewed during the first year following childbirth regarding beliefs about weight, choices of exercise, walking for exercise, perceived benefits, barriers, and facilitators of exercise. Content analysis techniques were used to analyze the data. Weight was a significant concern for women, although the importance varied by race. New mothers reported that they would like to weigh less, and they endorsed walking for exercise. Common barriers to exercise were children and time constraints; health problems were also seen as a barrier to walking as a form of exercise. Scheduling the walk and having a walking partner were factors that women said would facilitate walking for physical activity during the first year after childbirth. Because new mothers perceive walking as a good form of exercise, nurses can use this information to help them plan a daily walking schedule to aid in weight loss and control postpartum. Nurses should also encourage new mothers to look for a walking partner, especially another new mother or a friend, to help them continue their physical activity during the first year after childbirth.
Walking drawings and walking ability in children with cerebral palsy.
Chong, Jimmy; Mackey, Anna H; Stott, N Susan; Broadbent, Elizabeth
2013-06-01
To investigate whether drawings of the self walking by children with cerebral palsy (CP) were associated with walking ability and illness perceptions. This was an exploratory study in 52 children with CP (M:F = 28:24), mean age 11.1 years (range 5-18), who were attending tertiary level outpatient clinics. Children were asked to draw a picture of themselves walking. Drawing size and content was used to investigate associations with clinical walk tests and children's own perceptions of their CP assessed using a CP version of the Brief Illness Perception Questionnaire. Larger drawings of the self were associated with less distance traveled, higher emotional responses to CP, and lower perceptions of pain or discomfort, independent of age. A larger self-to-overall drawing height ratio was related to walking less distance. Drawings of the self confined within buildings and the absence of other figures were also associated with reduced walking ability. Drawing size and content can reflect walking ability, as well as symptom perceptions and distress. Drawings may be useful for clinicians to use with children with cerebral palsy to aid discussion about their condition. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Deshpande, Nandini; Zhang, Fang
2014-01-01
The ability to maintain stability in the frontal plane (medialateral direction) while walking is commonly included as a component of motor performance assessment. Postural control in the frontal plane may deteriorate faster and earlier with increasing age, compared to that in the sagittal plane (anteroposterior direction). Fifteen young (20-30 years old) and 15 older (>65 years old) healthy participants were recruited to investigate age-related differences in postural control during the normal and narrow-based walking when performed under suboptimal vestibular and lower limb somatosensory conditions achieved by galvanic stimulation and compliant surfaces, respectively. Gait speed decreased in the narrow-based walking condition, with larger decrease in the elderly (by 6%). In the elderly head roll increased with perturbed vestibular information in impaired somatosensory condition (by 40.70%). In both age groups trunk roll increased under impaired somatosensation in the narrow-based walking condition (by 43.62%) but not in normal walking condition. Older participants adopted a more cautious strategy characterized by lower walking speed when walking on a narrow base and exhibited deteriorated integrative ability of the CNS for head control. Accurate lower limb somatosensation may play a critical role in narrow-based walking.
Walking Wellness. Student Workbook.
ERIC Educational Resources Information Center
Sweetgall, Robert; Neeves, Robert
This comprehensive student text and workbook, for grades four through eight, contains 16 workshop units focusing on walking field trips, aerobic pacing concepts, walking techniques, nutrition, weight control and healthy life-style planning. Co-ordinated homework assignments are included. The appendixes include 10 tips for walking, a calorie chart,…
Self-reported walking ability predicts functional mobility performance in frail older adults.
Alexander, N B; Guire, K E; Thelen, D G; Ashton-Miller, J A; Schultz, A B; Grunawalt, J C; Giordani, B
2000-11-01
To determine how self-reported physical function relates to performance in each of three mobility domains: walking, stance maintenance, and rising from chairs. Cross-sectional analysis of older adults. University-based laboratory and community-based congregate housing facilities. Two hundred twenty-one older adults (mean age, 79.9 years; range, 60-102 years) without clinical evidence of dementia (mean Folstein Mini-Mental State score, 28; range, 24-30). We compared the responses of these older adults on a questionnaire battery used by the Established Populations for the Epidemiologic Study of the Elderly (EPESE) project, to performance on mobility tasks of graded difficulty. Responses to the EPESE battery included: (1) whether assistance was required to perform seven Katz activities of daily living (ADL) items, specifically with walking and transferring; (2) three Rosow-Breslau items, including the ability to walk up stairs and walk a half mile; and (3) five Nagi items, including difficulty stooping, reaching, and lifting objects. The performance measures included the ability to perform, and time taken to perform, tasks in three summary score domains: (1) walking ("Walking," seven tasks, including walking with an assistive device, turning, stair climbing, tandem walking); (2) stance maintenance ("Stance," six tasks, including unipedal, bipedal, tandem, and maximum lean); and (3) chair rise ("Chair Rise," six tasks, including rising from a variety of seat heights with and without the use of hands for assistance). A total score combines scores in each Walking, Stance, and Chair Rise domain. We also analyzed how cognitive/ behavioral factors such as depression and self-efficacy related to the residuals from the self-report and performance-based ANOVA models. Rosow-Breslau items have the strongest relationship with the three performance domains, Walking, Stance, and Chair Rise (eta-squared ranging from 0.21 to 0.44). These three performance domains are as strongly related to one Katz ADL item, walking (eta-squared ranging from 0.15 to 0.33) as all of the Katz ADL items combined (eta-squared ranging from 0.21 to 0.35). Tests of problem solving and psychomotor speed, the Trails A and Trails B tests, are significantly correlated with the residuals from the self-report and performance-based ANOVA models. Compared with the rest of the EPESE self-report items, self-report items related to walking (such as Katz walking and Rosow-Breslau items) are better predictors of functional mobility performance on tasks involving walking, stance maintenance, and rising from chairs. Compared with other self-report items, self-reported walking ability may be the best predictor of overall functional mobility.
Foster, Sarah; Hooper, Paula; Knuiman, Matthew; Christian, Hayley; Bull, Fiona; Giles-Corti, Billie
2016-02-16
Numerous cross-sectional studies have investigated the premise that the perception of crime will cause residents to constrain their walking; however the findings to date are inconclusive. In contrast, few longitudinal or prospective studies have examined the impact of crime-related safety on residents walking behaviours. This study used longitudinal data to test whether there is a causal relationship between crime-related safety and walking in the local neighbourhood. Participants in the RESIDential Environments Project (RESIDE) in Perth, Australia, completed a questionnaire before moving to their new neighbourhood (n = 1813) and again approximately one (n = 1467), three (n = 1230) and seven years (n = 531) after relocating. Self-report measures included neighbourhood perceptions (modified NEWS items) and walking inside the neighbourhood (min/week). Objective built environmental measures were generated for each participant's 1600 m neighbourhood at each time-point, and the count of crimes reported to police were generated at the suburb-level for the first three time-points only. The impact of crime-related safety on walking was examined in SAS using the Proc Mixed procedure (marginal repeated measures model with unrestricted variance pattern). Initial models controlled for demographics, time and self-selection, and subsequent models progressively adjusted for other built and social environment factors based on a social ecological model. For every increase of one level on a five-point Likert scale in perceived safety from crime, total walking within the local neighbourhood increased by 18.0 min/week (p = 0.000). This relationship attenuated to an increase of 10.5 min/week after accounting for other built and social environment factors, but remained significant (p = 0.008). Further analyses examined transport and recreational walking separately. In the fully adjusted models, each increase in safety from crime was associated with a 7.0 min/week increase in recreational walking (p = 0.009), however findings for transport walking were non-significant. All associations between suburb-level crime and walking were non-significant. This study provides longitudinal evidence of a potential causal relationship between residents' perceptions of safety from crime and recreational walking. Safety perceptions appeared to influence recreational walking, rather than transport-related walking. Given the popularity of recreational walking and the need to increase levels of physical activity, community social and physical environmental interventions that foster residents' feelings of safety are likely to increase recreational walking and produce public health gains.
Quantum walks with an anisotropic coin II: scattering theory
NASA Astrophysics Data System (ADS)
Richard, S.; Suzuki, A.; de Aldecoa, R. Tiedra
2018-05-01
We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest.
Self-Attractive Random Walks: The Case of Critical Drifts
NASA Astrophysics Data System (ADS)
Ioffe, Dmitry; Velenik, Yvan
2012-07-01
Self-attractive random walks (polymers) undergo a phase transition in terms of the applied drift (force): If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension d ≥ 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.
Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M
2015-10-01
While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.
Walking and wheelchair energetics in persons with paraplegia.
Cerny, D; Waters, R; Hislop, H; Perry, J
1980-09-01
The energetics of walking with orthoses and wheelchair propulsion at free velocity were tested in 10 adults with low-level spinal cord injuries. Eight were subjects who customarily used wheelchairs as their primary mode of locomotion; the other two used orthoses and had discontinued use of their wheelchairs. All required bilateral knee-ankle-foot orthoses to walk. A third habitual walker also was tested during walking only. Patients walked or propelled their wheelchairs around a 60.5-meter outdoor cement track. Heart rate, respiratory rate, and step frequency were recorded and transmitted by radiotelemetry. Expired air was collected for gas analysis in a polyethylene bag during the activity after a three-minute warm-up. During wheelchair propulsion all subjects demonstrated physiological responses within normal limits. Walking was significantly more difficult to perform than wheelchair propulsion (p < .005). Subjects who customarily used orthoses walked at a mean velocity of 59 +/- 5 m/min; those who primarily used wheelchairs had a mean walking velocity of 22 +/- 13 m/min. Oxygen uptake per minute was similar for both groups. These data suggest that the wheelchair will be the primary mode of locomotion for persons with spinal cord injury who need two knee-ankle-foot orthoses to walk, unless they are willing to work under anaerobic conditions and can walk at a velocity of 54 m/min or better.
Seebacher, Barbara; Kuisma, Raija; Glynn, Angela; Berger, Thomas
2017-02-01
Motor imagery and rhythmic auditory stimulation are physiotherapy strategies for walking rehabilitation. To investigate the effect of motor imagery combined with rhythmic cueing on walking, fatigue and quality of life (QoL) in people with multiple sclerosis (MS). Individuals with MS and Expanded Disability Status Scale scores of 1.5-4.5 were randomised into one of three groups: 17 minutes of motor imagery, six times per week, for 4 weeks, with music (A) or metronome cues (B), both with verbal cueing, and (C) controls. Primary outcomes were walking speed (Timed 25-Foot Walk) and distance (6-Minute Walk Test). Secondary outcomes were walking perception (Multiple Sclerosis Walking Scale-12), fatigue (Modified Fatigue Impact Scale) and QoL (Short Form-36 Health Survey, Multiple Sclerosis Impact Scale-29, Euroquol-5D-3L Questionnaire). Of the 112 participants randomised, 101 completed the study. Compared to controls, both interventions significantly improved walking speed, distance and perception. Significant improvements in cognitive but not psychosocial fatigue were seen in the intervention groups, and physical fatigue improved only in the music-based group. Both interventions improved QoL; however, music-cued motor imagery was superior at improving health-related QoL. Rhythmic-cued motor imagery improves walking, fatigue and QoL in people with MS, with music-cued motor imagery being more effective.
Gainey, Atikarn; Himathongkam, Thep; Tanaka, Hirofumi; Suksom, Daroonwan
2016-06-01
To investigate and compare the effects of Buddhist walking meditation and traditional walking on glycemic control and vascular function in patients with type 2 diabetes mellitus. Twenty three patients with type 2 diabetes (50-75 years) were randomly allocated into traditional walking exercise (WE; n=11) or Buddhism-based walking meditation exercise (WM; n=12). Both groups performed a 12-week exercise program that consisted of walking on the treadmill at exercise intensity of 50-70% maximum heart rate for 30min/session, 3 times/week. In the WM training program, the participants performed walking on the treadmill while concentrated on foot stepping by voiced "Budd" and "Dha" with each foot step that contacted the floor to practice mindfulness while walking. After 12 weeks, maximal oxygen consumption increased and fasting blood glucose level decreased significantly in both groups (p<0.05). Significant decrease in HbA1c and both systolic and diastolic blood pressure were observed only in the WM group. Flow-mediated dilatation increased significantly (p<0.05) in both exercise groups but arterial stiffness was improved only in the WM group. Blood cortisol level was reduced (p<0.05) only in the WM group. Buddhist walking meditation exercise produced a multitude of favorable effects, often superior to traditional walking program, in patients with type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Michael, Yvonne L; Carlson, Nichole E
2009-07-30
Using data from the SHAPE trial, a randomized 6-month neighborhood-based intervention designed to increase walking activity among older adults, this study identified and analyzed social-ecological factors mediating and moderating changes in walking activity. Three potential mediators (social cohesion, walking efficacy, and perception of neighborhood problems) and minutes of brisk walking were assessed at baseline, 3-months, and 6-months. One moderator, neighborhood walkability, was assessed using an administrative GIS database. The mediating effect of change in process variables on change in brisk walking was tested using a product-of-coefficients test, and we evaluated the moderating effect of neighborhood walkability on change in brisk walking by testing the significance of the interaction between walkability and intervention status. Only one of the hypothesized mediators, walking efficacy, explained the intervention effect (product of the coefficients (95% CI) = 8.72 (2.53, 15.56). Contrary to hypotheses, perceived neighborhood problems appeared to suppress the intervention effects (product of the coefficients (95% CI = -2.48, -5.6, -0.22). Neighborhood walkability did not moderate the intervention effect. Walking efficacy may be an important mediator of lay-lead walking interventions for sedentary older adults. Social-ecologic theory-based analyses can support clinical interventions to elucidate the mediators and moderators responsible for producing intervention effects.
Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation
Herr, Hugh M.; Grabowski, Alena M.
2012-01-01
Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75–1.75 m s−1 and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation. PMID:21752817
Temporal characteristics of imagined and actual walking in frail older adults.
Nakano, Hideki; Murata, Shin; Shiraiwa, Kayoko; Iwase, Hiroaki; Kodama, Takayuki
2018-05-09
Mental chronometry, commonly used to evaluate motor imagery ability, measures the imagined time required for movements. Previous studies investigating mental chronometry of walking have investigated healthy older adults. However, mental chronometry in frail older adults has not yet been clarified. To investigate temporal characteristics of imagined and actual walking in frail older adults. We investigated the time required for imagined and actual walking along three walkways of different widths [width(s): 50, 25, 15 cm × length: 5 m] in 29 frail older adults and 20 young adults. Imagined walking was measured with mental chronometry. We observed significantly longer imagined and actual walking times along walkways of 50, 25, and 15 cm width in frail older adults compared with young adults. Moreover, temporal differences (absolute error) between imagined and actual walking were significantly greater in frail older adults than in young adults along walkways with a width of 25 and 15 cm. Furthermore, we observed significant differences in temporal differences (constant error) between frail older adults and young adults for walkways with a width of 25 and 15 cm. Frail older adults tended to underestimate actual walking time in imagined walking trials. Our results suggest that walkways of different widths may be a useful tool to evaluate age-related changes in imagined and actual walking in frail older adults.
