Ganguie, Majid Ashraf; Moghadam, Behrouz Attarbashi; Ghotbi, Nastaran; Shadmehr, Azadeh; Masoumi, Mohammad
2017-12-01
[Purpose] This study examined the immediate effects of transcutaneous electrical nerve stimulation on a six-minute walking test, Borg scale questionnaire and hemodynamic responses in patients with chronic heart failure. [Subjects and Methods] Thirty patients with stable systolic chronic heart failure came to the pathophysiology laboratory three times. The tests were randomly performed in three sessions. In one session, current was applied to the quadriceps muscles of both extremities for 30 minutes and a six-minute walking test was performed immediately afterward. In another session, the same procedure was followed except that the current intensity was set to zero. In the third session, the patients walked for six minutes without application of a current. The distance covered in each session was measured. At the end of each session, the subjects completed a Borg scale questionnaire. [Results] The mean distance traveled in the six-minute walking test and the mean score of the Borg scale questionnaire were significantly different across sessions. The mean systolic and diastolic pressures showed no significant differences across sessions. [Conclusion] The increase in distance traveled during the six-minute walking test and decrease in fatigue after the use of current may be due to a decrease in sympathetic overactivity and an increase in peripheral and muscular microcirculation in these patients.
Ganguie, Majid Ashraf; Moghadam, Behrouz Attarbashi; Ghotbi, Nastaran; Shadmehr, Azadeh; Masoumi, Mohammad
2017-01-01
[Purpose] This study examined the immediate effects of transcutaneous electrical nerve stimulation on a six-minute walking test, Borg scale questionnaire and hemodynamic responses in patients with chronic heart failure. [Subjects and Methods] Thirty patients with stable systolic chronic heart failure came to the pathophysiology laboratory three times. The tests were randomly performed in three sessions. In one session, current was applied to the quadriceps muscles of both extremities for 30 minutes and a six-minute walking test was performed immediately afterward. In another session, the same procedure was followed except that the current intensity was set to zero. In the third session, the patients walked for six minutes without application of a current. The distance covered in each session was measured. At the end of each session, the subjects completed a Borg scale questionnaire. [Results] The mean distance traveled in the six-minute walking test and the mean score of the Borg scale questionnaire were significantly different across sessions. The mean systolic and diastolic pressures showed no significant differences across sessions. [Conclusion] The increase in distance traveled during the six-minute walking test and decrease in fatigue after the use of current may be due to a decrease in sympathetic overactivity and an increase in peripheral and muscular microcirculation in these patients. PMID:29643590
The Association of Clinic-Based Mobility Tasks and Measures of Community Performance and Risk.
Callisaya, Michele L; Verghese, Joe
2018-01-10
Gait speed is recognized as an important predictor of adverse outcomes in older people. However, it is unknown whether other more complex mobility tasks are better predictors of such outcomes. To examine a range of clinic-based mobility tests and determine which were most strongly associated with measures of community performance and risk (CP&R). Cross-sectional study. Central Control Mobility and Aging Study, Westchester County, New York. Aged ≥65 years (n = 424). Clinic-based mobility measures included gait speed measured during normal and dual-task conditions, the Floor Maze Immediate and Delay tasks, and stair ascending and descending. CP&R measures were self-reported by the use of standardized questionnaires and classified into measures of performance (distance walked, travel outside one's home [life space], activities of daily living, and participation in cognitive leisure activities) or risk (balance confidence, fear of falling, and past falls). Linear and logistic regression were used to examine associations between the clinic-based mobility measures and CP&R measures adjusting for covariates. The mean age of the sample was 77.8 (SD 6.4) years, and 55.2% (n = 234) were female. In final models, faster normal walking speed was most strongly associated with 5 of the 7 community measures (greater distance walked, greater life space, better activities of daily living function, higher balance confidence, and less fear of falling; all P < .05). More complex tasks (walking while talking and maze immediate) were associated with cognitive leisure activity (P < .05), and ascending stairs was the only measure associated with a history of falls (P < .05). Normal walking speed is a simple and inexpensive clinic-based mobility test that is associated with a wide range of CP&R measures. In addition, poorer performance ascending stairs may assist in identifying those at risk of falls. Poorer performance in more complex mobility tasks (walking while talking and maze immediate) may suggest inability to participate in cognitive leisure activities. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Li, Desheng; Huang, Qiuchen; Huo, Ming; Hiiragi, Yukinobu; Maruyama, Hitoshi
2017-01-01
[Purpose] The aim of this study was to investigate the change in tibial rotation during walking among young adults after neuromuscular joint facilitation therapy. [Subjects and Methods] The subjects were twelve healthy young people (6 males, 6 females). A neuromuscular joint facilitation intervention and nonintervention were performed. The interventions were performed one after the other, separated by a 1-week interval. The order of the interventions was completely randomized. The rotation of the tibia during walking was evaluated before and after treatment. [Results] The neuromuscular joint facilitation group demonstrated increased lateral rotation of the tibia in the overall gait cycle and stance phase, and decreased medial rotation of the tibia in the overall gait cycle, stance phase, and swing phase after the neuromuscular joint facilitation intervention. In the control group, there were no significant differences. [Conclusion] These results suggest neuromuscular joint facilitation intervention has an immediate effect on the rotational function of the knee.
Combs, Stephanie A; Miller, Ellen Winchell
2011-04-01
The purpose of this study was to investigate the effects of a short-burst dose of intense gait training with body weight-supported treadmill training (BWSTT) on walking speed, endurance, and quality of life of a participant with chronic stroke. A single-subject experimental (A-B-A-A) design with immediate and 3-month retention phases was used. The participant was a 66-year-old woman, 1 year after left cerebrovascular accident. Repeated baseline walking performance was established during 2 weeks of testing using the comfortable 10-meter walk test (CWT) and the 6-minute walk test (6MWT). The Stroke Impact Scale (SIS) was measured one time during baseline. Baseline testing was followed by ten 30-minute sessions of BWSTT over a 2-week duration. Retention testing was conducted immediately and 3 months following the intervention. Statistically significant improvements from baseline with the CWT and the 6MWT were achieved and maintained by the participant across all subsequent measurement phases. Improvements considered to be clinically meaningful changes in the SIS domains of strength and mobility achieved immediately after the intervention were not maintained at 3-month retention testing. For the participant in this study, the short-burst dosage of BWSTT provided a feasible and effective means for improving goal-oriented functional walking ability.
Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian
2014-11-01
There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.
Early changes in Achilles tendon behaviour in vivo following downhill backwards walking.
Joseph, C W; Bradshaw, E J; Furness, T P; Kemp, J; Clark, R A
2016-01-01
Downhill backwards walking causes repeated, cyclical loading of the muscle-tendon unit. The effect this type of repeated loading has on the mechanical behaviour of the Achilles tendon is presently unknown. This study aimed to investigate the biomechanical response of the Achilles tendon aponeurosis complex following a downhill backwards walking protocol. Twenty active males (age: 22.3 ± 3.0 years; mass: 74.7 ± 5.6 kg; height: 1.8 ± 0.7 m) performed 60 min of downhill (8.5°), backwards walking on a treadmill at -0.67 m · s(-1). Data were collected before, immediately post, and 24-, 48- and 168-h post-downhill backwards walking. Achilles tendon aponeurosis elongation, strain and stiffness were measured using ultrasonography. Muscle force decreased immediately post-downhill backward walking (P = 0.019). There were increases in Achilles tendon aponeurosis stiffness at 24-h post-downhill backward walking (307 ± 179.6 N · mm(-1), P = 0.004), and decreases in Achilles tendon aponeurosis strain during maximum voluntary contraction at 24 (3.8 ± 1.7%, P = 0.008) and 48 h (3.9 ± 1.8%, P = 0.002) post. Repeated cyclical loading of downhill backwards walking affects the behaviour of the muscle-tendon unit, most likely by altering muscle compliance, and these changes result in tendon stiffness increases.
Thøgersen-Ntoumani, Cecilie; Loughren, Elizabeth A; Duda, Joan L; Fox, Kenneth R; Kinnafick, Florence-Emilie
2010-09-27
Following an extensive recruitment campaign, a 16-week lunchtime intervention to increase walking was implemented with insufficiently physically active University employees to examine programme feasibility and the effects of the programme in increasing walking behaviour, and in improving well-being and work performance. A feasibility study in which participants were randomised to an immediate treatment or a delayed treatment control (to start at 10 weeks) group. For the first ten weeks of the intervention, participants took part in three facilitator-led group walks per week each of thirty minutes duration and were challenged to accumulate another sixty minutes of walking during the weekends. In the second phase of the intervention, the organised group walks ceased to be offered and participants were encouraged to self-organise their walks. Motivational principles were employed using contemporary motivational theory. Outcome measures (including self-reported walking, step counts, cardiovascular fitness, general and work-related well-being and work performance) were assessed at baseline, at the end of the 16-week intervention and (for some) four months after the end of the intervention. Process and outcome assessments were also taken throughout, and following, the intervention. The results of the intervention will determine the feasibility of implementing a lunchtime walking programme to increase walking behaviour, well-being and performance in sedentary employees. If successful, there is scope to implement definitive trials across a range of worksites with the aim of improving both employee and organisational health. Current Controlled Trials ISRCTN81504663.
Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A
2014-09-01
To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p < 0.05) for all measures except activity. Improvements in participation were not demonstrated. Overgound walking training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.
Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu
2016-05-01
The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.
Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari
2015-01-01
Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.
Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari
2015-01-01
Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281
A soft robotic exosuit improves walking in patients after stroke.
Awad, Louis N; Bae, Jaehyun; O'Donnell, Kathleen; De Rossi, Stefano M M; Hendron, Kathryn; Sloot, Lizeth H; Kudzia, Pawel; Allen, Stephen; Holt, Kenneth G; Ellis, Terry D; Walsh, Conor J
2017-07-26
Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite-and perhaps because of-their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb's residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer's paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle's swing phase dorsiflexion and 11 ± 3% increase in the paretic limb's generation of forward propulsion ( P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance (~12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Thijssen, Dick H; Paulus, Rebecca; van Uden, Caro J; Kooloos, Jan G; Hopman, Maria T
2007-02-01
To measure energy cost and gait analysis in persons with stroke with and without a newly developed orthosis. Immediate and long-term (3wk) intervention (before-after trial). University medical center. Volunteer sample of 27 persons with long-term (range, 0.6-19y) hemiparetic stroke. Three-week familiarization to the new walking aid. Energy cost (per distance walked), preferred walking speed (PWS), and step length. Energy cost was examined in all subjects while walking on a treadmill at 3 different velocities (PWS, PWS+30%, PWS-30%) during 3 different situations (without orthosis, with orthosis, after 3-wk orthosis familiarization). Spatiotemporal aspects of the gait pattern were examined using a 6-m instrumented walkway system. Using the orthosis immediately decreased energy cost in persons with stroke during walking at the PWS (P<.001) and significantly increased walking speed (P<.005) and step length (P<.001). After 3 weeks of familiarization to the orthosis, energy cost at the PWS and at PWS+30% showed further improvement in energy cost (P<.05). The newly developed orthosis immediately decreases energy cost and improves walking speed and step length in persons with long-term stroke. After only 3 weeks of orthosis familiarization, energy cost shows additional improvement.
Barriers associated with reduced physical activity in COPD patients.
Amorim, Priscila Batista; Stelmach, Rafael; Carvalho, Celso Ricardo Fernandes; Fernandes, Frederico Leon Arrabal; Carvalho-Pinto, Regina Maria; Cukier, Alberto
2014-10-01
To evaluate the ability of COPD patients to perform activities of daily living (ADL); to identify barriers that prevent these individuals from performing ADL; and to correlate those barriers with dyspnea severity, six-minute walk test (6MWT), and an ADL limitation score. In COPD patients and healthy, age-matched controls, the number of steps, the distance walked, and walking time were recorded with a triaxial accelerometer, for seven consecutive days. A questionnaire regarding perceived barriers and the London Chest Activity of Daily Living (LCADL) scale were used in order to identify the factors that prevent the performance of ADL. The severity of dyspnea was assessed with two scales, whereas submaximal exercise capacity was determined on the basis of the 6MWT. We evaluated 40 COPD patients and 40 controls. In comparison with the control values, the mean walk time was significantly shorter for COPD patients (68.5 ± 25.8 min/day vs. 105.2 ± 49.4 min/day; p < 0.001), as was the distance walked (3.9 ± 1.9 km/day vs. 6.4 ± 3.2 km/day; p < 0.001). The COPD patients also walked fewer steps/day. The most common self-reported barriers to performing ADL were lack of infrastructure, social influences, and lack of willpower. The 6MWT distance correlated with the results obtained with the accelerometer but not with the LCADL scale results. Patients with COPD are less active than are healthy adults of a comparable age. Physical inactivity and the barriers to performing ADL have immediate implications for clinical practice, calling for early intervention measures.
Phillips, Megan; Bazrgari, Babak; Shapiro, Robert
2015-01-01
While effective in the prevention of otherwise lethal injuries, military body armour (BA) has been suggested to reduce warfighter's performance and increase injury-related musculoskeletal conditions. Providing the significant role of joint biomechanics in both performance and risk of injury, the immediate and prolonged effects of wearing BA on biomechanics of the lower back and knee during toe-touch (TT) and two-legged squat (TLS) tasks were investigated. The immediate effects of BA were an increase of >40 ms (p ≤ 0.02) in flexion duration of the dominant joint and an ∼1 s (p ≤ 0.02) increase in overall task duration as well as an ∼18% (p = 0.03) decrease in the lumbopelvic rhythm ratio near the mid-range of trunk flexion. In general the prolonged duration of wearing BA (i.e. 45 min of walking) was not found to cause more changes in our measures than walking without BA. The effects of wearing military BA on biomechanics of the lower back and knee during TT and TLS tasks were investigated. The immediate effects of BA were increased flexion duration, increased overall trial duration and decreased lumbopelvic rhythm near the mid-range of trunk flexion.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.
Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition
Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413
Caplan, Nick; Forbes, Andrew; Radha, Sarkhell; Stewart, Su; Ewen, Alistair; St Clair Gibson, Alan; Kader, Deiary
2015-05-01
Ankle immobilization is often used after ankle injury. To determine the influence of 1 week's unilateral ankle immobilization on plantar-flexor strength, balance, and walking gait in asymptomatic volunteers. Repeated-measures laboratory study. University laboratory. 6 physically active male participants with no recent history of lower-limb injury. Participants completed a 1-wk period of ankle immobilization achieved through wearing a below-knee ankle cast. Before the cast was applied, as well as immediately, 24 h, and 48 h after cast removal, their plantar-flexor strength was assessed isokinetically, and they completed a single-leg balance task as a measure of proprioceptive function. An analysis of their walking gait was also completed Main Outcome Measures: Peak plantar-flexor torque and balance were used to determine any effect on muscle strength and proprioception after cast removal. Ranges of motion (3D) of the ankle, knee, and hip, as well as walking speed, were used to assess any influence on walking gait. After cast removal, plantar-flexor strength was reduced for the majority of participants (P = .063, CI = -33.98 to 1.31) and balance performance was reduced in the immobilized limb (P < .05, CI = 0.84-5.16). Both strength and balance were not significantly different from baseline levels by 48 h. Walking speed was not significantly different immediately after cast removal but increased progressively above baseline walking speed over the following 48 h. Joint ranges of motion were not significantly different at any time point. The reduction in strength and balance after such a short period of immobilization suggested compromised central and peripheral neural mechanisms. This suggestion appeared consistent with the delayed increase in walking speed that could occur as a result of the excitability of the neural pathways increasing toward baseline levels.
Physical exertion and immediate mental performance of sixth-grade children.
McNaughten, D; Gabbard, C
1993-12-01
The intent of this investigation was to examine the potential influence of varying durations of physical exertion at different times of the day on immediate mathematical performance by 120 sixth-grade boys and girls. Subjects were assigned to two control and two treatment groups (Solomon Four-group Design), with treated subjects administered physical exertion (paced walking at controlled moderate intensity) for durations of 20, 30, and 40 min. at three different times of the school day [8:30 a.m., 11:50 a.m. (before lunch), 2:20 p.m.] over 3 weeks. After each exertion session, subjects were immediately administered a 90-sec. mathematical computation test. Analysis indicated no significant differences in mathematical performance at any duration in the morning, but scores were significantly higher at 11:50 a.m. and 2:20 p.m. at 30- and 40-min. durations in comparison to the 20-min. duration. There were no differences by gender of subject.
Barriers associated with reduced physical activity in COPD patients*
Amorim, Priscila Batista; Stelmach, Rafael; Carvalho, Celso Ricardo Fernandes; Fernandes, Frederico Leon Arrabal; Carvalho-Pinto, Regina Maria; Cukier, Alberto
2014-01-01
OBJECTIVE: To evaluate the ability of COPD patients to perform activities of daily living (ADL); to identify barriers that prevent these individuals from performing ADL; and to correlate those barriers with dyspnea severity, six-minute walk test (6MWT), and an ADL limitation score. METHODS: In COPD patients and healthy, age-matched controls, the number of steps, the distance walked, and walking time were recorded with a triaxial accelerometer, for seven consecutive days. A questionnaire regarding perceived barriers and the London Chest Activity of Daily Living (LCADL) scale were used in order to identify the factors that prevent the performance of ADL. The severity of dyspnea was assessed with two scales, whereas submaximal exercise capacity was determined on the basis of the 6MWT. RESULTS: We evaluated 40 COPD patients and 40 controls. In comparison with the control values, the mean walk time was significantly shorter for COPD patients (68.5 ± 25.8 min/day vs. 105.2 ± 49.4 min/day; p < 0.001), as was the distance walked (3.9 ± 1.9 km/day vs. 6.4 ± 3.2 km/day; p < 0.001). The COPD patients also walked fewer steps/day. The most common self-reported barriers to performing ADL were lack of infrastructure, social influences, and lack of willpower. The 6MWT distance correlated with the results obtained with the accelerometer but not with the LCADL scale results. CONCLUSIONS: Patients with COPD are less active than are healthy adults of a comparable age. Physical inactivity and the barriers to performing ADL have immediate implications for clinical practice, calling for early intervention measures. PMID:25410838
Namdar, Nategh; Arazpour, Mokhtar; Ahmadi Bani, Monireh
2017-12-21
The effect of spinal orthoses, including the Spinomed ® and posture training support (PTS) in improving balance and reducing falls in older people has been previously evaluated. However, there is little evidence available regarding their effect on the walking ability of older individuals with thoracic hyperkyphosis. This study was therefore designed to compare the immediate effect of the Spinomed ® orthosis and PTS on specific gait parameters in this patient group. A total of 34 older volunteer subjects with thoracic hyperkyphosis participated in this study and were randomly allocated into two groups, to either walk with the Spinomed ® orthosis in situ or the PTS. The elderly mobility scale test (EMS), two-minute walk test (2-MWT), and 10-meter walk test (10-MWT) were used to evaluate their walking performance, the distance walked and their walking speed respectively. There were no significant differences in the mean age, body mass index (BMI), kyphosis angle, EMS, 2-MWT, and 10-MWT between the groups at baseline. All parameters were uniform amongst the two groups. The Spinomed ® orthosis and PTS both had a positive and significant effect on the EMS score, the 2-MWT, and the 10-MWT. No significant difference was detected between two the types of orthoses in terms of the EMS score, the 2-MWT, or the 10-MWT. The Spinomed ® and PTS were both effective in improving all the primary outcome measures, with similar improvements demonstrated by both orthoses. Implications for rehabilitations In this category, one of the approaches to treat the elderly with hyperkyphosis is the use of spinal orthoses such as Spinomed ® orthosis and posture training support (PTS). The results showed that the anti-kyphosis orthosis including Spinomed ® and PTS played effective roles in the elderly with hyperkyphosis to improve their walking function. According to the current study results, there was no significant difference between the efficacies of these orthoses in the mentioned parameters.
Ginis, Pieter; Heremans, Elke; Ferrari, Alberto; Dockx, Kim; Canning, Colleen G; Nieuwboer, Alice
2017-01-01
Rhythmic auditory cueing is a well-accepted tool for gait rehabilitation in Parkinson's disease (PD), which can now be applied in a performance-adapted fashion due to technological advance. This study investigated the immediate differences on gait during a prolonged, 30 min, walk with performance-adapted (intelligent) auditory cueing and verbal feedback provided by a wearable sensor-based system as alternatives for traditional cueing. Additionally, potential effects on self-perceived fatigue were assessed. Twenty-eight people with PD and 13 age-matched healthy elderly (HE) performed four 30 min walks with a wearable cue and feedback system. In randomized order, participants received: (1) continuous auditory cueing; (2) intelligent cueing (10 metronome beats triggered by a deviating walking rhythm); (3) intelligent feedback (verbal instructions triggered by a deviating walking rhythm); and (4) no external input. Fatigue was self-scored at rest and after walking during each session. The results showed that while HE were able to maintain cadence for 30 min during all conditions, cadence in PD significantly declined without input. With continuous cueing and intelligent feedback people with PD were able to maintain cadence ( p = 0.04), although they were more physically fatigued than HE. Furthermore, cadence deviated significantly more in people with PD than in HE without input and particularly with intelligent feedback (both: p = 0.04). In PD, continuous and intelligent cueing induced significantly less deviations of cadence ( p = 0.006). Altogether, this suggests that intelligent cueing is a suitable alternative for the continuous mode during prolonged walking in PD, as it induced similar effects on gait without generating levels of fatigue beyond that of HE.
Antunes, Fabiane Nunes; Pinho, Alexandre Severo do; Kleiner, Ana Francisca Rozin; Salazar, Ana Paula; Eltz, Giovana Duarte; de Oliveira Junior, Alcyr Alves; Cechetti, Fernanda; Galli, Manuela; Pagnussat, Aline Souza
2016-12-01
Hippotherapy is often carried out for the rehabilitation of children with Cerebral Palsy (CP), with the horse riding at a walking pace. This study aimed to explore the immediate effects of a hippotherapy protocol using a walk-trot pace on spatio-temporal gait parameters and muscle tone in children with Bilateral Spastic CP (BS-CP). Ten children diagnosed with BS-CP and 10 healthy aged-matched children (reference group) took part in this study. The children with BS-CP underwent two sessions of hippotherapy for one week of washout between them. Two protocols (lasting 30min) were applied on separate days: Protocol 1: the horse's pace was a walking pace; and Protocol 2: the horse's pace was a walk-trot pace. Children from the reference group were not subjected to treatment. A wireless inertial measurement unit measured gait spatio-temporal parameters before and after each session. The Modified Ashworth Scale was applied for muscle tone measurement of hip adductors. The participants underwent the gait assessment on a path with surface irregularities (ecological context). The comparisons between BS-CP and the reference group found differences in all spatio-temporal parameters, except for gait velocity. Within-group analysis of children with BS-CP showed that the swing phase did not change after the walk pace and after the walk-trot pace. The percentage of rolling phase and double support improved after the walk-trot. The spasticity of the hip adductors was significantly reduced as an immediate result of both protocols, but this decrease was more evident after the walk-trot. The walk-trot protocol is feasible and is able to induce an immediate effect that improves the gait spatio-temporal parameters and the hip adductors spasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of rocker-soled shoes on parameters of knee joint load in knee osteoarthritis.
Madden, Elizabeth G; Kean, Crystal O; Wrigley, Tim V; Bennell, Kim L; Hinman, Rana S
2015-01-01
This study evaluated the immediate effects of rocker-soled shoes on parameters of the knee adduction moment (KAM) and pain in individuals with knee osteoarthritis (OA). Three-dimensional gait analysis was performed on 30 individuals (mean (SD): age, 61 (7) yr; 15 (50%) male) with radiographic and symptomatic knee OA under three walking conditions in a randomized order: i) wearing rocker-soled shoes (Skechers Shape-ups), ii) wearing non-rocker-soled shoes (ASICS walking shoes), and iii) barefoot. Peak KAM and KAM angular impulse were measured as primary indicators of knee load distribution. Secondary measures included the knee flexion moment (KFM) and knee pain during walking. Peak KAM was significantly lower when wearing the rocker-soled shoes compared with that when wearing the non-rocker-soled shoes (mean difference (95% confidence interval), -0.27 (-0.42 to -0.12) N·m/BW × Ht%; P < 0.001). Post hoc tests revealed no significant difference in KAM impulse between rocker-soled and non-rocker-soled shoe conditions (P = 0.13). Both peak KAM and KAM impulse were significantly higher during both shoe conditions compared with those during the barefoot condition (P < 0.001). There were no significant differences in KFM (P = 0.36) or knee pain (P = 0.89) between conditions. Rocker-soled shoes significantly reduced peak KAM when compared with non-rocker-soled shoes, without a concomitant change in KFM, and thus may potentially reduce medial knee joint loading. However, KAM parameters in the rocker-soled shoes remained significantly higher than those during barefoot walking. Wearing rocker-soled shoes did not have a significant immediate effect on walking pain. Further research is required to evaluate whether rocker-soled shoes can influence symptoms and progression of knee OA with prolonged wear.
77 FR 56701 - Morgan Olson, LLC, Denial of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-13
... Olson walk-in van-type trucks having a gross vehicle weight rating (GVWR) over 4,536 kg and manufactured... model year 2009, 2010, and 2011 walk-in van-type trucks. Noncompliance: Morgan Olson states that the... walk-in van manufactured by Morgan Olson, would immediately notice this gap and realize that the door...
Soares, S M T P; Jannuzzi, H P C; Kassab, M F O; Nucci, L B; Paschoal, M A
2015-09-01
To evaluate the effects of repetition of the 6-minute walk test in patients scheduled to undergo abdominal surgery within the next 48 hours, and to verify the physical capacity of these subjects before surgery. Cross-sectional study. University teaching hospital. Forty-two patients scheduled for elective abdominal surgery within the next 48 hours. Distance walked in the 6-minute walk test, heart rate, peripheral oxygen saturation, dyspnoea and leg fatigue. Thirty-one patients (74%) were able to walk for a longer distance when the test was repeated. In these subjects, the mean increase in distance walked was 35.4 [standard deviation (SD) 19.9]m. Heart rate, dyspnoea and leg fatigue increased significantly over time on both tests (P<0.05). The mean heart rate at the end of the sixth minute was significantly higher on the second test (P=0.022). Peripheral oxygen saturation remained above 90% in both tests. The furthest distance walked was, on average, 461.3 (SD 89.7)m. This value was significantly lower than that predicted for the sample (P<0.001). Patients scheduled to undergo abdominal surgery were able to walk further when they performed a second 6-minute walk test. Moreover, they showed reduced physical ability before surgery. These findings suggest that repetition of the 6-minute walk test may increase the accuracy of the distance walked, which is useful for studies assessing the physical capacity of patients undergoing abdominal surgery. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Phillips, Megan P; Shapiro, Robert; Bazrgari, Babak
2016-05-01
Modern day body armour (BA) has been successful at increasing survivability from previously lethal explosives; however, it has been suggested to reduce warfighter's performance and increase risk of injury. Joint biomechanics have a foremost impact on performance and risk of injury. The immediate and prolonged effects of wearing BA on biomechanics of the lower back and knee during box drop (BD) and prone to standing tasks were investigated. The immediate effects of BA on both tasks were an increase of ≥4% (p ≤ 0.02) in temporal task durations and a decrease of ~1.66 N/kg (p = 0.03) in normalised peak ground reaction force for the BD test. The prolonged duration of walking with BA (i.e. 45 min) was not found to cause more changes in our measures than walking without BA. Quantitative data related to the effects of BA are important for risk assessment and mission design such to reduce the risk of injury without compromising performance. Practitioner Summary: The effects of wearing military body armour (BA) on biomechanics of the lower back and knee were investigated. Though wearing BA was found to affect some biomechanical measures related to performance, the prolonged effects of exposure on our measures were the same whether or not the participants wore BA.
Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut
2015-11-01
The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.
Ito, Tomotaka; Tsubahara, Akio; Shinkoda, Koichi; Yoshimura, Yosuke; Kobara, Kenichi; Osaka, Hiroshi
2015-01-01
Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke. PMID:25688972
Vestibular Dysfunction after Subconcussive Head Impact
Ma, Lei; Kawata, Keisuke; Tierney, Ryan; Jeka, John J.
2017-01-01
Abstract Current thinking views mild head impact (i.e., subconcussion) as an underrecognized phenomenon that has the ability to cause significant current and future detrimental neurological effects. Repeated mild impacts to the head, however, often display no observable behavioral deficits based on standard clinical tests, which may lack sensitivity. The current study investigates the effects of subconcussive impacts from soccer heading with innovative measures of vestibular function and walking stability in a pre- 0–2 h, post- 24 h post-heading repeated measures design. The heading group (n = 10) executed 10 headers with soccer balls projected at a velocity of 25 mph (11.2 m/sec) over 10 min. Subjects were evaluated 24 h before, immediately after, and 24 h after soccer heading with: the modified Balance Error Scoring System (mBESS); a walking stability task with visual feedback of trunk movement; and galvanic vestibular stimulation (GVS) while standing with eyes closed on foam. A control group (n = 10) followed the same protocol with no heading. The results showed significant decrease in trunk angle, leg angle gain, and center of mass gain relative to GVS for the heading group compared with controls. Medial-lateral trunk orientation displacement and velocity during treadmill walking increased immediately after mild head impact for the heading group compared with controls. Controls showed an improvement in mBESS scores over time, indicating a learning effect, which was not observed with the heading group. These results suggest that mild head impact leads to a transient dysfunction in vestibular processing, which deters walking stability during task performance. PMID:26885560
Vestibular Dysfunction after Subconcussive Head Impact.
Hwang, Sungjae; Ma, Lei; Kawata, Keisuke; Tierney, Ryan; Jeka, John J
2017-01-01
Current thinking views mild head impact (i.e., subconcussion) as an underrecognized phenomenon that has the ability to cause significant current and future detrimental neurological effects. Repeated mild impacts to the head, however, often display no observable behavioral deficits based on standard clinical tests, which may lack sensitivity. The current study investigates the effects of subconcussive impacts from soccer heading with innovative measures of vestibular function and walking stability in a pre- 0-2 h, post- 24 h post-heading repeated measures design. The heading group (n = 10) executed 10 headers with soccer balls projected at a velocity of 25 mph (11.2 m/sec) over 10 min. Subjects were evaluated 24 h before, immediately after, and 24 h after soccer heading with: the modified Balance Error Scoring System (mBESS); a walking stability task with visual feedback of trunk movement; and galvanic vestibular stimulation (GVS) while standing with eyes closed on foam. A control group (n = 10) followed the same protocol with no heading. The results showed significant decrease in trunk angle, leg angle gain, and center of mass gain relative to GVS for the heading group compared with controls. Medial-lateral trunk orientation displacement and velocity during treadmill walking increased immediately after mild head impact for the heading group compared with controls. Controls showed an improvement in mBESS scores over time, indicating a learning effect, which was not observed with the heading group. These results suggest that mild head impact leads to a transient dysfunction in vestibular processing, which deters walking stability during task performance.
Vukomanović, Aleksandra; Popović, Zoran; Durović, Aleksandar; Krstić, Ljiljana
2008-04-01
Hip arthroplasty is a routine operation which relieves pain in patients with osteoarthritis. The role of physical therapy after hip arthroplasty was recognized, but the importance of preoperative physical therapy and education is still to be judged. The aim of this paper was to investigate the effect of short-term preoperative program of education and physical therapy on patients' early functional recovery immediately after total hip arthroplasty (THA). This prospective study included 45 patients with hip osteoarthritis scheduled to undergo primary THA and admitted to the Department of Orthopedics of Military Medical Academy. They were randomized into 2 groups: study and control one (with and without preoperative education and physical therapy). Preoperative education was conducted through conversation (1 appointment with physiatrist) and brochure. The study group was instructed to perform exercises and basic activities from the postoperative rehabilitation program (2 practical classes with physiotherapist). Effects were measured with questionnaires (Harris, Oxford and Japanese Orthopaedic Association (JOA) hip scores), range of motion and visual analog scale of pain. Marks showing ability to perform basic activities and endurance were from 0 (did not perform activity) to 5 (independent and secure). Analyses examined differences between the groups over the preoperative and immediate postoperative periods and 15 months after the operation. There were no differences between the groups at discharge according to pain, range of motion, Harris hip score and JOA hip score. Oxford hip score did not differ between the groups 15 months after the operation. The groups started to walk at the same time, but the study group walked up and down stairs (3.7+/-1.66 vs 5.37+/-1.46, p< or =0.002), used toilet (2.3+/-0.92 vs 3.2+/-1.24, p< or =0.02) and chair (2.2+/-1.01 vs 3.25+/-1.21, p< or =0.006) significantly earlier than the control group. On the third day after the operation the study group was significantly more independent than the control one while performing any basic activities (changing position in bed from supine to side lying, from supine to sitting on the edge of the bed, from sitting to standing, from standing to lying in the bad, standing, walking, using toilet and chair). At discharge the patients from the control group still needed the therapist help for walking up and down stairs (3+/-1.26), while the patients from the study group performed there activities independently (4.85+/-0.37) (p< or =0.000). Endurance while walking was significantly better in the study group than in the control one. The length of hospital stay after the operation was similar for both groups, but the patients from the study group needed significantly less classes with the therapist (5.2+/-2.35 vs 6.85+/-1.14, p< or =0.02) during hospital stay. The short-term preoperative program of education with the elements of physical therapy accelerated early functional recovery of patients (younger than 70) immediately after THA and we recommend it for routine use.
Ensari, Ipek; Sandroff, Brian M.