Motor modules in robot-aided walking
2012-01-01
Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. PMID:23043818
2017-01-01
Introduction Walking is of high priority for people with multiple sclerosis (PwMS). It remains unclear whether aerobic exercise can improve walking ability and upregulate neurotrophins. This review aims to consolidate evidence to develop optimal aerobic training parameters to enhance walking outcomes and neuroplasticity in PwMS. Methods Clinical studies examining aerobic exercise for ≥3 weeks, having outcomes on walking with or without neurotrophic markers, were included. Studies utilizing animal models of MS were included if they employed aerobic exercise with outcomes on neurological recovery and neurotrophins. From a total of 1783 articles, 12 clinical and 5 animal studies were included. Results Eleven clinical studies reported improvements in walking ability. Only two clinical studies evaluated both walking and neurotrophins, and neither found an increase in neurotrophins despite improvements in walking. Patients with significant walking impairments were underrepresented. Long-term follow-up revealed mixed results. Two animal studies reported a positive change in both neurological recovery and neurotrophins. Conclusion Aerobic exercise improves walking ability in PwMS. Gains are not consistently maintained at 2- to 9-month follow-up. Studies examining levels of neurotrophins are inconclusive, necessitating further research. Aerobic exercise enhances both neurological recovery and neurotrophins in animal studies when started 2 weeks before induction of MS. PMID:29181199
Hearst, Mary O; Sirard, John R; Forsyth, Ann; Parker, Emily D; Klein, Elizabeth G; Green, Christine G; Lytle, Leslie A
2013-04-01
Understanding the contextual factors associated with why adults walk is important for those interested in increasing walking as a mode of transportation and leisure. This paper investigates the relationships between neighborhood-level sociodemographic context, individual level sociodemographic characteristics and walking for leisure and transport. Data from two community-based studies of adults (n=550) were used to determine the association between the area-sociodemographic environment (ASDE), calculated from U.S. Census variables, and individual-level SES as potential correlates of walking behavior. Descriptive statistics, mean comparisons and Pearson's correlations coefficients were used to assess bivariate relationships. Generalized estimating equations were used to model the relationship between ASDE, as quartiles, and walking behavior. Adjusted models suggest adults engage in more minutes of walking for transportation and less walking for leisure in the most disadvantaged compared to the least disadvantaged neighborhoods but adding individual level demographics and SES eliminated the significant results. However, when models were stratified for free or reduced cost lunch, of those with children who qualified for free or reduced lunch, those who lived in the wealthiest neighborhoods engaged in 10.7 minutes less of total walking per day compared to those living in the most challenged neighborhoods (p<0.001). Strategies to increase walking for transportation or leisure need to take account of individual level socioeconomic factors in addition to area-level measures.
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
The effects of clothes on independent walking in toddlers.
Théveniau, Nicolas; Boisgontier, Matthieu P; Varieras, Sabine; Olivier, Isabelle
2014-01-01
The spatiotemporal features of walking in toddlers are known to be related to the level of maturation of the central nervous system. However, previous studies did not assess whether there could be an effect of clothes on the acquisition of walking. In this study, it was hypothesized that clothes modify the toddlers' walking. To test this hypothesis, 22 healthy toddlers divided into 3 groups of walking experience were assessed in four clothing conditions (Diaper+Trousers; Diaper+Pants of tracksuit; Diaper; Underwear). Results revealed significant effects of clothing on velocity and step length of toddlers from 6 to 18 months of walking experience. These results suggested that biomechanical constraints induced by the textile features alter the walking of toddlers. Therefore, in studies of toddler's gait, the clothing worn should be carefully mentioned and controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Slow walking model for children with multiple disabilities via an application of humanoid robot
NASA Astrophysics Data System (ADS)
Wang, ZeFeng; Peyrodie, Laurent; Cao, Hua; Agnani, Olivier; Watelain, Eric; Wang, HaoPing
2016-02-01
Walk training research with children having multiple disabilities is presented. Orthosis aid in walking for children with multiple disabilities such as Cerebral Palsy continues to be a clinical and technological challenge. In order to reduce pain and improve treatment strategies, an intermediate structure - humanoid robot NAO - is proposed as an assay platform to study walking training models, to be transferred to future special exoskeletons for children. A suitable and stable walking model is proposed for walk training. It would be simulated and tested on NAO. This comparative study of zero moment point (ZMP) supports polygons and energy consumption validates the model as more stable than the conventional NAO. Accordingly direction variation of the center of mass and the slopes of linear regression knee/ankle angles, the Slow Walk model faithfully emulates the gait pattern of children.
Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi
2016-01-01
Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking. PMID:27436971
Why is walker-assisted gait metabolically expensive?
Priebe, Jonathon R; Kram, Rodger
2011-06-01
Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.
Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T
2015-01-01
To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). RA patients underwent the timed 400-meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition (using whole-body dual X-ray absorptiometry, and abdominal and thigh computed tomography) were assessed and their associations with walking speed explored. A total of 132 RA patients had data for the 400-meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, nontreatment with disease-modifying antirheumatic drugs, and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristic was associated with a 20% lower walking speed among those with worse body composition (P < 0.001), compared with only a 6% lower speed among those with better body composition (P = 0.010 for interaction). Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, nonarticular indicators were collectively more potent indicators of an individual's mobility limitations. Copyright © 2015 by the American College of Rheumatology.
Thøgersen-Ntoumani, Cecilie; Loughren, Elizabeth A; Duda, Joan L; Fox, Kenneth R; Kinnafick, Florence-Emilie
2010-09-27
Following an extensive recruitment campaign, a 16-week lunchtime intervention to increase walking was implemented with insufficiently physically active University employees to examine programme feasibility and the effects of the programme in increasing walking behaviour, and in improving well-being and work performance. A feasibility study in which participants were randomised to an immediate treatment or a delayed treatment control (to start at 10 weeks) group. For the first ten weeks of the intervention, participants took part in three facilitator-led group walks per week each of thirty minutes duration and were challenged to accumulate another sixty minutes of walking during the weekends. In the second phase of the intervention, the organised group walks ceased to be offered and participants were encouraged to self-organise their walks. Motivational principles were employed using contemporary motivational theory. Outcome measures (including self-reported walking, step counts, cardiovascular fitness, general and work-related well-being and work performance) were assessed at baseline, at the end of the 16-week intervention and (for some) four months after the end of the intervention. Process and outcome assessments were also taken throughout, and following, the intervention. The results of the intervention will determine the feasibility of implementing a lunchtime walking programme to increase walking behaviour, well-being and performance in sedentary employees. If successful, there is scope to implement definitive trials across a range of worksites with the aim of improving both employee and organisational health. Current Controlled Trials ISRCTN81504663.
Kivell, Tracy L; Schmitt, Daniel
2009-08-25
Despite decades of debate, it remains unclear whether human bipedalism evolved from a terrestrial knuckle-walking ancestor or from a more generalized, arboreal ape ancestor. Proponents of the knuckle-walking hypothesis focused on the wrist and hand to find morphological evidence of this behavior in the human fossil record. These studies, however, have not examined variation or development of purported knuckle-walking features in apes or other primates, data that are critical to resolution of this long-standing debate. Here we present novel data on the frequency and development of putative knuckle-walking features of the wrist in apes and monkeys. We use these data to test the hypothesis that all knuckle-walking apes share similar anatomical features and that these features can be used to reliably infer locomotor behavior in our extinct ancestors. Contrary to previous expectations, features long-assumed to indicate knuckle-walking behavior are not found in all African apes, show different developmental patterns across species, and are found in nonknuckle-walking primates as well. However, variation among African ape wrist morphology can be clearly explained if we accept the likely independent evolution of 2 fundamentally different biomechanical modes of knuckle-walking: an extended wrist posture in an arboreal environment (Pan) versus a neutral, columnar hand posture in a terrestrial environment (Gorilla). The presence of purported knuckle-walking features in the hominin wrist can thus be viewed as evidence of arboreality, not terrestriality, and provide evidence that human bipedalism evolved from a more arboreal ancestor occupying the ecological niche common to all living apes.
Influence of non-level walking on pedometer accuracy.
Leicht, Anthony S; Crowther, Robert G
2009-05-01
The YAMAX Digiwalker pedometer has been previously confirmed as a valid and reliable monitor during level walking, however, little is known about its accuracy during non-level walking activities or between genders. Subsequently, this study examined the influence of non-level walking and gender on pedometer accuracy. Forty-six healthy adults completed 3-min bouts of treadmill walking at their normal walking pace during 11 inclines (0-10%) while another 123 healthy adults completed walking up and down 47 stairs. During walking, participants wore a YAMAX Digiwalker SW-700 pedometer with the number of steps taken and registered by the pedometer recorded. Pedometer difference (steps registered-steps taken), net error (% of steps taken), absolute error (absolute % of steps taken) and gender were examined by repeated measures two-way ANOVA and Tukey's post hoc tests. During incline walking, pedometer accuracy indices were similar between inclines and gender except for a significantly greater step difference (-7+/-5 steps vs. 1+/-4 steps) and net error (-2.4+/-1.8% for 9% vs. 0.4+/-1.2% for 2%). Step difference and net error were significantly greater during stair descent compared to stair ascent while absolute error was significantly greater during stair ascent compared to stair descent. The current study demonstrated that the YAMAX Digiwalker SW-700 pedometer exhibited good accuracy during incline walking up to 10% while it overestimated steps taken during stair ascent/descent with greater overestimation during stair descent. Stair walking activity should be documented in field studies as the YAMAX Digiwalker SW-700 pedometer overestimates this activity type.
Wilson, Dawn K; Trumpeter, Nevelyn N; St George, Sara M; Coulon, Sandra M; Griffin, Sarah; Lee Van Horn, M; Lawman, Hannah G; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D; Kitzman-Ulrich, Heather; Gadson, Barney
2010-11-01
Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. MAIN HYPOTHESES/OUTCOMES: It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Implications of this community-based trial are discussed. Copyright © 2010. Published by Elsevier Inc.
Hearing acuity as a predictor of walking difficulties in older women.
Viljanen, Anne; Kaprio, Jaakko; Pyykkö, Ilmari; Sorri, Martti; Koskenvuo, Markku; Rantanen, Taina
2009-12-01
To examine whether hearing acuity correlates with walking ability and whether impaired hearing at baseline predicts new self-reported walking difficulties after 3 years. Prospective follow-up. Research laboratory and community. Four hundred thirty-four women aged 63 to 76. Hearing was measured using clinical audiometry. A person was defined as having a hearing impairment if a pure-tone average of thresholds at 0.5 to 4 kHz in the better ear was 21 dB or greater. Maximal walking speed was measured over 10 m (m/s), walking endurance as the distance (m), covered in 6 minutes and difficulties in walking 2 km according to self-report. At baseline, women with hearing impairment (n=179) had slower maximal walking speed (1.7 +/- 0.3 m/s vs 1.8 +/- 0.3 m/s, P=.007), lower walking endurance (520 +/- 75 m vs 536 +/- 75 m, P=.08), and more selfreported major difficulties in walking 2 km (12.8% vs 5.5%, P=.02) than those without hearing impairment. During follow-up, major walking difficulties developed for 33 participants. Women with hearing impairment at baseline had a twice the age-adjusted risk for new walking difficulties as those without hearing impairment (odds ratio=2.04, 95% confidence interval=0.96-4.33). Hearing acuity correlated with mobility, which may be explained by the association between impaired hearing and poor balance and greater risk for falls, both of which underlie decline in mobility. Prevention of hearing loss is not only important for the ability to communicate, but may also have more wide-ranging influences on functional ability.
NASA Astrophysics Data System (ADS)
Sun, Y.
2017-09-01
In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other hand, cycling and walking offer health benefits by increasing people's physical activity. Earlier studies on investigating spatial patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data. In recent years, with the development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for exploring cycling or walking patterns at a large scale.
Soares, S M T P; Jannuzzi, H P C; Kassab, M F O; Nucci, L B; Paschoal, M A
2015-09-01
To evaluate the effects of repetition of the 6-minute walk test in patients scheduled to undergo abdominal surgery within the next 48 hours, and to verify the physical capacity of these subjects before surgery. Cross-sectional study. University teaching hospital. Forty-two patients scheduled for elective abdominal surgery within the next 48 hours. Distance walked in the 6-minute walk test, heart rate, peripheral oxygen saturation, dyspnoea and leg fatigue. Thirty-one patients (74%) were able to walk for a longer distance when the test was repeated. In these subjects, the mean increase in distance walked was 35.4 [standard deviation (SD) 19.9]m. Heart rate, dyspnoea and leg fatigue increased significantly over time on both tests (P<0.05). The mean heart rate at the end of the sixth minute was significantly higher on the second test (P=0.022). Peripheral oxygen saturation remained above 90% in both tests. The furthest distance walked was, on average, 461.3 (SD 89.7)m. This value was significantly lower than that predicted for the sample (P<0.001). Patients scheduled to undergo abdominal surgery were able to walk further when they performed a second 6-minute walk test. Moreover, they showed reduced physical ability before surgery. These findings suggest that repetition of the 6-minute walk test may increase the accuracy of the distance walked, which is useful for studies assessing the physical capacity of patients undergoing abdominal surgery. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong
2017-09-01
The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (P<0.05), maximum walking speed by 20.4% (P<0.05) and the comfortable walking speed by 15.3% (P<0.05), as well as decreasing energy expenditure by 13.9% (P<0.05). Our preliminary results provide support for the use of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.
Minimizing center of mass vertical movement increases metabolic cost in walking.
Ortega, Justus D; Farley, Claire T
2005-12-01
A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic cost, and this view remains prevalent in clinical gait analysis. We examined the relationship between vertical movement and metabolic cost by having human subjects walk normally and with minimal center of mass vertical movement ("flat-trajectory walking"). In flat-trajectory walking, subjects reduced center of mass vertical displacement by an average of 69% (P = 0.0001) but consumed approximately twice as much metabolic energy over a range of speeds (0.7-1.8 m/s) (P = 0.0001). In flat-trajectory walking, passive pendulum-like mechanical energy exchange provided only a small portion of the energy required to accelerate the center of mass because gravitational potential energy fluctuated minimally. Thus, despite the smaller vertical movements in flat-trajectory walking, the net external mechanical work needed to move the center of mass was similar in both types of walking (P = 0.73). Subjects walked with more flexed stance limbs in flat-trajectory walking (P < 0.001), and the resultant increase in stance limb force generation likely helped cause the doubling in metabolic cost compared with normal walking. Regardless of the cause, these findings clearly demonstrate that human walkers consume substantially more metabolic energy when they minimize vertical motion.
Troped, Philip J; Tamura, Kosuke; McDonough, Meghan H; Starnes, Heather A; James, Peter; Ben-Joseph, Eran; Cromley, Ellen; Puett, Robin; Melly, Steven J; Laden, Francine
2017-04-01
The built environment predicts walking in older adults, but the degree to which associations between the objective built environment and walking for different purposes are mediated by environmental perceptions is unknown. We examined associations between the neighborhood built environment and leisure and utilitarian walking and mediation by the perceived environment among older women. Women (N = 2732, M age = 72.8 ± 6.8 years) from Massachusetts, Pennsylvania, and California completed a neighborhood built environment and walking survey. Objective population and intersection density and density of stores and services variables were created within residential buffers. Perceived built environment variables included measures of land use mix, street connectivity, infrastructure for walking, esthetics, traffic safety, and personal safety. Regression and bootstrapping were used to test associations and indirect effects. Objective population, stores/services, and intersection density indirectly predicted leisure and utilitarian walking via perceived land use mix (odds ratios (ORs) = 1.01-1.08, 95 % bias corrected and accelerated confidence intervals do not include 1). Objective density of stores/services directly predicted ≥150 min utilitarian walking (OR = 1.11; 95% CI = 1.02, 1.22). Perceived land use mix (ORs = 1.16-1.44) and esthetics (ORs = 1.24-1.61) significantly predicted leisure and utilitarian walking, CONCLUSIONS: Perceived built environment mediated associations between objective built environment variables and walking for leisure and utilitarian purposes. Interventions for older adults should take into account how objective built environment characteristics may influence environmental perceptions and walking.
Wilson, Dawn K.; Trumpeter, Nevelyn N.; St. George, Sara M.; Coulon, Sandra M.; Griffin, Sarah; Van Horn, M. Lee; Lawman, Hannah G.; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D.; Kitzman-Ulrich, Heather; Gadson, Barney
2012-01-01
Background Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Design and setting Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. Intervention The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. Main hypotheses/outcomes It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Conclusions Implications of this community-based trial are discussed. PMID:20801233
Validation of an ambient measurement system (AMS) for walking speed.
Varsanik, Jonathan S; Kimmel, Zebadiah M; de Moor, Carl; Gabel, Wendy; Phillips, Glenn A
2017-07-01
Walking speed is an important indicator of worsening in a variety of neurological and neuromuscular diseases, yet typically is measured only infrequently and in a clinical setting. Passive measurement of walking speed at home could provide valuable information to track the progression of many neuromuscular conditions. The purpose of this study was to validate the measurement of walking speed by a shelf-top ambient measurement system (AMS) that can be placed in a patient's home. Twenty-eight healthy adults (16 male, 12 female) were asked to walk three pre-defined routes two times each (total of 168 traversals). For each traversal, walking speed was measured simultaneously by five sources: two independent AMSs and three human timers with stopwatches. Measurements across the five sources were compared by generalised estimating equations (GEE). Correlation coefficients compared pairwise for walking speeds across the two AMSs, three human timers, and three routes all exceeded 0.86 (p < .0001), and for AMS-to-AMS exceeded 0.92 (p < .0001). Aggregated across all routes, there was no significant difference in measured walking speeds between the two AMSs (p = .596). There was a statistically significant difference between the AMSs and human timers of 8.5 cm/s (p < .0001), which is comparable to differences reported for other non-worn sensors. The tested AMS demonstrated the ability to automatically measure walking speeds comparable to manual observation and recording, which is the current standard for assessing walking speed in a clinical setting. The AMS may be used to detect changes in walking speed in community settings.
Kaneda, Koichi; Ohgi, Yuji; Tanaka, Chiaki; Burkett, Brendan
2014-01-01
The aim of this study was to develop an estimation equation for energy expenditure during water walking based on the acceleration and walking speed. Cross-validation study. Fifty participants, males (n=29, age: 27-73) and females (n=21, age: 33-70) volunteered for this study. Based on their physical condition water walking was conducted at three self-selected walking speeds from a range of: 20, 25, 30, 35 and 40 m/min. Energy expenditure during each trial was calculated. During water walking, an accelerometer was attached to the occipital region and recorded three-dimensional accelerations at 100 Hz. A stopwatch was used for timing the participant's walking speed. The estimation model for energy expenditure included three components; (i) resting metabolic rate, (ii) internal energy expenditure for moving participants' body, and (iii) external energy expenditure due to water drag force. When comparing the measured and estimated energy expenditure with the acceleration data being the third component of the estimation model, high correlation coefficients were found in both male (r=0.73) and female (r=0.77) groups. When walking speeds were applied to the third component of the model, higher correlation coefficients were found (r=0.82 in male and r=0.88 in female). Good agreements of the developed estimation model were found in both methods, regardless of gender. This study developed a valid estimation model for energy expenditure during water walking by using head acceleration and walking speed. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Gomes, Grace A O; Reis, Rodrigo S; Parra, Diana C; Ribeiro, Isabela; Hino, Adriano A F; Hallal, Pedro C; Malta, Deborah C; Brownson, Ross C
2011-10-13
Walking is a popular form of physical activity and a convenient option to prevent chronic diseases. However, most of the evidence on this topic derives from high-income countries and little is known about walking patterns and its association with environmental features in low and middle income countries. To describe walking for leisure and to identify its association with perceived environment and personal factors among residents of three state capitals from different regions of Brazil Cross sectional phone surveys were conducted in Recife, Curitiba and Vitória (n = 6,166) in 2007, 2008 and 2009 respectively. Physical activity was measured using the leisure-time sections of the long version of the International Physical Activity Questionnaire (IPAQ). Perceived environment characteristics were assessed using a modified version of the Neighborhood Environment Walkability Scale (NEWS). Multivariable analysis tested the associations between walking for leisure and perceived environment characteristics across the cities using logistic regression. The proportions of respondents meeting physical activity recommendations through walking for leisure were 9.6%, 16.0% and 8.8% in Curitiba, Recife and Vitoria, respectively. Engaging in 150 min/wk or more of walking for leisure was significantly associated with younger age, higher education, better self-rated health and with lack of sidewalks on nearby streets. We did not find positive associations between walking for leisure and traffic conditions and safety related to cycling/walking during the day or night. Most environmental features were not associated with walking for leisure. Personal factors were stronger predictors of walking for leisure as compared with perceived environment factors.
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2009-02-01
Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.
Franklin, Simon; Li, François-Xavier; Grey, Michael J
2018-02-01
Ageing is associated with a decline in muscle strength and impaired sensory mechanisms which contribute to an increased risk of falls. Walking barefooted has been suggested to promote increased muscle strength and improved proprioceptive sensibility through better activation of foot and ankle musculature. Minimalist footwear has been marketed as a method of reaping the suggested benefits of barefoot walking whilst still providing a protective surface. The aim of this study was to investigate if walking barefoot or in minimalist footwear provokes increased muscle activation compared to walking in conventional footwear. Seventy healthy adults (age range 20-87) volunteered for this study. All participants walked along a 7m walking lane five times in four different footwear conditions (barefoot (BF), minimalist shoes (MSH), their own shoes (SH) and control shoes (CON)). Muscle activity of their tibialis anterior (TA), gastrocnemius medialis (GCM) and peroneus longus (PL) were recorded simultaneously and normalised to the BF condition. MSH are intermediate in terms of ankle kinematics and muscle activation patterns. Walking BF or in MSH results in a decrease in TA activity at initial stance due to a flatter foot at contact in comparison to conventional footwear. Walking BF reduces PL activity at initial stance in the young and middle age but not the old. Walking in supportive footwear appears to reduce the balance modulation role of the GCM in the young and middle age but not the old, possibly as a result of slower walking speed when BF. Copyright © 2017. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2008-BT-STD-0015] RIN 1904-AB86 Energy... preliminary analysis for walk-in coolers and walk-in freezers, and provide docket number EERE-2008-BT-STD-0015...
Neighborhood Environment and Adherence to a Walking Intervention in African American Women
ERIC Educational Resources Information Center
Zenk, Shannon N.; Wilbur, JoEllen; Wang, Edward; McDevitt, Judith; Oh, April; Block, Richard; McNeil, Sue; Savar, Nina
2009-01-01
This secondary analysis examined relationships between the environment and adherence to a walking intervention among 252 urban and suburban, midlife African American women. Participants received an enhanced or minimal behavioral intervention. Walking adherence was measured as the percentage of prescribed walks completed. Objective measures of the…
Walking with Students To Increase Satisfaction and Retention.
ERIC Educational Resources Information Center
Steinhaus, Carol s.
1999-01-01
Describes "walking office hours," an activity in which students (n=64) in introductory health topics and human resources management classes each took a one-half hour walk with the professor around the campus. In both classes students unanimously reported higher "comfort levels" with the instructor following the walk. (DB)
The Walking Wellness Teacher's Guide. A Resource Book for Elementary & Middle School Teachers.
ERIC Educational Resources Information Center
Sweetgall, Robert; Neeves, Robert
This teacher's resource guide for implementing a "Walking Wellness" curriculum in grades four through eight offers 16 hands-on workshops. Activities focus on fitness walking, cardiovascular conditioning, nutrition and weight control, walking techniques and posture, stress control, tobacco-free living, and lifestyle planning. The student…
Walking Perception by Walking Observers
ERIC Educational Resources Information Center
Jacobs, Alissa; Shiffrar, Maggie
2005-01-01
People frequently analyze the actions of other people for the purpose of action coordination. To understand whether such self-relative action perception differs from other-relative action perception, the authors had observers either compare their own walking speed with that of a point-light walker or compare the walking speeds of 2 point-light…
Compensatory balance reactions during forward and backward walking on a treadmill.
Bolton, D A E; Misiaszek, J E
2012-04-01
Previous work suggests that balance perturbations to the body opposing the direction of progression during walking lead to larger amplitude corrective reactions than perturbations concurrent with walking direction. To test this hypothesis, subjects received forward and backward perturbations applied to the pelvis through a padded harness, while walking forwards or backwards on a treadmill. Contrary to our hypothesis, the greatest responses were associated with backward perturbations regardless of the direction of walking. Copyright © 2011 Elsevier B.V. All rights reserved.
Detection of gait characteristics for scene registration in video surveillance system.
Havasi, László; Szlávik, Zoltán; Szirányi, Tamás
2007-02-01
This paper presents a robust walk-detection algorithm, based on our symmetry approach which can be used to extract gait characteristics from video-image sequences. To obtain a useful descriptor of a walking person, we temporally track the symmetries of a person's legs. Our method is suitable for use in indoor or outdoor surveillance scenes. Determining the leading leg of the walking subject is important, and the presented method can identify this from two successive walk steps (one walk cycle). We tested the accuracy of the presented walk-detection method in a possible application: Image registration methods are presented which are applicable to multicamera systems viewing human subjects in motion.
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Denisov, S.; Klafter, J.
2015-04-01
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Continuous-time quantum random walks require discrete space
NASA Astrophysics Data System (ADS)
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Look who's walking: social and environmental correlates of children's walking in London.
Steinbach, Rebecca; Green, Judith; Edwards, Phil
2012-07-01
A substantial literature examines the social and environmental correlates of walking to school but less addresses walking outside the school commute. Using travel diary data from London, we examined social and environmental correlates of walking: to school; outside the school commute during term time; and during the summer and weekends. Living in a household without a car was associated with all journey types; 'Asian' ethnicity was negatively associated with walking for non-school travel; environmental factors were associated with non-school journeys, but not the school commute. Interventions aiming to increase children's active travel need to take account of the range of journeys they make. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lévy Walks Suboptimal under Predation Risk
Abe, Masato S.; Shimada, Masakazu
2015-01-01
A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687
On the physical realizability of quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank
Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
To Walk or Not to Walk?: The Hierarchy of Walking Needs
ERIC Educational Resources Information Center
Alfonzo, Mariela
2005-01-01
The multitude of quality of life problems associated with declining walking rates has impelled researchers from various disciplines to identify factors related to this behavior change. Currently, this body of research is in need of a transdisciplinary, multilevel theoretical model that can help explain how individual, group, regional, and…
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Request--Safety Standard for Walk-Behind Power Lawn Mowers AGENCY: Consumer Product Safety Commission... with the Commission's safety standard for walk- behind power lawn mowers. DATES: Written comments on... of approval of the collection of information required in the Safety Standard for Walk-Behind Power...
Accumulating Brisk Walking for Fitness, Cardiovascular Risk, and Psychological Health.
ERIC Educational Resources Information Center
Murphy, Marie; Nevill, Alan; Neville, Charlotte; Biddle, Stuart; Hardman, Adrianne
2002-01-01
Compared the effects of different patterns of regular brisk walking on fitness, cardiovascular disease risk factors, and psychological well-being in previously sedentary adults. Data on adults who completed either short-bout or long-bout walking programs found that three short bouts of brisk walking accumulated throughout the day were as effective…
The Not-so-Random Drunkard's Walk
ERIC Educational Resources Information Center
Ehrhardt, George
2013-01-01
This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…
Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)
ERIC Educational Resources Information Center
Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela
2013-01-01
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…
Sugiyama, Takemi; Francis, Jacinta; Middleton, Nicholas J; Owen, Neville; Giles-Corti, Billie
2010-09-01
We examined associations of attractiveness, size, and proximity of multiple neighborhood open spaces (NOSs) with recreational walking. Adults participating in the Residential Environments (RESIDE) study (n=1366) in Perth, Australia, reported time spent engaging in recreational walking within their neighborhoods. Park audit data and geographic information systems were used to identify the most attractive, largest, and nearest NOS within a 1.6-km radius from each participant's residential location. Regression analysis was used to examine attributes (attractiveness, size, and proximity) of these open spaces and their associations with participants' recreational walking. Shorter distance to attractive open spaces was associated with doing any recreational walking, but adults with larger attractive open spaces within 1.6 km of their home were more likely to walk 150 minutes or more in a week. For adults, the presence of a large, high-quality park within walking distance of one's home may be more important in promoting sufficient amounts of walking for health benefits than is the presence of an open space within a shorter distance.
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
Barriers and motivators for owners walking their dog: results from qualitative research.
Cutt, Hayley E; Giles-Corti, Billie; Wood, Lisa J; Knuiman, Matthew W; Burke, Valerie
2008-08-01
This qualitative research explored the relationship between dog ownership and dog-related, social environmental and physical environmental factors associated with walking with a dog. Seven focus groups with dog owners (n=51) were conducted. A pre-determined discussion guide was used and transcripts were analysed as group data, using content analysis to identify common themes. Many of the physical environmental barriers and facilitators that influenced dog owners to walk were similar to those found in the literature for general walking. However, a number of key motivators for walking, specific to dog owners, were identified. Dog owners reported that their dog was a strong source of motivation, companionship and social support that encouraged them to walk with their dog. The availability and accessibility of public open space (POS) for dogs and the provision of dog-related infrastructure within POS were also important environmental factors that affected whether owners walked with their dog. Results from this qualitative study were used to develop the Dogs and Physical Activity (DAPA) tool which is now being used to measure the walking behaviour of dog owners.
Humans do not have direct access to retinal flow during walking
Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.
2013-01-01
Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509
Antipersistent dynamics in kinetic models of wealth exchange
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Chatterjee, Arnab; Sen, Parongama
2011-11-01
We investigate the detailed dynamics of gains and losses made by agents in some kinetic models of wealth exchange. An earlier work suggested that a walk in an abstract gain-loss space can be conceived for the agents. For models in which agents do not save, or save with uniform saving propensity, the walk has diffusive behavior. For the case in which the saving propensity λ is distributed randomly (0≤λ<1), the resultant walk showed a ballistic nature (except at a particular value of λ*≈0.47). Here we consider several other features of the walk with random λ. While some macroscopic properties of this walk are comparable to a biased random walk, at microscopic level, there are gross differences. The difference turns out to be due to an antipersistent tendency toward making a gain (loss) immediately after making a loss (gain). This correlation is in fact present in kinetic models without saving or with uniform saving as well, such that the corresponding walks are not identical to ordinary random walks. In the distributed saving case, antipersistence occurs with a simultaneous overall bias.
Koch, Elizabeth; Holowka, Nicholas B.; Lieberman, Daniel E.