2016-01-01
Background: Little is known about the acute or immediate effects of walking exercise and yoga on mood in people with multiple sclerosis (MS). Such an examination is important for identifying an exercise modality for inclusion in exercise-training interventions that yields mood benefits in MS. We examined the effects of single bouts of treadmill walking and yoga compared with a quiet, seated-rest control condition on acute mood symptoms in MS. Methods: Twenty-four participants with MS completed 20 minutes of treadmill walking, yoga, or quiet rest in a randomized, counterbalanced order with 1 week between sessions. Participants completed the Profile of Mood States questionnaire before and immediately after each condition. Total mood disturbance (TMD) and the six subscales of the Profile of Mood States were analyzed using repeated-measures analysis of variance and paired-samples t tests. Results: There was a significant condition × time interaction on TMD scores (ηp2 = 0.13). Walking and yoga conditions yielded comparable reductions in TMD scores. There was a significant condition × time interaction on vigor (ηp2 = 0.23) whereby walking but not yoga yielded an improvement in vigor. There was a significant main effect of time on anger, confusion, depression, and tension (P < .05) but not on fatigue. Conclusions: Walking and yoga yielded similar improvements in overall acute mood symptoms, and walking improved feelings of vigor. These effects should be further investigated in long-term exercise-training studies. PMID:26917992
Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U
2016-01-01
The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.
Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.
Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J
2016-10-24
In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.
Index of mechanical work in gait of children with cerebral palsy.
Dziuba, Alicja Katarzyna; Tylkowska, Małgorzata; Jaroszczuk, Sebastian
2014-01-01
The pathological gait of children with cerebral palsy involves higher mechanical work, which limits their ability to function properly in society. Mechanical work is directly related to walking speed and, although a number of studies have been carried out in this field, few of them analysed the effect of the speed. The study aimed to develop standards for mechanical work during gait of children with cerebral palsy depending on the walking speed. The study covered 18 children with cerebral palsy and 14 healthy children. The BTS Smart software and the author's software were used to evaluate mechanical work, kinetic, potential and rotational energy connected with motion of the children body during walk. Compared to healthy subjects, mechanical work in children with cerebral palsy increases with the degree of disability. It can be expressed as a linear function of walking speed and shows strong and statistically significant correlations with walking gait. A negative statistically significant correlation between the degree of disability and walking speed can be observed. The highest contribution to the total mechanical energy during gait is from mechanical energy of the feet. Instantaneous value of rotational energy is 700 times lower than the instantaneous mechanical energy. An increase in walking speed causes the increase in the effect of the index of kinetic energy on total mechanical work. The method described can provide an objective supplementation for doctors and physical therapists to perform a simple and immediate diagnosis without much technical knowledge.
Tian, Qu; An, Yang; Resnick, Susan M; Studenski, Stephanie
2017-05-01
most older individuals who experience mobility decline, also show cognitive decline, but whether cognitive decline precedes or follows mobility limitation is not well understood. examine the temporal sequence of mobility and cognition among initially unimpaired older adults. mobility and cognition were assessed every 2 years for 6 years in 412 participants aged ≥60 with initially unimpaired cognition and gait speed. Using autoregressive models, accounting for the dependent variable from the prior assessment, baseline age, sex, body mass index and education, we examine the temporal sequence of change in mobility (6 m usual gait speed, 400 m fast walk time) and executive function (visuoperceptual speed: Digit Symbol Substitution Test (DSST); cognitive flexibility: Trail Making Test part B (TMT-B)) or memory (California Verbal Learning Test (CVLT) immediate, short-delay, long-delay). there was a bidirectional relationship over time between slower usual gait speed and both poorer DSST and TMT-B scores (Bonferroni-corrected P < 0.005). In contrast, slower 400 m fast walk time predicted subsequent poorer DSST, TMT-B, CVLT immediate recall and CVLT short-delay scores (P < 0.005), while these measures did not predict subsequent 400 m fast walk time (P > 0.005). among initially unimpaired older adults, the temporal relationship between usual gait speed and executive function is bidirectional, with each predicting change in the other, while poor fast walking performance predicts future executive function and memory changes but not vice versa. Challenging tasks like the 400 m walk appear superior to usual gait speed for predicting executive function and memory change in unimpaired older adults. Published by Oxford University Press on behalf of the British Geriatrics Society 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Brütsch, Karin; Schuler, Tabea; Koenig, Alexander; Zimmerli, Lukas; -Koeneke, Susan Mérillat; Lünenburger, Lars; Riener, Robert; Jäncke, Lutz; Meyer-Heim, Andreas
2010-04-22
Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat*. A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire. The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001). The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation.
Bruun-Olsen, Vigdis; Heiberg, Kristi Elisabeth; Wahl, Astrid Klopstad; Mengshoel, Anne Marit
2013-01-01
To examine the immediate and long-term effects of a walking-skill program compared with usual physiotherapy on physical function, pain and perceived self-efficacy in patients after total knee arthroplasty (TKA). A single blind randomized controlled trial design was applied. Fifty-seven patients with primary TKA, mean age of 69 years (SD ± 9), were randomly assigned to a walking-skill program emphasizing weight-bearing exercises or usual physiotherapy. Outcomes were assessed before the interventions started at 6 weeks postoperatively (T1), directly after the interventions at 12-14 weeks (T2) and 9 months after the interventions (T3). Walking was the primary outcome, assessed by the 6 min walk test (6MWT). The secondary outcomes were timed stair climbing, timed stands, Figure-of-eight test, Index of muscle function, active knee range of motion, Knee Injury and Osteoarthritis Outcome Score and self-efficacy score. From T1 to T2, a better 6MWT score was found in favor of the walking-skill program of 39 m (2-76), p = 0.04. The difference between the groups in 6MWT persisted at T3, 44 m (8-80), p = 0.02. No differences in other outcome measures were found. The walking-skill program had better effect on walking than usual physiotherapy. Weight bearing was tolerated. Implications for Rehabilitation Weight-bearing exercises are tolerated by the patients in the early stage after TKA. Physiotherapy that focuses on learning different ways of walking through practice may be a plausible way to train patients after TKA.
2018-01-01
Objective To investigate the immediate therapeutic effects of mental singing while walking intervention on gait disturbances in hemiplegic stroke patients. Methods Eligible, post-stroke, hemiplegic patients were prospectively enrolled in this study. The inclusion criteria were a diagnosis of hemiplegia due to stroke, and ability to walk more than 10 m with or without gait aids. Each patient underwent structured music therapy sessions comprising 7 consecutive tasks, and were trained to sing in their mind (mental singing) while walking. Before, and after training sessions, gait ability was assessed using the 10-Meter Walk Test (10MWT), the Timed Up and Go test (TUG), gait velocity, cadence and stride length. Results Twenty patients were enrolled in the interventions. Following the mental singing while walking intervention, significant improvement was observed in the 10MWT (13.16±7.61 to 12.27±7.58; p=0.002) and the TUG test (19.36±15.37 to 18.42±16.43; p=0.006). Significant improvement was also seen in gait cadence (90.36±29.11 to 95.36±30.2; p<0.001), stride length (90.99±33.4 to 98.17±35.33; p<0.001) and velocity (0.66±0.45 to 0.71±0.47; p<0.002). Conclusion These results indicate the possible effects of mental singing while walking on gait in patients diagnosed with hemiplegic stroke. PMID:29560318
Oe, Momoko; Ogawa, Hiroto
2013-01-01
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking. PMID:24244644
Thøgersen-Ntoumani, C; Loughren, E A; Kinnafick, F-E; Taylor, I M; Duda, J L; Fox, K R
2015-12-01
Physical activity may regulate affective experiences at work, but controlled studies are needed and there has been a reliance on retrospective accounts of experience. The purpose of the present study was to examine the effect of lunchtime walks on momentary work affect at the individual and group levels. Physically inactive employees (N = 56; M age = 47.68; 92.86% female) from a large university in the UK were randomized to immediate treatment or delayed treatment (DT). The DT participants completed both a control and intervention period. During the intervention period, participants partook in three weekly 30-min lunchtime group-led walks for 10 weeks. They completed twice daily affective reports at work (morning and afternoon) using mobile phones on two randomly chosen days per week. Multilevel modeling was used to analyze the data. Lunchtime walks improved enthusiasm, relaxation, and nervousness at work, although the pattern of results differed depending on whether between-group or within-person analyses were conducted. The intervention was effective in changing some affective states and may have broader implications for public health and workplace performance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Simonsick, Eleanor M; Fan, Ellen; Fleg, Jerome L
2006-01-01
To determine criterion validity of the 400-m walk component of the Long Distance Corridor Walk (LDCW) and develop equations for estimating peak oxygen consumption (VO2) from 400-m time and factors intrinsic to test performance (e.g., heart rate (HR) and systolic blood pressure (SBP) response) in older adults. Cross-sectional validation study. Gerontology Research Center, National Institute on Aging, Baltimore, Maryland. Healthy volunteers (56 men and 46 women) aged 60 to 91 participating in the Baltimore Longitudinal Study of Aging between August 1999 and July 2000. The LDCW, consisting of a 2-minute walk followed immediately by a 400-m walk "done as quickly as possible" over a 20-m course was administered the day after maximal treadmill testing. HR and SBP were measured before testing and at the end of the 400-m walk. Weight, height, activity level, perceived effort, and stride length were also acquired. Peak VO2 ranged from 12.2 to 31.1 mL oxygen/kg per minute, and 400-m time ranged from 2 minutes 52 seconds to 6 minutes 18 seconds. Correlation between 400-m time and peak VO2 was -0.79. The estimating equation from linear regression included 400-m time (partial coefficient of determination (R2)=0.625), long versus short stride (partial R2=0.090), ending SBP (partial R2=0.019), and a correction factor for fast 400-m time (<240 seconds; partial R2=0.020) and explained 75.5% of the variance in peak VO2 (correlation coefficient=0.87). A 400-m walk performed as part of the LDCW provides a valid estimate of peak VO2 in older adults. Incorporating low-cost, safe assessments of fitness in clinical and research settings can identify early evidence of physical decline and individuals who may benefit from therapeutic interventions.
Kinesthetic taping improves walking function in patients with stroke: a pilot cohort study.
Boeskov, Birgitte; Carver, Line Tornehøj; von Essen-Leise, Anders; Henriksen, Marius
2014-01-01
Stroke is an important cause of severe disability and impaired motor function. Treatment modalities that improve motor function in patients with stroke are needed. The objective of this study was to investigate the effect of kinesthetic taping of the anterior thigh and knee on maximal walking speed and clinical indices of spasticity in patients with stroke. Thirty-two patients (9 women) receiving rehabilitation after stroke (average, 50 days since stroke) who had impaired walking ability were recruited. Primary outcome was maximal walking speed measured by the 10-meter walk test. Secondary outcomes were number of steps taken during the test and clinical signs of spasticity measured by the Tardieu Scale. Tests were conducted before and immediately after application of kinesthetic tape to the anterior thigh and knee of the paretic lower limb. After application of the tape, the maximal walking speed increased, on average, by 0.08 m/s (95% CI, 0.04 to 0.12; P < .0001). The number of steps taken during the test was significantly decreased by 1.4 steps (95% CI, -2.3 to -0.5; P < .0031). The Tardieu scores were not significantly changed by the tape intervention, although a trend was observed indicating a lesser degree of spasticity. The results of this study indicate that kinesthetic taping of the anterior thigh and knee provides an immediate improvement in walking function in patients with stroke. Such a positive effect on motor function could be a valuable adjunct in physical therapy and rehabilitation of patients with stroke.
Beselga, Carlos; Neto, Francisco; Alburquerque-Sendín, Francisco; Hall, Toby; Oliveira-Campelo, Natália
2016-04-01
Mobilization with movement (MWM) has been shown to reduce pain, increase range of motion (ROM) and physical function in a range of different musculoskeletal disorders. Despite this evidence, there is a lack of studies evaluating the effects of MWM for hip osteoarthritis (OA). To determine the immediate effects of MWM on pain, ROM and functional performance in patients with hip OA. Randomized controlled trial with immediate follow-up. Forty consenting patients (mean age 78 ± 6 years; 54% female) satisfied the eligibility criteria. All participants completed the study. Two forms of MWM techniques (n = 20) or a simulated MWM (sham) (n = 20) were applied. pain recorded by numerical rating scale (NRS). hip flexion and internal rotation ROM, and physical performance (timed up and go, sit to stand, and 40 m self placed walk test) were assessed before and after the intervention. For the MWM group, pain decreased by 2 points on the NRS, hip flexion increased by 12.2°, internal rotation by 4.4°, and functional tests were also improved with clinically relevant effects following the MWM. There were no significant changes in the sham group for any outcome variable. Pain, hip flexion ROM and physical performance immediately improved after the application of MWM in elderly patients suffering hip OA. The observed immediate changes were of clinical relevance. Future studies are required to determine the long-term effects of this intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Playing active video games increases energy expenditure in children.
Graf, Diana L; Pratt, Lauren V; Hester, Casey N; Short, Kevin R
2009-08-01
To compare energy expenditure rates in children playing the physically active video games, Dance Dance Revolution (DDR) and Nintendo's Wii Sports in relation to treadmill walking. Energy expenditure, heart rate, step rate, and perceived exertion were measured in 14 boys and 9 girls (ages 10-13 years; BMI at 3-98th percentile for age and gender) while watching television at rest, playing DDR at 2 skill levels, playing Wii bowling and boxing, and walking at 2.6, 4.2, and 5.7 km/h. Arterial elasticity was measured at rest and immediately after gaming. Compared with watching television, energy expenditure while gaming or walking increased 2- to 3-fold. Similarly, high rates of energy expenditure, heart rate, and perceived exertion were elicited from playing Wii boxing, DDR level 2, or walking at 5.7 km/h. This occurred despite variations in step rate among activities, reflecting greater use of upper body during Wii play (lowest step rate) than during walking (highest step rate) or DDR play. Wii bowling and beginner level DDR elicited a 2-fold increase in energy expenditure compared to television watching. Large-artery elasticity declined immediately after both DDR and Wii. The change was inversely related to the increment in energy expenditure above rest achieved during the activity. Energy expenditure during active video game play is comparable to moderate-intensity walking. Thus, for children who spend considerable time playing electronic screen games for entertainment, physically active games seem to be a safe, fun, and valuable means of promoting energy expenditure.
Takahashi, Paul Y; Quigg, Stephanie M; Croghan, Ivana T; Schroeder, Darrell R; Ebbert, Jon O
2016-01-01
Walking can improve functional status, and a pedometer and goal setting can increase walking and, potentially, gait speed. The efficacy of pedometer use and goal setting for increasing step counts among overweight and obese adults with multiple comorbid conditions has not been evaluated. We recruited and randomly assigned obese or overweight adults with multimorbidity to immediate pedometer use with goal setting or delayed pedometer use, using a crossover design. The primary outcome of interest was step count, with secondary outcomes of gait speed and grip strength, with comparison between the intervention and delayed pedometer groups. Mean (standard deviation [SD]) age of the 130 participants was 63.4 (15.0) years. At 2 months, mean (SD) steps for the immediate pedometer use group (n=64) was 5,337 (3,096), compared with 4,446 (2,422) steps in the delayed pedometer group (n=66) (P=0.08). Within-group step count increased nonsignificantly, by 179 steps in the immediate pedometer group and 212 steps in the delayed pedometer group after 2 months of intervention, with no significant difference between the groups. Gait speed significantly increased by 0.08 m/s (P<0.05) and grip strength significantly increased by 1.6 kg (P<0.05) in the immediate pedometer group. Pedometer use and goal setting did not significantly increase step count among overweight and obese adults with multimorbidity. The absolute step count was lower than many reported averages. Gait speed and grip strength increased with immediate pedometer use. The use of pedometers and goal setting may have an attenuated response in this population.
2010-01-01
Background Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat®. Methods A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire. Results The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS × GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001). Conclusions The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation. PMID:20412572
Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano
2016-01-01
Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (<6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928
Krishnan, Chandramouli; Kotsapouikis, Despina; Dhaher, Yasin Y; Rymer, William Z
2013-06-01
To test the feasibility of patient-cooperative robotic gait training for improving locomotor function of a chronic stroke survivor with severe lower-extremity motor impairments. Single-subject crossover design. Performed in a controlled laboratory setting. A 62-year-old man with right temporal lobe ischemic stroke was recruited for this study. The baseline lower-extremity Fugl-Meyer score of the subject was 10 on a scale of 34, which represented severe impairment in the paretic leg. However, the subject had a good ambulation level (community walker with the aid of a stick cane and ankle-foot orthosis) and showed no signs of sensory or cognitive impairments. The subject underwent 12 sessions (3 times per week for 4wk) of conventional robotic training with the Lokomat, where the robot provided full assistance to leg movements while walking, followed by 12 sessions (3 times per week for 4wk) of patient-cooperative robotic control training, where the robot provided minimal guidance to leg movements during walking. Clinical outcomes were evaluated before the start of the intervention, immediately after 4 weeks of conventional robotic training, and immediately after 4 weeks of cooperative control robotic training. These included: (1) self-selected and fast walking speed, (2) 6-minute walk test, (3) Timed Up & Go test, and (4) lower-extremity Fugl-Meyer score. Results showed that clinical outcomes changed minimally after full guidance robotic training, but improved considerably after 4 weeks of reduced guidance robotic training. The findings from this case study suggest that cooperative control robotic training is superior to conventional robotic training and is a feasible option to restoring locomotor function in ambulatory stroke survivors with severe motor impairments. A larger trial is needed to verify the efficacy of this advanced robotic control strategy in facilitating gait recovery after stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Lefeber, Nina; Swinnen, Eva; Kerckhofs, Eric
2017-10-01
The integration of sufficient cardiovascular stress into robot-assisted gait (RAG) training could combine the benefits of both RAG and aerobic training. The aim was to summarize literature data on the immediate effects of RAG compared to walking without robot-assistance on metabolic-, cardiorespiratory- and fatigue-related parameters. PubMed and Web of Science were searched for eligible articles till February 2016. Means, SDs and significance values were extracted. Effect sizes were calculated. Fourteen studies were included, concerning 155 participants (85 healthy subjects, 39 stroke and 31 spinal cord injury patients), 9 robots (2 end-effectors, 1 treadmill-based and 6 wearable exoskeletons), and 7 outcome parameters (mostly oxygen consumption and heart rate). Overall, metabolic and cardiorespiratory parameters were lower during RAG compared to walking without robot-assistance (moderate to large effect sizes). In healthy subjects, when no body-weight support (BWS) was provided, RAG with an end-effector device was more energy demanding than walking overground (p > .05, large effect sizes). Generally, results suggest that RAG is less energy-consuming and cardiorespiratory stressful than walking without robot-assistance, but results depend on factors such as robot type, walking speed, BWS and effort. Additional research is needed to draw firm conclusions. Implications for Rehabilitation Awareness of the energy consumption and cardiorespiratory load of robot-assisted gait (RAG) training is important in the rehabilitation of (neurological) patients with impaired cardiorespiratory fitness and patients who are at risk of cardiovascular diseases. On the other hand, the integration of sufficient cardiometabolic stress in RAG training could combine the effects of both RAG and aerobic training. Energy consumption and cardiorespiratory load during walking with robot-assistance seems to depend on factors such as robot type, walking speed, body-weight support or amount of effort. These parameters could be adjusted in RAG rehabilitation to make RAG more or less energy-consuming and cardiorespiratory stressful. Overall, short duration exoskeleton walking seems less energy-consuming and cardiorespiratory stressful than walking without robot-assistance. This might implicate that the exercise intensity is safe for (neurological) patients at risk of cardiovascular diseases. How this changes in extended walking time is unclear.
Martial Art Training and Cognitive Performance in Middle-Aged Adults.
Douris, Peter; Douris, Christopher; Balder, Nicole; LaCasse, Michael; Rand, Amir; Tarapore, Freya; Zhuchkan, Aleskey; Handrakis, John
2015-09-29
Cognitive performance includes the processes of attention, memory, processing speed, and executive functioning, which typically declines with aging. Previous research has demonstrated that aerobic and resistance exercise improves cognitive performance immediately following exercise. However, there is limited research examining the effect that a cognitively complex exercise such as martial art training has on these cognitive processes. Our study compared the acute effects of 2 types of martial art training to aerobic exercise on cognitive performance in middle-aged adults. We utilized a repeated measures design with the order of the 3 exercise conditions randomly assigned and counterbalanced. Ten recreational middle-aged martial artists (mean age = 53.5 ± 8.6 years) participated in 3 treatment conditions: a typical martial art class, an atypical martial art class, and a one-hour walk at a self-selected speed. Cognitive performance was assessed by the Stroop Color and Word test. While all 3 exercise conditions improved attention and processing speed, only the 2 martial art conditions improved the highest order of cognitive performance, executive function. The effect of the 2 martial art conditions on executive function was not different. The improvement in executive function may be due to the increased cortical demand required by the more complex, coordinated motor tasks of martial art exercise compared to the more repetitive actions of walking.
Martial Art Training and Cognitive Performance in Middle-Aged Adults
Douris, Peter; Douris, Christopher; Balder, Nicole; LaCasse, Michael; Rand, Amir; Tarapore, Freya; Zhuchkan, Aleskey; Handrakis, John
2015-01-01
Cognitive performance includes the processes of attention, memory, processing speed, and executive functioning, which typically declines with aging. Previous research has demonstrated that aerobic and resistance exercise improves cognitive performance immediately following exercise. However, there is limited research examining the effect that a cognitively complex exercise such as martial art training has on these cognitive processes. Our study compared the acute effects of 2 types of martial art training to aerobic exercise on cognitive performance in middle-aged adults. We utilized a repeated measures design with the order of the 3 exercise conditions randomly assigned and counterbalanced. Ten recreational middle-aged martial artists (mean age = 53.5 ± 8.6 years) participated in 3 treatment conditions: a typical martial art class, an atypical martial art class, and a one-hour walk at a self-selected speed. Cognitive performance was assessed by the Stroop Color and Word test. While all 3 exercise conditions improved attention and processing speed, only the 2 martial art conditions improved the highest order of cognitive performance, executive function. The effect of the 2 martial art conditions on executive function was not different. The improvement in executive function may be due to the increased cortical demand required by the more complex, coordinated motor tasks of martial art exercise compared to the more repetitive actions of walking. PMID:26672872
Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar
2012-03-01
To investigate the immediate biomechanical effects after transition to a new microprocessor-controlled prosthetic knee joint. Intervention cross-over study with repeated measures. Only prosthetic knee joints were changed. Motion analysis laboratory. Men (N=11; mean age ± SD, 36.7±10.2y; Medicare functional classification level, 3-4) with unilateral transfemoral amputation. Two microprocessor-controlled prosthetic knee joints: C-Leg and a new prosthetic knee joint, Genium. Static prosthetic alignment, time-distance parameters, kinematic and kinetic parameters, and center of pressure. After a half-day training and an additional half-day accommodation, improved biomechanical outcomes were demonstrated by the Genium: lower ground reaction forces at weight acceptance during level walking at various velocities, increased swing phase flexion angles during walking on a ramp, and level walking with small steps. Maximum knee flexion angle during swing phase at various velocities was nearly equal for Genium. Step-over-step stair ascent with the Genium knee was more physiologic as demonstrated by a more equal load distribution between the prosthetic and contralateral sides and a more natural gait pattern. When descending stairs and ramps, knee flexion moments with the Genium tended to increase. During quiet stance on a decline, subjects using Genium accepted higher loading of the prosthetic side knee joint, thus reducing same side hip joint loading as well as postural sway. In comparision to the C-Leg, the Genium demonstrated immediate biomechanical advantages during various daily ambulatory activities, which may lead to an increase in range and diversity of activity of people with above-knee amputations. Results showed that use of the Genium facilitated more natural gait biomechanics and load distribution throughout the affected and sound musculoskeletal structure. This was observed during quiet stance on a decline, walking on level ground, and walking up and down ramps and stairs. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Antipersistent dynamics in kinetic models of wealth exchange
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Chatterjee, Arnab; Sen, Parongama
2011-11-01
We investigate the detailed dynamics of gains and losses made by agents in some kinetic models of wealth exchange. An earlier work suggested that a walk in an abstract gain-loss space can be conceived for the agents. For models in which agents do not save, or save with uniform saving propensity, the walk has diffusive behavior. For the case in which the saving propensity λ is distributed randomly (0≤λ<1), the resultant walk showed a ballistic nature (except at a particular value of λ*≈0.47). Here we consider several other features of the walk with random λ. While some macroscopic properties of this walk are comparable to a biased random walk, at microscopic level, there are gross differences. The difference turns out to be due to an antipersistent tendency toward making a gain (loss) immediately after making a loss (gain). This correlation is in fact present in kinetic models without saving or with uniform saving as well, such that the corresponding walks are not identical to ordinary random walks. In the distributed saving case, antipersistence occurs with a simultaneous overall bias.
The influence of the Re-Link Trainer on gait symmetry in healthy adults.
Ward, Sarah; Wiedemann, Lukas; Stinear, Cathy; Stinear, James; McDaid, Andrew
2017-07-01
Walking function post-stroke is characterized by asymmetries in gait cycle parameters and joint kinematics. The Re-Link Trainer is designed to provide kinematic constraint to the paretic lower limb, to guide a physiologically normal and symmetrical gait pattern. The purpose of this pilot study was to assess the immediate influence of the Re-Link Trainer on measures of gait symmetry in healthy adults. Participants demonstrated a significantly lower cadence and a 62% reduction in walking speed in the Re-Link Trainer compared to normal walking. The step length ratio had a significant increase from 1.0 during normal walking to 2.5 when walking in the Re-Link Trainer. The results from this pilot study suggest in its current iteration the Re-Link Trainer imposes an asymmetrical constraint on lower limb kinematics.
Compostella, Leonida; Lorenzi, Sonia; Russo, Nicola; Setzu, Tiziana; Compostella, Caterina; Vettore, Elia; Isabella, Giambattista; Tarantini, Giuseppe; Iliceto, Sabino; Bellotto, Fabio
2017-02-01
The presence of major depressive symptoms is usually considered a negative long-term prognostic factor after an acute myocardial infarction (AMI); however, most of the supporting research was conducted before the era of immediate reperfusion by percutaneous coronary intervention. The aims of this study are to evaluate if depression still retains long-term prognostic significance in our era of immediate coronary reperfusion, and to study possible correlations with clinical parameters of physical performance. In 184 patients with recent ST-elevated AMI (STEMI), treated by immediate reperfusion, moderate or severe depressive symptoms (evaluated by Beck Depression Inventory version I) were present in 10 % of cases. Physical performance was evaluated by two 6-min walk tests and by a symptom-limited cardiopulmonary exercise test: somatic/affective (but not cognitive/affective) symptoms of depression and perceived quality of life (evaluated by the EuroQoL questionnaire) are worse in patients with lower levels of physical performance. Follow-up was performed after a median of 29 months by means of telephone interviews; 32 major adverse cardiovascular events (MACE) occurred. The presence of three vessels disease and low left ventricle ejection fraction are correlated with a greater incidence of MACE; only somatic/affective (but not cognitive/affective) symptoms of depression correlate with long-term outcomes. In patients with recent STEMI treated by immediate reperfusion, somatic/affective but not cognitive/affective symptoms of depression show prognostic value on long-term MACE. Depression symptoms are not predictors "per se" of adverse prognosis, but seem to express an underlying worse cardiac efficiency, clinically reflected by poorer physical performance.
WV Walks: replication with expanded reach.
Reger-Nash, Bill; Bauman, Adrian; Cooper, Linda; Chey, Tien; Simon, Kenneth J; Brann, Maria; Leyden, Kevin M
2008-01-01
WV Walks replicated the Wheeling Walks community-wide campaign methodology to promote physical activity. A social marketing intervention promoted walking among insufficiently active 40- to 65-year-olds throughout the television media market in north-central West Virginia. The intervention included participatory planning, an 8-week mass media-based campaign, and policy and environmental activities. Pre and post random-digit-dial cohort telephone surveys were conducted at baseline and immediately postcampaign in intervention and comparison regions. The campaign resulted in maximal message awareness in north-central WV and demonstrated a significant increase in walking behavior represented by an absolute shift of 12% of the target population from insufficiently active to active (> or = 30 minutes, 5 days per week), versus the comparison community (adjusted odds ratio 1.82, CI: 1.05-3.17). Policy and environmental changes were also evident. This replication study increases our confidence that the initial effects observed in the Wheeling Walks intervention are generalizable to other similar rural communities.
Gladwell, Valerie F; Kuoppa, Pekka; Tarvainen, Mika P; Rogerson, Mike
2016-03-03
Walking within nature (Green Exercise) has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV) gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13) attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor) and was assessed at 1-2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.
Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona
2014-06-01
Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.
[Evaluation of walk-in lung function service for smokers in Copenhagen--a 1-year study].
Backer, Vibeke; Bolton, Sophie; Ehlers, Hanne D; Thomsen, Simon; Pedersen, Lars; Porsbjerg, Celeste; Lund, Thomas; Harmsen, Lotte; Harmse, Lotte; Fuglsang, Charlotte
2008-08-25
Early prevention of COPD and immediate consultation about tobacco cessation is a major issue in respiratory medicine. To evaluate if a community-based walk-in lung function service, either in a clinic or a shopping mall, could result in early detection of COPD. Early detection would facilitate prevention. In an area with 1.5 mill inhabitants, a walk-in lung function service opened in 2005/06 once a month for 3 hours at a clinic and on two full days in a mall. The staff consisted of two respiratory nurses and one chest physician. The nurses informed all participants about their lung function level and all received a preventive talk about tobacco consumption. Those with signs of COPD spoke with the doctor immediately. A total of 1169 subjects, 59% women, with a mean (SD) age of 60 years (15), visited the walk-in services, 602 (52%) of whom visited the walk-in service at the clinic. Among the participants, 826 (71%) were smokers (n=452) or former smokers (n=374). The mean tobacco consumption was 32 (18) packs a year. We found that more current smokers visited the walk-in service at the clinic (45% versus 33%), whereas more ex-smokers visited the lung function service at the mall (38% versus 25%) (p < 0.01). The mean tobacco consumption was 32 (18) packs a year, with a difference between those visiting the mall and the clinic (32 (20) versus 23 (16), p<0.05). Among smokers, 54% had normal lung function, 15% had signs of airway obstruction, whereas 31% had developed moderate to severe COPD. Despite free medical access, more that one thirds had signs of airway obstruction. As all were informed about tobacco cessation, a walk-in service in a clinic and not a supermarket is most cost effective.
Papaxanthis, Charalambos; Pozzo, Thierry; Skoura, Xanthi; Schieppati, Marco
2002-08-21
The purpose of the present study was to investigate the effects on the duration of imagined movements of changes in timing and order of performance of actual and imagined movement. Two groups of subjects had to actually execute and imagine a walking and a writing task. The first group first executed 10 trials of the actual movements (block A) and then imagined the same movements at different intervals: immediately after actual movements (block I-1) and after 25 min (I-2), 50 min (I-3) and 75 min (I-4) interval. The second group first imagined and then actually executed the tasks. The duration of actual and imagined movements, recorded by means of an electronic stopwatch operated by the subjects, was analysed. The duration of imagined movements was very similar to those of actual movements, for both tasks, regardless of either the interval elapsed from the actual movements (first group) or the order of performance (second group). However, the variability of imagined movement duration was significantly increased compared to variability of the actual movements, for both motor tasks and groups. The findings give evidence of similar cognitive processes underlying both imagination and actual performance of movement. Copyright 2002 Elsevier Science B.V.
Treadmill walking with load carriage increases aortic pressure wave reflection.
Ribeiro, Fernando; Oliveira, Nórton L; Pires, Joana; Alves, Alberto J; Oliveira, José
2014-01-01
The study examined the effects of treadmill walking with load carriage on derived measures of central pressure and augmentation index in young healthy subjects. Fourteen male subjects (age 31.0 ± 1.0 years) volunteered in this study. Subjects walked 10 minutes on a treadmill at a speed of 5 km/h carrying no load during one session and a load of 10% of their body weight on both upper limbs in two water carboys with handle during the other session. Pulse wave analysis was performed at rest and immediately after exercise in the radial artery of the right upper limb by applanation tonometry. The main result indicates that walking with load carriage sharply increased augmentation index at 75 bpm (-5.5 ± 2.2 to -1.4 ± 2.2% vs. -5.2 ± 2.8 to -5.5 ± 2.1%, p<0.05), and also induced twice as high increments in central pulse pressure (7.4 ± 1.5 vs. 3.1 ± 1.4 mmHg, p<0.05) and peripheral (20.5 ± 2.7 vs. 10.3 ± 2.5 mmHg, p<0.05) and central systolic pressure (14.7 ± 2.1 vs. 7.4 ± 2.0 mmHg, p<0.05). Walking with additional load of 10% of their body weight (aerobic exercise accompanied by upper limb isometric contraction) increases derived measures of central pressure and augmentation index, an index of wave reflection and arterial stiffness. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Carter, Stephen J; Hunter, Gary R; McAuley, Edward; Courneya, Kerry S; Anton, Philip M; Rogers, Laura Q
2016-10-01
Research showing a link between exercise-induced changes in aerobic fitness and reduced fatigue after a cancer diagnosis has been inconsistent. We evaluated associations of fatigue and rate-pressure product (RPP), a reliable index of myocardial oxygen demand, at rest and during submaximal walking following a physical activity intervention among post-primary treatment breast cancer survivors (BCS). Secondary analyses of 152 BCS in a randomized controlled trial testing a physical activity intervention (INT) versus usual care (UC) were performed. The INT group completed counseling/group discussions along with supervised exercise sessions tapered to unsupervised exercise. Evaluations were made at baseline and immediately post-intervention (M3) on measures of physical activity (accelerometry), graded walk test, and average fatigue over the previous 7 days. RPP was calculated by dividing the product of heart rate and systolic blood pressure by 100. Resting and submaximal RPPs were significantly improved in both groups at M3; however, the magnitude of change (∆) was greater in the INT group from stage 1 (∆RPP1; INT -13 ± 17 vs. UC -7 ± 18; p = 0.03) through stage 4 (∆RPP4; INT -21 ± 26 vs. UC -9 ± 24; p < 0.01) of the walk test. The INT group reported significantly reduced fatigue (INT -0.7 ± 2.0 vs. UC +0.1 ± 2.0; p = 0.02) which was positively associated with ∆RPP during stages 2-4 of the walk test but not ∆aerobic fitness. Lower RPP during submaximal walking was significantly associated with reduced fatigue in BCS. Exercise/physical activity training programs that lower the physiological strain during submaximal walking may produce the largest improvements in reported fatigue.
Nash, Mark S; Jacobs, Patrick L; Johnson, Brad M; Field-Fote', Edelle
2004-01-01
To examine acute metabolic responses to treadmill locomotion in a participant with motor-complete tetraplegia. The participant--a woman with a chronic ASIA B C3-C4 spinal cord injury--walked on a treadmill with 40% body weight support (BWS) and robotic assistance. Oxygen consumption (VO2), minute ventilation (VE), and heart rate (HR) were measured during seated resting, supported standing, and 40 minutes of walking with stepping assistance from a Lokomat-driven gait orthosis. A resting VO2 equal to 50 milliliters per minute was predictably low, and did not change after the participant assumed an upright posture. Both VO2 and VE increased immediately upon onset of locomotion, suggesting a neurogenic rather than a humoral regulatory response to movement. VO2 averaged 2.4 metabolic units (METS) during locomotion at an average expenditure of 2.98 kilocalories per minute. HR was unaltered by standing, but during locomotion averaged 1 7 beats higher than during resting. Increases in VE but not VO2 upon standing, and decreases in VO2 but not VE immediately after walking, rule out changes in VE alone as the source for increased VO2 during walking. The data collected on this single participant show that treadmill locomotion with BWS and robotic assistance elicits a metabolic response to treadmill gaiting characterized by increased VO2, VE, HR, and caloric expenditure.
Computerized visual feedback: an adjunct to robotic-assisted gait training.
Banz, Raphael; Bolliger, Marc; Colombo, Gery; Dietz, Volker; Lünenburger, Lars
2008-10-01
Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback implemented in a driven gait orthosis (DGO). The purpose of the study was to compare the immediate effect on motor output in subjects during robotic-assisted gait training when they used computerized visual feedback and when they followed verbal instructions of a physical therapist. Twelve people with neurological gait disorders due to incomplete spinal cord injury participated. Subjects were instructed to walk within the DGO in 2 different conditions. They were asked to increase their motor output by following the instructions of a therapist and by observing visual feedback. In addition, the subjects' opinions about using visual feedback were investigated by a questionnaire. Computerized visual feedback and verbal instructions by the therapist were observed to result in a similar change in motor output in subjects when walking within the DGO. Subjects reported that they were more motivated and concentrated on their movements when using computerized visual feedback compared with when no form of feedback was provided. Computerized visual feedback is a valuable adjunct to robotic-assisted gait training. It represents a relevant tool to increase patients' motor output, involvement, and motivation during gait training, similar to verbal instructions by a therapist.
Changes in toe clearance during treadmill walking after long-duration spaceflight.
Miller, Christopher A; Peters, Brian T; Brady, Rachel R; Richards, Jason R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J
2010-10-01
Astronauts exhibit sensorimotor changes upon return from long-duration spaceflight that can result in altered gait kinematics and possibly an increased risk of tripping. Toe trajectory during locomotion is a precise motor control task involving both legs, thus providing a composite metric of locomotor control. The purpose of this study was to determine whether astronauts are at an increased risk of tripping after their return from long-duration spaceflight. This was accomplished by assessing the pre- to postflight changes in toe clearance during treadmill walking. Ten crewmembers walked on a treadmill while performing a visual-acuity task pre- and postflight. In the three subjects on whom landing day data were available, each exhibited a characteristic of increased tripping risk on landing day: either a decreased median toe clearance or an increased interquartile range (a measure of variance). For all crewmembers, toe clearance median and interquartile range were not significantly different from preflight for the other postflight sessions (the earliest being 1 d after landing). A follow-up analysis showed that changes in foot pitch, ankle dorsiflexion, and pelvis roll angles were significant predictors of changes in toe clearance. The landing-day observations indicated an increased risk of tripping, which may pose a hazard during locomotion immediately upon return to Earth, especially in an emergency scenario. However, tripping risk on subsequent days was not different than preflight. The joint angle analysis suggested that the crewmembers tried to reestablish their normal walking pattern postflight, instead of developing a new motor control strategy.
Awad, Louis N; Bae, Jaehyun; Kudzia, Pawel; Long, Andrew; Hendron, Kathryn; Holt, Kenneth G; OʼDonnell, Kathleen; Ellis, Terry D; Walsh, Conor J
2017-10-01
The aim of the study was to evaluate the effects on common poststroke gait compensations of a soft wearable robot (exosuit) designed to assist the paretic limb during hemiparetic walking. A single-session study of eight individuals in the chronic phase of stroke recovery was conducted. Two testing conditions were compared: walking with the exosuit powered versus walking with the exosuit unpowered. Each condition was 8 minutes in duration. Compared with walking with the exosuit unpowered, walking with the exosuit powered resulted in reductions in hip hiking (27 [6%], P = 0.004) and circumduction (20 [5%], P = 0.004). A relationship between changes in knee flexion and changes in hip hiking was observed (Pearson r = -0.913, P < 0.001). Similarly, multivariate regression revealed that changes in knee flexion (β = -0.912, P = 0.007), but not ankle dorsiflexion (β = -0.194, P = 0.341), independently predicted changes in hip hiking (R = 0.87, F(2, 4) = 13.48, P = 0.017). Exosuit assistance of the paretic limb during walking produces immediate changes in the kinematic strategy used to advance the paretic limb. Future work is necessary to determine how exosuit-induced reductions in paretic hip hiking and circumduction during gait training could be leveraged to facilitate more normal walking behavior during unassisted walking.
Monaco, Vito; Galardi, Giuseppe; Coscia, Martina; Martelli, Dario; Micera, Silvestro
2012-11-01
Over the past decades, a large number of robotic platforms have been developed which provide rehabilitative treatments aimed at recovering walking abilities in post-stroke patients. Unfortunately, they do not significantly influence patients' performance after three months from the accident. One of the main reasons underlying this result seems to be related to the time of intervention. Specifically, although experimental evidences suggest that early (i.e., first days after the injury) and intense neuro-rehabilitative treatments can significantly favor the functional recovery of post-stroke patients, robots require patients to be verticalized. Consequently, this does not allow them to be treated immediately after the trauma. This paper introduces a new robotic platform, named NEUROBike, designed to provide neuro-rehabilitative treatments to bedridden patients. It was designed to provide an early and well-addressed rehabilitation therapy, in terms of kinesiology, efforts, and fatigue, accounting for exercises functionally related to daily motor tasks. For this purpose, kinematic models of leg-joint angular excursions during both walking and sit-to-stand were developed and implemented in control algorithms leading both passive and active exercises. Finally, a set of pilot tests was carried out to evaluate the performance of the robotic platform on healthy subjects.
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao
2016-07-01
[Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training.
Yoshimura, Ichiro; Naito, Masatoshi; Zhang, Jingfan
2002-01-01
Leaving anterior cruciate ligament (ACL) insufficiency and posterior cruciate ligament (PCL) insufficiency untreated frequently leads to osteoarthritis (OA). The purpose of this study was to evaluate dynamically the lateral thrust of ACL-insufficient knees and PCL-insufficient knees, and from the findings investigate the relationship between cruciate ligament insufficiency and OA occurrence. An acceleration sensor was attached to the affected and control anterior tibial tubercles, acting in medial-lateral and perpendicular directions. The lateral thrust immediately after heel strike was measured continuously by a telemeter under stabilised walking conditions. When compared to the contralateral healthy knee, the peak value of lateral acceleration immediately after heel strike was significantly larger in the ACL-insufficient knee; and lateral thrust was increased, but not significantly, in the PCL-insufficient knee. Given that lateral thrust of the knee during walking increases due to ACL or PCL injury, it may be a principal contributor to OA progression.
Compostella, Leonida; Lakusic, Nenad; Russo, Nicola; Setzu, Tiziana; Compostella, Caterina; Vettore, Elia; Isabella, Giambattista; Tarantini, Giuseppe; Iliceto, Sabino; Bellotto, Fabio
2016-12-01
Depressed heart rate variability (HRV) is usually considered a negative long-term prognostic factor after acute myocardial infarction. Anyway, most of the supporting research was conducted before the era of immediate reperfusion by percutaneous coronary intervention (PCI). Main aim of this study was to evaluate if HRV still retains prognostic significance in our era of immediate PCI. Two weeks after STEMI treated by primary PCI, time-domain HRV was assessed from 24-h Holter recordings in 186 patients: markedly depressed HRV (SDNN <70ms or <50ms) was present in 16% and in 5% of cases, respectively; patients with left ventricle ejection fraction (LVEF) <40% presented more often SDNN values in the lowest quartile. Physical performance was also assessed, by 6-minute walk tests (6MWT) and by cardiopulmonary exercise test (CPET). After >2years from infarction, occurrence of major clinical events (MCE) was investigated. Cases with or without MCE did not differ by initial HRV parameters; Kaplan-Meier events-free survival curves were similar between patients with lowest quartile SDNN and the remaining ones (χ 2 0.981, p=0.322). By the contrary, events-free survival was worse if patients walked shorter distances at 6MWT (χ 2 6.435, p=0.011), developed poorer ventilatory efficiency at CPET (χ 2 10.060, p=0.002), or presented LVEF <40% (χ 2 7.085, p=0.008). In primary-PCI STEMI patients, markedly abnormal HRV was found in a small percentage of cases. HRV seems to have lost its prognostic significance, while parameters indicating LV function (LVEF and physical performance) could allow better prognostication in primary-PCI STEMI patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury.
Statler, Kimberly D; Alexander, Henry; Vagni, Vincent; Holubkov, Richard; Dixon, C Edward; Clark, Robert S B; Jenkins, Larry; Kochanek, Patrick M
2006-03-03
Isoflurane improves outcome vs. fentanyl anesthesia, in experimental traumatic brain injury (TBI). We assessed the temporal profile of isoflurane neuroprotection and tested whether isoflurane confers benefit at the time of TBI. Adult, male rats were randomized to isoflurane (1%) or fentanyl (10 mcg/kg iv bolus then 50 mcg/kg/h) for 30 min pre-TBI. Anesthesia was discontinued, rats recovered to tail pinch, and TBI was delivered by controlled cortical impact. Immediately post-TBI, rats were randomized to 1 h of isoflurane, fentanyl, or no additional anesthesia, creating 6 anesthetic groups (isoflurane:isoflurane, isoflurane:fentanyl, isoflurane:none, fentanyl:isoflurane, fentanyl:fentanyl, fentanyl:none). Beam balance, beam walking, and Morris water maze (MWM) performances were assessed over post-trauma d1-20. Contusion volume and hippocampal survival were assessed on d21. Rats receiving isoflurane pre- and post-TBI exhibited better beam walking and MWM performances than rats treated with fentanyl pre- and any treatment post-TBI. All rats pretreated with isoflurane had better CA3 neuronal survival than rats receiving fentanyl pre- and post-TBI. In rats pretreated with fentanyl, post-traumatic isoflurane failed to affect function but improved CA3 neuronal survival vs. rats given fentanyl pre- and post-TBI. Post-traumatic isoflurane did not alter histopathological outcomes in rats pretreated with isoflurane. Rats receiving fentanyl pre- and post-TBI had the worst CA1 neuronal survival of all groups. Our data support isoflurane neuroprotection, even when used at the lowest feasible level before TBI (i.e., when discontinued with recovery to tail pinch immediately before injury). Investigators using isoflurane must consider its beneficial effects in the design and interpretation of experimental TBI research.
Scott, Bonnie M; Maye, Jacqueline; Jones, Jacob; Thomas, Kelsey; Mangal, Paul C; Trifilio, Erin; Hass, Chris; Marsiske, Michael; Bowers, Dawn
2016-07-01
Exercise "stress tests" are widely used to assess cardiovascular function and to detect abnormalities. In line with the view of exercise as a stressor, the present study examined the relationship between cognitive function and cardiovascular activity before and after light physical exercise in a sample of 84 non-demented community-dwelling older adults. Based on known relationships between hypertension, executive function and cerebral white matter changes, we hypothesized that greater post-exercise reactivity, as indexed by higher pulse pressure, would be more related to worse performance on frontal-executive tasks than pre-exercise physiologic measures. All participants were administered a comprehensive neuropsychological battery and underwent a Six Minute Walk Test (6MWT), with blood pressure (BP) measures obtained immediately before and after the walk. Pulse pressure (PP) was derived from BP as an indicator of vascular auto-regulation and composite scores were computed for each cognitive domain assessed. As predicted, worse executive function scores exhibited a stronger relationship with post-exercise PP than pre-exercise PP. Results suggest that PP following system stress in the form of walking may be more reflective of the state of vascular integrity and associated executive dysfunction in older adults than baseline physiologic measures.
Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking
NASA Astrophysics Data System (ADS)
Kozlowska, Klaudia; Latka, Miroslaw; West, Bruce J.
2017-03-01
Optimization of energy cost determines average values of spatio-temporal gait parameters such as step duration, step length or step speed. However, during walking, humans need to adapt these parameters at every step to respond to exogenous and/or endogenic perturbations. While some neurological mechanisms that trigger these responses are known, our understanding of the fundamental principles governing step-by-step adaptation remains elusive. We determined the gait parameters of 20 healthy subjects with right-foot preference during treadmill walking at speeds of 1.1, 1.4 and 1.7 m/s. We found that when the value of the gait parameter was conspicuously greater (smaller) than the mean value, it was either followed immediately by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreased during the next movement of ipsilateral leg (intraleg control). The selection of step duration and the selection of step length during such transient control events were performed in unique ways. We quantified the symmetry of short-term control of gait parameters and observed the significant dominance of the right leg in short-term control of all three parameters at higher speeds (1.4 and 1.7 m/s).
Does a run/walk strategy decrease cardiac stress during a marathon in non-elite runners?
Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan; Gronwald, Thomas; Jäger, Frank-Stephan
2016-01-01
Although alternating run/walk-periods are often recommended to novice runners, it is unclear, if this particular pacing strategy reduces the cardiovascular stress during prolonged exercise. Therefore, the aim of the study was to compare the effects of two different running strategies on selected cardiac biomarkers as well as marathon performance. Randomized experimental trial in a repeated measure design. Male (n=22) and female subjects (n=20) completed a marathon either with a run/walk strategy or running only. Immediately after crossing the finishing line cardiac biomarkers were assessed in blood taken from the cubital vein. Before (-7 days) and after the marathon (+4 days) subjects also completed an incremental treadmill test. Despite different pacing strategies, run/walk strategy and running only finished the marathon with similar times (04:14:25±00:19:51 vs 04:07:40±00:27:15 [hh:mm:ss]; p=0.377). In both groups, prolonged exercise led to increased B-type natriuretic peptide, creatine kinase MB isoenzyme and myoglobin levels (p<0.001), which returned to baseline 4 days after the marathon. Elevated cTnI concentrations were observable in only two subjects. B-type natriuretic peptide (r=-0.363; p=0.041) and myoglobin levels (r=-0.456; p=0.009) were inversely correlated with the velocity at the individual anaerobic threshold. Run/walk strategy compared to running only reported less muscle pain and fatigue (p=0.006) after the running event. In conclusion, the increase in cardiac biomarkers is a reversible, physiological response to strenuous exercise, indicating temporary stress on the myocyte and skeletal muscle. Although a combined run/walk strategy does not reduce the load on the cardiovascular system, it allows non-elite runners to achieve similar finish times with less (muscle) discomfort. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Collins, Natalie J; Hinman, Rana S; Menz, Hylton B; Crossley, Kay M
2017-01-01
The purpose of the study was to determine whether prefabricated foot orthoses immediately reduce pain during functional tasks in people with patellofemoral osteoarthritis, compared to flat insoles and shoes alone. Eighteen people with predominant lateral patellofemoral osteoarthritis (nine women; mean [SD] age 59 [10]years; body mass index 27.9 [3.2]kg/m 2 ) performed functional tasks wearing running sandals, and then wearing foot orthoses and flat insoles (random order). Participants rated knee pain during each task (11-point numerical rating scales), ease of performance and knee stability (five-point Likert scales), and comfort (100mm visual analogue scales). Compared to shoes alone, foot orthoses (p=0.002; median difference 1.5 [IQR 3]) and flat insoles (p<0.001; 2 [3]) significantly reduced pain during step-downs; foot orthoses reduced pain during walking (p=0.008; 1 [1.25]); and flat insoles reduced pain during stair ambulation (p=0.001; 1 [1.75]). No significant differences between foot orthoses and flat insoles were observed for pain severity, ease of performance or knee stability. Foot orthoses were less comfortable than flat insoles and shoes alone (p<0.05). In people with patellofemoral osteoarthritis, immediate pain-relieving effects of prefabricated, contoured foot orthoses are equivalent to flat insoles. Further studies should investigate whether similar outcomes occur with longer-term wear or different orthosis designs. Copyright © 2016 Elsevier B.V. All rights reserved.
Crowther, Robert G; Leicht, Anthony S; Spinks, Warwick L; Sangla, Kunwarjit; Quigley, Frank; Golledge, Jonathan
2012-01-01
The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal-Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.
Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S; Adams, Marc A
2015-09-11
Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults' PA compared to the static intervention components. Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message-based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants' daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of the first studies focusing on the individual components of combined goal setting and reward structures in a factorial design to increase walking. The trial is expected to produce results useful to future research interventions and perhaps industry initiatives, primarily focused on mHealth, goal setting, and those looking to promote behavior change through performance-based incentives. ClinicalTrials.gov NCT02053259; https://clinicaltrials.gov/ct2/show/NCT02053259 (Archived by WebCite at http://www.webcitation.org/6b65xLvmg).
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
Predictive value of age of walking for later motor performance in children with mental retardation.
Kokubun, M; Haishi, K; Okuzumi, H; Hosobuchi, T; Koike, T
1996-12-01
The purpose of the present study was to clarify the predictive value of age of walking for later motor performance in children with mental retardation. While paying due attention to other factors, our investigation focused on the relationship between a subject's age of walking, and his or her subsequent beam-walking performance. The subjects were 85 children with mental retardation with an average age of 13 years and 3 months. Beam-walking performance was measured by a procedure developed by the authors. Five low beams (5 cm) which varied in width (12.5, 10, 7.5, 5 and 2.5 cm) were employed. The performance of subjects was scored from zero to five points according to the width of the beam that they were able to walk without falling off. From the results of multiple regression analysis, three independent variables were found to be significantly related to beam-walking performance. The age of walking was the most basic variable: partial correlation coefficient (PCC) = -45; standardized partial regression coefficient (SPRC) = -0.41. The next variable in importance was walking duration (PCC = 0.38; SPRC = 0.31). The autism variable also contributed significantly (PCC = 0.28; SPRC = 0.22). Therefore, within the age range used in the present study, the age of walking in children with mental retardation was thought to have sufficient predictive value, even when the variables which might have possibly affected their subsequent performance were taken into consideration; the earlier the age of walking, the better the beam-walking performance.
Walking-Induced Fatigue leads to Increased Falls Risk in Older Adults
Morrison, S.; Colberg, S. R.; Parson, H. K.; Neumann, S.; Handel, R.; Vinik, E. J.; Paulson, J.; Vinik, A. I.
2016-01-01
Background For older adults, falls are a serious health problem with over 30% of people over 65 suffering a fall at least once a year. One element often overlooked in the assessment of falls is whether a person’s balance, walking ability and overall falls risk is affected by performing activities of daily living such as walking. Objective This study assessed the immediate impact of incline walking at a moderate pace on falls risk, leg strength, reaction time, gait and balance in 75 healthy adults from 30 to 79 years of age. Subjects were subdivided into five equal groups based upon their age (Group 1, 30–39 years; Group 2, 40–49 years; Group 3, 50–59 years; Group 4, 60–69 years; Group 5, 70–79 years). Methods Each person’s falls risk (using the Physiological Profile Assessment), simple reaction time, leg strength, walking ability and standing balance were assessed prior to and following a period of incline walking on an automated treadmill. The walking task consisted of three 5-minute trials at a faster than preferred pace. Fatigue during walking was elicited by increasing the treadmill incline in increments of 20 (from level) every minute to a maximum of 80. Results As predicted, significant age-related differences were observed prior to the walking activity. In general, increasing age was associated with declines in gait speed, lower limb strength, slower reaction times and increases in overall falls risk. Following the treadmill task, older adults exhibited increased sway (path length 60–69 yrs; 10.2±0.7 to 12.1±0.7 cm: 70–79 yrs; 12.8±1.1 to 15.1±0.8 cm), slower reaction times (70–79 yrs; 256±6 to 287±8 ms), and declines in lower limb strength (60–69 yrs; 36±2 to 31±1 kg: 70–79 yrs; 32.3±2 to 27±1 kg). However, a significant increase in overall falls risk (pre; 0.51±0.17: post; 1.01±0.18) was only seen in the oldest group (70–79 years). For all other persons (30–69 years), changes resulting from the treadmill-walking task did not lead to a significant increase in falls risk. Conclusions As most falls occur when an individual is moving and/or fatigued, assessing functional properties related to balance, gait, strength and falls risk in older adults both at rest and following activity may provide additional insight. PMID:26825684
Modulation of walking speed by changing optic flow in persons with stroke
Lamontagne, Anouk; Fung, Joyce; McFadyen, Bradford J; Faubert, Jocelyn
2007-01-01
Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s), from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek). Instantaneous changes in gait speed (experiment 1) and the ratio of speed changes in the test trial over the control trial (experiment 2) were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1), an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p < 0.05, T-test) correlation coefficients between gait speed and OF speed, due to less pronounced changes and an altered phasing of gait speed modulation. When OF speed was manipulated discretely (experiment 2), a negative linear relationship was generally observed between the test-control ratio of gait speed and OF speed in healthy and stroke individuals. The slope of this relationship was similar between the stroke and healthy groups (p > 0.05, T-test). Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when presented with slower OFs. Manipulation of OF speed using virtual reality technology could be implemented in a gait rehabilitation intervention to promote faster walking speeds after stroke. PMID:17594501
29 CFR 1917.12 - Slippery conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... eliminate, to the extent possible, conditions causing slippery working and walking surfaces in immediate... 29 Labor 7 2010-07-01 2010-07-01 false Slippery conditions. 1917.12 Section 1917.12 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...
Self-reported walking ability predicts functional mobility performance in frail older adults.
Alexander, N B; Guire, K E; Thelen, D G; Ashton-Miller, J A; Schultz, A B; Grunawalt, J C; Giordani, B
2000-11-01
To determine how self-reported physical function relates to performance in each of three mobility domains: walking, stance maintenance, and rising from chairs. Cross-sectional analysis of older adults. University-based laboratory and community-based congregate housing facilities. Two hundred twenty-one older adults (mean age, 79.9 years; range, 60-102 years) without clinical evidence of dementia (mean Folstein Mini-Mental State score, 28; range, 24-30). We compared the responses of these older adults on a questionnaire battery used by the Established Populations for the Epidemiologic Study of the Elderly (EPESE) project, to performance on mobility tasks of graded difficulty. Responses to the EPESE battery included: (1) whether assistance was required to perform seven Katz activities of daily living (ADL) items, specifically with walking and transferring; (2) three Rosow-Breslau items, including the ability to walk up stairs and walk a half mile; and (3) five Nagi items, including difficulty stooping, reaching, and lifting objects. The performance measures included the ability to perform, and time taken to perform, tasks in three summary score domains: (1) walking ("Walking," seven tasks, including walking with an assistive device, turning, stair climbing, tandem walking); (2) stance maintenance ("Stance," six tasks, including unipedal, bipedal, tandem, and maximum lean); and (3) chair rise ("Chair Rise," six tasks, including rising from a variety of seat heights with and without the use of hands for assistance). A total score combines scores in each Walking, Stance, and Chair Rise domain. We also analyzed how cognitive/ behavioral factors such as depression and self-efficacy related to the residuals from the self-report and performance-based ANOVA models. Rosow-Breslau items have the strongest relationship with the three performance domains, Walking, Stance, and Chair Rise (eta-squared ranging from 0.21 to 0.44). These three performance domains are as strongly related to one Katz ADL item, walking (eta-squared ranging from 0.15 to 0.33) as all of the Katz ADL items combined (eta-squared ranging from 0.21 to 0.35). Tests of problem solving and psychomotor speed, the Trails A and Trails B tests, are significantly correlated with the residuals from the self-report and performance-based ANOVA models. Compared with the rest of the EPESE self-report items, self-report items related to walking (such as Katz walking and Rosow-Breslau items) are better predictors of functional mobility performance on tasks involving walking, stance maintenance, and rising from chairs. Compared with other self-report items, self-reported walking ability may be the best predictor of overall functional mobility.
Kelly, Valerie E; Shumway-Cook, Anne
2014-01-01
Gait impairments are a common and consequential motor symptom in Parkinson's disease (PD). A cognitive strategy that incorporates instructions to concentrate on specific parameters of walking is an effective approach to gait rehabilitation for persons with PD during single-task and simple dual-task walking conditions. This study examined the ability to modify dual-task walking in response to instructions during a complex walking task in people with PD compared to healthy older adults (HOA). Eleven people with PD and twelve HOA performed a cognitive task while walking with either a usual base or a narrow base of support. Dual-task walking and cognitive task performance were characterized under two conditions-when participants were instructed focus on walking and when they were instructed to focus on the cognitive task. During both usual base and narrow base walking, instructions affected cognitive task response latency, with slower performance when instructed to focus on walking compared to the cognitive task. Regardless of task or instructions, cognitive task performance was slower in participants with PD compared to HOA. During usual base walking, instructions influenced gait speed for both people with PD and HOA, with faster gait speed when instructed to focus on walking compared to the cognitive task. In contrast, during the narrow base walking, instructions affected gait speed only for HOA, but not for people with PD. This suggests that among people with PD the ability to modify walking in response to instructions depends on the complexity of the walking task.
Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.
2011-01-01
Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).
Effect of kinesio taping on lower limb joint powers in individuals with genu varum.
Jafarnezhadgero, AmirAli; Shad, Morteza Madadi; Majlesi, Mahdi; Zago, Matteo
2018-04-01
Therapeutic lateral knee joint muscle taping potentially offers a low-risk, economical and effective alternative for the clinical treatment of light to moderate knee overload, due to misalignment in patients with genu varum. In this study, we aimed at investigating the immediate effect of lateral knee joint muscular kinesio taping on lower limb joint powers, during the stance phase of walking, in individuals with genu varum. Fifteen male subjects with genu varum misalignment (age: 24.2±3.7 years) participated in the study. Subjects performed three walking trials without, and three with, biceps femoris and vastus lateralis kinesio taping. The three-dimensional position coordinate data of reflective markers were collected at 100 Hz using a six-cameras Vicon system (Motion Analysis Corp., UK). Additionally, two Kistler force plates (Kistler AG, Winterthur, Switzerland) were used to record the Ground Reaction Forces (GRF) components at 1000 Hz during stance phase of walking. A three-way ANOVA with post-hoc testing (using paired samples Student's t-test with Bonferroni correction) was performed to compare the power values of lower limb joints before and after the use of KT. With kinesio taping, we observed that the average negative power increased at the ankle level in dominant limb, (P<0.05, 10-20% of gait cycle, GC), and at the knee level in both limbs (10-20% and 60-80% GC). Further, average negative power of the non-dominant knee joint (80-100% GC) and positive power of the non-dominant hip joint (60-80% GC) significantly reduced (P<0.05) in kinesio taping condition. The biomechanical analysis of joint power during walking using kinesio taping provided essential information about the possible mechanisms involved in gait analysis with this intervention in adults with genu varus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait.
Fleury, Vanessa; Pollak, Pierre; Gere, Julien; Tommasi, Giorgio; Romito, Luigi; Combescure, Christophe; Bardinet, Eric; Chabardes, Stephan; Momjian, Shahan; Krainik, Alexandre; Burkhard, Pierre; Yelnik, Jérôme; Krack, Paul
2016-09-01
Gait and akinesia deterioration in PD patients during the immediate postoperative period of DBS has been directly related to stimulation in the subthalamic region. The underlying mechanisms remain poorly understood. The aim of the present study was to clinically and anatomically describe this side effect. PD patients presenting with a worsening of gait and/or akinesia following STN-DBS, that was reversible on stimulation arrest were included. The evaluation included (1) a Stand Walk Sit Test during a monopolar survey of each electrode in the on-drug condition; (2) a 5-condition test with the following conditions: off-drug/off-DBS, off-drug/on-best-compromise-DBS, on-drug/off-DBS, on-drug/on-best-compromise-DBS, and on-drug/on-worsening-DBS, which utilized the contact inducing the most prominent gait deterioration. The following scales were performed: UPDRSIII subscores, Stand Walk Sit Test, and dyskinesia and freezing of gait scales. Localization of contacts was performed using a coregistration method. Twelve of 17 patients underwent the complete evaluation. Stimulation of the most proximal contacts significantly slowed down the Stand Walk Sit Test. The on-drug/on-worsening-DBS condition compared with the on-drug/off-DBS condition worsened akinesia (P = 0.02), Stand Walk Sit Test (P = 0.001), freezing of gait (P = 0.02), and improved dyskinesias (P = 0.003). Compared with the off-drug/off-DBS condition, the on-drug/on-worsening-DBS condition improved rigidity (P = 0.007) and tremor (P = 0.007). Worsening contact sites were predominantly dorsal and anterior to the STN in the anterior zona incerta and Forel fields H2. A paradoxical deterioration of gait and akinesia is a rare side effect following STN-DBS. We propose that this may be related to misplaced contacts, and we discuss the pathophysiology and strategies to identify and manage this complication. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Kuo, Chun-Yu; Yeh, Yei-Yu
2016-01-01
Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults. PMID:27790178
Delevatti, Rodrigo Sudatti; Pinho, Carolina Dertzbocher Feil; Kanitz, Ana Carolina; Alberton, Cristine Lima; Marson, Elisa Corrêa; Bregagnol, Luciana Peruchena; Lisboa, Salime Chedid; Schaan, Beatriz D; Kruel, Luiz Fernando Martins
2016-08-01
To assess the acute glucose responses to the first sessions of three mesocycles of water- and land-based aerobic exercise. The water-based exercise group (WBE, n = 14; 54.1 ± 9.1 years) performed deep water walking and/or running, while the land-based exercise group (LBE, n = 11; 60.1 ± 7.3 years) performed walking and/or running on athletic track. In the first mesocycle, patients trained at 85-90% of their anaerobic threshold (AT) for 35 min, progressing to 90-95% of the AT in the second mesocycle, and 95-100% of the AT in the last mesocycle. Capillary glucose was assessed before and immediately after the first session of each mesocycle. There was glycemic reduction (p < 0.001) in all sessions, with relative reductions of 19%, 29% and 24% for the WBE and 24%, 29% and 27% for the LBE in the mesocycles 1, 2 and 3, respectively. There were no found differences between groups and between mesocycles. The acute response of blood glucose to aerobic training between 85 and 100% of the heart rate of AT is effective and independent of the environment in which it is performed. Clinical trial reg. no. NCT01956357, clinicaltrials.gov. Copyright © 2016 Elsevier Ltd. All rights reserved.
Walk this way: approaching bodies can influence the processing of faces.
Pilz, Karin S; Vuong, Quoc C; Bülthoff, Heinrich H; Thornton, Ian M
2011-01-01
A highly familiar type of movement occurs whenever a person walks towards you. In the present study, we investigated whether this type of motion has an effect on face processing. We took a range of different 3D head models and placed them on a single, identical 3D body model. The resulting figures were animated to approach the observer. In a first series of experiments, we used a sequential matching task to investigate how the motion of an approaching person affects immediate responses to faces. We compared observers' responses following approach sequences to their performance with figures walking backwards (receding motion) or remaining still. Observers were significantly faster in responding to a target face that followed an approach sequence, compared to both receding and static primes. In a second series of experiments, we investigated long-term effects of motion using a delayed visual search paradigm. After studying moving or static avatars, observers searched for target faces in static arrays of varying set sizes. Again, observers were faster at responding to faces that had been learned in the context of an approach sequence. Together these results suggest that the context of a moving body influences face processing, and support the hypothesis that our visual system has mechanisms that aid the encoding of behaviourally-relevant and familiar dynamic events. Copyright © 2010 Elsevier B.V. All rights reserved.
Williams, Cylie M; Michalitsis, Joanne; Murphy, Anna T; Rawicki, Barry; Haines, Terry P
2016-08-01
This study aimed to determine the impact of multiple doses of whole-body vibration on heel strike, spatial and temporal gait parameters, and ankle range of motion of children with idiopathic toe walking. Whole-body vibration was applied for 5 sets of 1 minute vibration/1 minute rest. Gait measures were collected pre intervention, 1, 5, 10, and 20 minutes postintervention with the GaitRite(®) electronic walkway. Ankle range of motion was measured preintervention, immediately postintervention, and 20 minutes postintervention. The mean (SD) age of the 15 children (n = 10 males) was 5.93 (1.83) years. An immediate increase in heel contact (P = .041) and ankle range of motion (P = .001 and P = .016) was observed. These changes were unsustained 20 minutes postvibration (P > .05). The gait improvement from whole-body vibration could potentially be due to a rapid increase in ankle range of motion or a neuromodulation response. © The Author(s) 2016.