2018-01-01
Despite substantial recent interest in walking barefoot and in minimal footwear, little is known about potential differences in walking biomechanics when unshod versus minimally shod. To test the hypothesis that heel impact forces are similar during barefoot and minimally shod walking, we analysed ground reaction forces recorded in both conditions with a pedography platform among indigenous subsistence farmers, the Tarahumara of Mexico, who habitually wear minimal sandals, as well as among urban Americans wearing commercially available minimal sandals. Among both the Tarahumara (n = 35) and Americans (n = 30), impact peaks generated in sandals had significantly (p < 0.05) higher force magnitudes, slower loading rates and larger vertical impulses than during barefoot walking. These kinetic differences were partly due to individuals' significantly greater effective mass when walking in sandals. Our results indicate that, in general, people tread more lightly when walking barefoot than in minimal footwear. Further research is needed to test if the variations in impact peaks generated by walking barefoot or in minimal shoes have consequences for musculoskeletal health. PMID:29657826
Francis, Jacinta; Middleton, Nicholas J.; Owen, Neville; Giles-Corti, Billie
2010-01-01
Objectives. We examined associations of attractiveness, size, and proximity of multiple neighborhood open spaces (NOSs) with recreational walking. Methods. Adults participating in the Residential Environments (RESIDE) study (n = 1366) in Perth, Australia, reported time spent engaging in recreational walking within their neighborhoods. Park audit data and geographic information systems were used to identify the most attractive, largest, and nearest NOS within a 1.6-km radius from each participant's residential location. Regression analysis was used to examine attributes (attractiveness, size, and proximity) of these open spaces and their associations with participants’ recreational walking. Results. Shorter distance to attractive open spaces was associated with doing any recreational walking, but adults with larger attractive open spaces within 1.6 km of their home were more likely to walk 150 minutes or more in a week. Conclusions. For adults, the presence of a large, high-quality park within walking distance of one's home may be more important in promoting sufficient amounts of walking for health benefits than is the presence of an open space within a shorter distance. PMID:20634455
Interactive locomotion: Investigation and modeling of physically-paired humans while walking
Le Goff, Camille G.; Ijspeert, Auke Jan
2017-01-01
In spite of extensive studies on human walking, less research has been conducted on human walking gait adaptation during interaction with another human. In this paper, we study a particular case of interactive locomotion where two humans carry a rigid object together. Experimental data from two persons walking together, one in front of the other, while carrying a stretcher-like object is presented, and the adaptation of their walking gaits and coordination of the foot-fall patterns are analyzed. It is observed that in more than 70% of the experiments the subjects synchronize their walking gaits; it is shown that these walking gaits can be associated to quadrupedal gaits. Moreover, in order to understand the extent by which the passive dynamics can explain this synchronization behaviour, a simple 2D model, made of two-coupled spring-loaded inverted pendulums, is developed, and a comparison between the experiments and simulations with this model is presented, showing that with this simple model we are able to reproduce some aspects of human walking behaviour when paired with another human. PMID:28877161
Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.
Rendel, Mark D
2011-01-01
In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.
Yan, Bryan P; Lau, James Y; Yu, Check-Man; Au, Kim; Chan, Ka-Wai; Yu, Doris S; Ma, Ronald C; Lam, Yat-Yin; Hiatt, William R
2011-06-01
The Walking Impairment Questionnaire (WIQ) is a frequently used questionnaire to evaluate patients with intermittent claudication on four subscales: pain severity, walking distance, walking speed and the ability to climb stairs. The aim of this study is to translate and validate the WIQ in Chinese. After translation and cultural adaptation of the WIQ, 134 patients with intermittent claudication completed the Chinese WIQ and European Quality of Life 5 Dimension (EQ-5D). Walking distances were determined by the 6-minute walk test (6MWT). Correlations between the WIQ, quality of life questionnaire and walking distances were calculated to determine validity. Reliability and internal consistency were determined using the intra-class correlation coefficient (ICC) and Cronbach's alpha (α), respectively. Significant correlations were found between the WIQ score, initial claudication distance (ICD), absolute claudication distance (ACD) and all domains of the EQ-5D (all p ≤ 0.01). Test-retest reliability (ICC = 0.74) and the overall internal consistency determined (α = 0.90) showed good agreement. A lower WIQ score corresponded to shorter walking distances. In conclusion, this study showed that the Chinese version of the WIQ is a valid, reliable and clinically relevant instrument for assessing walking impairment in patients with intermittent claudication.
van Asseldonk, Edwin H F; Veneman, Jan F; Ekkelenkamp, Ralf; Buurke, Jaap H; van der Helm, Frans C T; van der Kooij, Herman
2008-08-01
"Assist as needed" control algorithms promote activity of patients during robotic gait training. Implementing these requires a free walking mode of a device, as unassisted motions should not be hindered. The goal of this study was to assess the normality of walking in the free walking mode of the LOPES gait trainer, an 8 degrees-of-freedom lightweight impedance controlled exoskeleton. Kinematics, gait parameters and muscle activity of walking in a free walking mode in the device were compared with those of walking freely on a treadmill. Average values and variability of the spatio-temporal gait variables showed no or small (relative to cycle-to-cycle variability) changes and the kinematics showed a significant and relevant decrease in knee angle range only. Muscles involved in push off showed a small decrease, whereas muscles involved in acceleration and deceleration of the swing leg showed an increase of their activity. Timing of the activity was mainly unaffected. Most of the observed differences could be ascribed to the inertia of the exoskeleton. Overall, walking with the LOPES resembled free walking, although this required several adaptations in muscle activity. These adaptations are such that we expect that Assist as Needed training can be implemented in LOPES.
Elastic coupling of limb joints enables faster bipedal walking
Dean, J.C.; Kuo, A.D.
2008-01-01
The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360
Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos
2018-01-16
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.
Sawers, Andrew; Hafner, Brian J
2018-05-08
Challenging clinical balance tests are needed to expose balance deficits in lower-limb prost-hesis users. This study examined whether narrowing beam-walking could overcome conceptual and practical limitations identified in fixed-width beam-walking. Cross-sectional. Unilateral lower-limb prosthesis users. Participants walked 10 times along a low, narrowing beam. Performance was quantified using the normalized distance walked. Heuristic rules were applied to determine whether the narrowing beam task was "too easy," "too hard," or "appropriately challenging" for each participant. Linear regression and Bland-Altman plots were used to determine whether combinations of the first 5 trials could predict participants' stable beam-walking performance. Forty unilateral lower-limb prosthesis users participated. Narrowing beam-walking was appropriately challenging for 98% of participants. Performance stabilized for 93% of participants within 5 trials, while 62% were stable across all trials. The mean of trials 3-5 accurately predicted stable performance. A clinical narrowing beam-walking test is likely to challenge a range of lower-limb prosthesis users, have minimal administrative burden, and exhibit no floor or ceiling effects. Narrowing beam-walking is therefore a clinically viable method to evaluate lower-limb prosthesis users' balance ability, but requires psychometric testing before it is used to assess fall risk.
Walking to Work: The Roles of Neighborhood Walkability and Socioeconomic Deprivation.
Kelly, Cheryl M; Lian, Min; Struthers, Jim; Kammrath, Anna
2015-06-16
There are few studies that aimed to find a relationship between transportation-related physical activity and neighborhood socioeconomic condition using a composite deprivation index. The purpose of this study is to assess the relationship of neighborhood walkability and socioeconomic deprivation with percentage of adults walking to work. A walkability index and a socioeconomic deprivation index were created at block group-level. The outcome variable, percentage of adults who walk to work was dichotomized as < 5% of the block group walking to work low and ≥ 5% of the block group walking to work as high and applied logistic regression to examine the association of walkability and socioeconomic deprivation with walking to work. Individuals in the most walkable neighborhoods are almost 5 times more likely to walk to work than individuals in the least walkable neighborhoods (OR = 4.90, 95% CI = 2.80-8.59). After adjusting for neighborhood socioeconomic deprivation, individuals in the most walkable neighborhoods are almost 3 times more likely to walk to work than individuals in the least walkable neighborhoods (OR = 2.98, 95% CI = 1.62-5.49). Walkability (as measured by the walkability index) is a very strong indicator of walking to work even after controlling for neighborhood socioeconomic disadvantage.
The effect of objectively measured crime on walking in minority adults.
McDonald, Noreen C
2008-01-01
Evaluate the relationship between neighborhood crime and the amount of daily walking by minority adults. This was a cross-sectional study of minority adult walking behavior and crime. Setting. Oakland, California was chosen as the study area because of the substantial spatial variation in levels of criminal activity combined with detailed information on walking trips. The study was restricted to minority adults who responded to the 2000 Bay Area Travel Survey and lived in Oakland, California (n = 359). Data on leisure and utilitarian walking were collected through the 2000 Bay Area Travel Survey and combined with crime data from the Oakland Police Department. A negative binomial model was used to test if violent, property, or quality of life crimes had significant associations with daily minutes walked, controlling for individual and neighborhood covariates. The model showed a significant negative association between violent crime and minutes walked per day (b = -.07; p = .016). Neither property nor quality of life crimes were correlated with amount of walking. Reductions in violent crime may increase opportunities for minority residents in urban areas to participate in physical activity such as walking, thereby providing another reason to pursue anticrime measures. Urban designers' efforts to increase physical activity by improving neighborhood walkability may consider violent crime prevention in their designs.
Song, Chorong; Ikei, Harumi; Kobayashi, Maiko; Miura, Takashi; Taue, Masao; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-03-02
There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0±10.6 years) were instructed to walk predetermined courses in forest and urban environments (as control). Course length (17-min walk), walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV) and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased "comfortable", "relaxed", "natural" and "vigorous" feelings and decreased "tension-anxiety," "depression," "anxiety-hostility," "fatigue" and "confusion". A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.
Marselle, Melissa R.; Irvine, Katherine N.; Lorenzo-Arribas, Altea; Warber, Sara L.
2014-01-01
Against the backdrop of increasing interest in the relationship between Nature and health, this study examined the effect of perceived environment type and indicators of perceived environmental quality on short-term emotional well-being following outdoor group walks. Participants (n = 127) of a national group walk program completed pre- and post-walk questionnaires for each walk attended (n = 1009) within a 13-week study period. Multilevel linear modelling was used to examine the main and moderation effects. To isolate the environmental from the physical activity elements, analyses controlled for walk duration and perceived intensity. Analyses revealed that perceived restorativeness and perceived walk intensity predicted greater positive affect and happiness following an outdoor group walk. Perceived restorativeness and perceived bird biodiversity predicted post-walk negative affect. Perceived restorativeness moderated the relationship between perceived naturalness and positive affect. Results suggest that restorative quality of an environment may be an important element for enhancing well-being, and that perceived restorativeness and naturalness of an environment may interact to amplify positive affect. These findings highlight the importance of further research on the contribution of environment type and quality on well-being, and the need to control for effects of physical activity in green exercise research. PMID:25546275
Understanding the Influence of Environment on Adults’ Walking Experiences: A Meta-Synthesis Study
Dadpour, Sara; Pakzad, Jahanshah; Khankeh, Hamidreza
2016-01-01
The environment has an important impact on physical activity, especially walking. The relationship between the environment and walking is not the same as for other types of physical activity. This study seeks to comprehensively identify the environmental factors influencing walking and to show how those environmental factors impact on walking using the experiences of adults between the ages of 18 and 65. The current study is a meta-synthesis based on a systematic review. Seven databases of related disciplines were searched, including health, transportation, physical activity, architecture, and interdisciplinary databases. In addition to the databases, two journals were searched. Of the 11,777 papers identified, 10 met the eligibility criteria and quality for selection. Qualitative content analysis was used for analysis of the results. The four themes identified as influencing walking were “safety and security”, “environmental aesthetics”, “social relations”, and “convenience and efficiency”. “Convenience and efficiency” and “environmental aesthetics” could enhance the impact of “social relations” on walking in some aspects. In addition, “environmental aesthetics” and “social relations” could hinder the influence of “convenience and efficiency” on walking in some aspects. Given the results of the study, strategies are proposed to enhance the walking experience. PMID:27447660
Quantifying dynamic characteristics of human walking for comprehensive gait cycle.
Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H
2013-09-01
Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.
Marselle, Melissa R; Irvine, Katherine N; Lorenzo-Arribas, Altea; Warber, Sara L
2014-12-23
Against the backdrop of increasing interest in the relationship between Nature and health, this study examined the effect of perceived environment type and indicators of perceived environmental quality on short-term emotional well-being following outdoor group walks. Participants (n = 127) of a national group walk program completed pre- and post-walk questionnaires for each walk attended (n = 1009) within a 13-week study period. Multilevel linear modelling was used to examine the main and moderation effects. To isolate the environmental from the physical activity elements, analyses controlled for walk duration and perceived intensity. Analyses revealed that perceived restorativeness and perceived walk intensity predicted greater positive affect and happiness following an outdoor group walk. Perceived restorativeness and perceived bird biodiversity predicted post-walk negative affect. Perceived restorativeness moderated the relationship between perceived naturalness and positive affect. Results suggest that restorative quality of an environment may be an important element for enhancing well-being, and that perceived restorativeness and naturalness of an environment may interact to amplify positive affect. These findings highlight the importance of further research on the contribution of environment type and quality on well-being, and the need to control for effects of physical activity in green exercise research.
Neighborhood Walkability and Walking for Transport Among South Asians in the MASALA Study
Kelley, Elizabeth A.; Kandula, Namratha R.; Kanaya, Alka M.; Yen, Irene H.
2016-01-01
Background The neighborhood built environment can have a strong influence on physical activity levels, particularly walking for transport. In examining racial/ethnic differences in physical activity, one important and understudied group is South Asians. This study aims to describe the association between neighborhood walkability and walking for transport among South Asian men and women in the United States in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study. Methods A cross-sectional study was conducted in 2014 using the baseline dataset of the MASALA study (N = 906). Mean age was 55 years old and 54% of the sample was male. Weekly minutes spent walking for transport was assessed using a questionnaire adapted from the Cross-Cultural Activity Participation Study. Neighborhood walkability was measured using Walk Score, a composite index of walkability. Results After adjusting for covariates, with each 10-point increase in Walk Score, South Asian American men engaged in 13 additional minutes per week of walking for transport (P = .008). No association was observed between walkability and walking for transport in South Asian American women. Conclusions Results provide new evidence for how the effects of environmental influences on walking for transport may vary between South Asian men and women. PMID:26529292
Do Inequalities in Neighborhood Walkability Drive Disparities in Older Adults’ Outdoor Walking?
van Maarseveen, Martin
2017-01-01
Older residents of high-deprivation areas walk less than those of low-deprivation areas. Previous research has shown that neighborhood built environment may support and encourage outdoor walking. The extent to which the built environment supports and encourages walking is called “walkability”. This study examines inequalities in neighborhood walkability in high- versus low-deprivation areas and their possible influences on disparities in older adults’ outdoor walking levels. For this purpose, it focuses on specific neighborhood built environment attributes (residential density, land-use mix and intensity, street connectivity, and retail density) relevant to neighborhood walkability. It applied a mixed-method approach, included 173 participants (≥65 years), and used a Geographic Information System (GIS) and walking interviews (with a sub-sample) to objectively and subjectively measure neighborhood built environment attributes. Outdoor walking levels were measured by using the Geographic Positioning System (GPS) technology. Data on personal characteristics was collected by completing a questionnaire. The results show that inequalities in certain land-use intensity (i.e., green spaces, recreation centers, schools and industries) in high- versus low-deprivation areas may influence disparities in older adults’ outdoor walking levels. Modifying neighborhood land use intensity may help to encourage outdoor walking in high-deprivation areas. PMID:28686219
Developing Point-of-Decision Prompts to Encourage Airport Walking: The Walk to Fly Study.
Frederick, Ginny M; Paul, Prabasaj; Bachtel Watson, Kathleen; Dorn, Joan M; Fulton, Janet
2016-04-01
Point-of-decision prompts may be appropriate to promote walking, instead of using a mechanized mode of transport, such as a train, in airports. To our knowledge, no current studies describe the development of messages for prompts in this setting. In-person interviews were conducted with 150 randomly selected airport travelers who rode the train to their departure gate. Travelers reported various reasons for riding the train to their gate. They were asked about messages that would encourage them to walk. Exploratory factor analysis was conducted for reasons for riding the train. Confirmatory factor analysis was conducted for messages to encourage walking to the departure gate. Travelers reported not knowing walking was an option (23.8%), seeing others riding the train (14.4%), and being afraid of getting lost (9.2%) as reasons for riding the train. Many indicated that directional signs and prompts promoting walking as exercise would encourage them to walk instead of riding the train. Some reasons for riding the train in an airport may be modifiable by installing point-of-decision prompts. Providing directional signs to travelers may prompt them to walk to their gate instead of riding the train. Similar prompts may also be considered in other community settings.