Exercise training for intermittent claudication.
McDermott, Mary M
2017-11-01
The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Rapp, Kilian; Klenk, Jochen; Benzinger, Petra; Franke, Sebastian; Denkinger, Michael D; Peter, Richard
2012-10-01
Several tests of physical performance like gait speed or standing balance are part of the geriatric assessment. Measures of physical activity like daily walking duration are more difficult to assess but may be of higher relevance for daily requirements. It is therefore of interest to what extent physical performance measures are associated with physical activity. In a cohort study, baseline screening was performed in 1271 community-living people aged 65-90 years from Ulm, Germany. Average daily walking duration was assessed in all participants by accelerometers over a one-week period. Habitual gait speed, 5-Chair-Rise test, standing balance and handgrip strength served as measures of physical performance. The association between measures of physical performance and physical activity was calculated by linear regression analysis. The mean daily walking duration was 104.8 minutes in men and 103.0 minutes in women. A positive relationship between gait speed and walking duration was observed in men and women with low gait speed (≤0.8 m/s) but not in participants above this threshold. Standing balance and hand grip strength were positively and 5-Chair-Rise test inversely related with average daily walking duration. A relationship between hand grip strength and walking duration was only observed in women aged 75 years and more. Physical performance measures and objectively measured walking duration are related with each other but only a small percentage of the variance of daily walking duration was explained by physical performance measures. Therefore, factors other than physical performance seem to influence daily walking duration to a great extent.
The independent effects of speed and propulsive force on joint power generation in walking
Browne, Michael G.; Franz, Jason R.
2017-01-01
Walking speed is modulated using propulsive forces (FP) during push-off and both preferred speed and FP decrease with aging. However, even prior to walking slower, reduced FP may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time FP measurements to decouple and investigate the interaction between joint-level coordination, whole-body FP, and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9 – 1.3 m/s). We immediately calculated the average FP from each speed. Subjects then walked at 1.3 m/s while completing a series of biofeedback trials with instructions to match their instantaneous FP to their averaged FP from slower speeds. Walking slower decreased FP and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced FP, not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body FP, and walking speed in our aging population. PMID:28262285
The influence of personal patterns of behavior on the physiological effects of woodland walking.
Toda, Masahiro; Takeshita, Tatsuya
2015-01-01
The effects of forest walking are once again being recognized; however, few studies have investigated individual variations in the effects of forest walking. The objective of the current study was to investigate the influence of individual patterns of behavior on the physiological effects of walking through woodland. The study employed a crossover, open-label, single-group, self-controlled design. This study was conducted in the forest on Ikoma Mountain, at the eastern edge of Osaka Prefecture in Japan. Participants were 20 healthy males, selected randomly from a population of members at a nonprofit organization with a mean age of 67.6 y. Moving from the start of a mountain path to an observation platform, participants took a 1000-m walk through the forest. On another day, participants remained in their offices. Patterns of personal behavior were assessed preintervention by written questionnaire, identifying type A and type B behavior patterns. Salivary chromogranin A (CgA) levels were determined immediately before and after the walk as well as at 20 min after and 40 min after its end. On the day when participants sat in their offices, control samples were collected at the same times as on the day of the walk. In the type B-behavior pattern group, a significant increase in the levels of CgA occurred after the walk. No change was observed in the type A-behavior pattern group. The findings suggest that walking in woodland may bring about positive health benefits, particularly to individuals with type B characteristics.
Peruzzi, Agnese; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat
2016-01-01
Gait and cognitive deficits are common in multiple sclerosis (MS) and are negatively affected during dual-task walking. Treadmill (TM) training has been previously used to preserve locomotor activity in MS. Virtual reality (VR) engages the user in cognitive and motor activities simultaneously. A training combining TM and VR has been successfully adopted in several neurological diseases, but not in MS. This study aims at investigating the feasibility of a VR-based TM training program on gait of subjects with MS. Eight persons with relapsing-remitting MS were recruited to participate in a six-week VR-based TM training program. Gait analysis was performed both in single and dual task conditions. Clinical tests were used to assess walking endurance and obstacle negotiation. All the evaluations were performed before, immediately and one month after the training. Gait speed and stride length improved in dual task post-intervention and were retained at follow-up. An improved ability in negotiating obstacles was found across the evaluations. VR-based TM training program is feasible and safe for MS subjects with moderate disabilities and may positively affect gait under complex conditions, such as dual tasking and obstacle negotiation. Copyright © 2015. Published by Elsevier B.V.
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Learning gait of quadruped robot without prior knowledge of the environment
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Qijun
2012-09-01
Walking is the basic skill of a legged robot, and one of the promising ways to improve the walking performance and its adaptation to environment changes is to let the robot learn its walking by itself. Currently, most of the walking learning methods are based on robot vision system or some external sensing equipment to estimate the walking performance of certain walking parameters, and therefore are usually only applicable under laboratory condition, where environment can be pre-defined. Inspired by the rhythmic swing movement during walking of legged animals and the behavior of their adjusting their walking gait on different walking surfaces, a concept of walking rhythmic pattern(WRP) is proposed to evaluate the walking specialty of legged robot, which is just based on the walking dynamics of the robot. Based on the onboard acceleration sensor data, a method to calculate WRP using power spectrum in frequency domain and diverse smooth filters is also presented. Since the evaluation of WRP is only based on the walking dynamics data of the robot's body, the proposed method doesn't require prior knowledge of environment and thus can be applied in unknown environment. A gait learning approach of legged robots based on WRP and evolution algorithm(EA) is introduced. By using the proposed approach, a quadruped robot can learn its locomotion by its onboard sensing in an unknown environment, where the robot has no prior knowledge about this place. The experimental result proves proportional relationship exits between WRP match score and walking performance of legged robot, which can be used to evaluate the walking performance in walking optimization under unknown environment.
Macmillan, Freya; Fitzsimons, Claire; Black, Karen; Granat, Malcolm H; Grant, Margaret P; Grealy, Madeleine; Macdonald, Hazel; McConnachie, Alex; Rowe, David A; Shaw, Rebecca; Skelton, Dawn A; Mutrie, Nanette
2011-02-19
In Scotland, older adults are a key target group for physical activity intervention due to the large proportion who are inactive. The health benefits of an active lifestyle are well established but more research is required on the most effective interventions to increase activity in older adults. The 'West End Walkers 65+' randomised controlled trial aims to examine the feasibility of delivering a pedometer-based walking intervention to adults aged 65 years through a primary care setting and to determine the efficacy of this pilot. The study rationale, protocol and recruitment process are discussed in this paper. The intervention consisted of a 12-week pedometer-based graduated walking programme and physical activity consultations. Participants were randomised into an immediate intervention group (immediate group) or a 12-week waiting list control group (delayed group) who then received the intervention. For the pilot element of this study, the primary outcome measure was pedometer step counts. Secondary outcome measures of sedentary time and physical activity (time spent lying/sitting, standing or walking; activPAL™ monitor), mood (Positive and Negative Affect Schedule), functional ability (Perceived Motor-Efficacy Scale for Older Adults), quality of life (Short-Form (36) Health Survey version 2) and loneliness (UCLA Loneliness Scale) were assessed. Focus groups with participants and semi-structured interviews with the research team captured their experiences of the intervention. The feasibility component of this trial examined recruitment via primary care and retention of participants, appropriateness of the intervention for older adults and the delivery of the intervention by a practice nurse. West End Walkers 65+ will determine the feasibility and pilot the efficacy of delivering a pedometer-based walking intervention through primary care to Scottish adults aged 65 years. The study will also examine the effect of the intervention on the well-being of participants and gain an insight into both participant and research team member experiences of the intervention.
Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.;
2016-01-01
BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also performed as part of pilot FT. To perform the Tandem Walk, subjects begin with their feet together, their arms crossed at their chest and eyes closed. When ready, they brought one foot forward and touched the heel of their foot to their toe, repeating with the other foot, and continuing for about 10 steps. Three trials were collected with the eyes closed and a fourth trial was collected with eyes open. There are four metrics which are used to determine the performance level of the Tandem Walk. The first is percent correct steps. For a step to be counted as correct, the foot could not touch the ground while bringing it forward (no side stepping), eyes must stay closed during the eyes closed trials, the heel and toe should be touching, or almost touching (no large gaps) and there shouldn't be more than a three second pause between steps. Three judges score each step and the median of the three scores is kept. The second metric is the average step speed, or the number of steps/time to complete them. Thirdly, the root mean squared (RMS) error in the resultant trunk acceleration is used to determine the amount of upper body instability observed during the task. Finally, the RMS error of the mediolateral center of pressure as measured by the Moticon insoles is used to determine the mediolateral instability at the foot level. These four parameters are combined into a new overall Tandem Walk Parameter. RESULTS: Preliminary results show that crewmembers perform the Tandem Walk significantly worse the first 24 hours after landing as compared to their baseline performance. We find that each of the four performance metrics is significantly worse immediately after landing. We will present the results of tandem walk performance during the FT thus far. We will also combine these with the 18 crewmembers that participated in the pilot FT, concentrating on the level of performance and recovery rate. CONCLUSION: The Tandem Walk data collected as part of the FT experiment will provide invaluable information on the performance capabilities of astronauts during the first 24 hours after returning from long-duration spaceflight that can be used in planning future Mars, or other deep-space missions with unassisted landings. FT will determine the average sensorimotor recovery timeline and inform return-to-duty guidelines for unassisted landings.
Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S
2015-01-01
Background Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Objective Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults’ PA compared to the static intervention components. Methods Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message–based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants’ daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. Results This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. Conclusions The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of the first studies focusing on the individual components of combined goal setting and reward structures in a factorial design to increase walking. The trial is expected to produce results useful to future research interventions and perhaps industry initiatives, primarily focused on mHealth, goal setting, and those looking to promote behavior change through performance-based incentives. Trial Registration ClinicalTrials.gov NCT02053259; https://clinicaltrials.gov/ct2/show/NCT02053259 (Archived by WebCite at http://www.webcitation.org/6b65xLvmg). PMID:26362511
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.;
2015-01-01
INTRODUCTION Testing of crew responses following long-duration flights has not been previously possible until a minimum of more than 24 hours after landing. As a result, it has not been possible to determine the trend of the early recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented joint testing at the Soyuz landing site. This International Space Station research effort has been identified as the functional Field Test, and represents data collect on NASA, Russian, European Space Agency, and Japanese Aerospace Exploration Agency crews. RESEARCH The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible on the day of landing (typically within 1 to 1.5 hours). This goal has both sensorimotor and cardiovascular elements. To date, a total of 15 subjects have participated in a 'pilot' version of the full 'field test'. The full version of the 'field test' will assess functional sensorimotor measurements included hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with the hands (both strength and ability to judge just noticeable differences of force), standing from a prone position, coordinated walking involving tandem heel-to-toe placement (tested with eyes both closed and open), walking normally while avoiding obstacles of differing heights, and determining postural ataxia while standing (measurement of quiet stance). Sensorimotor performance has been obtained using video records, and data from body worn inertial sensors. The cardiovascular portion of the investigation has measured blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during sensorimotor testing on all of the above measures. We have also collected motion sickness data associated with each of the postflight tests. When possible rudimentary cerebellar assessment was undertaken. In addition to the immediate post-landing collection of data, postflight data has been acquired twice more within 24 hours after landing and measurements continue until sensorimotor and cardiovascular responses have returned to preflight normative values (approximately 60 days postflight). SUMMARY The level of functional deficit observed in the crew tested to date is more severe than expected, clearly triggered by the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow the estimation of nonlinear sensorimotor and cardiovascular recovery trends that have not been previously captured.
Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare
2016-01-01
To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Postoperative Walking Ability of Non-ambulatory Cervical Myelopathy Patients.
Takeoka, Yoshiki; Kaneyama, Shuichi; Sumi, Masatoshi; Kasahara, Koichi; Kanemura, Aritetsu; Takabatake, Masato; Hirata, Hiroaki; Tsubosaka, Masanori
2018-02-16
A retrospective analysis. The aim of this study was to clarify the postoperative improvement of walking ability and prognostic factors in nonambulatory patients with cervical myelopathy. Many researchers have reported the surgical outcome in compressive cervical myelopathy. However, regarding severe gait disturbance,, it has not been clarified yet how much improvement can be expected. One hundred thirty-one nonambulatory patients with cervical myelopathy were treated surgically and followed for an average of 3 years. Walking ability was graded according to the lower-extremity function subscore (L/E subscore) in Japanese Orthopedic Association score. We divided patients based on preoperative L/E subscores: group A, L/E subscore of 1 point (71 patients); and group B, 0 or 0.5 point (60 patients). The postoperative walking ability was graded by L/E subscore: excellent, ≥2 points; good, 1.5 points; fair, 1 point; and poor, 0.5 or 0 points. We compared preoperative and postoperative scores. The cutoff value of disease duration providing excellent improvement was investigated. Overall, 50 patients were graded as excellent (38.2%), and 21 patients were graded as good (16.0%). In group B, 17 patients (28.3%) were graded as excellent. Seventeen patients who were graded as excellent had shorter durations of myelopathic symptoms and/or gait disturbance (7.9 and 3.8 months respectively) than the others (29.5 and 8.9 months, respectively) (P < 0.05). Receiver-operating characteristic curve showed that the optimal cutoff values of the duration of myelopathic symptoms and gait disturbance providing excellent improvement were 3 and 2 months, respectively. Even if the patients were nonambulatory, 28.3% of them became able to walk without support after operation. If a patient becomes nonambulatory within 3 months from the onset of myelopathy or 2 months from the onset of gait disturbance, surgical treatment should be performed immediately to raise the possibility to improve stable gait. 3.
Heiberg, Kristi Elisabeth; Bruun-Olsen, Vigdis; Ekeland, Arne; Mengshoel, Anne Marit
2012-03-01
To investigate the effect of a 12-session walking skill training program of weight-bearing activities on physical functioning and self-efficacy initiated in patients 3 months after total hip arthroplasty (THA). Sixty-eight patients with THA, 35 women and 33 men, with a mean age of 66 years (95% confidence interval [95% CI] 64, 67 years), were randomized to a training group (n = 35) or a control group without physiotherapy (n = 33). Assessments were performed before the intervention at 3 months (pretest), at 5 months (posttest 1), and at 12 months (posttest 2) after surgery. The primary outcome was the 6-minute walk test (6MWT). The secondary outcomes were the stair climbing test (ST); figure-of-eight test; Index of Muscle Function (IMF); active hip range of motion (ROM) in flexion, extension, and abduction; Harris Hip Score (HHS); self-efficacy; and Hip Dysfunction and Osteoarthritis Outcome Score. The training group had larger improvements than the control group at posttest 1 on the 6MWT with an adjusted mean difference of 52 meters (95% CI 29, 74 meters; P < 0.001) and on the ST of -1 second (95% CI -2, 0 seconds; P = 0.01).There were also improvements on the figure-of-eight test (P = 0.02), IMF (P = 0.001), active hip ROM in extension (P = 0.02), HHS (P = 0.05), and self-efficacy (P = 0.04). The difference between the groups persisted at posttest 2 on the 6MWT of 52 meters (95% CI 24, 80 meters; P < 0.001) and on the ST of -1 second (95% CI -3, 0 seconds; P = 0.05). The walking skill training program was effective, especially in improving walking both immediately after the intervention and 1 year after THA surgery. Copyright © 2012 by the American College of Rheumatology.
Ivanyi, Barbara; Schoenmakers, Marja; van Veen, Natasja; Maathuis, Karel; Nollet, Frans; Nederhand, Marc
2015-12-01
To date no review has been published that analyzes the efficacy of assistive devices on the walking ability of ambulant children and adolescents with spina bifida and, differentiates between the effects of treatment on gait parameters, walking capacity, and walking performance. To review the literature for evidence of the efficacy of orthotic management, footwear, and walking aids on gait and walking outcomes in ambulant children and adolescents with spina bifida. Systematic literature review. A systematic literature search was performed to identify studies that evaluated the effect of any type of lower limb orthoses, orthopedic footwear, or walking aids in ambulant children (≤18 years old) with spina bifida. Outcome measures and treatment results for gait parameters, walking capacity, and walking performance were identified using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as the reference framework. Six case-crossover studies met the criteria and were included in this systematic review. Four studies provided indications of the efficacy of the ankle-foot orthosis in improving a number of kinematic and kinetic properties of gait, stride characteristics, and the oxygen cost of walking. Two studies indicated that walking with forearm crutches may have a favorable effect on gait. The evidence level of these studies was low, and none of the studies assessed the efficacy of the intervention on walking capacity and walking performance. Some data support the efficacy of using ankle-foot orthosis and crutches for gait and walking outcomes at the body functions and structures level of the ICF-CY. Potential benefits at the activities and participation level have not been investigated. This is the first evidence-based systematic review of the efficacy of assistive devices for gait and walking outcomes for children with spina bifida. The ICF-CY is used as a reference framework to differentiate the effects of treatment on gait parameters, walking capacity, and walking performance. © The International Society for Prosthetics and Orthotics 2014.
Study on Walking Training System using High-Performance Shoes constructed with Rubber Elements
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Kawanaka, S.; Kanezaki, K.; Doi, S.
2016-09-01
The number of accidental falls has been increasing among the elderly as society has aged. The main factor is a deteriorating center of balance due to declining physical performance. Another major factor is that the elderly tend to have bowlegged walking and their center of gravity position of the body tend to swing from side to side during walking. To find ways to counteract falls among the elderly, we developed walking training system to treat the gap in the center of balance. We also designed High-Performance Shoes that showed the status of a person's balance while walking. We also produced walk assistance from the insole in which insole stiffness corresponded to human sole distribution could be changed to correct the person's walking status. We constructed our High- Performances Shoes to detect pressure distribution during walking. Comparing normal sole distribution patterns and corrected ones, we confirmed that our assistance system helped change the user's posture, thereby reducing falls among the elderly.
Fukuchi, Claudiane A; Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J
2016-11-01
Wedged insoles have been used to treat knee pathologies and to prevent injuries. Although they have received much attention for the study of knee injury, the effects of wedges on ankle joint biomechanics are not well understood. This study sought to evaluate the immediate effects of lateral and medial wedges on knee and ankle internal joint loading and center of pressure (CoP) in men during walking. Twenty-one healthy men walked at 1.4 m/sec in five footwear conditions: neutral, 6° (LW6) and 9° (LW9) lateral wedges, and 6° (MW6) and 9° (MW9) medial wedges. Peak internal knee abduction moments and angular impulses, internal ankle inversion moments and angular impulses, and mediolateral CoP were analyzed. Analysis of variance with post hoc analysis and Pearson correlations were performed to detect differences between conditions. No differences in internal knee joint loading were found between neutral and any of the wedge conditions. However, as the wedge angle increased from medial to lateral, the internal ankle inversion moment (LW6: P = .020; LW9: P < .001; MW6: P = .046; MW9: P < .001) and angular impulse (LW9: P = .012) increased, and the CoP shifted laterally (LW9: P < .001) and medially (MW9: P < .001) compared with the neutral condition. Neither lateral nor medial wedges were effective in altering internal knee joint loading during walking. However, the greater internal ankle inversion moment and angular impulse observed with lateral wedges could lead to a higher risk of ankle injury. Thus, caution should be taken when lateral wedges need to be prescribed.
Macaulay, Timothy R; Macias, Brandon R; Lee, Stuart MC; Boda, Wanda L; Watenpaugh, Donald E; Hargens, Alan R
2016-01-01
Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0–1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: −42%, women: −40%), rail walk distances (men: −44%, women: −32%) and rail walk times (men: −34%, women: −31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women. PMID:28725733
Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou
2015-06-01
The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P < 0.05). A similar trend was observed after the third hour of ATW (P = 0.06). However, ATW demonstrated a 3% overall decline in DBP after exercise compared to a 1% DBP increase of the control day (P < 0.05). Additionally, ATW showed a 6% reduction in mean systolic BP at the ninth hour post-exercise (P < 0.05) compared to baseline. Our results indicate people post-stroke can sustain sufficient walking intensities necessary to reduce BP following cardiovascular exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.
Master, Hiral; Thoma, Louise M; Christiansen, Meredith B; Polakowski, Emily; Schmitt, Laura A; White, Daniel K
2018-07-01
Evidence of physical function difficulties, such as difficulty rising from a chair, may limit daily walking for people with knee osteoarthritis (OA). The purpose of this study was to identify minimum performance thresholds on clinical tests of physical function predictive to walking ≥6,000 steps/day. This benchmark is known to discriminate people with knee OA who develop functional limitation over time from those who do not. Using data from the Osteoarthritis Initiative, we quantified daily walking as average steps/day from an accelerometer (Actigraph GT1M) worn for ≥10 hours/day over 1 week. Physical function was quantified using 3 performance-based clinical tests: 5 times sit-to-stand test, walking speed (tested over 20 meters), and 400-meter walk test. To identify minimum performance thresholds for daily walking, we calculated physical function values corresponding to high specificity (80-95%) to predict walking ≥6,000 steps/day. Among 1,925 participants (mean ± SD age 65.1 ± 9.1 years, mean ± SD body mass index 28.4 ± 4.8 kg/m 2 , and 55% female) with valid accelerometer data, 54.9% walked ≥6,000 steps/day. High specificity thresholds of physical function for walking ≥6,000 steps/day ranged 11.4-14.0 seconds on the 5 times sit-to-stand test, 1.13-1.26 meters/second for walking speed, or 315-349 seconds on the 400-meter walk test. Not meeting these minimum performance thresholds on clinical tests of physical function may indicate inadequate physical ability to walk ≥6,000 steps/day for people with knee OA. Rehabilitation may be indicated to address underlying impairments limiting physical function. © 2017, American College of Rheumatology.
Pain sensitivity in patients with haemophilia following moderate aerobic exercise intervention.
Krüger, S; Weitz, C; Runkel, B; Hilberg, T
2016-11-01
Physical activity is influenced by pain and vice versa. Although studies recommend exercise therapy for patients with haemophilia (PwH), the influence of physical activity on the pain condition in PwH has not been investigated so far. Aim of this study was to examine the effect of a treadmill intervention with self-chosen velocity on the acute pain sensitivity in PwH. Twenty PwH [aged 24-58 years, moderate (n = 3) to severe (n = 17) haemophilia A (n = 17) or B (n = 3)] and 20 control subjects (aged 26-61 years) were included in this study. Eighteen PwH and all controls completed a treadmill intervention for 30 min. Pressure pain thresholds (PPT) in Newton (N) were measured at both the knees, ankles and elbows, sternum and forehead before (pre) and immediately after walking (post). PwH and controls walked with comparable speed (mean speed in km h -1 ; PwH: 3.5, controls: 3.8), resulting in significantly different values of performance-related parameters such as heart rate (mean heart rate per minute; PwH: 102, controls: 86; P ≤ 0.01). Compared to baseline values, PPT remained unaltered at all landmarks in both groups after walking (e.g. pre/post in Newton; knee right: PwH: 63.1/63.0, controls: 93.8/93.8; left knee: PwH: 62.1/62.7, controls: 90.0/93.4), indicating a non-increasing pain condition. Findings of unaltered PPT following moderate aerobic exercise showed initial evidence that PwH are able to perform an endurance exercise with self-chosen velocity for 30 min as recommended, without increasing the acute pain condition. By doing so, PwH can benefit from the positive effects of endurance exercise. © 2016 John Wiley & Sons Ltd.
Silva, Luciana E; Valim, Valeria; Pessanha, Ana Paula C; Oliveira, Leda M; Myamoto, Samira; Jones, Anamaria; Natour, Jamil
2008-01-01
This study was designed to evaluate the effectiveness of hydrotherapy in subjects with osteoarthritis (OA) of the knee compared with subjects with OA of the knee who performed land-based exercises. Sixty-four subjects with OA of the knee were randomly assigned to 1 of 2 groups that performed exercises for 18 weeks: a water-based exercise group and a land-based exercise group. The outcome measures included a visual analog scale (VAS) for pain in the previous week, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), pain during gait assessed by a VAS at rest and immediately following a 50-foot (15.24-m) walk test (50FWT), walking time measured at fast and comfortable paces during the 50FWT, and the Lequesne Index. Measurements were recorded by a blinded investigator at baseline and at 9 and 18 weeks after initiating the intervention. The 2 groups were homogenous regarding all parameters at baseline. Reductions in pain and improvements in WOMAC and Lequesne index scores were similar between groups. Pain before and after the 50FWT decreased significantly over time in both groups. However, the water-based exercise group experienced a significantly greater decrease in pain than the land-based exercise group before and after the 50FWT at the week-18 follow-up. Both water-based and land-based exercises reduced knee pain and increased knee function in participants with OA of the knee. Hydrotherapy was superior to land-based exercise in relieving pain before and after walking during the last follow-up. Water-based exercises are a suitable and effective alternative for the management of OA of the knee.
Wibmer, Thomas; Rüdiger, Stefan; Heitner, Claudia; Kropf-Sanchen, Cornelia; Blanta, Ioanna; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian
2014-05-01
Dynamic hyperinflation is an important target in the treatment of COPD. There is increasing evidence that positive expiratory pressure (PEP) could reduce dynamic hyperinflation during exercise. PEP application through a nasal mask and a flow resistance device might have the potential to be used during daily physical activities as an auxiliary strategy of ventilatory assistance. The aim of this study was to determine the effects of nasal PEP on lung volumes during physical exercise in patients with COPD. Twenty subjects (mean ± SD age 69.4 ± 6.4 years) with stable mild-to-severe COPD were randomized to undergo physical exercise with nasal PEP breathing, followed by physical exercise with habitual breathing, or vice versa. Physical exercise was induced by a standard 6-min walk test (6 MWT) protocol. PEP was applied by means of a silicone nasal mask loaded with a fixed-orifice flow resistor. Body plethysmography was performed immediately pre-exercise and post-exercise. Differences in mean pre- to post-exercise changes in total lung capacity (-0.63 ± 0.80 L, P = .002), functional residual capacity (-0.48 ± 0.86 L, P = .021), residual volume (-0.56 ± 0.75 L, P = .004), S(pO2) (-1.7 ± 3.4%, P = .041), and 6 MWT distance (-30.8 ± 30.0 m, P = .001) were statistically significant between the experimental and the control interventions. The use of flow-dependent expiratory pressure, applied with a nasal mask and a PEP device, might promote significant reduction of dynamic hyperinflation during walking exercise. Further studies are warranted addressing improvements in endurance performance under regular application of nasal PEP during physical activities.
Immediate dietary effects on migrating Mormon cricket immunocompetence
USDA-ARS?s Scientific Manuscript database
Mormon crickets form bands and walk over rangeland in the western United States seeking salt and protein. Radio-tracking adult members of a Mormon cricket band in a high Sonoran desert of Utah, we investigated a potential trade-off between immunocompetence and migratory velocity. We asked: does acce...
Motivating Distance Learners in Online Gaming Worlds
ERIC Educational Resources Information Center
Marvel, Michele D.
2012-01-01
Massively multiplayer online games (MMOGs) have potential as educational tools. Existing literature shows that MMOG-based courses can foster a more immediate sense of community among students than traditional distance learning interfaces. The immersive technology of MMOGs opens the door for students to be able to virtually walk through the college…
Motl, Robert W; Sosnoff, Jacob J; Dlugonski, Deirdre; Pilutti, Lara A; Klaren, Rachel; Sandroff, Brian M
2014-03-01
Performing a cognitive task while walking results in a reduction of walking performance among persons with MS. To date, very little is known about correlates of this dual task cost (DTC) of walking in MS. We examined walking performance, cognitive processing speed, and symptoms of fatigue, depression, anxiety, and pain as correlates of DTC of walking in MS. 82 persons with MS undertook a 6-min walk test (6MWT) and completed the Symbol Digit Modalities Test (SDMT), Fatigue Severity Scale (FSS), Short-form of the McGill Pain Questionnaire (SF-MPQ), Hospital Anxiety and Depression Scale (HADS), and self-reported Expanded Disability Status Scale (SR-EDSS). The participants completed 4 trials of walking at a self-selected pace on an electronic walkway that recorded spatiotemporal parameters of gait. The first 2 trials were performed without a cognitive task, whereas the second 2 trials were completed while performing a modified Word List Generation task. There were significant and large declines in gait performance with the addition of a cognitive task for velocity (p<.001, η2=.52), cadence (p<.001, η2=.49), and step length (p<.001, η2=.23). 6MWT and SDMT scores correlated with DTC for velocity (r=-.41, p<.001 and r=-.32, p<.001, respectively) and step length (r=-.45, p<.001 and r=-.37, p<.001, respectively); there were no significant associations between FSS, SF-MPQ, and HADS scores with the DTC of walking. Regression analyses indicated that 6MW, but not SDMT, explained variance in DTC for velocity (ΔR2=.11, p<.001) and step length (ΔR2=.13, p<.001), after controlling for SR-EDSS scores. Walking performance might be a target of interventions for reducing the DTC of walking in MS. Copyright © 2013 Elsevier B.V. All rights reserved.
The independent effects of speed and propulsive force on joint power generation in walking.
Browne, Michael G; Franz, Jason R
2017-04-11
Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial.
Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Fiaschi, Antonio; Santilli, Valter; Smania, Nicola
2012-05-01
. Gait impairment is a common cause of disability in Parkinson disease (PD). Electromechanical devices to assist stepping have been suggested as a potential intervention. . To evaluate whether a rehabilitation program of robot-assisted gait training (RAGT) is more effective than conventional physiotherapy to improve walking. . A total of 41 patients with PD were randomly assigned to 45-minute treatment sessions (12 in all), 3 days a week, for 4 consecutive weeks of either robotic stepper training (RST; n = 21) using the Gait Trainer or physiotherapy (PT; n = 20) with active joint mobilization and a modest amount of conventional gait training. Participants were evaluated before, immediately after, and 1 month after treatment. Primary outcomes were 10-m walking speed and distance walked in 6 minutes. . Baseline measures revealed no statistical differences between groups, but the PT group walked 0.12 m/s slower; 5 patients withdrew. A statistically significant improvement was found in favor of the RST group (walking speed 1.22 ± 0.19 m/s [P = .035]; distance 366.06 ± 78.54 m [P < .001]) compared with the PT group (0.98 ± 0.32 m/s; 280.11 ± 106.61 m). The RAGT mean speed increased by 0.13 m/s, which is probably not clinically important. Improvements were maintained 1 month later. . RAGT may improve aspects of walking ability in patients with PD. Future trials should compare robotic assistive training with treadmill or equal amounts of overground walking practice.
Predictive neuromechanical simulations indicate why walking performance declines with ageing.
Song, Seungmoon; Geyer, Hartmut
2018-04-01
Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens
2017-08-01
Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p < 0.0001) or was unaffected. The use of a wheeled walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.
Swenor, Bonnielin K; Bandeen-Roche, Karen; Muñoz, Beatriz; West, Sheila K
2014-08-01
To determine whether performance speeds mediate the association between visual impairment and self-reported mobility disability over an 8-year period. Longitudinal analysis. Salisbury, Maryland. Salisbury Eye Evaluation Study participants aged 65 and older (N=2,520). Visual impairment was defined as best-corrected visual acuity worse than 20/40 in the better-seeing eye or visual field less than 20°. Self-reported mobility disability on three tasks was assessed: walking up stairs, walking down stairs, and walking 150 feet. Performance speed on three similar tasks was measured: walking up steps (steps/s), walking down steps (steps/s), and walking 4 m (m/s). For each year of observation, the odds of reporting mobility disability was significantly greater for participants who were visually impaired (VI) than for those who were not (NVI) (odds ratio (OR) difficulty walking up steps=1.58, 95% confidence interval (CI)=1.32-1.89; OR difficulty walking down steps=1.90, 95% CI=1.59-2.28; OR difficulty walking 150 feet=2.11, 95% CI=1.77-2.51). Once performance speed on a similar mobility task was included in the models, VI participants were no longer more likely to report mobility disability than those who were NVI (OR difficulty walking up steps=0.84, 95% CI=0.65-1.11; OR difficulty walking down steps=0.96, 95% CI=0.74-1.24; OR difficulty walking 150 feet=1.22, 95% CI=0.98-1.50). Slower performance speed in VI individuals largely accounted for the difference in the odds of reporting mobility disability, suggesting that VI older adults walk slower and are therefore more likely to report mobility disability than those who are NVI. Improving mobility performance in older adults with visual impairment may minimize the perception of mobility disability. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
NASA Technical Reports Server (NTRS)
Fisher, E. A.; Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.; Harm, D. L.
2010-01-01
INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postflight ataxia can be quantified easily by using the walk on the floor line test with the eyes closed (WOFEC). Data from a modified WOFEC were obtained as part of an ongoing interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both postflight functional performance of astronauts and related physiological changes. METHODS Five astronauts with flight durations of 12 to 16 days participated in this study. Performance measurements were obtained in 2 preflight sessions, on landing day, and 1, 6, and 30 days after landing. The WOFEC test consisted of walking with the feet placed heel to toe in tandem, arms folded across the chest and eyes closed, for 10 steps. A trial was initiated after the eyes were closed and the front foot was aligned with the rear foot. The performance metric was the average percentage of correct steps completed over 3 trials. A step was not counted as correct if the crewmember sidestepped, opened eyes, or paused for more than 3 seconds between steps. Step accuracy was scored independently by 3 examiners. RESULTS Immediately after landing subjects seemed to be unaware of their foot position relative to their body or the floor. The percentage of correct steps was significantly decreased on landing day. Partial recovery was observed the next day, and full recovery to baseline on the sixth day post landing. CONCLUSION These data clearly demonstrate the sensorimotor challenges facing crewmembers after they return from space flight. Although this simple test is intended to complement the FTT battery of tests, it has some stand-alone value as it provides investigators with a means to quantify vestibular ataxia as well as provide instant feedback on postural stability without the use of complex test equipment.
Hawkins, Kelly A; Fox, Emily J; Daly, Janis J; Rose, Dorian K; Christou, Evangelos A; McGuirk, Theresa E; Otzel, Dana M; Butera, Katie A; Chatterjee, Sudeshna A; Clark, David J
2018-06-01
Control of walking by the central nervous system includes contributions from executive control mechanisms, such as attention and motor planning resources. Executive control of walking can be estimated objectively by recording prefrontal cortical activity using functional near infrared spectroscopy (fNIRS). The primary objective of this study was to investigate group differences in prefrontal/executive control of walking among young adults, older adults, and adults post-stroke. Also assessed was the extent to which walking-related prefrontal activity fits existing cognitive frameworks of prefrontal over-activation. Participants included 24 adults post-stroke with moderate to severe walking deficits, 15 older adults with mild gait deficits, and 9 young healthy adults. Executive control of walking was quantified as oxygenated hemoglobin concentration in the prefrontal cortex measured by fNIRS. Three walking tasks were assessed: typical walking, walking over obstacles, and walking while performing a verbal fluency task. Walking performance was assessed by walking speed. There was a significant effect of group for prefrontal activity (p < 0.001) during typical and obstacles walking tasks, with young adults exhibiting the lowest level of prefrontal activity, followed by older adults, and then adults post-stroke. In young adults the prefrontal activity during typical walking was much lower than for the verbal fluency dual-task, suggesting substantial remaining prefrontal resources during typical walking. However, in older and post-stroke adults these remaining resources were significantly less (p < 0.01). Cumulatively, these results are consistent with prefrontal over-activation in the older and stroke groups, which was accompanied by a steeper drop in walking speed as task complexity increased to include obstacles (p < 0.05). There is a heightened use of prefrontal/executive control resources in older adults and post-stroke adults during walking. The level of prefrontal resource utilization, particularly during complex walking tasks like obstacle crossing, may approach the ceiling of available resources for people who have walking deficits. Prior cognitive research has revealed that prefrontal over-activation combined with limited prefrontal resources can lead to poor cognitive performance. The present study suggests a similar situation influences walking performance. Future research should further investigate the extent to which prefrontal over-activation during walking is linked to adverse mobility outcomes. Published by Elsevier B.V.
Sakari, Ritva; Rantakokko, Merja; Portegijs, Erja; Iwarsson, Susanne; Sipilä, Sarianna; Viljanen, Anne; Rantanen, Taina
2017-06-01
The aim of this study was to analyze whether the associations between perceived environmental and individual characteristics and perceived walking limitations in older people differ between those with intact and those with poorer lower extremity performance. Persons aged 75 to 90 ( N = 834) participated in interviews and performance tests in their homes. Standard questionnaires were used to obtain walking difficulties; environmental barriers to and, facilitators of, mobility; and perceived individual hindrances to outdoor mobility. Lower extremity performance was tested using Short Physical Performance Battery (SPPB). Among those with poorer lower extremity performance, the likelihood for advanced walking limitations was, in particular, related to perceived poor safety in the environment, and among those with intact performance to perceived social issues, such as lack of company, as well as to long distances. The environmental correlates of walking limitations seem to depend on the level of lower extremity performance.
The effects of moderate fatigue on dynamic balance control and attentional demands.
Simoneau, Martin; Bégin, François; Teasdale, Normand
2006-09-28
During daily activities, the active control of balance often is a task per se (for example, when standing in a moving bus). Other constraints like fatigue can add to the complexity of this balance task. In the present experiment, we examined how moderate fatigue induced by fast walking on a treadmill challenged dynamic balance control. We also examined if the attentional demands for performing the balance task varied with fatigue. Subjects (n = 10) performed simultaneously a dynamic balance control task and a probe reaction time task (RT) (serving as an indicator of attentional demands) before and after three periods of moderate fatigue (fast walking on a treadmill). For the balance control task, the real-time displacement of the centre of pressure (CP) was provided on a monitor placed in front of the subject, at eye level. Subjects were asked to keep their CP within a target (moving box) moving upward and downward on the monitor. The tracking performance was measured (time spent outside the moving box) and the CP behavior analyzed (mean CP speed and mean frequency of the CP velocity). Moderate fatigue led to an immediate decrement of the performance on the balance control task; increase of the percentage of time spent outside the box and increase of the mean CP speed. Across the three fatigue periods, subjects improved their tracking performance and reduced their mean CP speed. This was achieved by increasing their frequency of actions; mean frequency of the CP velocity were higher for the fatigue periods than for the no fatigue periods. Fatigue also induced an increase in the attentional demands suggesting that more cognitive resources had to be allocated to the balance task with than without fatigue. Fatigue induced by fast walking had an initial negative impact on the control of balance. Nonetheless, subjects were able to compensate the effect of the moderate fatigue by increasing the frequency of actions. This adaptation, however, required that a greater proportion of the cognitive resources be allocated to the active control of the balance task.
Eich, H-J; Mach, H; Werner, C; Hesse, S
2004-09-01
To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p <0.001 versus p <0.001) in the experimental group. Between weeks 0 and 6, the experimental group improved walking speed and capacity by a mean of.31 m/s and 91 m, the control group by a mean of 0.16 m/s and 56 m. Between weeks 0 and 18, the experimental group improved walking speed and capacity by a mean of 0.36 m/s and 111 m, the control group by a mean of 0.15 m/s and 57 m. Gross motor function and walking quality did not differ at any time. Aerobic treadmill plus Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.
Mullen, Sean P.; Satariano, William A.; Kealey, Melissa; Prohaska, Thomas R.
2012-01-01
Objectives. Data from the Healthy Aging Network (HAN) study (Prohaska, T., Eisenstein, A., Satariano, W., Hunter, R., Bayles, C., Kurtovich, E., … Ivey, S. [2009]. Walking and the preservation of cognitive function in older populations. The Gerontologist, 49[Suppl. 1], S86–S93; and Satariano, W., Ivey, S., Kurtovich, E., Kealey, M., Hubbard, A., Bayles, C., … Prohaska, T. [2010]. Lower-body function, neighborhoods, and walking in an older population. American Journal of Preventive Medicine, 38, 419–428.) were used to examine the relationships among physical activity, self-efficacy, functional performance, and limitations. Method. Interviews were conducted within homes and senior centers in 4 geographic regions across the United States. Participants were 884 older adults (M age = 74.8; 77% female; 35% minority status) who completed measures of walking behavior, way-finding self-efficacy, walking self-efficacy, functional performance, functional limitations, and demographic characteristics. Results. Path analysis within a covariance modeling framework revealed significant direct effects of walking on self-efficacy constructs, functional performance on functional limitations, and efficacy on limitations. Additionally, significant indirect effects were also found, including walking on limitations via walking self-efficacy and performance and walking self-efficacy on limitations via performance. Furthermore, we found support for invariance of the model across geographical grouping. Discussion. Our findings provide further validation for an efficacy-based model of functional limitations. Walking-related efficacy may help reduce or possibly delay the onset of functional limitations. PMID:22473023
Mullen, Sean P; McAuley, Edward; Satariano, William A; Kealey, Melissa; Prohaska, Thomas R
2012-05-01
Data from the Healthy Aging Network (HAN) study (Prohaska, T., Eisenstein, A., Satariano, W., Hunter, R., Bayles, C., Kurtovich, E., … Ivey, S. [2009]. Walking and the preservation of cognitive function in older populations. The Gerontologist, 49[Suppl. 1], S86-S93; and Satariano, W., Ivey, S., Kurtovich, E., Kealey, M., Hubbard, A., Bayles, C., … Prohaska, T. [2010]. Lower-body function, neighborhoods, and walking in an older population. American Journal of Preventive Medicine, 38, 419-428.) were used to examine the relationships among physical activity, self-efficacy, functional performance, and limitations. Interviews were conducted within homes and senior centers in 4 geographic regions across the United States. Participants were 884 older adults (M age = 74.8; 77% female; 35% minority status) who completed measures of walking behavior, way-finding self-efficacy, walking self-efficacy, functional performance, functional limitations, and demographic characteristics. Path analysis within a covariance modeling framework revealed significant direct effects of walking on self-efficacy constructs, functional performance on functional limitations, and efficacy on limitations. Additionally, significant indirect effects were also found, including walking on limitations via walking self-efficacy and performance and walking self-efficacy on limitations via performance. Furthermore, we found support for invariance of the model across geographical grouping. Our findings provide further validation for an efficacy-based model of functional limitations. Walking-related efficacy may help reduce or possibly delay the onset of functional limitations.
The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults
Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul
2017-01-01
Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task) and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP), matching to rhythmic cueing (WalkRC), and instrument playing while matching to rhythmic cueing (WalkIP+RC). The cognitive-motor task involved counting forward by 3s (WalkCount.f3). In each condition, dual task costs (DTC), a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3). In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the potential of applying rhythm-motor tasks to dual task methodology. This study presents how rhythm-motor tasks demand cognitive control at different levels than those engaged by cognitive-motor tasks. It also indicates how these new dual tasks can effectively mediate dual task performance indicative of fall risks, while requiring increased cognitive resources but facilitating gait control as a compensatory strategy to maintain gait stability. PMID:29375462
Kim, Hyeon-Ki; Konishi, Masayuki; Takahashi, Masaki; Tabata, Hiroki; Endo, Naoya; Numao, Shigeharu; Lee, Sun-Kyoung; Kim, Young-Hak; Suzuki, Katsuhiko; Sakamoto, Shizuo
2015-01-01
Purpose To compare the effects of endurance exercise performed in the morning and evening on inflammatory cytokine responses in young men. Methods Fourteen healthy male participants aged 24.3 ± 0.8 years (mean ± standard error) performed endurance exercise in the morning (0900–1000 h) on one day and then in the evening (1700–1800 h) on another day with an interval of at least 1 week between each trial. In both the morning and evening trials, the participants walked for 60 minutes at approximately 60% of the maximal oxygen uptake (V·O2max) on a treadmill. Blood samples were collected to determine hormones and inflammatory cytokines at pre-exercise, immediately post exercise, and 2 h post exercise. Results Plasma interleukin (IL)-6 and adrenaline concentrations were significantly higher immediately after exercise in the evening trial than in the morning trial (P < 0.01, both). Serum free fatty acids concentrations were significantly higher in the evening trial than in the morning trial at 2 h after exercise (P < 0.05). Furthermore, a significant correlation was observed between the levels of IL-6 immediately post-exercise and free fatty acids 2 h post-exercise in the evening (r = 0.68, P < 0.01). Conclusions These findings suggest that the effect of acute endurance exercise in the evening enhances the plasma IL-6 and adrenaline concentrations compared to that in the morning. In addition, IL-6 was involved in increasing free fatty acids, suggesting that the evening is more effective for exercise-induced lipolysis compared with the morning. PMID:26352938
ERIC Educational Resources Information Center
Dakin, Mary Ellen; Eatough, David Lowell; Turchon, Andrew
2011-01-01
There is a need to establish and nurture a relationship between urban and suburban students and the natural world. This relationship needs to be personal and immediate. They need to see the wilder life that survives and sometimes flourishes in "their" world--not miles away in the hills and mountains or hidden beneath the sea, but outside…
Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.
Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk
2015-07-01
Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.
Simoni, David; Rubbieri, Gaia; Baccini, Marco; Rinaldi, Lucio; Becheri, Dimitri; Forconi, Tatiana; Mossello, Enrico; Zanieri, Samanta; Marchionni, Niccolò; Di Bari, Mauro
2013-07-01
Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task. Copyright © 2013 Elsevier Ltd. All rights reserved.
Franceschini, Marco; Rampello, Anais; Agosti, Maurizio; Massucci, Maurizio; Bovolenta, Federica; Sale, Patrizio
2013-01-01
Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW), in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS). One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance. PMID:23468871
Effects of Backpack Carriage on Dual-Task Performance in Children During Standing and Walking.
Beurskens, Rainer; Muehlbauer, Thomas; Grabow, Lena; Kliegl, Reinhold; Granacher, Urs
2016-01-01
Primary school children perform parts of their everyday activities while carrying school supplies and being involved in attention-demanding situations. Twenty-eight children (8-10 years old) performed a 1-legged stance and a 10 m walking test under single- and dual-task situations in unloaded (i.e., no backpack) and loaded conditions (i.e., backpack with 20% of body mass). Results showed that load carriage did not significantly influence children's standing and walking performance (all p > .05), while divided attention affected all proxies of walking (all p < .001). Last, no significant load by attention interactions was detected. The single application of attentional but not load demand negatively affects children's walking performance. A combined application of both did not further deteriorate their gait behavior.
Toosizadeh, Nima; Harati, Homayoon; Yen, Tzu-Chuan; Fastje, Cindy; Mohler, Jane; Najafi, Bijan; Dohm, Michael
2016-01-01
Background This study examined short- and long-term improvements in motor performance, quantified using wearable sensors, in response to facet spine injection in degenerative facet osteoarthropathy patients. Methods Adults with confirmed degenerative facet osteoarthropathy were recruited and were treated with medial or intermediate branch block injection. Self-report pain, health condition, and disability (Oswestry), as well as objective motor performance measures (gait, balance, and timed-up-and-go) were obtained in five sessions: pre-surgery (baseline), immediately after the injection, one-month, three-month, and 12-month follow-ups. Baseline motor performance parameters were compared with 10 healthy controls. Findings Thirty patients (age=50(14) years) and 10 controls (age=46(15) years) were recruited. All motor performance parameters were significantly different between groups. Results showed that average pain and Oswestry scores improved by 51% and 24%, respectively among patients, only one month after injection. Similarly, improvement in motor performance was most noticeable in one-month post-injection measurements; most improvements were observed in gait speed (14% normal walking, P<0.02), hip sway within balance tests (63% eyes-open P<0.01), and turning velocity within the timed-up-and-go test (28%, P<0.02). Better baseline motor performance led to better outcomes in terms of pain relief; baseline turning velocity was 18% faster among the responsive compared to the non-responsive patients. Interpretations Spinal injection can temporarily (one to three months) improve motor performance in degenerative facet osteoarthropathy patients. Successful pain relief in response to treatment is independent of demographic characteristics and initial pain but dependent on baseline motor performance. Immediate self-reported pain relief is unrelated to magnitude of gradual improvement in motor performance. PMID:27744005
Dual task cost of walking is related to fall risk in persons with multiple sclerosis.
Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J
2013-12-15
Persons with multiple sclerosis (MS) commonly have walking and cognitive impairments. While walking with a simultaneous cognitive task, persons with MS experience a greater decline in walking performance than healthy controls. This change in performance is termed dual task cost or dual task interference and has been associated with fall risk in older adults. We examined whether dual task cost during walking was related to fall risk in persons with MS. Thirty-three ambulatory persons with MS performed walking tasks with and without a concurrent cognitive task (dual task condition) as well as underwent a fall risk assessment. Dual task cost was operationalized as the percent change in velocity from normal walking conditions to dual task walking conditions. Fall risk was quantified using the Physiological Profile Assessment. A Spearman correlation analysis revealed a significant positive correlation between dual task cost of walking velocity and fall risk as well as dual task cost of stride length and fall risk. Overall, the findings indicate that dual task cost is associated with fall risk and may be an important target for falls prevention strategies. © 2013.
Cheng, Fang-Yu; Yang, Yea-Ru; Wu, Yih-Ru; Cheng, Shih-Jung; Wang, Ray-Yau
2017-10-01
The purpose of this study was to investigate the effects of curved-walking training (CWT) on curved-walking performance and freezing of gait (FOG) in people with Parkinson's disease (PD). Twenty-four PD subjects were recruited and randomly assigned to the CWT group or control exercise (CE) group and received 12 sessions of either CWT with a turning-based treadmill or general exercise training for 30 min followed by 10 min of over-ground walking in each session for 4-6 weeks. The primary outcomes included curved-walking performance and FOG. All measurements were assessed at baseline, after training, and at 1-month follow-up. Our results showed significant improvements in curved-walking performance (speed, p = 0.007; cadence, p = 0.003; step length, p < 0.001) and FOG, measured by a FOG questionnaire (p = 0.004). The secondary outcomes including straight-walking performance (speed, cadence and step length, p < 0.001), timed up and go test (p = 0.014), functional gait assessment (p < 0.001), Unified Parkinson's disease Rating Scale III (p = 0.001), and quality of life (p < 0.001) were also improved in the experimental group. We further noted that the improvements were maintained for at least one month after training (p < 0.05). A 12-session CWT program can improve curved-walking ability, FOG, and other measures of functional walking performance in individuals with PD. Most of the improvements were sustained for at least one month after training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sawers, Andrew; Hafner, Brian J
2018-05-08
Challenging clinical balance tests are needed to expose balance deficits in lower-limb prost-hesis users. This study examined whether narrowing beam-walking could overcome conceptual and practical limitations identified in fixed-width beam-walking. Cross-sectional. Unilateral lower-limb prosthesis users. Participants walked 10 times along a low, narrowing beam. Performance was quantified using the normalized distance walked. Heuristic rules were applied to determine whether the narrowing beam task was "too easy," "too hard," or "appropriately challenging" for each participant. Linear regression and Bland-Altman plots were used to determine whether combinations of the first 5 trials could predict participants' stable beam-walking performance. Forty unilateral lower-limb prosthesis users participated. Narrowing beam-walking was appropriately challenging for 98% of participants. Performance stabilized for 93% of participants within 5 trials, while 62% were stable across all trials. The mean of trials 3-5 accurately predicted stable performance. A clinical narrowing beam-walking test is likely to challenge a range of lower-limb prosthesis users, have minimal administrative burden, and exhibit no floor or ceiling effects. Narrowing beam-walking is therefore a clinically viable method to evaluate lower-limb prosthesis users' balance ability, but requires psychometric testing before it is used to assess fall risk.
Shoe-Insole Technology for Injury Prevention in Walking
Nagano, Hanatsu
2018-01-01
Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486
Negative Perceptions of Aging and Decline in Walking Speed: A Self-Fulfilling Prophecy
Robertson, Deirdre A.; Savva, George M.; King-Kallimanis, Bellinda L.; Kenny, Rose Anne
2015-01-01
Introduction Walking speed is a meaningful marker of physical function in the aging population. While it is a primarily physical measure, experimental studies have shown that merely priming older adults with negative stereotypes about aging results in immediate declines in objective walking speed. What is not clear is whether this is a temporary experimental effect or whether negative aging stereotypes have detrimental effects on long term objective health. We sought to explore the association between baseline negative perceptions of aging in the general population and objective walking speed 2 years later. Method 4,803 participations were assessed over 2 waves of The Irish Longitudinal Study on Ageing (TILDA), a prospective, population representative study of adults aged 50+ in the Republic of Ireland. Wave 1 measures – which included the Aging Perceptions Questionnaire, walking speed and all covariates - were taken between 2009 and 2011. Wave 2 measures – which included a second measurement of walking speed and covariates - were collected 2 years later between March and December 2012. Walking speed was measured as the number of seconds to complete the Timed Up-And-Go (TUG) task. Participations with a history of stroke, Parkinson’s disease or an MMSE < 18 were excluded. Results After full adjustment for all covariates (age, gender, level of education, disability, chronic conditions, medications, global cognition and baseline TUG) negative perceptions of aging at baseline were associated with slower TUG speed 2 years later (B=.03, 95% CI = .01 to 05, p< .05). Conclusions Walking speed has previously been considered to be a consequence of physical decline but these results highlight the direct role of psychological state in predicting an objective aging outcome. Negative perceptions about aging are a potentially modifiable risk factor of some elements of physical decline in aging. PMID:25923334
Effect of walking on sand on gait kinematics in individuals with multiple sclerosis.
van den Berg, Maayken E L; Barr, Christopher J; McLoughlin, James V; Crotty, Maria
2017-08-01
Walking in the real-world involves negotiating challenging or uneven surfaces, including sand. This can be challenging for people with Multiple Sclerosis (PWMS) due to motor deficits affecting the lower extremities. The study objective was to characterise kinematic gait adaptations made by PWMS when walking on sand and describe any immediate post-adaptation effects. 17 PWMS (mean age 51.4 ± 5.5, Disease Steps 2.4 ± 1.0), and 14 age-and gender matched healthy adults (HA) took part in a case-control study. 3D gait analysis was conducted using an eight-camera Vicon motion capture system. Each participant completed walking trials over level ground (baseline), sand (gait adaptation response), and again level ground (post-adaptation). Spatiotemporal data and kinematic data for the hip knee and ankle were recorded. At baseline PWMS showed significantly less total lower limb flexion (p<0.05) compared to HA. PWMS adapted to walking on sand by significantly increasing hip and knee flexion and ankle dorsiflexion (p<0.05) during swing, resulting in an overall 23° greater total lower limb flexion (p<0.05), reaching values within normal range. During the return to level ground walking values of temporal-spatial and kinematic parameters returned towards baseline values. PWMS adapted to walking on sand by increasing lower limb flexion during swing, and returned to their gait pattern to near baseline levels, in a manner similar to but with values not equalling HA. Further work is required to determine whether this mode of walking has potential to act as a gait retraining strategy to increase flexion of the lower limb. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of Exogenous β-Hydroxybutyrate on Walking Economy and Rating of Perceived Exertion.
James, Shaun; Kjerulf Greer, Beau
2018-06-28
This study investigates the effect of a supplementary ketone, β-hydroxybutyrate (BHB), on walking economy and ratings of perceived exertion in apparently healthy individuals. In a repeated-measures, crossover design, ten non-aerobically trained participants (three males; seven females) performed two stages of a duration-modified Bruce treadmill protocol. Participants blindly consumed either 1 ounce of an exogenous BHB solution (KETO) or a noncaloric placebo (CON) 30 minutes prior to exercise testing. Blood ketone and glucose concentrations were measured prior to supplementation (baseline), immediately before exercise, and after exercise. Oxygen consumption (VO 2 ), respiratory exchange ratio (RER), energy expenditure (EE), and rating of perceived exertion (RPE) were recorded during the last two minutes of each stage. Blood BHB concentrations were significantly elevated at the pre-exercise and postexercise time points as compared to the CON condition (p < .001), and blood glucose was significantly elevated postexercise in both conditions as compared to baseline levels (p < .001). No significant between-trial differences (p > .05) were found for VO 2 , RER, EE, or RPE. The intervention of this study did not produce evidence of an ergogenic benefit from BHB supplementation in a healthy subject pool.
Lévy Walks Suboptimal under Predation Risk
Abe, Masato S.; Shimada, Masakazu
2015-01-01
A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687
Skeletal muscle strength and endurance are maintained during moderate dehydration.
Périard, J D; Tammam, A H; Thompson, M W
2012-08-01
This study investigated the effects of moderate dehydration (~2.5% body weight) on muscle strength and endurance using percutaneous electrical stimulation to quantify central and peripheral fatigue, and isolate the combined effects of exercise-heat stress and dehydration, vs. the effect of dehydration alone. Force production and voluntary activation were calculated in 10 males during 1 brief and 15 repeated maximal voluntary isometric contractions performed prior to (control) walking in the heat (35°C), immediately following exercise, and the next morning (dehydration). The protocol was also performed in a euhydrated state. During the brief contractions, force production and voluntary activation were maintained in all trials. In contrast, force production decreased throughout the repeated contractions, regardless of hydration status (P<0.001). The decline in force was greater immediately following exercise-heat stress dehydration compared with control and euhydration (P<0.001). When dehydration was isolated from acute post-exercise dehydration, force production was maintained similarly to control and euhydration. Despite the progressive decline in force production and the increased fatigability observed during the repeated contractions, voluntary activation remained elevated throughout each muscle function test. Therefore, moderate dehydration, isolated from acute exercise-heat stress, does not appear to influence strength during a single contraction or enhance fatigability. © Georg Thieme Verlag KG Stuttgart · New York.
Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.
2010-01-01
Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972
Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A
2010-06-01
Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Monleón, Cristina; Ballester, Rafael; Sanchis, Carlos; Llorens, Francesc; Martín, Marta; Pablos, Ana
2015-01-01
We aim to analyze the effects of an 8-month physical activity intervention on cardiorespiratory fitness, body mass index (BMI), and vigilance performance in an adult obese population. We conducted an 8-month physical activity intervention based on dance and rhythmic activities. The weekly frequency was 2 sessions of 1 hr per day. Training sessions were divided into 3 phases: a 10-min warm-up, 40 min of dance and rhythmic activities, and 10 min to cool-down. To assess cardiorespiratory fitness, participants performed a modified version of the 6-min walk test from the Senior Fitness Test battery (Larsson & Mattsson, 2001; Rikli & Jones, 1999). Vigilance performance was measured by means of the psychomotor vigilance task (PVT). Two measurements were performed immediately before and after the intervention. The results revealed that participants improved their cardiorespiratory fitness, BMI, and vigilance performance after the intervention. All in all, findings contribute new empirical evidence to the field that investigates the benefits of physical activity intervention on cognitive processes in obese population.
Kao, Ching-Chiu; Chiu, Huei-Ling; Liu, Doresses; Chan, Pi-Tuan; Tseng, Ing-Jy; Chen, Ruey; Niu, Shu-Fen; Chou, Kuei-Ru
2018-06-01
Aging is a normal degenerative process that results in a decline in the gait and balance performance of older adults. Interactive cognitive motor training is an intervention that integrates cognitive and motor tasks to promote individuals' physical and cognitive fall risk factors. However, the additive effects of the interactive cognitive motor training on objective quantitative data and comprehensive descriptions of gait and balance warrants further investigation. To investigate the effect of interactive cognitive motor training on older adults' gait and balance from immediate to long-term time points. A double-blind randomized control trial. Four senior service centers and community service centers in Taiwan. 62 older adults who met the inclusion criteria. The study participants were older adults without cognitive impairment, and they were randomly allocated to the experimental group or active control group. In both groups, older adults participated in three sessions of 30-min training per week for a total of 8 weeks, with the total number of training sessions being 24. The primary outcome was gait performance, which was measured using objective and subjective indicators. iWALK was used as an objective indicator to measure pace and dynamic stability; the Functional Gait Assessment was employed as a subjective indicator. The secondary outcome was balance performance, which was measured using iSWAY. A generalized estimating equation was used to identify whether the results of the two groups differ after receiving different intervention measures; the results were obtained from immediate to long-term posttests. Stride length in the pace category of the experimental group improved significantly in immediate posttest (p = 0.01), 3-month follow-up (p = 0.01), and 6-month follow-up (p = 0.04). The range of motion of the leg exhibited significant improvement in immediate posttest (p = 0.04) and 3-month follow-up (p = 0.04). The Functional Gait Assessment result indicated that statistically significant improvement was observed in immediate posttest (p = 0.02) and 12-month follow-up (p = 0.01). The results of balance performance showed that the experimental group attained statistically significant improvement in centroid frequency in the immediate posttest (p = 0.02). The research results validated that the 24 sessions of the interactive cognitive motor training intervention significantly improved gait and balance performance. Future studies should extend the sample to communities to promote the gait and balance performance of community-dwelling older adults without cognitive impairment and reduce their risk of falling and developing gait-related diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.
Williams, Stefanie L; French, David P
2014-02-05
Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of seasonality effects by selecting the most extreme summer and winter months to assess PA. In addition, participants recruited to behaviour change interventions might have higher levels of motivation to change and are less affected by seasonal barriers. Current Controlled Trials ISRCTN95932902.
ERIC Educational Resources Information Center
Willey, David
2010-01-01
This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…
Bjornson, Kristie F; Moreau, Noelle; Bodkin, Amy Winter
2018-04-16
To examine the effect of short-burst interval locomotor treadmill training (SBLTT) on walking capacity and performance in cerebral palsy (CP). Twelve children with spastic diplegic CP (average 8.6 years) across Gross Motor Function Classification System levels II (8) and III (4) were randomized to 20 SBLTT sessions over 4 or 10 weeks. SBLTT consisted of alternating 30 seconds of slow and fast walking for 30 minutes/session. Outcomes included the 10 m walk test, one-minute walk test (1MWT), and timed-up-and go (TUG) (capacity) and StepWatch (performance) collected at baseline, post, and 6 weeks post. Fast speed (+.11, p = .04; +.11 m/s, p = .006), 1MWT (+11.2; +11.7 m, p = .006) and TUG (-1.7; -1.9 seconds, p = .006) improved post SBLTT and 6 weeks, respectively. Walking performance increased: average strides/day (+948; +1712, p < .001) and percent time in high strides rates (+0.4, p = 0.07; +0.2, p = .008). Pilot study suggests SBLTT may improve short-term walking capacity and performance.
Effect of ambient light and age-related macular degeneration on precision walking.
Alexander, M Scott; Lajoie, Kim; Neima, David R; Strath, Robert A; Robinovitch, Stephen N; Marigold, Daniel S
2014-08-01
To determine how age-related macular degeneration (AMD) and changes in ambient light affect the control of foot placement while walking. Ten older adults with AMD and 11 normal-sighted controls performed a precision walking task under normal (∼600 lx), dim (∼0.7 lx), and after a sudden reduction (∼600 to 0.7 lx) of light. The precision walking task involved subjects walking and stepping to the center of a series of irregularly spaced, low-contrast targets. Habitual visual acuity and contrast sensitivity and visual field function were also assessed. There were no differences between groups when performing the walking task in normal light (p > 0.05). In reduced lighting, older adults with AMD were less accurate and more variable when stepping across the targets compared to controls (p < 0.05). A sudden reduction of light proved the most challenging for this population. In the AMD group, contrast sensitivity and visual acuity were not significantly correlated with walking performance. Visual field thresholds in the AMD group were only associated with greater foot placement error and variability in the dim light walking condition (r = -0.69 to -0.87, p < 0.05). While walking performance is similar between groups in normal light, poor ambient lighting results in decreased foot placement accuracy in older adults with AMD. Improper foot placement while walking can lead to a fall and possible injury. Thus, to improve the mobility of those with AMD, strategies to enhance the environment in reduced lighting situations are necessary.
The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.
Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J
2016-01-01
In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.
Securing a Place at the Table: School Psychologists as Educational Leaders
ERIC Educational Resources Information Center
Lay, Misty M.
2010-01-01
For some educators, being an integral part of a school community happens naturally. School psychologists, however, often are inhibited by the "visitor syndrome," whereby they walk into a building, sign in the visitor register, and immediately seek the help of an administrative assistant or custodian to help them find a place to land.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... minimize trampling of arroyo toads and vegetation. Applicators would avoid walking or stepping in water, to... red-legged frog found within the treatment sites shall be carefully moved outside the immediate work... within access routes may be moved to appropriate habitat if their avoidance is not practicable. If...
30 CFR 77.209 - Surge and storage piles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...
30 CFR 77.209 - Surge and storage piles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...
Fractal analyses reveal independent complexity and predictability of gait
Dierick, Frédéric; Nivard, Anne-Laure
2017-01-01
Locomotion is a natural task that has been assessed for decades and used as a proxy to highlight impairments of various origins. So far, most studies adopted classical linear analyses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs. backward walking) and with or without galvanic vestibular stimulation. The Hurst exponent α and the Minkowski fractal dimension D were computed and interpreted as indexes expressing predictability and complexity of stride interval time series, respectively. These holistic indexes can easily be interpreted in the framework of optimal movement complexity. We show that α and D accurately capture stride interval changes in function of the experimental condition. Walking forward exhibited maximal complexity (D) and hence, adaptability. In contrast, walking backward and/or stimulation of the vestibular system decreased D. Furthermore, walking backward increased predictability (α) through a more stereotyped pattern of the stride interval and galvanic vestibular stimulation reduced predictability. The present study demonstrates the complementary power of the Hurst exponent and the fractal dimension to improve walking classification. Our developments may have immediate applications in rehabilitation, diagnosis, and classification procedures. PMID:29182659
Walking-Induced Fatigue Leads to Increased Falls Risk in Older Adults.
Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Neumann, Serina; Handel, Richard; Vinik, Etta J; Paulson, James; Vinik, Arthur I
2016-05-01
For older adults, falls are a serious health problem, with more than 30% of people older than 65 suffering a fall at least once a year. One element often overlooked in the assessment of falls is whether a person's balance, walking ability, and overall falls risk is affected by performing activities of daily living such as walking. This study assessed the immediate impact of incline walking at a moderate pace on falls risk, leg strength, reaction time, gait, and balance in 75 healthy adults from 30 to 79 years of age. Subjects were subdivided into 5 equal groups based on their age (group 1, 30-39 years; group 2, 40-49 years; group 3, 50-59 years; group 4, 60-69 years; group 5, 70-79 years). Each person's falls risk (using the Physiological Profile Assessment), simple reaction time, leg strength, walking ability, and standing balance were assessed before and after a period of incline walking on an automated treadmill. The walking task consisted of three 5-minute trials at a faster than preferred pace. Fatigue during walking was elicited by increasing the treadmill incline in increments of 2° (from level) every minute to a maximum of 8°. As predicted, significant age-related differences were observed before the walking activity. In general, increasing age was associated with declines in gait speed, lower limb strength, slower reaction times, and increases in overall falls risk. Following the treadmill task, older adults exhibited increased sway (path length 60-69 years; 10.2 ± 0.7 to 12.1 ± 0.7 cm: 70-79 years; 12.8 ± 1.1 to 15.1 ± 0.8 cm), slower reaction times (70-79 years; 256 ± 6 to 287 ± 8 ms), and declines in lower limb strength (60-69 years; 36 ± 2 to 31 ± 1 kg: 70-79 years; 32.3 ± 2 to 27 ± 1 kg). However, a significant increase in overall falls risk (pre; 0.51 ± 0.17: post; 1.01 ± 0.18) was only seen in the oldest group (70-79 years). For all other persons (30-69 years), changes resulting from the treadmill-walking task did not lead to a significant increase in falls risk. As most falls occur when an individual is moving and/or fatigued, assessing functional properties related to balance, gait, strength, and falls risk in older adults both at rest and following activity may provide additional insight. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Lyu, Xiafei; Li, Sheyu; Peng, Shifeng; Cai, Huimin; Liu, Guanjian; Ran, Xingwu
2016-05-01
Supervised treadmill exercise is the recommended therapy for peripheral arterial disease (PAD) patients with intermittent claudication (IC). However, most PAD patients do not exhibit typical symptoms of IC. The aim of the present study was to explore the efficacy and safety of intensive walking exercise in PAD patients with and without IC. The PubMed, Embase and Cochrane Library databases were systematically searched. Randomized controlled trials comparing the effects of intensive walking exercise with usual care in patients with PAD were included for systematic review and meta-analysis. Eighteen trials with 1200 patients were eligible for the present analysis. Compared with usual care, intensive walking exercise significantly improved the maximal walking distance (MWD), pain-free walking distance, and the 6-min walking distance in patients with PAD (P < 0.00001 for all). Subgroup analyses indicated that a lesser improvement in MWD was observed in the subgroup with more diabetes patients, and that the subgroup with better baseline walking ability exhibited greater improvement in walking performance. In addition, similar improvements in walking performance were observed for exercise programs of different durations and modalities. No significant difference was found in adverse events between the intensive walking and usual care groups (relative risk 0.84; 95% confidence interval 0.51, 1.39; P = 0.50). Regardless of exercise length and modality, regularly intensive walking exercise improves walking ability in PAD patients more than usual care. The presence of diabetes may attenuate the improvements in walking performance in patients with PAD following exercise. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Feedforward neural control of toe walking in humans.
Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo
2018-03-23
Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Walk Test Used to Monitor the Performance in the Health-Directed Nordic Walking
ERIC Educational Resources Information Center
Kamien, Dorota
2008-01-01
Study aim: To assess the performance of subjects engaged in health-directed Nordic Walking training (with poles) and subjected to 2-km walk test (no poles). Material and methods: A total of 72 subjects, including 8 men and 32 women aged 23-73 years and 32 female students aged 19-25 years participated in the study. They were subjected twice to 2-km…
A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation
NASA Astrophysics Data System (ADS)
Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe
2016-06-01
A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.
Nordic Walking Practice Might Improve Plantar Pressure Distribution
ERIC Educational Resources Information Center
Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto
2011-01-01
Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…
Evaluation of capture techniques on lesser prairie-chicken trap injury and survival
Grisham, Blake A.; Boal, Clint W.; Mitchell, Natasia R.; Gicklhorn, Trevor S.; Borsdorf, Philip K.; Haukos, David A.; Dixon, Charles
2015-01-01
Ethical treatment of research animals is required under the Animal Welfare Act. This includes trapping methodologies that reduce unnecessary pain and duress. Traps used in research should optimize animal welfare conditions within the context of the proposed research study. Several trapping techniques are used in the study of lesser prairie-chickens, despite lack of knowledge of trap injury caused by the various methods. From 2006 to 2012, we captured 217, 40, and 144 lesser prairie-chickens Tympanuchus pallidicinctus using walk-in funnel traps, rocket nets, and drop nets, respectively, in New Mexico and Texas, to assess the effects of capture technique on injury and survival of the species. We monitored radiotagged, injured lesser prairie-chickens 7–65 d postcapture to assess survival rates of injured individuals. Injuries occurred disproportionately among trap type, injury type, and sex. The predominant injuries were superficial cuts to the extremities of males captured in walk-in funnel traps. However, we observed no mortalities due to trapping, postcapture survival rates of injured birds did not vary across trap types, and the daily survival probability of an injured and uninjured bird was ≥99%. Frequency and intensity of injuries in walk-in funnel traps are due to the passive nature of these traps (researcher cannot select specific individuals for capture) and incidental capture of individuals not needed for research. Comparatively, rocket nets and drop nets allow observers to target birds for capture and require immediate removal of captured individuals from the trap. Based on our results, trap injuries would be reduced if researchers monitor and immediately remove birds from walk-in funnels before they injure themselves; move traps to target specific birds and reduce recaptures; limit the number of consecutive trapping days on a lek; and use proper netting techniques that incorporate quick, efficient, trained handling procedures.
Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S
2017-10-01
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Chan, Wing-Nga; Tsang, William Wai-Nam
2017-01-01
Turning-while-walking is one of the commonest causes of falls in stroke survivors. It involves cognitive processing and may be challenging when performed concurrently with a cognitive task. Previous studies of dual-tasking involving turning-while-walking in stroke survivors show that the performance of physical tasks is compromised. However, the design of those studies did not address the response of stroke survivors under dual-tasking condition without specifying the task-preference and its effect on the performance of the cognitive task. First, to compare the performance of single-tasking and dual-tasking in stroke survivors. Second, to compare the performance of stroke survivors with non-stroke controls. Fifty-nine stroke survivors and 45 controls were assessed with an auditory Stroop test, a turning-while-walking test, and a combination of the two single tasks. The outcome of the cognitive task was measured by the reaction time and accuracy of the task. The physical task was evaluated by measuring the turning duration, number of steps to turn, and time to complete the turning-while-walking test. Stroke survivors showed a significantly reduced accuracy in the auditory Stroop test when dual-tasking, but there was no change in the reaction time. Their performance in the turning-while-walking task was similar under both single-tasking and dual-tasking condition. Additionally, stroke survivors demonstrated a significantly longer reaction time and lower accuracy than the controls both when single-tasking and dual-tasking. They took longer to turn, with more steps, and needed more time to complete the turning-while-walking task in both tasking conditions. The results show that stroke survivors with high mobility function performed the auditory Stroop test less accurately while preserving simultaneous turning-while-walking performance. They also demonstrated poorer performance in both single-tasking and dual-tasking as compared with controls.
NASA Astrophysics Data System (ADS)
Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob
2012-07-01
Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth's gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight. Eighteen astronauts performed two tests of locomotion before and after 6 months of space flight: a treadmill walking test to examine vestibular reflexive mechanisms controlling head movement control and a functional mobility test to investigate overall functional locomotor ability. Postflight sessions were given on days 1, 2, 4, 7 after their return. Subjects walked on a treadmill driven at 1.8 m/s while performing a visual task. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Astronauts showed a heterogeneous response pattern of both increases and decreases in the amplitude of HP movement. We investigated the underlying mechanisms of this heterogeneity in postflight responses in head movement control by examining data obtained using the same experimental test paradigm on a vestibular clinical population (VC) and in normal subjects undergoing adaptation to acute body load support unloading. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the VC patients the HP movements were significantly decreased. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation of the converging vestibular and body load-sensing somatosensory systems. To investigate changes in functional mobility astronaut subjects walked at their preferred pace around an obstacle course consisting of several pylons and obstacles set up on a foam floor, which provided an unstable walking surface. Subjects were instructed to walk around the course as fast as possible without touching any of the objects on the course for a total of six individual trials per test session. One of the dependent measures was time to complete the course (TCC, sec). The learning rate over the six trials performed on preflight and the first day after landing (micro curve) was used to characterize the immediate compensatory strategic response. The learning rate over the six trials of the postflight test days (macro curve) was used to characterize the longer-term plastic response. Adaptation to space flight led to a 52% increase in TCC one day after landing. Recovery to pre-flight scores took an average of two weeks after landing. Subjects showed both strategic and plastic recovery patterns based on the slopes obtained from the micro and macro curves compared to preflight. A regression analysis revealed a significant correlation between the slope values of the macro and micro curves indicating a relationship between strategic and plastic recovery processes. Results showed that both strategic and plastic motor learning processes play a role in postflight restoration of functional mobility and showed a dynamic interplay between these two mechanisms during postflight recovery. These results suggest that gait adaptability training programs which are being developed to facilitate adaptive transition to planetary environments, coupled with low levels of electrical stimulation of the vestibular system, can be optimized to engage both strategic and plastic processes to facilitate rapid restoration of postflight functional mobility.
Mullane, Sarah L; Buman, Matthew P; Zeigler, Zachary S; Crespo, Noe C; Gaesser, Glenn A
2017-05-01
To compare acute cognitive effects following bouts of standing (STAND), cycling (CYCLE) and walking (WALK) to a sit-only (SIT) condition. Randomized cross-over full-factorial study. Nine overweight (BMI=29±3kg/m 2 ) adults (30±15years; 7 females, 2 males) completed four conditions (SIT, STAND, WALK and CYCLE) across a 6h period with a 7days washout period between conditions. SIT consisted of uninterrupted sitting. Experimental conditions included intermittent bouts of standing (STAND), cycling (CYCLE) and walking (WALK). A cognitive performance battery (Cogstate) was completed twice in a seated position following bouts of standing and light-intensity physical activity. Mixed-effects models compared between-condition differences in standardized score (z-score), accuracy (%), and speed (log10ms). Cognitive performance z-score and accuracy measures were higher during STAND, CYCLE and WALK (P<0.05) conditions compared to the SIT condition. CYCLE was better than other experimental conditions. Compared to uninterrupted sitting, short bouts of standing or light-intensity cycling and walking may improve acute cognitive performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Walk Score(TM), Perceived Neighborhood Walkability, and walking in the US.
Tuckel, Peter; Milczarski, William
2015-03-01
To investigate both the Walk Score(TM) and a self-reported measure of neighborhood walkability ("Perceived Neighborhood Walkability") as estimators of transport and recreational walking among Americans. The study is based upon a survey of a nationally-representative sample of 1224 American adults. The survey gauged walking for both transport and recreation and included a self-reported measure of neighborhood walkability and each respondent's Walk Score(TM). Binary logistic and linear regression analyses were performed on the data. The Walk Score(TM) is associated with walking for transport, but not recreational walking nor total walking. Perceived Neighborhood Walkability is associated with transport, recreational and total walking. Perceived Neighborhood Walkability captures the experiential nature of walking more than the Walk Score(TM).
Neuromuscular Impairment Following Backpack Load Carriage
Blacker, Sam D.; Fallowfield, Joanne L.; Bilzon, James L.J.; Willems, Mark E.T.
Load Carriage using backpacks is an occupational task and can be a recreational pursuit. The aim of this study was to investigate the mechanisms responsible for changes in neuromuscular function of the m. quadriceps femoris following load carriage. The physiological responses of 10 male participants to voluntary and electrically stimulated isometric contractions were measured before and immediately after two hours of treadmill walking at 6.5 km•h −1 during level walking with no load [LW], and level walking with load carriage (25 kg backpack) [LC]. Maximal voluntary contraction force decreased by 15 ± 11 % following LC (p=0.006), with no change following LW (p=0.292). Voluntary activation decreased after LW and LC (p=0.033) with no difference between conditions (p=0.405). Doublet contraction time decreased after both LW and LC (p=0.002), with no difference between conditions (p=0.232). There were no other changes in electrically invoked doublet parameters in either condition. The 20:50 Hz ratio did not change following LW (p=0.864) but decreased from 0.88 ± 0.04 to 0.84 ± 0.04 after LC (p=0.011) indicating reduced Ca2+ release from the sarcoplasmic reticulum during excitation contraction coupling. In conclusion, two hours of load carriage carrying a 25 kg back pack caused neuromuscular impairment through a decrease in voluntary activation (i.e. central drive) and fatigue or damage to the peripheral muscle, including impairment of the excitation contraction coupling process. This may reduce physical performance and increase the risk of musculoskeletal injury. PMID:24146709
Chen, Rui; Lin, Lin; Tian, Jing-Wei; Zeng, Bin; Zhang, Lei
2015-01-01
Background Dynamic hyperinflation (DH) is a major contributor to exercise limitation in chronic obstructive pulmonary disease (COPD). Therefore, we aimed to elucidate the physiological factors responsible for DH development during the 6-minute walk test (6MWT) in COPD patients and compare ventilatory response to the 6MWT in hyperinflators and non-hyperinflators. Methods A total of 105 consecutive subjects with stable COPD underwent a 6MWT, and the Borg dyspnea scale, oxygen saturation (SpO2), breathing pattern, and inspiratory capacity (IC) were recorded before and immediately after walking. The change in IC was measured, and subjects were divided into hyperinflators (ΔIC >0.0 L) and non-hyperinflators (ΔIC ≤0.0 L). Spirometry, the Modified Medical Research Council (MMRC) dyspnea scale and St George’s Respiratory Questionnaire (SGRQ) were also assessed. Results DH was present in 66.67% of subjects. ΔIC/IC was significantly and negatively correlated with the small airway function. On multiple stepwise regression analysis forced expiratory flow after exhaling 50% of the forced vital capacity (FEF50%) was the only predictor of ΔIC/IC. Non-hyperinflators had a higher post-walking VT (t=2.419, P=0.017) and post-walking VE (t=2.599, P=0.011) than the hyperinflators did. Age and resting IC were independent predictors of the 6-minute walk distance (6MWD) in hyperinflators. Conclusions DH was considerably common in subjects with COPD. Small airway function may partly contribute to the DH severity during walking. The ventilator response to the 6MWT differed between hyperinflators and non-hyperinflators. Resting hyperinflation is an important predictor of functional exercise capacity in hyperinflators. PMID:26380729
Full body action remapping of peripersonal space: the case of walking.
Noel, Jean-Paul; Grivaz, Petr; Marmaroli, Patrick; Lissek, Herve; Blanke, Olaf; Serino, Andrea
2015-04-01
The space immediately surrounding the body, i.e. peripersonal space (PPS), is represented by populations of multisensory neurons, from a network of premotor and parietal areas, which integrate tactile stimuli from the body's surface with visual or auditory stimuli presented within a limited distance from the body. Here we show that PPS boundaries extend while walking. We used an audio-tactile interaction task to identify the location in space where looming sounds affect reaction time to tactile stimuli on the chest, taken as a proxy of the PPS boundary. The task was administered while participants either stood still or walked on a treadmill. In addition, in two separate experiments, subjects either received or not additional visual inputs, i.e. optic flow, implying a translation congruent with the direction of their walking. Results revealed that when participants were standing still, sounds boosted tactile processing when located within 65-100 cm from the participants' body, but not at farther distances. Instead, when participants were walking PPS expands as reflected in boosted tactile processing at ~1.66 m. This was found despite the fact the spatial relationship between the participant's body and the sound's source did not vary between the Standing and the Walking condition. This expansion effect on PPS boundaries due to walking was the same with or without optic flow, suggesting that kinematics and proprioceptive cues, rather than visual cues, are critical in triggering the effect. These results are the first to demonstrate an adaptation of the chest's PPS representation due to whole body motion and are compatible with the view that PPS constitutes a dynamic sensory-motor interface between the individual and the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huffman, Cynthia; Stacey, Brett R; Tuchman, Michael; Burbridge, Claire; Li, Chunming; Parsons, Bruce; Pauer, Lynne; Scavone, Joseph M; Behar, Regina; Yurkewicz, Lorraine
2015-11-01
This randomized, double-blind, placebo-controlled, multicenter, 2-period crossover study (two 6-week treatment periods separated by a 2-week washout period) evaluated the efficacy and safety of pregabalin (150 to 300 mg/d) for treatment of pain and pain on walking in patients with painful diabetic peripheral neuropathy (DPN) who experienced pain while walking. Co-primary efficacy endpoints were: (1) mean pain score (last 7 daily pain diary scores, 0 to 10 numeric rating scale at end of each treatment period) and (2) DPN pain on walking (0 to 10 numeric rating scale immediately after walking 50 feet [15.2 m] on flat surface). Secondary endpoints included other pain parameters, patient-reported sleep, health-related quality of life, and safety measures. Two hundred three patients were treated (pregabalin, n=198; placebo, n=186), with no statistically significant treatment difference for pregabalin versus placebo in the co-primary efficacy endpoints, mean DPN pain (P=0.0656) and mean DPN pain on walking (P=0.412). A carryover effect was observed. Analysis of co-primary endpoints for period 1 showed significant treatment difference for DPN pain (P=0.034) and DPN pain on walking (P=0.001). Treatment with pregabalin resulted in significant improvements versus placebo on prespecified patient global impression of change (end of period 1; P=0.002), and sleep interference rating scale (end of period 2; P=0.011). Adverse events were more frequent with pregabalin than with placebo and caused discontinuation in 13 (6.6%) pregabalin patients versus 5 (2.7%) placebo patients. Failure to meet the co-primary objectives may be related to carryover effect from period 1 to period 2, lower pregabalin dose (150 to 300 mg/d), and/or placebo response in painful DPN.
Gray, Michelle; Paulson, Sally; Powers, Melissa
2016-04-01
The aim of this investigation was to determine the relationship between usual and maximal walking velocities with measures of functional fitness (FF). Fifty-seven older adults (78.2 ± 6.6 years) were recruited from a local retirement community. All participants completed the following assessments: 10-m usual and maximal walk, Short Physical Performance Battery (SPPB), 6-min walk (6MW), 8-foot up-and-go (UPGO), and 30-s chair stand. Based on their SPPB performance, low (≤ 9) and high (≥ 10) FF groups were formed. Among all participants, maximal walking velocity, not usual walking velocity, was significantly correlated with SPPB (r = .35; p < .05 and r = .19; p > .05, respectively). In the high functioning group, both maximal and usual walking velocities were correlated, but correlation coefficients were stronger for all variables for maximal walking velocity. These results suggest different walking conditions may be necessary to use for high and low functioning older adults; specifically, maximal walking velocity may be a preferred measure among high functioning older adults.
Evaluating Pekin duck walking ability using a treadmill performance test.
Byrd, C J; Main, R P; Makagon, M M
2016-10-01
Gait scoring is the most popular method for assessing the walking ability of poultry species. Although inexpensive and easy to implement, gait scoring systems are often criticized for being subjective. Using a treadmill performance test we assessed whether observable differences in Pekin duck walking ability identified using a gait scoring system translated to differences in walking performance. One hundred and eighty ducks were selected using a three-category gait scoring system (GS0 = smooth gait, n = 55; GS0.5 = labored walk without easily identifiable impediment, n = 56; GS1 = obvious impediment, n = 59) and the amount of time each duck was able to sustain walking on a treadmill at a speed of 0.31 m/s was evaluated. The walking test ended when each duck met one of three elimination criteria: (1) The duck walked for a maximum time of ten minutes, (2) the duck required support from the observer's hand for more than three seconds in order to continue walking on the treadmill, or (3) the duck sat down on the treadmill and made no attempt to stand despite receiving assistance from the observer. Data were analyzed in SAS 9.4 using PROC GLM. Tukey's multiple comparison test was used to compare differences in time spent walking between gait scores. Significant differences were found between all gait scores (P < 0.05). Behavioral correlates of walking performance were investigated. Video recorded during the treadmill test was analyzed for counts of sitting, standing, and leaning behaviors. Data were analyzed in SAS 9.4 using a negative binomial model for count data. No differences were found between gait scores for counts of sitting, standing, and leaning behaviors (P > 0.05). In conclusion, the amount of time spent walking on the treadmill corresponded to gait score and was an effective measurement for quantifying Pekin duck walking ability. The test could be a valuable tool for assessing the development of walking issues or the effectiveness of treatments aimed at promoting leg health. © 2016 Poultry Science Association Inc.
Beurskens, Rainer; Bock, Otmar
2013-12-01
Previous literature suggests that age-related deficits of dual-task walking are particularly pronounced with second tasks that require continuous visual processing. Here we evaluate whether the difficulty of the walking task matters as well. To this end, participants were asked to walk along a straight pathway of 20m length in four different walking conditions: (a) wide path and preferred pace; (b) narrow path and preferred pace, (c) wide path and fast pace, (d) obstacled wide path and preferred pace. Each condition was performed concurrently with a task requiring visual processing or fine motor control, and all tasks were also performed alone which allowed us to calculate the dual-task costs (DTC). Results showed that the age-related increase of DTC is substantially larger with the visually demanding than with the motor-demanding task, more so when walking on a narrow or obstacled path. We attribute these observations to the fact that visual scanning of the environment becomes more crucial when walking in difficult terrains: the higher visual demand of those conditions accentuates the age-related deficits in coordinating them with a visual non-walking task. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
McCandless, Paula J; Evans, Brenda J; Janssen, Jessie; Selfe, James; Churchill, Andrew; Richards, Jim
2016-02-01
Freezing of gait (FOG) remains one of the most common debilitating aspects of Parkinson's disease and has been linked to injuries, falls and reduced quality of life. Although commercially available portable cueing devices exist claiming to assist with overcoming freezing; their immediate effectiveness in overcoming gait initiation failure is currently unknown. This study investigated the effects of three different types of cueing device in people with Parkinson's disease who experience freezing. Twenty participants with idiopathic Parkinson's disease who experienced freezing during gait but who were able to walk short distances indoors independently were recruited. At least three attempts at gait initiation were recorded using a 10 camera Qualisys motion analysis system and four force platforms. Test conditions were; Laser Cane, sound metronome, vibrating metronome, walking stick and no intervention. During testing 12 of the 20 participants had freezing episodes, from these participants 100 freezing and 91 non-freezing trials were recorded. Clear differences in the movement patterns were seen between freezing and non-freezing episodes. The Laser Cane was most effective cueing device at improving the forwards/backwards and side to side movement and had the least number of freezing episodes. The walking stick also showed significant improvements compared to the other conditions. The vibration metronome appeared to disrupt movement compared to the sound metronome at the same beat frequency. This study identified differences in the movement patterns between freezing episodes and non-freezing episodes, and identified immediate improvements during gait initiation when using the Laser Cane over the other interventions. Copyright © 2015. Published by Elsevier B.V.
Climate Change and Wildlife in the Northern Rockies Region [Chapter 9
Kevin S. McKelvey; Polly C. Buotte
2018-01-01
Temperature and moisture affect organisms through their operational environment and the thin boundary layer immediately above their tissues, and these effects are measured at short time scales. When a human (a mammal) wearing a dark insulative layer walks outdoors on a cold but sunny day, he or she feels warm because energy from the sun is interacting with the dark...
Sawers, Andrew; Hafner, Brian J
2018-04-01
To evaluate the feasibility of fixed-width beam walking for assessing balance in lower limb prosthesis users. Cross-sectional. Laboratory. Lower limb prosthesis users. Participants attempted 10 walking trials on three fixed-width beams (18.6, 8.60, and 4.01 wide; 5.5 m long; 3.8 cm high). Beam-walking performance was quantified using the distance walked to balance failure. Heuristic rules applied to each participant's beam-walking distance to classify each beam as "too easy," "too hard," or "appropriately challenging" and determine whether any single beam provided an appropriate challenge to all participants. The number of trials needed to achieve stable beam-walking performance was quantified for appropriately challenging beams by identifying the last inflection point in the slope of each participant's trial-by-trial cumulative performance record. In all, 30 unilateral lower limb prosthesis users participated in the study. Each of the fixed-width beams was either too easy or too hard for at least 33% of the sample. Thus, no single beam was appropriately challenging for all participants. Beam-walking performance was stable by trial 8 for all participants and by trial 6 for 90% of participants. There was no significant difference in the number of trials needed to achieve stable performance among beams ( P = 0.74). Results suggest that a clinical beam-walking test would require multiple beams to evaluate balance across a range of lower limb prosthesis users, emphasizing the need for adaptive or progressively challenging balance tests. While the administrative burden of a multiple-beam balance test may limit clinical feasibility, alternatives to ease this administrative burden are proposed.
Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K
2018-02-01
Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.
Clark, David J.; Chatterjee, Sudeshna A.; McGuirk, Theresa E.; Porges, Eric C.; Fox, Emily J.; Balasubramanian, Chitralakshmi K.
2018-01-01
Background Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Methods Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist grading of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities Specific Balance Confidence Scale, respectively. Results There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. Conclusion This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. PMID:29216598
Performance of a six-legged planetary rover - Power, positioning, and autonomous walking
NASA Technical Reports Server (NTRS)
Krotkov, Eric; Simmons, Reid
1992-01-01
The authors quantify several performance metrics for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. They present power consumption measures for walking on sandy terrain and for vertical lifts at different velocities. They document the accuracy of a novel dead reckoning approach, and analyze the accuracy. They describe the results of autonomous walking experiments in terms of terrain traversed, walking speed, number of instructions executed and endurance.
Performance of a six-legged planetary rover - Power, positioning, and autonomous walking
NASA Astrophysics Data System (ADS)
Krotkov, Eric; Simmons, Reid
The authors quantify several performance metrics for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. They present power consumption measures for walking on sandy terrain and for vertical lifts at different velocities. They document the accuracy of a novel dead reckoning approach, and analyze the accuracy. They describe the results of autonomous walking experiments in terms of terrain traversed, walking speed, number of instructions executed and endurance.
Influence of Different Kinds of Music on Walking in Children.
Reychler, Gregory; Fabre, Justine; Lux, Amandine; Caty, Gilles; Pieters, Thierry; Liistro, Giuseppe
The aim of this study was to evaluate the effect of different kinds of music on submaximal performance and exercise tolerance in healthy children by means of the 6-minute walking test (6MWT) and to explore the influence of gender. Cross-over study. Ninety-seven children performed 6MWT in four conditions (without music, with their preferred music, with slow and with fast music). Distance, cardio-respiratory parameters, perceived exertion rate, and amount of dyspnea were measured. Walked distance depended on the kind of music (p = .022). To listen to fast music promoted a longer distance when compared with slow music. Walked distance was not influenced by gender (p = .721) and there was no interaction between music and gender for walked distances (p = .069). The other parameters were not modified by music and gender. Music influences submaximal performances without modifying exercise tolerance in healthy children. Music does modify submaximal performance in children.
2014-01-01
Background Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. Methods 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. Results There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Conclusion Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of seasonality effects by selecting the most extreme summer and winter months to assess PA. In addition, participants recruited to behaviour change interventions might have higher levels of motivation to change and are less affected by seasonal barriers. Trial registration Current Controlled Trials ISRCTN95932902 PMID:24499405
Do you remember proposing marriage to the Pepsi machine? False recollections from a campus walk.
Seamon, John G; Philbin, Morgan M; Harrison, Liza G
2006-10-01
During a campus walk, participants were given familiar or bizarre action statements (e.g., "Check the Pepsi machine for change" vs. "Propose marriage to the Pepsi machine") with instructions either to perform the actions or imagine performing the actions (Group 1) or to watch the experimenter perform the actions or imagine the experimenter performing the actions (Group 2). One day later, some actions were repeated, along with new actions, on a second walk. Two weeks later, the participants took a recognition test for actions presented during the first walk, and they specified whether a recognized action was imagined or performed. Imagining themselves or the experimenter performing familiar or bizarre actions just once led to false recollections of performance for both types of actions. This study extends previous research on imagination inflation by demonstrating that these false performance recollections can occur in a natural, real-life setting following just one imagining.
Agmon, Maayan; Armon, Galit; Denesh, Shani; Doumas, Mihalis
2018-01-02
Falls are a major problem for older adults. Many falls occur when a person's attention is divided between two tasks, such as a dual task (DT) involving walking. Most recently, the role of personality in walking performance was addressed; however, its association with DT performance remains to be determined. This cross-sectional study of 73 older, community-dwelling adults explores the association between personality and DT walking and the role of gender in this relationship. Personality was evaluated using the five-factor model. Single-task (ST) and DT assessment of walking-cognitive DT performance comprised a 1-min walking task and an arithmetic task performed separately (ST) and concurrently (DT). Dual-task costs (DTCs), reflecting the proportional difference between ST and DT performance, were also calculated. Gender plays a role in the relationship between personality and DT. Extraversion was negatively associated with DTC-motor for men (ΔR 2 = 0.06, p < 0.05). Conscientiousness was positively associated with DTC-cognition for women (ΔR 2 = 0.08, p < 0.01). These findings may lead to effective personality-based early detection and intervention for fall prevention.
Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.
Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin
2013-05-01
To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Yeung, Ling-Fung; Ockenfeld, Corinna; Pang, Man-Kit; Wai, Hon-Wah; Soo, Oi-Yan; Li, Sheung-Wai; Tong, Kai-Yu
2018-06-19
Robot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in post-stroke gait training. Our research team has developed a novel lightweight portable robot-assisted AFO which is capable of detecting walking intentions using sensor feedback of wearer's gait pattern. This study aims to investigate the therapeutic effects of robot-assisted gait training with ankle dorsiflexion assistance. This was a double-blinded randomized controlled trial. Nineteen chronic stroke patients with motor impairment at ankle participated in 20-session robot-assisted gait training for about five weeks, with 30-min over-ground walking and stair ambulation practices. Robot-assisted AFO either provided active powered ankle assistance during swing phase in Robotic Group (n = 9), or torque impedance at ankle joint as passive AFO in Sham Group (n = 10). Functional assessments were performed before and after the 20-session gait training with 3-month Follow-up. Primary outcome measure was gait independency assessed by Functional Ambulatory Category (FAC). Secondary outcome measures were clinical scores including Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), Timed 10-Meter Walk Test (10MWT), Six-minute Walk Test (SMWT), supplemented by gait analysis. All outcome measures were performed in unassisted gait after patients had taken off the robot-assisted AFO. Repeated-measures analysis of covariance was conducted to test the group differences referenced to clinical scores before training. After 20-session robot-assisted gait training with ankle dorsiflexion assistance, the active ankle assistance in Robotic Group induced changes in gait pattern with improved gait independency (all patients FAC ≥ 5 post-training and 3-month follow-up), motor recovery, walking speed, and greater confidence in affected side loading response (vertical ground reaction force + 1.49 N/kg, peak braking force + 0.24 N/kg) with heel strike instead of flat foot touch-down at initial contact (foot tilting + 1.91°). Sham Group reported reduction in affected leg range of motion (ankle dorsiflexion - 2.36° and knee flexion - 8.48°) during swing. Robot-assisted gait training with ankle dorsiflexion assistance could improve gait independency and help stroke patients developing confidence in weight acceptance, but future development of robot-assisted AFO should consider more lightweight and custom-fit design. ClinicalTrials.gov NCT02471248 . Registered 15 June 2015 retrospectively registered.
Nekoukar, Vahab; Erfanian, Abbas
2013-11-01
In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Running for exercise mitigates age-related deterioration of walking economy.
Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger
2014-01-01
Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461) and ∼ 26% worse walking economy than young adults (p<.0001). Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Children's active commuting to school: current knowledge and future directions.
Davison, Kirsten K; Werder, Jessica L; Lawson, Catherine T
2008-07-01
Driven largely by international declines in rates of walking and bicycling to school and the noted health benefits of physical activity for children, research on children's active commuting to school has expanded rapidly during the past 5 years. We summarize research on predictors and health consequences of active commuting to school and outline and evaluate programs specific to children's walking and bicycling to school. Literature on children's active commuting to school published before June 2007 was compiled by searching PubMed, PsycINFO, and the National Transportation Library databases; conducting Internet searches on program-based activities; and reviewing relevant transportation journals published during the last 4 years. Children who walk or bicycle to school have higher daily levels of physical activity and better cardiovascular fitness than do children who do not actively commute to school. A wide range of predictors of children's active commuting behaviors was identified, including demographic factors, individual and family factors, school factors (including the immediate area surrounding schools), and social and physical environmental factors. Safe Routes to School and the Walking School Bus are 2 public health efforts that promote walking and bicycling to school. Although evaluations of these programs are limited, evidence exists that these activities are viewed positively by key stakeholders and have positive effects on children's active commuting to school. Future efforts to promote walking and bicycling to school will be facilitated by building on current research, combining the strengths of scientific rigor with the predesign and postdesign provided by intervention activities, and disseminating results broadly and rapidly.
Ambler: Performance of a six-legged planetary rover
NASA Astrophysics Data System (ADS)
Krotkov, E. P.; Simmons, R. G.; Whittaker, W. L.
1995-01-01
In this paper we quantify several performance metrics for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. We present power consumption measures for walking on sandy terrain and for vertical lifts at different velocities. We document the performance of a novel dead-reckoning approach, and analyze its accuracy. We describe the results of autonomous walking experiments in terms of terrain traversed, walking speed and endurance.
Kaewkaen, Kitchana; Wongsamud, Phongphat; Ngaothanyaphat, Jiratchaya; Supawarapong, Papawarin; Uthama, Suraphong; Ruengsirarak, Worasak; Chanabun, Suthin; Kaewkaen, Pratchaya
2018-02-01
The walking gait of older adults with balance impairment is affected by dual tasking. Several studies have shown that external cues can stimulate improvement in older adults' performance. There is, however, no current evidence to support the usefulness of external cues, such as audio-visual cueing, in dual task walking in older adults. Thus, the aim of this study was to investigate the influence of an audio-visual cue (simulated traffic light) on dual task walking in healthy older adults and in older adults with balance impairments. A two-way repeated measures study was conducted on 14 healthy older adults and 14 older adults with balance impairment, who were recruited from the community in Chiang Rai, Thailand. Their walking performance was assessed using a four-metre walking test at their preferred gait speed and while walking under two further gait conditions, in randomised order: dual task walking and dual task walking with a simulated traffic light. Each participant was tested individually, with the testing taking between 15 and 20 minutes to perform, including two-minute rest periods between walking conditions. Two Kinect cameras recorded the spatio-temporal parameters using MFU gait analysis software. Each participant was tested for each condition twice. The mean parameters for each condition were analysed using a two-way repeated measures analysis of variance (ANOVA) with participant group and gait condition as factors. There was no significant between-group effect for walking speed, stride length and cadence. There were also no significant effects between gait condition and stride length or cadence. However, the effect between gait condition and walking speed was found to be significant [F(1.557, 40.485) = 4.568, P = 0.024, [Formula: see text
Longitudinal relationships among posturography and gait measures in multiple sclerosis.