Degeling, Chris; Burton, Lindsay; McCormack, Gavin R
2012-07-01
Risk factors associated with canine obesity include the amount of walking a dog receives. The aim of this study was to investigate the relationships between canine exercise requirements, socio-demographic factors, and dog-walking behaviors in winter in Calgary. Dog owners, from a cross-sectional study which included a random sample of adults, were asked their household income, domicile type, gender, age, education level, number and breed(s) of dog(s) owned, and frequency and time spent dog-walking in a usual week. Canine exercise requirements were found to be significantly (P < 0.05) positively associated with the minutes pet dogs were walked, as was the owner being a female. Moreover, dog walking frequency, but not minutes of dog walking, was significantly associated with residing in attached housing (i.e., apartments). Different types of dogs have different exercise requirements to maintain optimal health. Understanding the role of socio-demographic factors and dog-related characteristics such as exercise requirements on dog-walking behaviors is essential for helping veterinarians and owners develop effective strategies to prevent and manage canine obesity. Furthermore, encouraging regular dog-walking has the potential to improve the health of pet dogs, and that of their owners.
Developing Point-of-Decision Prompts to Encourage Airport Walking: The Walk to Fly Study
Frederick, Ginny M.; Paul, Prabasaj; Watson, Kathleen Bachtel; Dorn, Joan M.; Fulton, Janet
2017-01-01
Background Point-of-decision prompts may be appropriate to promote walking, instead of using a mechanized mode of transport, such as a train, in airports. To our knowledge, no current studies describe the development of messages for prompts in this setting. Methods In-person interviews were conducted with 150 randomly selected airport travelers who rode the train to their departure gate. Travelers reported various reasons for riding the train to their gate. They were asked about messages that would encourage them to walk. Exploratory factor analysis was conducted for reasons for riding the train. Confirmatory factor analysis was conducted for messages to encourage walking to the departure gate. Results Travelers reported not knowing walking was an option (23.8%), seeing others riding the train (14.4%), and being afraid of getting lost (9.2%) as reasons for riding the train. Many indicated that directional signs and prompts promoting walking as exercise would encourage them to walk instead of riding the train. Conclusions Some reasons for riding the train in an airport may be modifiable by installing point-of-decision prompts. Providing directional signs to travelers may prompt them to walk to their gate instead of riding the train. Similar prompts may also be considered in other community settings. PMID:26445371
Older adults adopted more cautious gait patterns when walking in socks than barefoot.
Tsai, Yi-Ju; Lin, Sang-I
2013-01-01
Walking barefoot or in socks is common for ambulating indoors and has been reported to be associated with increased risk of falls and related injuries in the elderly. This study sought to determine if gait patterns differed between these two conditions for young and older adults. A motion analysis system was used to record and calculate the stride characteristics and motion of the body's center of mass (COM) of 21 young and 20 older adults. For the walking tasks, the participants walked on a smooth floor surface at their preferred speed either barefoot or in socks in a random order. The socks were commercially available and commonly used. The results demonstrated that while walking in socks, compared with walking barefoot, older adults adopted a more cautious gait pattern including decreased walking speed and shortened stride length as well as reduced COM minimal velocity during the single limb support phase. Young adults, however, did not demonstrate significant changes. These findings suggest that walking with socks might present a greater balance threat for older adults. Clinically, safety precautions about walking in socks should be considered to be given to older adults, especially those with balance deficits. Copyright © 2012 Elsevier B.V. All rights reserved.
Beurskens, Rainer; Bock, Otmar
2013-12-01
Previous literature suggests that age-related deficits of dual-task walking are particularly pronounced with second tasks that require continuous visual processing. Here we evaluate whether the difficulty of the walking task matters as well. To this end, participants were asked to walk along a straight pathway of 20m length in four different walking conditions: (a) wide path and preferred pace; (b) narrow path and preferred pace, (c) wide path and fast pace, (d) obstacled wide path and preferred pace. Each condition was performed concurrently with a task requiring visual processing or fine motor control, and all tasks were also performed alone which allowed us to calculate the dual-task costs (DTC). Results showed that the age-related increase of DTC is substantially larger with the visually demanding than with the motor-demanding task, more so when walking on a narrow or obstacled path. We attribute these observations to the fact that visual scanning of the environment becomes more crucial when walking in difficult terrains: the higher visual demand of those conditions accentuates the age-related deficits in coordinating them with a visual non-walking task. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Sánchez, Marina Castel; Bussmann, Johannes; Janssen, Wim; Horemans, Herwin; Chastin, Sebastian; Heijenbrok, Majanka; Stam, Henk
2015-09-01
To describe the course of walking behaviour over a period of 1 year after stroke, using accelerometry, and to compare 1-year data with those from a healthy group. One-year follow-up cohort study. Twenty-three stroke patients and 20 age-matched healthy subjects. Accelerometer assessments were made in the participants' daily environment for 8 h/day during the 1st (T1), 12th (T2) and 48th (T3) weeks after stroke, and at one time-point in healthy subjects. Primary outcomes were: percentage of time walking and upright (amount); mean duration and number of walking periods (distribution); step regularity and gait symmetry (quality); and walking speed. Time walking, time upright, and number of walking bouts increased during T1 and T2 (p < 0.01) and then levelled off (p > 0.30). Mean duration of walking periods showed no significant improvements (p > 0.30) during all phases. Step regularity, gait symmetry and gait speed showed a tendency to increase consistently from T1 to T3. At T3, amount and distribution variables reached the level of the healthy group, but significant differences remained (p < 0.02) in step regularity and gait speed. In this cohort, different outcomes of walking behaviour showed different patterns and levels of recovery, which supports the multi-dimensional character of gait.
NASA Astrophysics Data System (ADS)
Odagaki, Takashi; Kasuya, Keisuke
2017-09-01
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto
2016-07-01
The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking. Copyright © 2016 Elsevier Inc. All rights reserved.
Lindemann, Ulrich; Beck, Luisa; Becker, Clemens
2017-02-01
To evaluate the effect of course length and corridor width on 2-minute walk test results in older adults. Cross-sectional and experimental study with different test conditions. Geriatric rehabilitation clinic. A total of 21 patients (median age 81 years). Patients walked two minutes on a 20 m and 40 m course with a 2 m or 1 m corridor width and on a continuous course without any turning in a corridor of 2 m width, five walks in total. The distance traveled within the 2 minutes was recorded. Compared with the 20 m course length, median walking distances measured by the 2-minute walk test in a walk way 2 m broad were better on the continuous corridor without any turn (136.9 m vs. 129.3 m, p = 0.002) and on the 40 m course (131.8 m vs. 129.3 m, p = 0.003). Walking distance on a 20 m course length was longer in a corridor of 2 m width compared with the 1 m corridor width (129.3 m vs. 119.2 m, p = 0.005). The walking distance was not affected by corridor width on the 40 m course length. Performance of elderly patients on the 2-minute walk test is influenced by the width of the corridor and the length of the course used.
Prahm, Kira P.; Witting, Nanna; Vissing, John
2014-01-01
Objective The 6-minute walk test is widely used to assess functional status in neurological disorders. However, the test is subject to great inter-test variability due to fluctuating motivation, fatigue and learning effects. We investigated whether inter-test variability of the 6MWT can be reduced by heart rate correction. Methods Sixteen patients with neuromuscular diseases, including Facioscapulohumeral muscular dystrophy, Limb-girdle muscular dystrophy, Charcot-Marie-Tooths, Dystrophia Myotonica and Congenital Myopathy and 12 healthy subjects were studied. Patients were excluded if they had cardiac arrhythmias, if they received drug treatment for hypertension or any other medical conditions that could interfere with the interpretation of the heart rate and walking capability. All completed three 6-minute walk tests on three different test-days. Heart rate was measured continuously. Results Successive standard 6-minute walk tests showed considerable learning effects between Tests 1 and 2 (4.9%; P = 0.026), and Tests 2 and 3 (4.5%; P = 0.020) in patients. The same was seen in controls between Tests 1 and 2 (8.1%; P = 0.039)). Heart rate correction abolished this learning effect. Conclusion A modified 6-minute walk test, by correcting walking distance with average heart rate during walking, decreases the variability among repeated 6-minute walk tests, and should be considered as an alternative outcome measure to the standard 6-minute walk test in future clinical follow-up and treatment trials. PMID:25479403
Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.
Llewellyn, M; Yang, J F; Prochazka, A
1990-01-01
Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.
Cell phones change the way we walk.
Lamberg, Eric M; Muratori, Lisa M
2012-04-01
Cell phone use among pedestrians leads to increased cognitive distraction, reduced situation awareness and increases in unsafe behavior. Performing a dual-task, such as talking or texting with a cell phone while walking, may interfere with working memory and result in walking errors. At baseline, thirty-three participants visually located a target 8m ahead; then vision was occluded and they were instructed to walk to the remembered target. One week later participants were assigned to either walk, walk while talking on a cell phone, or walk while texting on a cell phone toward the target with vision occluded. Duration and final location of the heel were noted. Linear distance traveled, lateral angular deviation from the start line, and gait velocity were derived. Changes from baseline to testing were analyzed with paired t-tests. Participants engaged in cell phone use presented with significant reductions in gait velocity (texting: 33% reduction, p=0.01; talking: 16% reduction, p=0.02). Moreover, participants who were texting while walking demonstrated a 61% increase in lateral deviation (p=0.04) and 13% increase in linear distance traveled (p=0.03). These results suggest that the dual-task of walking while using a cell phone impacts executive function and working memory and influences gait to such a degree that it may compromise safety. Importantly, comparison of the two cell phone conditions demonstrates texting creates a significantly greater interference effect on walking than talking on a cell phone. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of ambient light and age-related macular degeneration on precision walking.
Alexander, M Scott; Lajoie, Kim; Neima, David R; Strath, Robert A; Robinovitch, Stephen N; Marigold, Daniel S
2014-08-01
To determine how age-related macular degeneration (AMD) and changes in ambient light affect the control of foot placement while walking. Ten older adults with AMD and 11 normal-sighted controls performed a precision walking task under normal (∼600 lx), dim (∼0.7 lx), and after a sudden reduction (∼600 to 0.7 lx) of light. The precision walking task involved subjects walking and stepping to the center of a series of irregularly spaced, low-contrast targets. Habitual visual acuity and contrast sensitivity and visual field function were also assessed. There were no differences between groups when performing the walking task in normal light (p > 0.05). In reduced lighting, older adults with AMD were less accurate and more variable when stepping across the targets compared to controls (p < 0.05). A sudden reduction of light proved the most challenging for this population. In the AMD group, contrast sensitivity and visual acuity were not significantly correlated with walking performance. Visual field thresholds in the AMD group were only associated with greater foot placement error and variability in the dim light walking condition (r = -0.69 to -0.87, p < 0.05). While walking performance is similar between groups in normal light, poor ambient lighting results in decreased foot placement accuracy in older adults with AMD. Improper foot placement while walking can lead to a fall and possible injury. Thus, to improve the mobility of those with AMD, strategies to enhance the environment in reduced lighting situations are necessary.
Shimizu, Muneshige; Miyagawa, Ken; Iwashita, Soh; Noda, Tsuneyuki; Hamada, Koichiro; Genno, Hirokazu; Nose, Hiroshi
2012-03-01
We compared relative exercise intensity and active energy expenditure (AEE) on trail walking in the mountains, with those of daily exercise training, and whether branched-chain amino acid (BCAA) and arginine supplementation attenuated the release of markers indicating muscle damage and declines in physical performance. Twenty-one subjects (~63 years) were divided into two groups: amino acid (AA, 51 g of amino acids and 40 g of carbohydrate, male/female = 6/4) or placebo (PL, 91 g of carbohydrate, male/female = 6/5) supplementation during 2 days of trail walking in the mountains. We measured heart rate (HR), AEE, fatigue sensation, water and food intake, and sweat loss during walking. In addition, we measured peak aerobic capacity [Formula: see text] and heart rate (HR(peak)) with graded-intensity walking, vertical jumping height (VJ) before and after walking. We found that average HR and AEE during uphill walking were ~100% HR(peak) and ~60% [Formula: see text], while they were ~80 and ~20% during downhill walking, respectively. Moreover, average total AEE per day was sevenfold that of their daily walking training. VJ after walking remained unchanged compared with the baseline in AA (P > 0.2), while it was reduced by ~10% in PL (P < 0.01), although with no significant difference in the reduction between the groups (P > 0.4). The responses of other variables were not significantly different between groups (all, P > 0.2). Thus, trail walking in the mountains required a high-intensity effort for older people, while the effects of BCAA and arginine supplementation were modest in this condition.
Cubo, Esther; Leurgans, Sue; Goetz, Christopher G
2004-12-01
In a randomized single blind parallel study, we tested the efficacy of an auditory metronome on walking speed and freezing in Parkinson's disease (PD) patients with freezing gait impairment during their 'on' function. No pharmacological treatment is effective in managing 'on' freezing in PD. Like visual cues that can help overcome freezing, rhythmic auditory pacing may provide cues that help normalize walking pace and overcome freezing. Non-demented PD patients with freezing during their 'on' state walked under two conditions, in randomized order: unassisted walking and walking with the use of an audiocassette with a metronome recording. The walking trials were randomized and gait variables were rated from videotapes by a blinded evaluator. Outcome measures were total walking time (total trial time-total freezing time), which was considered the time over a course of specified length, freezing time, average freeze duration and number of freezes. All outcomes were averaged across trials for each person and then compared across conditions using Signed Rank tests. Twelve non-demented PD patients with a mean age of 65.8 +/- 11.2 years, and mean PD duration of 12.4 +/- 7.3 years were included. The use of the metronome slowed ambulation and increased the total walking time (P < 0.0005) only during the first visit, without affecting any freezing variable. In the nine patients who took the metronome recording home and used it daily for 1 week while walking, freezing remained unimproved. Though advocated in prior publications as a walking aid for PD patients, auditory metronome pacing slows walking and is not a beneficial intervention for freezing during their 'on' periods.
Hardy, Susan E; McGurl, David J; Studenski, Stephanie A; Degenholtz, Howard B
2010-03-01
To establish nationally representative estimates of the prevalence of self-reported difficulty and inability of older adults to walk one-quarter of a mile and to identify the characteristics independently associated with difficulty or inability to walk one-quarter of a mile. Cross-sectional analysis of data from the 2003 Cost and Use Medicare Current Beneficiary Survey. Community. Nine thousand five hundred sixty-three community-dwelling Medicare beneficiaries aged 65 and older, representing an estimated total population of 34.2 million older adults. Self-reported ability to walk one-quarter of a mile, sociodemographics, chronic conditions, body mass index, smoking, functional status. In 2003, an estimated 9.5 million older Medicare beneficiaries had difficulty walking one-quarter of a mile, and 5.9 million were unable to do so. Of the 20.2 million older adults with no difficulty in activities of daily living (ADLs) or instrumental activities of daily living (IADLs), an estimated 4.3 million (21%) had limited ability to walk one-quarter of a mile. Having difficulty or being unable to walk one-quarter of a mile was independently associated with older age, female sex, non-Hispanic ethnicity, lower educational level, Medicaid entitlement, most chronic medical conditions, current smoking, and being overweight or obese. Almost half of older adults and 20% of those reporting no ADL or IADL limitations report limited ability to walk one-quarter of a mile. For functionally independent older adults, reported ability to walk one-quarter of a mile can identify vulnerable older adults with greater medical problems and fewer resources and may be a valuable clinical marker in planning their care. Future work is needed to determine the association between ability to walk one-quarter of a mile walk and subsequent functional decline and healthcare use.
Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking.
Huang, Yangjian; Xu, Junkai; Yu, Bo; Shull, Peter B
2016-07-01
Increased physical activity can provide numerous health benefits. The relationship between physical activity and health assumes reliable activity measurements including step count and distance traveled. This study assessed step count and distance accuracy for Nike+ FuelBand, Jawbone UP 24, Fitbit One, Fitbit Flex, Fitbit Zip, Garmin Vivofit, Yamax CW-701, and Omron HJ-321 during level, upstairs, and downstairs walking in healthy adults. Forty subjects walked on flat ground (400m), upstairs (176 steps), and downstairs (176 steps), and a subset of 10 subjects performed treadmill walking trials to assess the influence of walking speed on accuracy. Activity monitor measured step count and distance values were compared with actual step count (determined from video recordings) and distance to determine accuracy. For level walking, step count errors in Yamax CW-701, Fitbit Zip, Fitbit One, Omron HJ-321, and Jawbone UP 24 were within 1% and distance errors in Fitbit Zip and Yamax CW-701 were within 5%. Garmin Vivofit and Omron HJ-321 were the most accurate in estimating step count for stairs with errors less than 4%. An important finding is that all activity monitors overestimated distance for stair walking by at least 45%. In general, there were not accuracy differences among activity monitors for stair walking. Accuracy did not change between moderate and fast walking speeds, though slow walking increased errors for some activity monitors. Nike+ FuelBand was the least accurate step count estimator during all walking tasks. Caution should be taken when interpreting step count and distance estimates for activities involving stairs. Copyright © 2016 Elsevier B.V. All rights reserved.
Wannop, John W; Worobets, Jay T; Ruiz, Rodrigo; Stefanyshyn, Darren J
2014-01-01
Outdoor activities are a popular form of recreation, with hiking being the most popular outdoor activity as well as being the most prevalent in terms of injury. Over the duration of a hike, trekkers will encounter many different sloped terrains. Not much is known about the required traction or foot-floor kinematics during locomotion on these sloped surfaces, therefore, the purpose was to determine the three-dimensional foot-floor kinematics and required traction during level, downhill, uphill and cross-slope walking. Ten participants performed level, uphill, downhill and cross-slope walking along a 19° inclined walkway. Ground reaction force data as well as 3D positions of retro reflective markers attached to the shoe were recorded using a Motion Analysis System. Peak traction coefficients and foot-floor kinematics during sloped walking were compared to level walking. When walking along different sloped surfaces, the required traction coefficients at touchdown were not different from level walking, therefore, the increased likelihood of heel slipping during hiking is potentially due to the presence of loose material (rocks, dirt) on hiking slopes, rather than the overall lack of traction. Differences in required traction were seen at takeoff, with uphill and cross-sloped walking requiring a greater amount of traction compared to level walking. Changes in sagittal plane, frontal plane and transverse plane foot-floor angles were seen while walking on the sloped surfaces. Rapid foot-floor eversion was observed during cross-slope walking which could place the hiker at risk of injury with a misstep or if there was a slight slip. Copyright © 2014 Elsevier B.V. All rights reserved.
DeVita, Paul; Rider, Patrick; Hortobágyi, Tibor
2016-03-01
A consensus exists that high knee joint forces are a precursor to knee osteoarthritis and weight loss reduces these forces. Because large weight loss also leads to increased step length and walking velocity, knee contact forces may be reduced less than predicted by the magnitude of weight loss. The purpose was to determine the effects of weight loss on knee muscle and joint loads during walking in Class III obese adults. We determined through motion capture, force platform measures and biomechanical modeling the effects of weight loss produced by gastric bypass surgery over one year on knee muscle and joint loads during walking at a standard, controlled velocity and at self-selected walking velocities. Weight loss equaling 412 N or 34% of initial body weight reduced maximum knee compressive force by 824 N or 67% of initial body weight when walking at the controlled velocity. These changes represent a 2:1 reduction in knee force relative to weight loss when walking velocity is constrained to the baseline value. However, behavioral adaptations including increased stride length and walking velocity in the self-selected velocity condition attenuated this effect by ∼50% leading to a 392 N or 32% initial body weight reduction in compressive force in the knee joint. Thus, unconstrained walking elicited approximately 1:1 ratio of reduction in knee force relative to weight loss and is more indicative of walking behavior than the standard velocity condition. In conclusion, massive weight loss produces dramatic reductions in knee forces during walking but when patients stride out and walk faster, these favorable reductions become substantially attenuated. Copyright © 2016 Elsevier B.V. All rights reserved.
Swe, Ni Ni; Sendhilnnathan, Sunitha; van Den Berg, Maayken; Barr, Christopher
2015-11-01
To assess partial body weight supported treadmill training versus over ground training for walking ability in children with mild to moderate cerebral palsy. Randomised controlled trial. A Special Needs school in Singapore. Thirty children with cerebral palsy, aged 6-18, with a Gross Motor Function Classification System score of II-III. Two times 30 minute sessions of walking training per week for 8 weeks, progressed as tolerated, either over ground (control) or using partial body weight supported treadmill training (intervention). The 10 metre walk test, and the 6 minute walk test. Secondary measures were sub-sections D and E on the Gross Motor Function Measure. Outcomes were assessed at baseline, and after 4 and 8 weeks of training. There was no effect of group allocation on any outcome measure, while time was a significant factor for all outcomes. Walking speed improved significantly more in the intervention group by week 4 (0.109 (0.067)m/s vs 0.048 (0.071)m/s, P=0.024) however by week 8 the change from baseline was similar (intervention 0.0160 (0.069)m/s vs control 0.173 (0.109)m/s, P=0.697). All gains made by week 4 were significantly improved on by week 8 for the 10 metre walk test, 6 minute walk test, and the gross motor function measure. Partial body weight supported treadmill training is no more effective than over ground walking at improving aspects of walking and function in children with mild to moderate cerebral palsy. Gains seen in 4 weeks can be furthered by 8 weeks. © The Author(s) 2015.
Voukelatos, Alexander; Merom, Dafna; Sherrington, Catherine; Rissel, Chris; Cumming, Robert G; Lord, Stephen R
2015-05-01
walking is the most popular form of exercise in older people but the impact of walking on falls is unclear. This study investigated the impact of a 48-week walking programme on falls in older people. three hundred and eighty-six physically inactive people aged 65+ years living in the community were randomised into an intervention or control group. The intervention group received a self-paced, 48-week walking programme that involved three mailed printed manuals and telephone coaching. Coinciding with the walking programme manual control group participants received health information unrelated to falls. Monthly falls calendars were used to monitor falls (primary outcome) over 48 weeks. Secondary outcomes were self-reported quality of life, falls efficacy, exercise and walking levels. Mobility, leg strength and choice stepping reaction time were measured in a sub-sample (n = 178) of participants. there was no difference in fall rates between the intervention and control groups in the follow-up period (IRR = 0.88, 95% CI: 0.60-1.29). By the end of the study, intervention group participants spent significantly more time exercising in general, and specifically walking for exercise (median 1.69 versus 0.75 h/week, P < 0.001). our finding that a walking programme is ineffective in preventing falls supports previous research and questions the suitability of recommending walking as a fall prevention strategy for older people. Walking, however, increases physical activity levels in previously inactive older people. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wagner, Joanne M.; Kremer, Theodore R.; Van Dillen, Linda R.; Naismith, Robert T.
2014-01-01
Objective To determine if plantarflexor (PF) spasticity or ankle strength best predicts variance in walking capacity or self-perceived limitations in walking in persons with multiple sclerosis (pwMS), and if pwMS with PF spasticity are weaker and have greater walking dysfunction than pwMS without PF spasticity. Design Cross-sectional study. Setting University research laboratory. Participants Forty-two pwMS (age: 42.9 ± 10.1 years; Expanded Disability Status Scale (EDSS): median = 3.0, range = 0–6) and 14 adults without disability (WD) (age: 41.9 ± 10.1 years). Intervention Not applicable. Main Outcome Measures PF spasticity and dorsiflexion (DF) and PF maximum voluntary isometric torque (MVIT) were assessed using the Modified Ashworth Scale (MAS) and a computerized dynamometer, respectively. The Timed 25-Foot Walk Test (T25FWT) was the primary outcome measure of walking capacity. Secondary measures included the Six Minute Walk Test (6MWT) and 12-item Multiple Sclerosis Walking Scale (MSWS-12). Results PF strength was the most consistent predictor of the variance in walking capacity (T25FWT: R2 change = 0.23 to 0.29, p ≤ 0.001; 6MWT: R2 change = 0.12 to 0.29, p ≤ 0.012), and self-perceived limitations of walking (MSWS-12: R2 change = 0.04 to 0.14, p < 0.18). There were no significant differences (p > 0.05) between the pwMS with PF spasticity and pwMS without PF spasticity for any of the outcome measures. Conclusions Our study suggests a unique contribution of PF weakness to walking dysfunction in pwMS, and highlights the importance of evaluating PF strength in this clinical population. PMID:24582617
Physical activity and the incidence of obesity in young African-American women.
Rosenberg, Lynn; Kipping-Ruane, Kristen L; Boggs, Deborah A; Palmer, Julie R
2013-09-01
Obesity occurs more commonly among African-American women than among other racial/ethnic groups, and most weight gain occurs before middle age. The study prospectively investigated the relationship of vigorous exercise and brisk walking to the incidence of obesity (BMI ≥ 30) among African-American women aged <40 years. During 1995-2009 in the Black Women's Health Study, the current authors followed 20,259 African-American women who were aged <40 years and not obese at baseline. BMI, exercise, and walking were assessed at baseline and on biennial follow-up questionnaires. Data for BMI were collected through 2009. Data for exercise and walking were collected through 2007. Validation and reproducibility data indicated that reporting was more accurate for vigorous exercise than for brisk walking. Cox proportional hazards models estimated incidence rate ratios (IRRs) and 95% CIs of incident obesity for hours/week of vigorous exercise and walking relative to "little or no exercise" (<1 hour/week of vigorous exercise and <1 hour/week of brisk walking). The analyses were conducted in 2012. The incidence of obesity decreased with increasing vigorous exercise; the IRR was 0.77 (95% CI=0.69, 0.85) for ≥ 7 hours/week relative to little or no exercise; the IRRs were reduced both among women with a healthy weight (BMI <25) at baseline and among women who were overweight (BMI 25-<30) at baseline. The IRRs for brisk walking for exercise and walking for transport were <1.0 for most levels of walking, but without clear trends of decreasing risk with increasing time spent walking. The results suggest that vigorous exercise may reduce the incidence of obesity among young African-American women. Results for brisk walking were inconclusive. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Energy Expenditure During Cane-Assisted Gait in Patients with Knee Osteoarthritis
Jones, Anamaria; Alves, Ana Claudia Monteiro; de Oliveira, Leda Magalhães; Saad, Marcelo; Natour, Jamil
2008-01-01
OBJECTIVE To compare the energy expenditure in patients with unilateral knee osteoarthritis while walking with canes of different lengths. METHODS A quasi-experimental study (single-group) was carried out on thirty patients with unilateral knee osteoarthritis. An adjustable aluminum cane was used, and three different cane lengths were determined for each subject: C1 – length from the floor to the greater trochanter; C2 – length from the floor to the distal wrist crease; and C3 – length obtained by the formula: height x 0.45 + 0.87 m. Resting and walking heart rates were measured with a Polar hear rate meter. Walking speed was calculated by the time required for the patient to walk 10 m. Gait energy cost was estimated using the physiological cost index, and results were compared. RESULTS The sample consisted of 25 women and five men (average age of 68 years). Statistically significant differences in physiological cost index measurements were observed between unassisted walking and assisted walking with a cane of any length (p<0.001), as well as between walking with a C2-length cane and unassisted walking, and walking with a C1-length cane and walking with a C3-length cane (p=0.001; p = 0.037; p=0.001; respectively). CONCLUSION These data demonstrate that small alterations in the length of canes used for weight-bearing ambulation in patients with unilateral knee osteoarthritis increase the energy expenditure measured by the physiological cost index during walking. Further studies are needed for a more precise quantification of the increase in energy expenditure during cane-assisted gait and an assessment of the effectiveness of cane use in relieving pain and improving function in patients with knee osteoarthritis. PMID:18438573
DiPietro, Loretta; Gribok, Andrei; Stevens, Michelle S.; Hamm, Larry F.; Rumpler, William
2013-01-01
OBJECTIVE The purpose of this study was to compare the effectiveness of three 15-min bouts of postmeal walking with 45 min of sustained walking on 24-h glycemic control in older persons at risk for glucose intolerance. RESEARCH DESIGN AND METHODS Inactive older (≥60 years of age) participants (N = 10) were recruited from the community and were nonsmoking, with a BMI <35 kg/m2 and a fasting blood glucose concentration between 105 and 125 mg dL−1. Participants completed three randomly ordered exercise protocols spaced 4 weeks apart. Each protocol comprised a 48-h stay in a whole-room calorimeter, with the first day serving as the control day. On the second day, participants engaged in either 1) postmeal walking for 15 min or 45 min of sustained walking performed at 2) 10:30 a.m. or 3) 4:30 p.m. All walking was on a treadmill at an absolute intensity of 3 METs. Interstitial glucose concentrations were determined over 48 h with a continuous glucose monitor. Substrate utilization was measured continuously by respiratory exchange (VCO2/VO2). RESULTS Both sustained morning walking (127 ± 23 vs. 118 ± 14 mg dL−1) and postmeal walking (129 ± 24 vs. 116 ± 13 mg dL−1) significantly improved 24-h glycemic control relative to the control day (P < 0.05). Moreover, postmeal walking was significantly (P < 0.01) more effective than 45 min of sustained morning or afternoon walking in lowering 3-h postdinner glucose between the control and experimental day. CONCLUSIONS Short, intermittent bouts of postmeal walking appear to be an effective way to control postprandial hyperglycemia in older people. PMID:23761134
Van Cauwenberg, Jelle; Van Holle, Veerle; Simons, Dorien; Deridder, Riet; Clarys, Peter; Goubert, Liesbet; Nasar, Jack; Salmon, Jo; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2012-07-10
Current knowledge on the relationship between the physical environment and walking for transportation among older adults (≥ 65 years) is limited. Qualitative research can provide valuable information and inform further research. However, qualitative studies are scarce and fail to include neighborhood outings necessary to study participants' experiences and perceptions while interacting with and interpreting the local social and physical environment. The current study sought to uncover the perceived environmental influences on Flemish older adults' walking for transportation. To get detailed and context-sensitive environmental information, it used walk-along interviews. Purposeful convenience sampling was used to recruit 57 older adults residing in urban or semi-urban areas. Walk-along interviews to and from a destination (e.g. a shop) located within a 15 minutes' walk from the participants' home were conducted. Content analysis was performed using NVivo 9 software (QSR International). An inductive approach was used to derive categories and subcategories from the data. Data were categorized in the following categories and subcategories: access to facilities (shops & services, public transit, connectivity), walking facilities (sidewalk quality, crossings, legibility, benches), traffic safety (busy traffic, behavior of other road users), familiarity, safety from crime (physical factors, other persons), social contacts, aesthetics (buildings, natural elements, noise & smell, openness, decay) and weather. The findings indicate that to promote walking for transportation a neighborhood should provide good access to shops and services, well-maintained walking facilities, aesthetically appealing places, streets with little traffic and places for social interaction. In addition, the neighborhood environment should evoke feelings of familiarity and safety from crime. Future quantitative studies should investigate if (changes in) these environmental factors relate to (changes in) older adults' walking for transportation.
Rapp, Kilian; Mikolaizak, Stefanie; Rothenbacher, Dietrich; Denkinger, Michael D; Klenk, Jochen
2018-01-01
Physical activity is considered an effective measure to promote health in older people. There is evidence that the number of outdoor trips increases physical activity by increasing walking duration. The objective of this study was to analyse the relationship between daily time out-of-home and walking duration. Furthermore, predictors for walking duration and time out-of-home were evaluated. Walking duration was measured prospectively over a 1 week period by a body-fixed sensor and the time out-of-home was assessed by a questionnaire at the same days. Seven thousand, two hundred and forty-three days from 1289 older people (mean age 75.4 years) with both sensor-based measures and completed questionnaires were included in the analyses. To account for several observation days per participant multilevel regression analyses were applied. Analyses were stratified according to the time out-of-home (more or less than 100 min/day). In the group with less than 100 min out-of-home, each additional minute out-of-home added 20 s to overall walking duration. If the time exceeded 100 min the additional increase of walking duration was only moderate or weak. Leaving the home once added 40 min of walking, the following trips 15 to 20 min. Increasing age, lower gait speed, comorbidities, low temperature, rain and specific week days (Sunday) decreased both the time out-of-home and walking duration. Other variables like gender (female), isolation or living with a spouse reduced the time out-of-home without affecting walking duration. Being out-of-home increases daily walking duration. The association is strongest if the time out-of-home is 100 min or less.
Maidan, Inbal; Nieuwhof, Freek; Bernad-Elazari, Hagar; Reelick, Miriam F; Bloem, Bas R; Giladi, Nir; Deutsch, Judith E; Hausdorff, Jeffery M; Claassen, Jurgen A H; Mirelman, Anat
2016-11-01
Gait is influenced by higher order cognitive and cortical control mechanisms. Functional near infrared spectroscopy (fNIRS) has been used to examine frontal activation during walking in healthy older adults, reporting increased oxygenated hemoglobin (HbO2) levels during dual task walking (DT), compared with usual walking. To investigate the role of the frontal lobe during DT and obstacle negotiation, in healthy older adults and patients with Parkinson's disease (PD). Thirty-eight healthy older adults (mean age 70.4 ± 0.9 years) and 68 patients with PD (mean age 71.7 ± 1.1 years,) performed 3 walking tasks: (a) usual walking, (b) DT walking, and (c) obstacles negotiation, with fNIRS and accelerometers. Linear-mix models were used to detect changes between groups and within tasks. Patients with PD had higher activation during usual walking (P < .030). During DT, HbO2 increased only in healthy older adults (P < .001). During obstacle negotiation, HbO2 increased in patients with PD (P = .001) and tended to increase in healthy older adults (P = .053). Higher DT and obstacle cost (P < .003) and worse cognitive performance were observed in patients with PD (P = .001). A different pattern of frontal activation during walking was observed between groups. The higher activation during usual walking in patients with PD suggests that the prefrontal cortex plays an important role already during simple walking. However, higher activation relative to baseline during obstacle negotiation and not during DT in the patients with PD demonstrates that prefrontal activation depends on the nature of the task. These findings may have important implications for rehabilitation of gait in patients with PD. © The Author(s) 2016.
A marching-walking hybrid induces step length adaptation and transfers to natural walking
Long, Andrew W.; Finley, James M.
2015-01-01
Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not “walk” but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. PMID:25867742
Imam, Bita; Miller, William C; Finlayson, Heather; Eng, Janice J; Jarus, Tal
2017-01-01
To assess the feasibility of Wii.n.Walk for improving walking capacity in older adults with lower limb amputation. A parallel, evaluator-blind randomized controlled feasibility trial. Community-living. Individuals who were ⩾50 years old with a unilateral lower limb amputation. Wii.n.Walk consisted of Wii Fit training, 3x/week (40 minute sessions), for 4 weeks. Training started in the clinic in groups of 3 and graduated to unsupervised home training. Control group were trained using cognitive games. Feasibility indicators: trial process (recruitment, retention, participants' perceived benefit from the Wii.n.Walk intervention measured by exit questionnaire), resources (adherence), management (participant processing, blinding), and treatment (adverse event, and Cohen's d effect size and variance). Primary clinical outcome: walking capacity measured using the 2 Minute Walk Test at baseline, end of treatment, and 3-week retention. Of 28 randomized participants, 24 completed the trial (12/arm). Median (range) age was 62.0 (50-78) years. Mean (SD) score for perceived benefit from the Wii.n.Walk intervention was 38.9/45 (6.8). Adherence was 83.4%. The effect sizes for the 2 Minute Walk Test were 0.5 (end of treatment) and 0.6 (3-week retention) based on intention to treat with imputed data; and 0.9 (end of treatment) and 1.2 (3-week retention) based on per protocol analysis. The required sample size for a future larger RCT was deemed to be 72 (36 per arm). The results suggested the feasibility of the Wii.n.Walk with a medium effect size for improving walking capacity. Future larger randomized controlled trials investigating efficacy are warranted.
It's how you get there: walking down a virtual alley activates premotor and parietal areas.
Wagner, Johanna; Solis-Escalante, Teodoro; Scherer, Reinhold; Neuper, Christa; Müller-Putz, Gernot
2014-01-01
Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE) feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12, 15-20, and 23-40 Hz was significantly (p ≤ 0.05) decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05) from baseline in the frequency range 23-40 Hz during walking. These modulations were significantly (p ≤ 0.05) reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions. We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.
2012-01-01
Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500
Covering Ground: Movement Patterns and Random Walk Behavior in Aquilonastra anomala Sea Stars.
Lohmann, Amanda C; Evangelista, Dennis; Waldrop, Lindsay D; Mah, Christopher L; Hedrick, Tyson L
2016-10-01
The paths animals take while moving through their environments affect their likelihood of encountering food and other resources; thus, models of foraging behavior abound. To collect movement data appropriate for comparison with these models, we used time-lapse photography to track movements of a small, hardy, and easy-to-obtain organism, Aquilonastra anomala sea stars. We recorded the sea stars in a tank over many hours, with and without a food cue. With food present, they covered less distance, as predicted by theory; this strategy would allow them to remain near food. We then compared the paths of the sea stars to three common models of animal movement: Brownian motion, Lévy walks, and correlated random walks; we found that the sea stars' movements most closely resembled a correlated random walk. Additionally, we compared the search performance of models of Brownian motion, a Lévy walk, and a correlated random walk to that of a model based on the sea stars' movements. We found that the behavior of the modeled sea star walk was similar to that of the modeled correlated random walk and the Brownian motion model, but that the sea star walk was slightly more likely than the other walks to find targets at intermediate distances. While organisms are unlikely to follow an idealized random walk in all details, our data suggest that comparing the effectiveness of an organism's paths to those from theory can give insight into the organism's actual movement strategy. Finally, automated optical tracking of invertebrates proved feasible, and A. anomala was revealed to be a tractable, 2D-movement study system.
2012-01-01
Background Current knowledge on the relationship between the physical environment and walking for transportation among older adults (≥ 65 years) is limited. Qualitative research can provide valuable information and inform further research. However, qualitative studies are scarce and fail to include neighborhood outings necessary to study participants’ experiences and perceptions while interacting with and interpreting the local social and physical environment. The current study sought to uncover the perceived environmental influences on Flemish older adults’ walking for transportation. To get detailed and context-sensitive environmental information, it used walk-along interviews. Methods Purposeful convenience sampling was used to recruit 57 older adults residing in urban or semi-urban areas. Walk-along interviews to and from a destination (e.g. a shop) located within a 15 minutes’ walk from the participants’ home were conducted. Content analysis was performed using NVivo 9 software (QSR International). An inductive approach was used to derive categories and subcategories from the data. Results Data were categorized in the following categories and subcategories: access to facilities (shops & services, public transit, connectivity), walking facilities (sidewalk quality, crossings, legibility, benches), traffic safety (busy traffic, behavior of other road users), familiarity, safety from crime (physical factors, other persons), social contacts, aesthetics (buildings, natural elements, noise & smell, openness, decay) and weather. Conclusions The findings indicate that to promote walking for transportation a neighborhood should provide good access to shops and services, well-maintained walking facilities, aesthetically appealing places, streets with little traffic and places for social interaction. In addition, the neighborhood environment should evoke feelings of familiarity and safety from crime. Future quantitative studies should investigate if (changes in) these environmental factors relate to (changes in) older adults’ walking for transportation. PMID:22780948
Predictive neuromechanical simulations indicate why walking performance declines with ageing.
Song, Seungmoon; Geyer, Hartmut
2018-04-01
Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Patrick, M; Ditunno, P; Ditunno, J F; Marino, R J; Scivoletto, G; Lam, T; Loffree, J; Tamburella, F; Leiby, B
2011-12-01
Blinded rank ordering. To determine consumer preference in walking function utilizing the walking Index for spinal cord injury II (WISCI II) in individuals with spinal cord injury (SCI)from the Canada, the Italy and the United States of America. In all, 42 consumers with incomplete SCI (25 cervical, 12 thoracic, 5 lumbar) from Canada (12/42), Italy (14/42) and the United States of America (16/42) ranked the 20 levels of the WISCI II scale by their individual preference for walking. Subjects were blinded to the original ranking of the WISCI II scale by clinical scientists. Photographs of each WISCI II level used in a previous pilot study were randomly shuffled and rank ordered. Percentile, conjoint/cluster and graphic analyses were performed. All three analyses illustrated consumer ranking followed a bimodal distribution. Ranking for two levels with physical assistance and two levels with a walker were bimodal with a difference of five to six ranks between consumer subgroups (quartile analysis). The larger cluster (N=20) showed preference for walking with assistance over the smaller cluster (N=12), whose preference was walking without assistance and more devices. In all, 64% (27/42) of consumers ranked WISCI II level with no devices or braces and 1 person assistance higher than multiple levels of the WISCI II requiring no assistance. These results were unexpected, as the hypothesis was that consumers would rank independent walking higher than walking with assistance. Consumer preference for walking function should be considered in addition to objective measures in designing SCI trials that use significant improvement in walking function as an outcome measure.
Medeiros, Filipe Mello; de Carvalho Myskiw, Jociane; Baptista, Pedro Porto Alegre; Neves, Laura Tartari; Martins, Lucas Athaydes; Furini, Cristiane Regina Guerino; Izquierdo, Iván; Xavier, Léder Leal; Hollands, Kristen; Mestriner, Régis Gemerasca
2018-02-05
Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability. Thus, 36 Wistar rats were divided in a two-part experiment. In the first part (n=16), the aversive, extinction-resistance memory paradigm was established using a fear-conditioning chamber. In the second, rats (n=20) were assessed in a neutral room using the ladder rung walking test before and tree days after inducing an extinction-resistance memory. In addition, the elevated plus-maze test was used to control the influence of the anxiety-like status on gait adaptability. Our results revealed the shock group exhibited worse walking adaptability (lower skilled walking score), when compared to the sham group. Moreover, the immobility time in the ladder rung walking test was similar to the controls, suggesting that gait adaptability performance was not a consequence of the fear generalization. No anxiety-like behavior was observed in the plus maze test. Finally, correlation coefficients also showed the skilled walking performance score was positively correlated with the number of gait cycles and trial time in the ladder rung walking test and the total crossings in the plus maze. Overall, these preliminary findings provide evidence to hypothesize an aversive, extinction-resistant experience might change the emotional load, affecting the ability to adapt walking. Copyright © 2017. Published by Elsevier B.V.
Bullo, Valentina; Gobbo, Stefano; Vendramin, Barbara; Duregon, Federica; Cugusi, Lucia; Di Blasio, Andrea; Bocalini, Danilo Sales; Zaccaria, Marco; Bergamin, Marco; Ermolao, Andrea
2018-04-01
The aim of this systematic review and meta-analysis was to summarize and analyze the effects of Nordic Walking on physical fitness, body composition, and quality of life in the elderly. Keyword "Nordic Walking" associated with "elderly" AND/OR "aging" AND/OR "old subjects" AND/OR "aged" AND/OR "older adults" were used in the online database MEDLINE, Embase, PubMed, Scopus, PsycINFO, and SPORTDiscus. Only studies written in English language and published in peer-reviewed journals were considered. A meta-analysis was performed and effect sizes calculated. Fifteen studies were identified; age of participants ranged from 60 to 92 years old. Comparing with a sedentary group, effect sizes showed that Nordic Walking was able to improve dynamic balance (0.30), functional balance (0.62), muscle strength of upper (0.66) and lower limbs (0.43), aerobic capacity (0.92), cardiovascular outcomes (0.23), body composition (0.30), and lipid profile (0.67). It seemed that Nordic Walking had a negative effect on static balance (-0.72). Comparing with a walking (alone) training, effect sizes showed that Nordic Walking improved the dynamic balance (0.30), flexibility of the lower body (0.47), and quality of life (0.53). Walking training was more effective in improving aerobic capacity (-0.21). Comparing Nordic Walking with resistance training, effect sizes showed that Nordic Walking improved dynamic balance (0.33), muscle strength of the lower body (0.39), aerobic capacity (0.75), flexibility of the upper body (0.41), and the quality of life (0.93). Nordic Walking can be considered as a safe and accessible form of aerobic exercise for the elderly population, able to improve cardiovascular outcomes, muscle strength, balance ability, and quality of life.
Toots, Annika; Littbrand, Håkan; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2017-03-01
To investigate the effects of exercise on gait speed, when tested using walking aids and without, and whether effects differed according to amount of support in the test. A cluster-randomized controlled trial. The Umeå Dementia and Exercise (UMDEX) study was set in 16 nursing homes in Umeå, Sweden. One hundred forty-one women and 45 men (mean age 85 years) with dementia, of whom 145 (78%) habitually used walking aids. Participants were randomized to the high-intensity functional exercise program or a seated attention control activity. Blinded assessors measured 4-m usual gait speed with walking aids if any gait speed (GS), and without walking aids and with minimum amount of support, at baseline, 4 months (on intervention completion), and 7 months. Linear mixed models showed no between-group effect in either gait speed test at 4 or 7 months. In interaction analyses exercise effects differed significantly between participants who walked unsupported compared with when walking aids or minimum support was used. Positive between-group exercise effects on gait speed (m/s) were found in subgroups that walked unsupported at 4 and 7 months (GS: 0.07, P = .009 and 0.13, P < .001; and GS test without walking aids: 0.05, P = .011 and 0.07, P = .029, respectively). In people with dementia living in nursing homes exercise had positive effects on gait when tested unsupported compared with when walking aids or minimum support was used. The study suggests that the use of walking aids in gait speed tests may conceal exercise effects. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Google Maps offers a new way to evaluate claudication.