Fritz, Nora E; Newsome, Scott D; Eloyan, Ani; Marasigan, Rhul Evans R; Calabresi, Peter A; Zackowski, Kathleen M
2015-05-19
Gait and balance dysfunction frequently occurs early in the multiple sclerosis (MS) disease course. Hence, we sought to determine the longitudinal relationships among quantitative measures of gait and balance in individuals with MS. Fifty-seven ambulatory individuals with MS (28 relapsing-remitting, 29 progressive) were evaluated using posturography, quantitative sensorimotor and gait measures, and overall MS disability with the Expanded Disability Status Scale at each session. Our cohort's age was 45.8 ± 10.4 years (mean ± SD), follow-up time 32.8 ± 15.4 months, median Expanded Disability Status Scale score 3.5, and 56% were women. Poorer performance on balance measures was related to slower walking velocity. Two posturography measures, the anterior-posterior sway and sway during static eyes open, feet apart conditions, were significant contributors to walk velocity over time (approximate R(2) = 0.95), such that poorer performance on the posturography measures was related to slower walking velocity. Similarly, the anterior-posterior sway and sway during static eyes closed, feet together conditions were also significant contributors to the Timed 25-Foot Walk performance over time (approximate R(2) = 0.83). This longitudinal cohort study establishes a strong relationship between clinical gait measures and posturography. The data show that increases in static posturography and reductions in dynamic posturography are associated with a decline in walk velocity and Timed 25-Foot Walk performance over time. Furthermore, longitudinal balance measures predict future walking performance. Quantitative walking and balance measures are important additions to clinical testing to explore longitudinal change and understand fall risk in this progressive disease population. © 2015 American Academy of Neurology.
Giannotti, Erika; Koutsikos, Konstantinos; Pigatto, Maurizia; Rampudda, Maria Elisa; Doria, Andrea; Masiero, Stefano
2014-01-01
To propose a rehabilitation protocol able to produce immediate and long-term beneficial effects on level of disability and overall performance in ADLs. Forty-one FM patients were randomized to an exercise and educational-behavioral programme group (experimental group, EG = 21) or to a control group (CG = 20). Each subject was evaluated before, at the end (T1), and after 6 months (T6) from the conclusion of the rehabilitation treatment using the Fibromyalgia Impact Questionnaire (FIQ), the visual analogue scale (VAS), the Health Assessment Questionnaire (HAQ), the fatigue severity scale (FSS), the 6-minute walking test (6MWT), tender points count (TPC), and spinal active range of motion. The exercise protocol included 20 sessions consisting in self-awareness, stretching, strengthening, spine flexibility, and aerobic exercises, which patients were subsequently educated to perform at home. The two groups were comparable at baseline. At T1, the EG showed a positive trend in FIQ, VAS, HAQ, and FSS scales and significant improvement in 6MWT and in most spinal active range of motion measurements (P between 0.001 and 0.04). The positive results were maintained at the follow-up. The proposed programme was well tolerated and produced immediate and medium-term beneficial effects improving function and strain endurance. This trial is registered with DRKS00005071 on DRKS.
Force Rendering and its Evaluation of a Friction-Based Walking Sensation Display for a Seated User.
Kato, Ginga; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo
2018-04-01
Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback.
Neural Correlates of Single- and Dual-Task Walking in the Real World
Pizzamiglio, Sara; Naeem, Usman; Abdalla, Hassan; Turner, Duncan L.
2017-01-01
Recent developments in mobile brain-body imaging (MoBI) technologies have enabled studies of human locomotion where subjects are able to move freely in more ecologically valid scenarios. In this study, MoBI was employed to describe the behavioral and neurophysiological aspects of three different commonly occurring walking conditions in healthy adults. The experimental conditions were self-paced walking, walking while conversing with a friend and lastly walking while texting with a smartphone. We hypothesized that gait performance would decrease with increased cognitive demands and that condition-specific neural activation would involve condition-specific brain areas. Gait kinematics and high density electroencephalography (EEG) were recorded whilst walking around a university campus. Conditions with dual tasks were accompanied by decreased gait performance. Walking while conversing was associated with an increase of theta (θ) and beta (β) neural power in electrodes located over left-frontal and right parietal regions, whereas walking while texting was associated with a decrease of β neural power in a cluster of electrodes over the frontal-premotor and sensorimotor cortices when compared to walking whilst conversing. In conclusion, the behavioral “signatures” of common real-life activities performed outside the laboratory environment were accompanied by differing frequency-specific neural “biomarkers”. The current findings encourage the study of the neural biomarkers of disrupted gait control in neurologically impaired patients. PMID:28959199
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.;
2013-01-01
Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest have do serve as acceptable flight analogs, testing of crew responses following the long duration flights does not begin until a minimum of 24 hours after landing. As a result it is not possible to estimate the nonlinear trend of the early (<24 hr) recovery process nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations both the Russian and U.S. sides have implemented testing at the time of landing and before the flight crews have left the landing site. By joint agreement this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (< 2 hr) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements including an evaluation of NASA's new anti-orthostatic compression garment as compared with the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessment of hand/eye coordination, ability to egress from a seated position, walk normally without falling, measurement of dynamic visual acuity, ability to discriminate different forces generated with both the hands and legs, recovery from a fall, a coordinated walk involving tandem heel-to-toe placement and determination of postural ataxia while standing. The cardiovascular portion of the investigation includes blood pressure and heart rate measurements during a timed stand test in conjunction with postural ataxia testing. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired at a minimum of one to three more other times within the 24 hr following landing and continue until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of jointly agreed tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content, and implementation. The PFT is currently scheduled for the September 2013 landing of the Soyuz spacecraft (34S). Testing will include: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember begins in the prone position on the ground and then stands for 3 min while cardiovascular stability is determined and postural ataxia data are acquired, and (3) a tandem heel-to-toe walk to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors and severity of postflight motion sickness will be available for analysis. It is our intent to present, at this celebratory symposium, a summary of these data obtained from two crewmembers. In summary, the level of functional deficit is expected to be most profound during the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiological data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers. Overall, these early functional and related physiological measurements will allow estimation of nonlinear sensorimotor and cardiovascular recovery trends to an accuracy that has not been previously captured in over 50 years of space flight.
Effects of load mass carried in a backpack upon respiratory muscle fatigue.
Faghy, Mark; Blacker, Sam; Brown, Peter I
2016-11-01
The purpose of this study was to investigate whether loads carried in a backpack, with a load mass ranging from 0 to 20 kg, causes respiratory muscle fatigue. Eight males performed four randomised load carriage (LC) trials comprising 60 min walking at 6.5 km h(-1) wearing a backpack of either 0 (LC0), 10 (LC10), 15 (LC15) or 20 kg (LC20). Inspiratory (PImax) and expiratory (PEmax) mouth pressures were assessed prior to and immediately following each trial. Pulmonary gas exchange, heart rate (HR), blood lactate and glucose concentration and perceptual responses were recorded during the first and final 60 s of each trial. Group mean PImax and PEmax were unchanged following 60-min load carriage in all conditions (p > .05). There was an increase over time in pulmonary gas exchange, HR and perceptions of effort relative to baseline measures during each trial (p < .05) with changes not different between trials (p > .05). These findings indicate that sub-maximal walking with no load or carrying 10, 15 or 20 kg in a backpack for up to 60 min does not cause respiratory muscle fatigue despite causing an increase in physiological, metabolic and perceptual parameters.
Ambler - Performance of a six-legged planetary rover
NASA Astrophysics Data System (ADS)
Krotkov, E. P.; Simmons, R. G.; Whittaker, W. L.
1992-08-01
In this paper, several performance metrics are quantified for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. Power consumption measures are presented for walking on sandy terrain and for vertical lifts at different velocities. The performance of a novel dead reckoning approach is documented, and its accuracy is analyzed. The results of autonomous walking experiments are described in terms of terrain traversed, walking speed, and endurance.
Ambler - Performance of a six-legged planetary rover
NASA Technical Reports Server (NTRS)
Krotkov, E. P.; Simmons, R. G.; Whittaker, W. L.
1992-01-01
In this paper, several performance metrics are quantified for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. Power consumption measures are presented for walking on sandy terrain and for vertical lifts at different velocities. The performance of a novel dead reckoning approach is documented, and its accuracy is analyzed. The results of autonomous walking experiments are described in terms of terrain traversed, walking speed, and endurance.
Safety and Feasibility of the 6-Minute Walk Test in Patients with Acute Stroke.
Kubo, Hiroki; Nozoe, Masafumi; Yamamoto, Miho; Kamo, Arisa; Noguchi, Madoka; Kanai, Masashi; Mase, Kyoshi; Shimada, Shinichi
2018-06-01
Our objective was to investigate the safety and feasibility of the 6-minute walk test in patients with acute stroke. Consecutive patients with acute stroke, admitted to the Itami Kosei Neurosurgical Hospital from September 2016 to April 2017 were enrolled. Walking capacity was assessed by a physical therapist using the 6-minute walk test in 94 patients with acute stroke within 14 days of hospital admission. The primary outcomes were safety (i.e., the prevalence of new adverse events during and after the test) and feasibility (i.e., test completion rate) of the 6-minute walk test. The 6-minute walk test was performed for a mean duration of 5.1 days (standard deviation, 2.6 days) after hospital admission. Seventy patients (74.5%) could walk without standby assistance or a walking aid, and 24 patients (25.5%) could walk without standby assistance but with a walking aid. The average distance walked by patients during the 6-minute walk test was 331 m (standard deviation, 107.2 m). Adverse events following the 6-minute walk test occurred in 6 patients (6.4%) and included stroke progression, stroke recurrence, seizures, and neurological deterioration. Heart rate increase (>120 beats/min) occurred in 3 patients (3.2%) during the test. Lastly, 6 patients (6.4%) were unable to complete the 6-minute walk test. Although performance in the 6-minute walk test was decreased in patients with acute stroke, the test itself appears to be safe and feasible in this patient population. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian
2013-09-01
It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
Medeiros, Filipe Mello; de Carvalho Myskiw, Jociane; Baptista, Pedro Porto Alegre; Neves, Laura Tartari; Martins, Lucas Athaydes; Furini, Cristiane Regina Guerino; Izquierdo, Iván; Xavier, Léder Leal; Hollands, Kristen; Mestriner, Régis Gemerasca
2018-02-05
Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability. Thus, 36 Wistar rats were divided in a two-part experiment. In the first part (n=16), the aversive, extinction-resistance memory paradigm was established using a fear-conditioning chamber. In the second, rats (n=20) were assessed in a neutral room using the ladder rung walking test before and tree days after inducing an extinction-resistance memory. In addition, the elevated plus-maze test was used to control the influence of the anxiety-like status on gait adaptability. Our results revealed the shock group exhibited worse walking adaptability (lower skilled walking score), when compared to the sham group. Moreover, the immobility time in the ladder rung walking test was similar to the controls, suggesting that gait adaptability performance was not a consequence of the fear generalization. No anxiety-like behavior was observed in the plus maze test. Finally, correlation coefficients also showed the skilled walking performance score was positively correlated with the number of gait cycles and trial time in the ladder rung walking test and the total crossings in the plus maze. Overall, these preliminary findings provide evidence to hypothesize an aversive, extinction-resistant experience might change the emotional load, affecting the ability to adapt walking. Copyright © 2017. Published by Elsevier B.V.
Walking performance in people with diabetic neuropathy: benefits and threats.
Kanade, R V; van Deursen, R W M; Harding, K; Price, P
2006-08-01
Walking is recommended as an adjunct therapy to diet and medication in diabetic patients, with the aim of improving physical fitness, glycaemic control and body weight reduction. Therefore we evaluated walking activity on the basis of capacity, performance and potential risk of plantar injury in the diabetic population before it can be prescribed safely. Twenty-three subjects with diabetic neuropathy (DMPN) were compared with 23 patients with current diabetic foot ulcers, 16 patients with partial foot amputations and 22 patients with trans-tibial amputations. The capacity for walking was measured using a total heart beat index (THBI). Gait velocity and average daily strides were measured to assess the performance of walking, and its impact on weight-bearing was studied using maximum peak pressure. THBI increased (p<0.01) and gait velocity and daily stride count fell (p<0.001 for both) with progression of foot complications. The maximum peak pressures over the affected foot of patients with diabetic foot ulcers (p<0.05) and partial foot amputations (p<0.01) were higher than in the group with DMPN. On the contralateral side, the diabetic foot ulcer group showed higher maximum peak pressure over the total foot (p<0.05), and patients with partial foot amputations (p<0.01) and trans-tibial amputations (p<0.05) showed higher maximum peak pressure over the heel. Walking capacity and performance decrease with progression of foot complications. Although walking is recommended to improve fitness, it cannot be prescribed in isolation, considering the increased risk of plantar injury. For essential walking we therefore recommend the use of protective footwear. Walking exercise should be supplemented by partial or non-weight-bearing exercises to improve physical fitness in diabetic populations.
Lee, Ah Young; Baek, Seung Ok; Cho, Yun Woo; Lim, Tae Hong; Jones, Rodney; Ahn, Sang Ho
2016-11-21
Trunk muscle exercises are widely performed, and many studies have been performed to examine their effects on low back pains. However, the effect of trunk muscles activations during walking with pelvic floor muscle contraction (PFMC) and abdominal hollowing (AH) has not been clarified. To investigate whether walking with PFMC and AH is more effective for promoting local trunk muscle activation than walking without PFMC and AH. Twenty healthy men (28.9 ± 3.14 years, 177.2 ± 4.25 cm, 72.1 ± 6.39 kg, body mass index 22.78 ± 2.38 kg/m2) were participated in this study. Surface electrodes were attached over the multifidus (MF), lumbar erector spinae (LES), thoracic erector spinae (TES), transverse abdominus-internal oblique abdominals (TrA-IO), external oblique abdominals (EO), and rectus abdominus (RA). The amplitudes of electromyographic signals were measured during a normal walking with and without PFMC and AH. PFMC and AH while walking was found to result in significant bilateral increases in the normalized maximum voluntary contraction (MVC) of MFs and TrA-IOs (p< 0.05). Ratios of local muscle activity to global muscle activities were increased while performing PFMC and AH during normal walking. Bilateral TrA-IO/EO activity ratios were significantly increased by PFMC and AH (p< 0.05). Performance of the PFMC and AH during walking resulted in significantly more recruitment of local trunk muscles. This study suggests that PFMC and AH during normal daily walking improves activation of muscles responsible for spinal dynamic stabilization and might be useful if integrated into low back disability and pain physical rehabilitation efforts.
Pilot Sensorimotor and Cardiovascular Results from the Joint Russian/U.S. Field Test
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.;
2014-01-01
The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (< 2 hours) with an additional two follow-up measurements sessions on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall (standing from a prone position), coordinated walking involving tandem heel-to-toe placement, and determining postural ataxia while standing. The cardiovascular portion of the investigation includes measuring blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data is being acquired twice more within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a initial evaluation of the feasibility of testing in the field, and is comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from bodyworn inertial sensors, and severity of postflight motion sickness were collected during each test session. Our Russian investigators have added measurements associated with: (a) obstacle avoidance, (b) muscle compliance and (c) postural adjustments to perturbations (push) applied to the subject's chest area. The level of functional deficit observed in the crew tested to date is typically beyond what was expected and is clearly triggered by the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow the estimation of nonlinear sensorimotor and cardiovascular recovery trends that have not been previously captured
Community walking programs for treatment of peripheral artery disease
Mays, Ryan J.; Rogers, R. Kevin; Hiatt, William R.; Regensteiner, Judith G.
2013-01-01
Background Supervised walking programs offered at medical facilities for patients with peripheral artery disease (PAD) and intermittent claudication (IC), while effective, are often not utilized due to barriers including lack of reimbursement and the need to travel to specialized locations for the training intervention. Walking programs for PAD patients that occur in community settings, such as those outside of supervised settings, may be a viable treatment option, as they are convenient and potentially bypass the need for supervised walking. This review evaluated the various methodologies and outcomes of community walking programs for PAD. Methods A literature review using appropriate search terms was conducted within PubMed/Medline and the Cochrane databases to identify studies in the English language employing community walking programs to treat PAD patients with IC. Search results were reviewed, and relevant articles were identified that form the basis of this review. The primary outcome was peak walking performance on the treadmill. Results Randomized controlled trials (n=10) examining peak walking outcomes in 558 PAD patients demonstrated that supervised exercise programs were more effective than community walking studies that consisted of general recommendations for patients with IC to walk at home. Recent community trials that incorporated more advice and feedback for PAD patients in general resulted in similar outcomes with no differences in peak walking time compared to supervised walking exercise groups. Conclusions Unstructured recommendations for patients with symptomatic PAD to exercise in the community are not efficacious. Community walking programs with more feedback and monitoring offer improvements in walking performance for patients with claudication and may bypass some obstacles associated with facility-based exercise programs. PMID:24103409
Tateuchi, Hiroshige; Taniguchi, Masashi; Takagi, Yui; Goto, Yusuke; Otsuka, Naoki; Koyama, Yumiko; Kobayashi, Masashi; Ichihashi, Noriaki
2014-01-01
Footwear modification can beneficially alter knee loading in patients with knee osteoarthritis. This study evaluated the effect of Masai Barefoot Technology shoes on reductions in external knee moments in patients with knee osteoarthritis. Three-dimensional motion analysis was used to examine the effect of Masai Barefoot Technology versus control shoes on the knee adduction and flexion moments in 17 women (mean age, 63.6 years) with radiographically confirmed knee osteoarthritis. The lateral and anterior trunk lean values, knee flexion and adduction angles, and ground reaction force were also evaluated. The influence of the original walking pattern on the changes in knee moments with Masai Barefoot Technology shoes was evaluated. The knee flexion moment in early stance was significantly reduced while walking with the Masai Barefoot Technology shoes (0.25±0.14Nm/kgm) as compared with walking with control shoes (0.30±0.19 Nm/kgm); whereas the knee adduction moment showed no changes. Masai Barefoot Technology shoes did not increase compensatory lateral and anterior trunk lean. The degree of knee flexion moment in the original walking pattern with control shoes was correlated directly with its reduction when wearing Masai Barefoot Technology shoes by multiple linear regression analysis (adjusted R2=0.44, P<0.01). Masai Barefoot Technology shoes reduced the knee flexion moment during walking without increasing the compensatory trunk lean and may therefore reduce external knee loading in women with knee osteoarthritis. Copyright © 2014 Elsevier B.V. All rights reserved.
Cardiorespiratory, enzymatic and hormonal responses during and after walking while fasting
Rosa, Claudio; Payan-Carreira, Rita; Lund, Rafael; Matos, Filipe; Garrido, Nuno
2018-01-01
The aim of the present study was to observe whether performing a low intensity endurance exercise following an overnight fasted (FAST) or fed (FED) condition promotes different cardiorespiratory, enzymatic and hormonal responses. Nine male physical active subjects, (age 21.89 ± 2.52 years old, height 175.89 ± 5.16 cm, weight 72.10 ± 4.31 kg, estimated body fat 7.25 ± 2.11%), randomly performed two sessions of 45 minutes’ low intensity exercise (individual ventilator threshold) interspersed by seven days, differentiated only in whether they were provided with a standardized meal or not. The oxygen consumption (VO2) and heart rate (HR) were measured continuously at the 30-min rest, the 45-min during and the 30-min post-exercise. The testosterone (T) and cortisol (C) hormones were measured at rest, immediately post-exercise and 15-min post-exercise. The Glucose (GLU), Free fatty acids (FFA) and enzyme lipase activity (ELP) were measured at rest, 15-min and 30-min exercise, immediately, 15-min and 30-min post-exercise. Significantly lower values were observed in FED compared to FAST with: C (nmol/L) from pre (428.87 ± 120.41; 454.62 ± 148.33, respectively) to immediately post-exercise (285.10 ± 85.86; 465.66 ± 137.70, respectively) and 15-min post-exercise (248.00 ± 87.88; 454.31 ± 112.72, respectively) (p<0.05); and GLU at all times, with an exception at 15-min post-exercise. The testosterone/cortisol ratio (T/C) was significantly higher in the FED compared with FAST from pre (0.05 ± 0.02, 0.05 ± 0.01, respectively) to 15-min post-exercise (0.08 ± 0.03, 0.05 ± 0.02, respectively). No other significant differences were observed between conditions. We conclude that fasting prior to low intensity endurance exercise does not seem be advantageous, when it comes to fat loss, compared with the same exercise performed after a meal. PMID:29494664
Cacau, Lucas de Assis Pereira; de Santana-Filho, Valter Joviniano; Maynard, Luana G; Gomes, Mansueto; Fernandes, Marcelo; Carvalho, Vitor Oliveira
2016-01-01
The aim of the study is to compare the available reference values and the six-minute walk test equations in healthy children/adolescents. Our systematic review was planned and performed in accordance with the PRISMA guidelines. We included all studies that established reference values for the six-minute walk test in healthy children/adolescents. To perform this review, a research was performed in PubMed, EMBASE (via SCOPUS) and Cochrane (LILACS), Bibliographic Index Spanish in Health Sciences, Organization Collection Pan-American Health Organization, Publications of the World Health Organization and Scientific Electronic Library Online (SciELO) via Virtual Health Library until June 2015 without language restriction. The initial research identified 276 abstracts. Twelve studies met the inclusion criteria and were fully reviewed and approved by both reviewers. None of the selected studies presented sample size calculation. Most of the studies recruited children and adolescents from school. Six studies reported the use of random samples. Most studies used a corridor of 30 meters. All studies followed the American Thoracic Society guidelines to perform the six-minute walk test. The walked distance ranged 159 meters among the studies. Of the 12 included studies, 7 (58%) reported descriptive data and 6 (50%) established reference equation for the walked distance in the six-minute walk test. The reference value for the six-minute walk test in children and adolescents ranged substantially from studies in different countries. A reference equation was not provided in all studies, but the ones available took into account well established variables in the context of exercise performance, such as height, heart rate, age and weight. Countries that did not established reference values for the six-minute walk test should be encouraged to do because it would help their clinicians and researchers have a more precise interpretation of the test.
Cacau, Lucas de Assis Pereira; de Santana-Filho, Valter Joviniano; Maynard, Luana G.; Gomes Neto, Mansueto; Fernandes, Marcelo; Carvalho, Vitor Oliveira
2016-01-01
Objective The aim of the study is to compare the available reference values and the six-minute walk test equations in healthy children/adolescents. Our systematic review was planned and performed in accordance with the PRISMA guidelines. We included all studies that established reference values for the six-minute walk test in healthy children/adolescents. Methods To perform this review, a research was performed in PubMed, EMBASE (via SCOPUS) and Cochrane (LILACS), Bibliographic Index Spanish in Health Sciences, Organization Collection Pan-American Health Organization, Publications of the World Health Organization and Scientific Electronic Library Online (SciELO) via Virtual Health Library until June 2015 without language restriction. Results The initial research identified 276 abstracts. Twelve studies met the inclusion criteria and were fully reviewed and approved by both reviewers. None of the selected studies presented sample size calculation. Most of the studies recruited children and adolescents from school. Six studies reported the use of random samples. Most studies used a corridor of 30 meters. All studies followed the American Thoracic Society guidelines to perform the six-minute walk test. The walked distance ranged 159 meters among the studies. Of the 12 included studies, 7 (58%) reported descriptive data and 6 (50%) established reference equation for the walked distance in the six-minute walk test. Conclusion The reference value for the six-minute walk test in children and adolescents ranged substantially from studies in different countries. A reference equation was not provided in all studies, but the ones available took into account well established variables in the context of exercise performance, such as height, heart rate, age and weight. Countries that did not established reference values for the six-minute walk test should be encouraged to do because it would help their clinicians and researchers have a more precise interpretation of the test. PMID:27982347
Houdijk, Han; van Ooijen, Mariëlle W; Kraal, Jos J; Wiggerts, Henri O; Polomski, Wojtek; Janssen, Thomas W J; Roerdink, Melvyn
2012-11-01
Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. This was an observational study. A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique, quantitative information about walking ability in people with a lower-limb amputation.
Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.
Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka
2016-03-01
We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).
Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait
Cao, Feng; Zhang, Chao; Choo, Hao Yu
2016-01-01
We have constructed an insect–computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g. gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e. applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. PMID:27030043
Hinton, Dorelle Clare; Cheng, Yeu-Yao; Paquette, Caroline
2018-01-01
With increasing numbers of adults owning a cell phone, walking while texting has become common in daily life. Previous research has shown that walking is not entirely automated and when challenged with a secondary task, normal walking patterns are disrupted. This study investigated the effects of texting on the walking patterns of healthy young adults while walking on a split-belt treadmill. Following full adaptation to the split-belt treadmill, thirteen healthy adults (23±3years) walked on a tied-belt and split-belt treadmill, both with and without a simultaneous texting task. Inertial-based movement monitors recorded spatiotemporal components of gait and stability. Measures of spatial and temporal gait symmetry were calculated to compare gait patterns between treadmill (tied-belt and split-belt) and between texting (absent or present) conditions. Typing speed and accuracy were recorded to monitor texting performance. Similar to previous research, the split-belt treadmill caused an alteration to both spatial and temporal aspects of gait, but not to time spent in dual support or stability. However, all participants successfully maintained balance while walking and were able to perform the texting task with no significant change to accuracy or speed on either treadmill. From this paradigm it is evident that when university students are challenged to text while walking on either a tied-belt or split-belt treadmill, without any other distraction, their gait is minimally affected and they are able to maintain texting performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Variety Wins: Soccer-Playing Robots and Infant Walking.
Ossmy, Ori; Hoch, Justine E; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E
2018-01-01
Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a "feature" or a "bug?" In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of "RoboCup." In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths-straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence.
Freezing of gait in Parkinson's disease: the paradoxical interplay between gait and cognition.
Ricciardi, Lucia; Bloem, Bastiaan R; Snijders, Anke H; Daniele, Antonio; Quaranta, Davide; Bentivoglio, Anna Rita; Fasano, Alfonso
2014-08-01
Freezing of gait is a disabling episodic gait disturbance common in patients with Parkinson's disease. Recent evidences suggest a complex interplay between gait impairment and executive functions. Aim of our study was to evaluate whether specific motor conditions (sitting or walking) influence cognitive performance in patients with or without different types of freezing. Eight healthy controls, eight patients without freezing, nine patients with levodopa-responsive and nine patients with levodopa-resistant freezing received a clinical and neuropsychological assessment during two randomly performed conditions: at rest and during walking. At rest, patients with levodopa-resistant freezing performed worse than patients without freezing on tests of phonological fluency (p = 0.01). No differences among the four groups were detected during walking. When cognitive performances during walking were compared to the performance at rest, there was a significant decline of verbal episodic memory task (Rey Auditory Verbal Learning Test) in patients without freezing and with levodopa-responsive freezing. Interestingly, walking improved performance on the phonological fluency task in patients with levodopa-resistant freezing (p = 0.04). Compared to patients without freezing, patients with levodopa-resistant freezing perform worse when tested while seated in tasks of phonological verbal fluency. Surprisingly, gait was associated with a paradoxical improvement of phonological verbal fluency in the patients with levodopa-resistant freezing whilst walking determined a worsening of episodic memory in the other patient groups. Copyright © 2014 Elsevier Ltd. All rights reserved.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
Sagawa, Koichi; Ohkubo, Kensuke
2015-07-16
An estimation method for a two-dimensional walking trajectory during free walking, such as forward walking, side stepping and backward walking, was investigated using a tiptoe-mounted inertial sensor. The horizontal trajectory of the toe-tip is obtained by double integration of toe-tip acceleration during the moving phase in which the sensor is rotated before foot-off or after foot-contact, in addition to the swing phase. Special functions that determine the optimum moving phase as the integral duration in every one step are developed statistically using the gait cycle and the resultant angular velocity of dorsi/planter flexion, pronation/supination and inversion/eversion so that the difference between the estimated trajectory and actual one gives a minimum value during free walking with several cadences. To develop the functions, twenty healthy volunteers participated in free walking experiments in which subjects performed forward walking, side stepping to the right, side stepping to the left, and backward walking at 39 m down a straight corridor with several predetermined cadences. To confirm the effect of the developed functions, five healthy subjects participated in the free walking experiment in which each subject performed free walking with different velocities of normal, fast, and slow based on their own assessment in a square course with 7 m side. The experimentally obtained results of free walking with a combination of forward walking, backward walking, and side stepping indicate that the proposed method produces walking trajectory with high precision compared with the constant threshold method which determines swing phase using the size of the angular velocity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kimoto, Minoru; Okada, Kyoji; Sakamoto, Hitoshi; Kondou, Takanori
2017-05-01
[Purpose] To improve walking efficiency could be useful for reducing fatigue and extending possible period of walking in children with cerebral palsy (CP). For this purpose, current study compared conventional parameters of gross motor performance, step length, and cadence in the evaluation of walking efficiency in children with CP. [Subjects and Methods] Thirty-one children with CP (21 boys, 10 girls; mean age, 12.3 ± 2.7 years) participated. Parameters of gross motor performance, including the maximum step length (MSL), maximum side step length, step number, lateral step up number, and single leg standing time, were measured in both dominant and non-dominant sides. Spatio-temporal parameters of walking, including speed, step length, and cadence, were calculated. Total heart beat index (THBI), a parameter of walking efficiency, was also calculated from heartbeats and walking distance in 10 minutes of walking. To analyze the relationships between these parameters and the THBI, the coefficients of determination were calculated using stepwise analysis. [Results] The MSL of the dominant side best accounted for the THBI (R 2 =0.759). [Conclusion] The MSL of the dominant side was the best explanatory parameter for walking efficiency in children with CP.
Deshpande, Nandini; Zhang, Fang
2014-01-01
The ability to maintain stability in the frontal plane (medialateral direction) while walking is commonly included as a component of motor performance assessment. Postural control in the frontal plane may deteriorate faster and earlier with increasing age, compared to that in the sagittal plane (anteroposterior direction). Fifteen young (20-30 years old) and 15 older (>65 years old) healthy participants were recruited to investigate age-related differences in postural control during the normal and narrow-based walking when performed under suboptimal vestibular and lower limb somatosensory conditions achieved by galvanic stimulation and compliant surfaces, respectively. Gait speed decreased in the narrow-based walking condition, with larger decrease in the elderly (by 6%). In the elderly head roll increased with perturbed vestibular information in impaired somatosensory condition (by 40.70%). In both age groups trunk roll increased under impaired somatosensation in the narrow-based walking condition (by 43.62%) but not in normal walking condition. Older participants adopted a more cautious strategy characterized by lower walking speed when walking on a narrow base and exhibited deteriorated integrative ability of the CNS for head control. Accurate lower limb somatosensation may play a critical role in narrow-based walking.
Race walking gait and its influence on race walking economy in world-class race walkers.
Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan
2018-03-06
The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.
Hilton, Margaret J; Xu, Li-Ping; Norrby, Per-Ola; Wu, Yun-Dong; Wiest, Olaf; Sigman, Matthew S
2014-12-19
The mechanism of the redox-relay Heck reaction was investigated using deuterium-labeled substrates. Results support a pathway through a low energy palladium-alkyl intermediate that immediately precedes product formation, ruling out a tautomerization mechanism. DFT calculations of the relevant transition structures at the M06/LAN2DZ+f/6-31+G* level of theory show that the former pathway is favored by 5.8 kcal/mol. Palladium chain-walking toward the alcohol, following successive β-hydride eliminations and migratory insertions, is also supported in this study. The stereochemistry of deuterium labels is determined, lending support that the catalyst remains bound to the substrate during the relay process and that both cis- and trans-alkenes form from β-hydride elimination.
Clinical study on the unloading effect of hip bracing on gait in patients with hip osteoarthritis.
Nérot, Agathe; Nicholls, Micah
2017-04-01
Internal hip abduction moment is a major indicator for hip loading. A new hip bracing concept was designed to unload the cartilaginous area in hip osteoarthritis via an abduction and external rotation force intended to alter the weight bearing area and reduce compression through the joint. To assess the effect of a novel brace on hip rotation in the transverse and coronal planes and on the hip abduction moment. Repeated measures. Gait analysis was performed on 14 subjects with unilateral symptomatic hip osteoarthritis. Pain, joint motion, moments and vertical ground reaction force were compared between the braced and the unbraced (control), randomly assigned, conditions. Nine participants felt an immediate reduction in pain while walking with the hip brace. Peak hip abduction moment significantly decreased on the osteoarthritis side ( p = 0.017). Peak hip adduction ( p = 0.004) and internal rotation ( p = 0.0007) angles significantly decreased at stance with the brace. Wearing the brace would appear to reduce the compressive joint reaction force at the femuroacetabular interface as indicated by a reduction in internal hip abduction moment along with immediate pain reduction in nine participants. Further long-term studies are warranted. Clinical relevance The brace rotates the hip in the transverse and coronal planes, possibly resulting in a decrease in load through the diseased area of cartilage. In some patients, an immediate decrease in pain was experienced. The brace offers an alternative solution for hip osteoarthritis patients not ready for a hip replacement.
Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)
ERIC Educational Resources Information Center
Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela
2013-01-01
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
Gait Evaluation of Overground Walking and Treadmill Walking Using Compass-Type Walking Model
NASA Astrophysics Data System (ADS)
Nagata, Yousuke; Yamamoto, Masayoshi; Funabiki, Shigeyuki
A treadmill is a useful apparatus for the gait training and evaluation. However, many differences are reported between treadmill and overground walking. Experimental comparisons of the muscle activity of the leg and the heart rate have been carried out. However, the dynamic comparison has not been performed. The dynamic evaluation of the overground walking and the treadmill walking using a compass-type walking model (CTWM) which is a simple bipedal walking model, then their comparison is discussed. It is confirmed that the walking simulation using the CTWM can simulate the difference of that walk, it is clarified that there are the differences of the kick impulse on the ground and the turning impulse of the foot to the variation of the belt speed and then differences are the main factor of two walking.