Khambati, Husain; Boles, Kim; Jetty, Prasad
2017-05-01
Accurate determination of walking capacity is important for the clinical diagnosis and management plan for patients with peripheral arterial disease. The current "gold standard" of measurement is walking distance on a treadmill. However, treadmill testing is not always reflective of the patient's natural walking conditions, and it may not be fully accessible in every vascular clinic. The objective of this study was to determine whether Google Maps, the readily available GPS-based mapping tool, offers an accurate and accessible method of evaluating walking distances in vascular claudication patients. Patients presenting to the outpatient vascular surgery clinic between November 2013 and April 2014 at the Ottawa Hospital with vasculogenic calf, buttock, and thigh claudication symptoms were identified and prospectively enrolled in our study. Onset of claudication symptoms and maximal walking distance (MWD) were evaluated using four tools: history; Walking Impairment Questionnaire (WIQ), a validated claudication survey; Google Maps distance calculator (patients were asked to report their daily walking routes on the Google Maps-based tool runningmap.com, and walking distances were calculated accordingly); and treadmill testing for onset of symptoms and MWD, recorded in a double-blinded fashion. Fifteen patients were recruited for the study. Determination of walking distances using Google Maps proved to be more accurate than by both clinical history and WIQ, correlating highly with the gold standard of treadmill testing for both claudication onset (r = .805; P < .001) and MWD (r = .928; P < .0001). In addition, distances were generally under-reported on history and WIQ. The Google Maps tool was also efficient, with reporting times averaging below 4 minutes. For vascular claudicants with no other walking limitations, Google Maps is a promising new tool that combines the objective strengths of the treadmill test and incorporates real-world walking environments. It offers an accurate, efficient, inexpensive, and readily accessible way to assess walking distances in patients with peripheral vascular disease. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
Boyne, Pierce; Welge, Jeffrey; Kissela, Brett; Dunning, Kari
2017-03-01
To assess the influence of dosing parameters and patient characteristics on the efficacy of aerobic exercise (AEX) poststroke. A systematic review was conducted using PubMed, MEDLINE, Cumulative Index of Nursing and Allied Health Literature, Physiotherapy Evidence Database, and Academic Search Complete. Studies were selected that compared an AEX group with a nonaerobic control group among ambulatory persons with stroke. Extracted outcome data included peak oxygen consumption (V˙o 2 peak) during exercise testing, walking speed, and walking endurance (6-min walk test). Independent variables of interest were AEX mode (seated or walking), AEX intensity (moderate or vigorous), AEX volume (total hours), stroke chronicity, and baseline outcome scores. Significant between-study heterogeneity was confirmed for all outcomes. Pooled AEX effect size estimates (AEX group change minus control group change) from random effects models were V˙o 2 peak, 2.2mL⋅kg -1 ⋅min -1 (95% confidence interval [CI], 1.3-3.1mL⋅kg -1 ⋅min -1 ); walking speed, .06m/s (95% CI, .01-.11m/s); and 6-minute walk test distance, 29m (95% CI, 15-42m). In meta-regression, larger V˙o 2 peak effect sizes were significantly associated with higher AEX intensity and higher baseline V˙o 2 peak. Larger effect sizes for walking speed and the 6-minute walk test were significantly associated with a walking AEX mode. In contrast, seated AEX did not have a significant effect on walking outcomes. AEX significantly improves aerobic capacity poststroke, but may need to be task specific to affect walking speed and endurance. Higher AEX intensity is associated with better outcomes. Future randomized studies are needed to confirm these results. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.
Leroux, A; Fung, J; Barbeau, H
1999-06-01
Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.
Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter
2016-01-01
Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy. PMID:27471457
Inferring Lévy walks from curved trajectories: A rescaling method
NASA Astrophysics Data System (ADS)
Tromer, R. M.; Barbosa, M. B.; Bartumeus, F.; Catalan, J.; da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.
2015-08-01
An important problem in the study of anomalous diffusion and transport concerns the proper analysis of trajectory data. The analysis and inference of Lévy walk patterns from empirical or simulated trajectories of particles in two and three-dimensional spaces (2D and 3D) is much more difficult than in 1D because path curvature is nonexistent in 1D but quite common in higher dimensions. Recently, a new method for detecting Lévy walks, which considers 1D projections of 2D or 3D trajectory data, has been proposed by Humphries et al. The key new idea is to exploit the fact that the 1D projection of a high-dimensional Lévy walk is itself a Lévy walk. Here, we ask whether or not this projection method is powerful enough to cleanly distinguish 2D Lévy walk with added curvature from a simple Markovian correlated random walk. We study the especially challenging case in which both 2D walks have exactly identical probability density functions (pdf) of step sizes as well as of turning angles between successive steps. Our approach extends the original projection method by introducing a rescaling of the projected data. Upon projection and coarse-graining, the renormalized pdf for the travel distances between successive turnings is seen to possess a fat tail when there is an underlying Lévy process. We exploit this effect to infer a Lévy walk process in the original high-dimensional curved trajectory. In contrast, no fat tail appears when a (Markovian) correlated random walk is analyzed in this way. We show that this procedure works extremely well in clearly identifying a Lévy walk even when there is noise from curvature. The present protocol may be useful in realistic contexts involving ongoing debates on the presence (or not) of Lévy walks related to animal movement on land (2D) and in air and oceans (3D).
Liu, Qingmin; Ren, Yanjun; Cao, Chengjian; Su, Meng; Lyu, Jun; Li, Liming
2015-10-01
To explore the association between walking time and the perception of built environment among local adults in Hangzhou. Through multistage stratified random sampling, a total of 1 440 urban residents aged 25-59 years were surveyed in Hangzhou by face-to face interview in 2012. The international physical activity questionnaire-long version (IPAQ-L) was used to assess the physical activity levels, including walking time in the past week. Neighborhood Environment Walkability Scale-Abbreviated (NEWS-A) was used to obtain information about their perception of built environment. Multiple logistic regression was applied to estimate the relationship between waking and the perception of built environment. Among the local adults in Hangzhou, the median of total physical activity was 2 766 met·min⁻¹·week⁻¹, the average walking time per week was 90 min for leisure and 100 min for transportation respectively. After controlling the age, marital status, BMI, educational level, employment, community type and the total PA scores, the leisure-time walking was negatively related to the accessibility to stores, facilities and other things for both man (OR=0.764, 95% CI: 0.588-0.992) and woman (OR=0.633, 95% CI: 0.481-0.833). In sex specific analysis, the leisure-time walking was negatively related with the residential density (OR=0.997, 95% CI: 0.996-0.999) while transportation related walking was positively related with walking/cycling way scores (OR=1.537, 95% CI: 1.138-2.075) in females. In contrast, there were no significant associations between perception of built environment and transportation related walking in males. Improving the built environment, such as the walking/cycling way, might be useful to increase the transportation related walking time for adults. The sex specific differences need to be considered in the environment intervention for walking promotion.
Motl, Robert W; Sosnoff, Jacob J; Dlugonski, Deirdre; Pilutti, Lara A; Klaren, Rachel; Sandroff, Brian M
2014-03-01
Performing a cognitive task while walking results in a reduction of walking performance among persons with MS. To date, very little is known about correlates of this dual task cost (DTC) of walking in MS. We examined walking performance, cognitive processing speed, and symptoms of fatigue, depression, anxiety, and pain as correlates of DTC of walking in MS. 82 persons with MS undertook a 6-min walk test (6MWT) and completed the Symbol Digit Modalities Test (SDMT), Fatigue Severity Scale (FSS), Short-form of the McGill Pain Questionnaire (SF-MPQ), Hospital Anxiety and Depression Scale (HADS), and self-reported Expanded Disability Status Scale (SR-EDSS). The participants completed 4 trials of walking at a self-selected pace on an electronic walkway that recorded spatiotemporal parameters of gait. The first 2 trials were performed without a cognitive task, whereas the second 2 trials were completed while performing a modified Word List Generation task. There were significant and large declines in gait performance with the addition of a cognitive task for velocity (p<.001, η2=.52), cadence (p<.001, η2=.49), and step length (p<.001, η2=.23). 6MWT and SDMT scores correlated with DTC for velocity (r=-.41, p<.001 and r=-.32, p<.001, respectively) and step length (r=-.45, p<.001 and r=-.37, p<.001, respectively); there were no significant associations between FSS, SF-MPQ, and HADS scores with the DTC of walking. Regression analyses indicated that 6MW, but not SDMT, explained variance in DTC for velocity (ΔR2=.11, p<.001) and step length (ΔR2=.13, p<.001), after controlling for SR-EDSS scores. Walking performance might be a target of interventions for reducing the DTC of walking in MS. Copyright © 2013 Elsevier B.V. All rights reserved.
Draper, A C E; Trumble, T N; Firshman, A M; Baird, J D; Reed, S; Mayhew, I G; MacKay, R; Valberg, S J
2015-03-01
To investigate and further characterise posture and movement characteristics during forward and backward walking in horses with shivering and acquired, bilateral stringhalt. To characterise the movement of horses with shivering (also known as shivers) in comparison with control horses and horses with acquired bilateral stringhalt. Qualitative video analysis of gait in horses. Owners' and authors' videos of horses with shivering or stringhalt and control horses walking forwards and backwards and manually lifting their limbs were examined subjectively to characterise hyperflexion, hyperextension and postural abnormalities of the hindlimbs. The pattern and timing of vertical displacement of a hindlimb over one stride unit was evaluated among control, shivering and stringhalt cases. Gait patterns of shivering cases were characterised as follows: shivering-hyperextension (-HE, n = 13), in which horses subjectively showed hyperextension when backing and lifting the limb; shivering-hyperflexion (-HF, n = 27), in which horses showed hindlimb hyperflexion and abduction during backward walking; and shivering-forward hyperflexion (-FHF, n = 4), which resembled shivering-HF but included intermittent hyperflexion and abduction with forward walking. Horses with shivering-HF, shivering-FHF and stringhalt (n = 7) had a prolonged swing phase duration compared with control horses and horses with shivering-HE during backward walking. With the swing phase of forward walking, horses with stringhalt had a rapid ascent to adducted hyperflexion of the hindlimb, compared with a rapid descent of the hindlimb after abducted hyperflexion in horses with shivering-FHF. Shivering affects backward walking, with either HE or HF of hindlimbs, and can gradually progress to involve intermittent abducted hyperflexion during forward walking. Shivering-HF and shivering-FHF can look remarkably similar to acquired bilateral stringhalt during backward walking; however, stringhalt can be distinguished from shivering-HF by hyperflexion during forward walking and from shivering-FHF by an acute onset of a more consistent, rapidly ascending, hyperflexed, adducted hindlimb gait at a walk. © 2014 EVJ Ltd.
Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn
2017-05-01
The ability to adapt walking to environmental circumstances is an important aspect of walking, yet difficult to assess. The Interactive Walkway was developed to assess walking adaptability by augmenting a multi-Kinect-v2 10-m walkway with gait-dependent visual context (stepping targets, obstacles) using real-time processed markerless full-body kinematics. In this study we determined Interactive Walkway's usability for walking-adaptability assessments in terms of between-systems agreement and sensitivity to task and subject variations. Under varying task constraints, 21 healthy subjects performed obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous walking-adaptability outcome measures were concurrently determined with the Interactive Walkway and a gold-standard motion-registration system: available response time, obstacle-avoidance and sudden-stop margins, step length, stepping accuracy and walking speed. The same holds for dichotomous classifications of success and failure for obstacle-avoidance and sudden-stops tasks and performed short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-adaptability outcome measures generally agreed well between systems (high intraclass correlation coefficients for absolute agreement, low biases and narrow limits of agreement) and were highly sensitive to task and subject variations. Success and failure ratings varied with available response times and obstacle types and agreed between systems for 85-96% of the trials while obstacle-avoidance strategies were always classified correctly. We conclude that Interactive Walkway walking-adaptability outcome measures are reliable and sensitive to task and subject variations, even in high-functioning subjects. We therefore deem Interactive Walkway walking-adaptability assessments usable for obtaining an objective and more task-specific examination of one's ability to walk, which may be feasible for both high-functioning and fragile populations since walking adaptability can be assessed at various levels of difficulty. Copyright © 2017 Elsevier B.V. All rights reserved.
Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Koo, Jung-Wan
2017-06-01
The effects of an arm sling on the physiological costs of walking are not known. Even though a previous study reported that an arm sling can improve gait efficiency, its entrance criteria was only hemiparetic patients able to walk without walking aids independently. The aim of this study was to investigate the effect of shoulder support by an arm sling on gait efficiency in hemiplegic stroke patients using walking aids. Randomized crossover design. Rehabilitation department of a university hospital. A total of 57 hemiplegic patients with shoulder subluxation dependent on canes were grouped into single cane (N.=30) and quad cane groups (N.=27) as walking aids. All patients performed a walk with their own walking aid with and without an arm sling in randomized order, on the same day. We measured the energy cost and energy expenditure using a portable gas analyzer and heart rate during a 6-minutes Walk Test and a 10-m Walk Test. We analyzed all outcomes measures with and without an arm sling between the patients who were grouped according to their walking aids using 2-way repeated ANOVA. The energy cost (0.068±0.023 mL/kg/m) and oxygen expenditure (8.609±2.155 mL/kg/minutes) were lower with the arm sling (P<0.05) than without the arm sling (0.074±0.029 mL/kg/m, and 9.109±2.406 mL/kg/minutes, respectively), and the walking endurance (138.942±47.043 m) were longer (P<0.05) with the arm sling among the hemiplegic patients with single cane. Among the hemiplegic patients with a single cane, the walking endurance achieved with an arm sling significantly improved than those achieved without an arm sling, and the energy expenditure and energy cost was significantly lower. The hemiplegic arm support with an arm sling may be beneficial for gait efficiency in hemiplegic patients using a single cane, which lead to decreased oxygen use at a given speed.
A New Family of Solvable Pearson-Dirichlet Random Walks
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2011-07-01
An n-step Pearson-Gamma random walk in ℝ d starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ℝ d are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any d≥ d 0 and any n≥2 when q is either q = d/2 - 1 ( d 0=3) or q= d-1 ( d 0=2) (Le Caër in J. Stat. Phys. 140:728-751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type ( n≥2), with q= d=2, was shown recently to be a weighted mixture of 1+ floor( n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201-229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q= d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q= d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+ floor( n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.
Wu, Wen-Lan; Wei, Ta-Sen; Chen, Shen-Kai; Chang, Jyh-Jong; Guo, Lan-Yuen; Lin, Hwai-Ting
2010-01-01
Walking performance changes with age. This has implications for the problem of falls in older adults. The aim of this study was to investigate the effects of Yuanji-Dance practice on walking balance and the associated attention demand in healthy elderly. Fifteen community-dwelling elderly (comparison group, no regular exercise habit) and fifteen Yuanji- Dance elderly (exercise group, dancing experience: 5.40 ± 1.95 years), aged 60-70 years, were included in this study. The subjects in exercise group participated in a 90-minute Yuanji-Dance practice at least three times per week and the comparison group continued their normal daily physical activity. Walking balance measures (including walking velocity, step length, step width, and percentage of time spent in double limb support, COM velocity and COM-COP inclination angles) and attentional demand tests (button reaction time and accuracy) were conducted under different conditions. Our results showed that stride lengths, walking velocities, peak A/P velocities (AP V) of the COM, medial COM-COP inclination (M angle) angles, reaction time, and accuracy decrease significantly as the dual-task (walking plus hand button pressing tasks) applied for either the comparison or exercise groups. These results demonstrated that walking performance is attenuated in our elderly participants as the cognitive tasks applied. Analysis also identified a significantly faster RT for our exercise group both in standing and walking conditions. This may indicate that physical exercise (Yuanji-Dance) may have facilitating effects on general cognitive and perceptual- motor functions. This implies that Chinese Yuanji-Dance practice for elderly adults may improve their personal safety when walking especially under the condition of multiple task demand. Key points The purpose of this study was to investigate the training effects of a Chinese traditional exercise, Yuanji-Dance, on walking balance and the associated attention demand in the healthy elderly. Walking performance is attenuated in elderly participants as the cognitive tasks applied. A significantly faster reaction time for our exercise group both in standing and walking conditions. Yuanji-Dance exercise training can improve the information processing speed of elderly people and has no influence of the dynamic walking balance. PMID:24149395