Delaney, Christopher L; Spark, J Ian; Thomas, Jolene; Wong, Yew Toh; Chan, Lok Tsung; Miller, Michelle D
2013-07-01
To evaluate the evidence for the use of carnitine supplementation in improving walking performance among individuals with intermittent claudication. Systematic review. An electronic search of the literature was performed using MEDLINE (PubMed), Scopus, Cochrane Central Register of Controlled Trials and The Cochrane Library from inception through to November 2012. Search terms included peripheral arterial disease, intermittent claudication and carnitine. Reference lists of review articles and primary studies were also examined. Full reports of published experimental studies including randomized controlled trials and pre-test/post-test trials were selected for inclusion. A quality assessment was undertaken according to the Jadad scale. A total of 40 articles were retrieved, of which 23 did not meet the inclusion criteria. The 17 included articles reported on a total of 18 experimental studies of carnitine supplementation (5 pre-test/post-test; 8 parallel RCT; 5 cross-over RCT) for improving walking performance in adults with intermittent claudication. For pre-test/post-test studies, 300-2000 mg propionyl-L-carnitine (PLC) was administered orally or intravenously for a maximum of 90 days (7-42 participants) with statistically significant improvements of between 74 m and 157 m in pain free walking distance and between 71 m and 135 m in maximal walking distance across 3 out of 5 studies. Similarly, PLC (600 mg-3000 mg) was administered orally in 7 out of 8 parallel RCTs (22-485 participants), the longest duration being 12 months. All but one of the smallest trials demonstrated statistically significant improvements in walking performance between 31 and 54 m greater than placebo for pain free walking distance and between 9 and 86 m greater than placebo for maximal walking distance. A double-blind parallel RCT of cilostazol plus 2000 mg oral L-carnitine or placebo for 180 days (145 participants) did not demonstrate any significant improvement in walking performance. Of 5 cross-over RCTs (8-20 participants), 4 demonstrated significant improvements in walking performance following administration of 300-6000 mg L-carnitine or PLC. Compared to placebo, pain free walking distance and maximal walking distance improved by 23-132 m and 104 m respectively following carnitine intervention. Most trials demonstrated a small or modest improvement in walking performance with administration of PLC or L-carnitine. These findings were largely independent of level or quality of evidence, while there was some evidence that intravenous administration was more effective than oral administration and those with severe claudication may achieve greater benefits than those with moderate claudication. Routine carnitine supplementation in the form of PLC may therefore be a useful adjunct therapy for management of intermittent claudication. Further research is warranted to determine the optimal form, duration, dose and safety of carnitine supplementation across the spectrum of peripheral arterial disease severity and its effect with concurrent supervised exercise programs and best medical therapy. These studies should be supplemented with cost effectiveness studies to ensure that the return on the investment is acceptable. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Sandroff, Brian M; Bollaert, Rachel E; Pilutti, Lara A; Peterson, Melissa L; Baynard, Tracy; Fernhall, Bo; McAuley, Edward; Motl, Robert W
2017-10-01
Mobility disability is a common, debilitating feature of multiple sclerosis (MS). Exercise training has been identified as an approach to improve MS-related mobility disability. However, exercise randomized controlled trials (RCTs) on mobility in MS have generally not selectively targeted those with the onset of irreversible mobility disability. The current multi-site RCT compared the efficacy of 6-months of supervised, multimodal exercise training with an active control condition for improving mobility, gait, physical fitness, and cognitive outcomes in persons with substantial MS-related mobility disability. 83 participants with substantial MS-related mobility disability underwent initial mobility, gait, fitness, and cognitive processing speed assessments and were randomly assigned to 6-months of supervised multimodal (progressive aerobic, resistance, and balance) exercise training (intervention condition) or stretching-and-toning activities (control condition). Participants completed the same outcome assessments halfway through and immediately following the 6-month study period. There were statistically significant improvements in six-minute walk performance (F(2158)=3.12, p=0.05, η p 2 =0.04), peak power output (F(2150)=8.16, p<0.01, η p 2 =0.10), and Paced Auditory Serial Addition Test performance (F(2162)=4.67, p=0.01, η p 2 =0.05), but not gait outcomes, for those who underwent the intervention compared with those who underwent the control condition. This RCT provides novel, preliminary evidence that multimodal exercise training may improve endurance walking performance and cognitive processing speed, perhaps based on improvements in cardiorespiratory capacity, in persons with MS with substantial mobility disability. This is critical for informing the development of multi-site exercise rehabilitation programs in larger samples of persons with MS-related mobility disability. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of a prior bout of preconditioning exercise on muscle damage from downhill walking.
Maeo, Sumiaki; Ochi, Yusuke; Yamamoto, Masayoshi; Kanehisa, Hiroaki; Nosaka, Kazunori
2015-03-01
This study investigated whether reduced-duration downhill walking (DW) would confer a protective effect against muscle damage induced by a subsequent bout of longer duration DW performed 1 week or 4 weeks later. Healthy young adults were allocated to a control or one of the preconditioning exercise (PRE-1wk or PRE-4wk) groups (10 men and 4 women per group). PRE-1wk and PRE-4wk groups performed 20-min DW (-28% slope, 5 km/h, 10% body mass added to a backpack) 1 week and 4 weeks before 40-min DW, respectively, and the control group performed 40-min DW only. Maximal voluntary contraction (MVC) knee extension torque, plasma creatine kinase (CK) activity, and muscle soreness (100-mm visual analog scale) were measured before, immediately after, and 24, 48, and 72 h after DW, and the changes in these variables were compared among groups. The control group showed symptoms of muscle damage (e.g., prolonged decrease in MVC: -14% ± 10% at 48 h post-DW) after 40-min DW. Changes in all variables after 40-min DW of PRE-1wk and PRE-4wk groups were 54%-61% smaller (P < 0.05) than the control group, without significant differences between PRE-1wk and PRE-4wk groups for MVC and plasma CK activity. Importantly, changes after the preconditioning exercise (20-min DW) were 67%-69% smaller (P < 0.05) than those after the 40-min DW of the control group. These findings suggest that 20-min DW resulting in minor muscle damage conferred a protective effect against subsequent 40-min DW, and its effect could last for more than 4 weeks.
Hinojosa, Samantha L; Heiss, Cynthia J
2017-01-01
The purpose of this pilot study was to determine whether 15 minutes of postprandial walking has an effect on the glycemic response to a breakfast beverage in individuals with type 1 diabetes (T1DM). Seven participants, aged 22.3 ± 4.3 years, with T1DM using intensive insulin therapy completed 2 days of data collection. On day 1, participants measured baseline fasting blood glucose (BG) with a glucometer, consumed an 8-ounce Boost® beverage (41 grams carbohydrate), administered a bolus of insulin according to the carbohydrate load and fasting BG, and sat quietly, repeating BG measurements 15, 30, 60, 90, and 120 minutes after consumption. On day 2, participants repeated the protocol, but walked 15 minutes at 50% to 60% maximum heart rate immediately after beverage consumption. The difference between peak and baseline (peak - baseline) BG and incremental glucose area under the curve (iAUC) were lower in all but one participant on the walking compared to the sedentary day. Mean peak - baseline BG was significantly lower on the walking day compared to the sedentary day (6.4 ± 1.2 vs 14.4 ± 3.4 mmol/L, respectively, p = 0.016) as was the iAUC, (241.1 ± 155.8 vs 468.6 ± 94.5 mmol/L/120 min, respectively, p = 0.031). Fifteen minutes of postprandial walking can blunt the spike in BG and overall glycemic response to a breakfast beverage in young adults with T1DM and may be an effective and realistic component in the management of T1DM.
Dynamic perception of dynamic affordances: walking on a ship at sea.
Walter, Hannah; Wagman, Jeffrey B; Stergiou, Nick; Erkmen, Nurtekin; Stoffregen, Thomas A
2017-02-01
Motion of the surface of the sea (waves, and swell) causes oscillatory motion of ships at sea. Generally, ships are longer than they are wide. One consequence of this structural difference is that oscillatory ship motion typically will be greater in roll (i.e., the ship rolling from side to side) than in pitch (i.e., the bow and stern rising and falling). For persons on ships at sea, affordances for walking on the open deck should be differentially influenced by ship motion in roll and pitch. Specifically, the minimum width of a walkable path should be greater when walking along the ship's short, or athwart axis than when walking along its long, or fore-aft axis. On a ship at sea, we evaluated the effects of walking in different directions (fore-aft vs. athwart) on actual walking performance. We did this by laying out narrow paths on the deck and asking participants (experienced maritime crewmembers) to walk as far as they could while remaining within the lateral path boundaries. As predicted, participants walked farther along the athwart path than along the fore-aft path. Before actual walking, we evaluated participants' judgments of their walking ability in the fore-aft and athwart directions. These judgments mirrored the observed differences in walking performance, and the accuracy of judgments did not differ between the two directions. We conclude that experienced maritime crewmembers were sensitive to affordances for walking in which the relevant properties of the environment were exclusively dynamic.
Dynamic perception of dynamic affordances: walking on a ship at sea
Walter, Hannah; Wagman, Jeffrey B.; Stergiou, Nick; Erkmen, Nurtekin
2017-01-01
Motion of the surface of the sea (waves, and swell) causes oscillatory motion of ships at sea. Generally, ships are longer than they are wide. One consequence of this structural difference is that oscillatory ship motion typically will be greater in roll (i.e., the ship rolling from side to side) than in pitch (i.e., the bow and stern rising and falling). For persons on ships at sea, affordances for walking on the open deck should be differentially influenced by ship motion in roll and pitch. Specifically, the minimum width of a walkable path should be greater when walking along the ship’s short, or athwart axis than when walking along its long, or fore-aft axis. On a ship at sea, we evaluated the effects of walking in different directions (fore-aft vs. athwart) on actual walking performance. We did this by laying out narrow paths on the deck and asking participants (experienced maritime crewmembers) to walk as far as they could while remaining within the lateral path boundaries. As predicted, participants walked farther along the athwart path than along the fore-aft path. Before actual walking, we evaluated participants’ judgments of their walking ability in the fore-aft and athwart directions. These judgments mirrored the observed differences in walking performance, and the accuracy of judgments did not differ between the two directions. We conclude that experienced maritime crewmembers were sensitive to affordances for walking in which the relevant properties of the environment were exclusively dynamic. PMID:27787584
The effects of error augmentation on learning to walk on a narrow balance beam.
Domingo, Antoinette; Ferris, Daniel P
2010-10-01
Error augmentation during training has been proposed as a means to facilitate motor learning due to the human nervous system's reliance on performance errors to shape motor commands. We studied the effects of error augmentation on short-term learning of walking on a balance beam to determine whether it had beneficial effects on motor performance. Four groups of able-bodied subjects walked on a treadmill-mounted balance beam (2.5-cm wide) before and after 30 min of training. During training, two groups walked on the beam with a destabilization device that augmented error (Medium and High Destabilization groups). A third group walked on a narrower beam (1.27-cm) to augment error (Narrow). The fourth group practiced walking on the 2.5-cm balance beam (Wide). Subjects in the Wide group had significantly greater improvements after training than the error augmentation groups. The High Destabilization group had significantly less performance gains than the Narrow group in spite of similar failures per minute during training. In a follow-up experiment, a fifth group of subjects (Assisted) practiced with a device that greatly reduced catastrophic errors (i.e., stepping off the beam) but maintained similar pelvic movement variability. Performance gains were significantly greater in the Wide group than the Assisted group, indicating that catastrophic errors were important for short-term learning. We conclude that increasing errors during practice via destabilization and a narrower balance beam did not improve short-term learning of beam walking. In addition, the presence of qualitatively catastrophic errors seems to improve short-term learning of walking balance.
Walking on four limbs: A systematic review of Nordic Walking in Parkinson disease.
Bombieri, Federica; Schena, Federico; Pellegrini, Barbara; Barone, Paolo; Tinazzi, Michele; Erro, Roberto
2017-05-01
Nordic Walking is a relatively high intensity activity that is becoming increasingly popular. It involves marching using poles adapted from cross-country skiing poles in order to activate upper body muscles that would not be used during normal walking. Several studies have been performed using this technique in Parkinson disease patients with contradictory results. Thus, we reviewed here all studies using this technique in Parkinson disease patients and further performed a meta-analysis of RCTs where Nordic Walking was evaluated against standard medical care or other types of physical exercise. Nine studies including four RCTs were reviewed for a total of 127 patients who were assigned to the Nordic Walking program. The majority of studies reported beneficial effects of Nordic Walking on either motor or non-motor variables, but many limitations were observed that hamper drawing definitive conclusions and it is largely unclear whether the benefits persist over time. It would appear that little baseline disability is the strongest predictor of response. The meta-analysis of the 4 RCTs yielded a statistically significant reduction of the UPDRS-3 score, but its value of less than 1 point does not appear to be clinically meaningful. Well-designed, large RCTs should be performed both against standard medical care and other types of physical exercise to definitively address whether Nordic Walking can be beneficial in PD. Copyright © 2017. Published by Elsevier Ltd.
Morone, Giovanni; Annicchiarico, Roberta; Iosa, Marco; Federici, Alessia; Paolucci, Stefano; Cortés, Ulises; Caltagirone, Carlo
2016-05-26
Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a community setting in patients with mild subacute stroke. Forty-four patients were randomly assigned to two different groups that received the same therapy in two daily 40-min sessions 5 days a week for 4 weeks. Twenty sessions of standard therapy were performed by both groups. In the other 20 sessions the subjects enrolled in the i-Walker-Group (iWG) performed with the i-Walker and the Control-Group patients (CG) performed the same amount of conventional walking oriented therapy. Clinical and instrumented gait assessments were made pre- and post-treatment. The follow-up observation consisted of recording the number of fallers in the community setting after 6 months. Treatment effectiveness was higher in the iWG group in terms of balance improvement (Tinetti: 68.4 ± 27.6 % vs. 48.1 ± 33.9 %, p = 0.033) and 10-m and 6-min timed walking tests (significant interaction between group and time: F(1,40) = 14.252, p = 0.001; and F(1,40) = 7.883, p = 0.008, respectively). When measured, latero-lateral upper body accelerations were reduced in iWG (F = 4.727, p = 0.036), suggesting increased gait stability, which was supported by a reduced number of falls at home. A robotic servo-assisted i-Walker improved walking performance and balance in patients affected by mild/moderate stroke, leading to increased gait stability and reduced falls in the community. This study was registered on anzctr.org.au (July 1, 2015; ACTRN12615000681550 ).
The influence of gait speed on the stability of walking among the elderly.
Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo
2016-06-01
Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.
Welk, Aaron B; Haun, Daniel W; Clark, Thomas B; Kettner, Norman W
2015-01-01
This study sought to use high-resolution ultrasound to measure changes in plantar fascia thickness as a result of tissue creep generated by walking and running. Independent samples of participants were obtained. Thirty-six walkers and 25 runners walked on a treadmill for 10 minutes or ran for 30 minutes, respectively. Standardized measures of the thickness of the plantar fascia were obtained in both groups using high-resolution ultrasound. The mean thickness of the plantar fascia was measured immediately before and after participation. The mean plantar fascia thickness was decreased by 0.06 ± 0.33 mm SD after running and 0.03 ± 0.22 mm SD after walking. The difference between groups was not significant. Although the parameters of this study did not produce significant changes in the plantar fascia thickness, a slightly higher change in the mean thickness of the plantar fascia in the running group deserves further investigation. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Santanasto, Adam J.; Coen, Paul M.; Glynn, Nancy W.; Conley, Kevin E.; Jubrias, Sharon A.; Amati, Francesca; Strotmeyer, Elsa S.; Boudreau, Robert M.; Goodpaster, Bret H.; Newman, Anne B.
2017-01-01
Background Age related declines in walking performance may be partly attributable to skeletal muscle mitochondrial dysfunction as mitochondria produce over 90% of ATP needed for movement and the capacity for oxidative phosphorylation decreases with age. Methods Participants were from two studies: an ancillary to the Lifestyle Interventions and Independence for Elders (LIFE) Study (n = 33), which recruited lower functioning participants (Short Physical Performance Battery [SPPB], 7.8 ± 1.2), and the Study of Energy and Aging-Pilot (SEA, n = 29), which enrolled higher functioning (SPPB, 10.8 ± 1.4). Physical activity was measured objectively using the Actigraph accelerometer (LIFE) and SenseWear Pro armband (SEA). Phosphocreatine recovery following muscle contraction of the quadriceps was measured using 31P magnetic resonance spectroscopy and ATPmax (mM ATP/s) was calculated. Walking performance was defined as time (s) to walk 400 m at a usual-pace. The cross-sectional association between mitochondrial function and walking performance was assessed using multivariable linear regression. Results Participants were 77.6 ± 5.3 years, 64.2% female and 67.2% white. ATPmax was similar in LIFE vs. SEA (0.52 ± 0.14 vs. 0.55 ± 0.14, p = 0.31), despite different function and activity levels (1.6 ± 2.2 vs.77.4 ± 73.3 min of moderate activity/day, p < 0.01). Higher ATPmax was related to faster walk-time in SEA (r2 = 0.19, p = 0.02,); but not the LIFE (r2 < 0.01, p = 0.74) cohort. Conclusions Mitochondrial function was associated with walking performance in higher functioning, active older adults, but not lower functioning, sedentary older adults. PMID:27084585
Virtual Reality as a Medium for Sensorimotor Adaptation Training and Spaceflight Countermeasures
NASA Technical Reports Server (NTRS)
Madansingh, S.; Bloomberg, J. J.
2014-01-01
Astronauts experience a profound sensorimotor adaptation during transition to and from the microgravity environment of space. With the upcoming shift to extra-long duration missions (upwards of 1 year) aboard the International Space Station, the immediate risks to astronauts during these transitory periods become more important than ever to understand and prepare for. Recent advances in virtual reality technology enable everyday adoption of these tools for entertainment and use in training. Embedding an individual in a virtual environment (VE) allows the ability to change the perception of visual flow, elicit automatic motor behavior and produce sensorimotor adaptation, not unlike those required during long duration microgravity exposure. The overall goal of this study is to determine the feasibility of present head mounted display technology (HMD) to produce reliable visual flow information and the expected adaptation associated with virtual environment manipulation to be used in future sensorimotor adaptability countermeasures. To further understand the influence of visual flow on gait adaptation during treadmill walking, a series of discordant visual flow manipulations in a virtual environment are proposed. Six healthy participants (3 male and 3 female) will observe visual flow information via HMD (Oculus Rift DK2) while walking on an instrumented treadmill at their preferred walking speed. Participants will be immersed in a series of VE's resembling infinite hallways with different visual characteristics: an office hallway, a hallway with pillars and the hallway of a fictional spacecraft. Participants will perform three trials of 10 min. each, which include walking on the treadmill while receiving congruent or incongruent visual information via the HMD. In the first trial, participants will experience congruent visual information (baseline) where the hallway is perceived to move at the same rate as their walking speed. The final two trials will be randomized among participants where the hallway is perceived to move at either half (0.5x) or twice (2.0x) their preferred walking speed. Participants will remain on the treadmill between trials and will not be warned of the upcoming change to visual flow to minimize preparatory adjustments. Stride length, step frequency and dual-support time will be quantified during each trial. We hypothesize that participants will experience a rapid modification in gait performance during periods of adaptive change, expressed as a decrease in step length, an increase in step frequency and an increase in dual-support time, followed by a period of adaptation where these movement parameters will return to near-baseline levels. As stride length, step frequency and dual support times return to baseline values, an adaptation time constant will be derived to establish individual time-to-adapt (TTA). HMD technology represents a paradigm shift in sensorimotor adaptation training where gait adaptability can be stressed using off-the-shelf consumer products and minimal experimental equipment, allowing for greater training flexibility in astronaut and terrestrial applications alike.
Laufer, Yocheved; Shtraker, Haim; Elboim Gabyzon, Michal
2014-01-01
Strengthening exercises of the quadriceps femoris muscle (QFM) are beneficial for patients with knee osteoarthritis (OA). Studies reporting short-term effects of neuromuscular electrical stimulation (NMES) of the QFM in this population support the use of this modality as an adjunct treatment. The objectives of this follow-up study are to compare the effects of an exercise program with and without NMES of the QFM on pain, functional performance, and muscle strength immediately posttreatment and 12 weeks after completion of the intervention. Sixty-three participants with knee OA were randomly assigned into two groups receiving 12 biweekly treatments: An exercise-only program or an exercise program combined with NMES. A significantly greater reduction in knee pain was observed immediately after treatment in the NMES group, which was maintained 12 weeks postintervention in both groups. Although at this stage NMES had no additive effect, both groups demonstrated an immediate increase in muscle strength and in functional abilities, with no differences between groups. Although the improvements in gait velocity and in self-report functional ability were maintained at the follow-up session, the noted improvements in muscle strength, time to up and go, and stair negotiation were not maintained. Supplementing an exercise program with NMES to the QFM increased pain modulation immediately after treatment in patients with knee OA. Maintenance of the positive posttreatment effects during a 12-week period was observed only for pain, self-reported functional ability, and walk velocity, with no difference between groups. The effects of a comprehensive group exercise program with or without NMES are partially maintained 12 weeks after completion of the intervention. The addition of NMES is recommended primarily for its immediate effect on pain. Further studies are necessary to determine the effects of repeated bouts of exercise with and without NMES in this population.
Dorsch, Andrew K.; Thomas, Seth; Xu, Xiaoyu; Kaiser, William; Dobkin, Bruce H.
2014-01-01
Background Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (tri-axial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed-only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37,000 individual walking bouts, and 2.5 million steps. No significant differences were found between the two feedback groups in daily walking time (15.1±13.1min vs. 16.6±14.3min, p=0.54) or 15-meter walking speed (0.93±0.47m/s vs. 0.91±0.53m/s, p=0.96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities. PMID:25261154
Ellingsen, Maren Mikkelsen; Johannesen, Sunniva Launes; Martinsen, Egil W; Hallgren, Mats
2018-06-04
Novel treatments for substance use disorders are needed. Acute bouts of exercise can improve mood states in non-clinical populations, but effects in those with poly-substance dependence are understudied. We examined the feasibility and short-term effects of three types of exercise on drug cravings, self-esteem, mood and positive/negative affect in nine poly-drug-dependent inpatients. Using a cross-over design, changes in the four study outcomes were assessed immediately before exercise and on four separate occasions post-exercise (immediately after, then at 1, 2 and 4 h post-exercise) enabling patterns of change over time (analysis of covariance) to be observed. Participants were willing and able to engage in different non-laboratory based exercises. Football was associated with non-significant short-term reductions in drug cravings. A similar trend was seen for circuit-training, but not walking. Football and circuit-training were associated with brief improvements in mood and positive/negative affect. No adverse events were reported. Football, circuit training and walking are feasible therapeutic activities for inpatients with poly-substance dependence. Controlled trials are needed to determine the long-term effects of these activities. © 2018 Australasian Professional Society on Alcohol and other Drugs.
Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.
Phan-Ba, Rémy; Calay, Philippe; Grodent, Patrick; Delrue, Gael; Lommers, Emilie; Delvaux, Valérie; Moonen, Gustave; Belachew, Shibeshih
2012-01-01
Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW(+)), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+) provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.
Stilt walking: how do we learn those first steps?
Akram, Sakineh B; Frank, James S
2009-09-01
This study examined how young healthy adults learn stilt walking. Ten healthy male university students attended two sessions of testing held on two consecutive days. In each session participants performed three blocks of 10 stilt-walking trials. Angular movements of head and trunk and the spatial and temporal gait parameters were recorded. When walking on stilts young adults improved their gait velocity through modifications of step parameters while maintaining trunk movements close to that observed during normal over-ground walking. Participants improved their performance by increasing their step frequency and step length and reducing the double support percentage of the gait cycle. Stilts are often used for drywall installation, painting over-the-head areas and raising workers above the ground without the burden of erecting scaffolding. This research examines the locomotor adaptation as young healthy adults learn the complex motor task of stilt walking; a task that is frequently used in the construction industry.
Random Walk Quantum Clustering Algorithm Based on Space
NASA Astrophysics Data System (ADS)
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial.
McEwen, Daniel; Taillon-Hobson, Anne; Bilodeau, Martin; Sveistrup, Heidi; Finestone, Hillel
2014-06-01
Exercise using virtual reality (VR) has improved balance in adults with traumatic brain injury and community-dwelling older adults. Rigorous randomized studies regarding its efficacy, safety, and applicability with individuals after stroke are lacking. The purpose of this study was to determine whether an adjunct VR therapy improves balance, mobility, and gait in stroke rehabilitation inpatients. A blinded randomized controlled trial studying 59 stroke survivors on an inpatient stroke rehabilitation unit was performed. The treatment group (n=30) received standard stroke rehabilitation therapy plus a program of VR exercises that challenged balance (eg, soccer goaltending, snowboarding) performed while standing. The control group (n=29) received standard stroke rehabilitation therapy plus exposure to identical VR environments but whose games did not challenge balance (performed in sitting). VR training consisted of 10 to 12 thirty-minute daily sessions for a 3-week period. Objective outcome measures of balance and mobility were assessed before, immediately after, and 1 month after training. Confidence intervals and effect sizes favored the treatment group on the Timed Up and Go and the Two-Minute Walk Test, with both groups meeting minimal clinical important differences after training. More individuals in the treatment group than in the control group showed reduced impairment in the lower extremity as measured by the Chedoke McMaster Leg domain (P=0.04) immediately after training. This VR exercise intervention for inpatient stroke rehabilitation improved mobility-related outcomes. Future studies could include nonambulatory participants as well as the implementation strategies for the clinical use of VR. http://www.ANZCTR.org.au/. Unique identifier: ACTRN12613000710729. © 2014 American Heart Association, Inc.
Visual task performance using a monocular see-through head-mounted display (HMD) while walking.
Mustonen, Terhi; Berg, Mikko; Kaistinen, Jyrki; Kawai, Takashi; Häkkinen, Jukka
2013-12-01
A monocular see-through head-mounted display (HMD) allows the user to view displayed information while simultaneously interacting with the surrounding environment. This configuration lets people use HMDs while they are moving, such as while walking. However, sharing attention between the display and environment can compromise a person's performance in any ongoing task, and controlling one's gait may add further challenges. In this study, the authors investigated how the requirements of HMD-administered visual tasks altered users' performance while they were walking. Twenty-four university students completed 3 cognitive tasks (high- and low-working memory load, visual vigilance) on an HMD while seated and while simultaneously performing a paced walking task in a controlled environment. The results show that paced walking worsened performance (d', reaction time) in all HMD-administered tasks, but visual vigilance deteriorated more than memory performance. The HMD-administered tasks also worsened walking performance (speed, path overruns) in a manner that varied according to the overall demands of the task. These results suggest that people's ability to process information displayed on an HMD may worsen while they are in motion. Furthermore, the use of an HMD can critically alter a person's natural performance, such as their ability to guide and control their gait. In particular, visual tasks that involve constant monitoring of the HMD should be avoided. These findings highlight the need for careful consideration of the type and difficulty of information that can be presented through HMDs while still letting the user achieve an acceptable overall level of performance in various contexts of use. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A Spatial Agent-Based Model for the Simulation of Adults’ Daily Walking Within a City
Yang, Yong; Roux, Ana V. Diez; Auchincloss, Amy H.; Rodriguez, Daniel A.; Brown, Daniel G.
2012-01-01
Environmental effects on walking behavior have received attention in recent years because of the potential for policy interventions to increase population levels of walking. Most epidemiologic studies describe associations of walking behavior with environmental features. These analyses ignore the dynamic processes that shape walking behaviors. A spatial agent-based model (ABM) was developed to simulate peoples’ walking behaviors within a city. Each individual was assigned properties such as age, SES, walking ability, attitude toward walking and a home location. Individuals perform different activities on a regular basis such as traveling for work, for shopping, and for recreation. Whether an individual walks and the amount she or he walks is a function distance to different activities and her or his walking ability and attitude toward walking. An individual’s attitude toward walking evolves over time as a function of past experiences, walking of others along the walking route, limits on distances walked per day, and attitudes toward walking of the other individuals within her/his social network. The model was calibrated and used to examine the contributions of land use and safety to socioeconomic differences in walking. With further refinement and validation, ABMs may help to better understand the determinants of walking and identify the most promising interventions to increase walking. PMID:21335269
Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H
2017-07-01
Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals. Copyright © 2017 the American Physiological Society.
Effect of 6-min Walk Test on pro-BNP Levels in Patients with Pulmonary Arterial Hypertension.
Pathak, Vikas; Aris, Robert; Jensen, Brian C; Huang, Wei; Ford, Hubert James
2018-06-01
Plasma pro-BNP (brain natriuretic peptide) levels are often elevated in response to right ventricular (RV) volume and pressure overload, parameters potentially affected by exercise. Plasma pro-BNP levels change in association with long-term changes in pulmonary hemodynamics, thereby serving as a potential biomarker in pulmonary arterial hypertension (PAH). The 6-min Walk Test (6MWT) and pro-BNP level are often checked in a single office visit. There is no universal standard for measuring Pro-BNP levels relative to the timing of the 6MWT. Based on the studies in normal subjects indicating that pro-BNP levels changes after exercise, we hypothesized that the pro-BNP might rise after the 6MWT in PAH patients, potentially impacting clinical decisions. Patients at our center with WHO Group 1 PAH on active therapy at a stable dose for 30 days or more were enrolled. After resting the patient for 30 min, blood was drawn for baseline pro-BNP and a 6MWT was performed. Pro-BNP levels were drawn immediately after the 6MWT and 1 and 2 h later. Pro-BNP was measured using a commercially available ELISA kit. The levels before exercise and after exercise were compared using student's paired t tests. There were 17 females and 3 male subjects. The mean age was 53 ± 11 years. Seven patients had systemic lupus erythematosus-related PAH, six had idiopathic PAH, three had scleroderma, three had portopulmonary hypertension, and one had HIV-related PAH. The mean PA pressure was 50 ± 15 mmHg with a mean pulmonary vascular resistance of 10 ± 4 Wood units. The majority of the patients were on multimodality PAH therapy, including parenteral prostacyclins. Mean 6MWT distance was 377 ± 140 m. In 14/20 patients, the pro-BNP level increased immediately after the 6MWT; in 12/20 patients, the pro-BNP level was elevated at 1 h post exercise. In the majority of the patients, the pro-BNP fell to baseline 2 h post 6MWT. There appears to be a trend of pro-BNP level increasing immediately after exercise and continuing to be elevated at 1 h. Pro-BNP levels then return to baseline at 2 h post 6MWT.
Baranchuk, Adrian; Healey, Jeff S; Thorpe, Kevin E; Morillo, Carlos A; Nair, Girish; Crystal, Eugene; Kerr, Charles R; Connolly, Stuart J
2007-08-01
Although several randomized trials have detected no reduction in major cardiovascular events with the routine use of dual-chamber as opposed to ventricular pacemakers, many individuals continue to advocate their use as a means of improving exercise capacity. The Canadian Trial of Physiological Pacing (CTOPP) trial is the largest trial comparing ventricular pacing to atrial-based pacing (atrial or dual-chamber) in patients with bradycardia. All patients in this trial were asked to complete a 6-minute hall walk test (6MWT) at the time of their first study follow-up. The distance walked in 6 minutes and the patient's heart rate before and immediately after the walk were recorded. Of the 2568 patients in the CTOPP, 76% completed the 6MWT. The mean distance walked was 350 +/- 127 m in the ventricular pacing group and 356 +/- 127 m in the atrial-based group (P = NS). Similarly, there was no difference in the change in heart rate between the two groups (17 +/- 13 vs. 18 +/- 12 bpm: P = NS). However, among patients with an unpaced heart rate of =60 bpm, patients assigned to atrial-based pacing walked farther than those randomized to ventricular pacing (361 +/- 127 vs. 343 +/- 121 m; P = .04). This was not associated with a difference in heart rate. The use of rate-adaptive pacing, irrespective of the pacing mode, resulted in a greater increase in heart rate with the 6MWT but no increase in the total distance walked. The routine use of atrial-based pacemakers, instead of ventricular pacemakers, does not improve exercise capacity, as measured by the 6MWT. However, patients with an unpaced heart rate of =60 bpm may achieve a modest increase in their exercise capacity with atrial-based pacing.
Effects of physical guidance on short-term learning of walking on a narrow beam.
Domingo, Antoinette; Ferris, Daniel P
2009-11-01
Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience.
Knaepen, Kristel; Marusic, Uros; Crea, Simona; Rodríguez Guerrero, Carlos D; Vitiello, Nicola; Pattyn, Nathalie; Mairesse, Olivier; Lefeber, Dirk; Meeusen, Romain
2015-04-01
Walking with a lower limb prosthesis comes at a high cognitive workload for amputees, possibly affecting their mobility, safety and independency. A biocooperative prosthesis which is able to reduce the cognitive workload of walking could offer a solution. Therefore, we wanted to investigate whether different levels of cognitive workload can be assessed during symmetrical, asymmetrical and dual-task walking and to identify which parameters are the most sensitive. Twenty-four healthy subjects participated in this study. Cognitive workload was assessed through psychophysiological responses, physical and cognitive performance and subjective ratings. The results showed that breathing frequency and heart rate significantly increased, and heart rate variability significantly decreased with increasing cognitive workload during walking (p<.05). Performance measures (e.g., cadence) only changed under high cognitive workload. As a result, psychophysiological measures are the most sensitive to identify changes in cognitive workload during walking. These parameters reflect the cognitive effort necessary to maintain performance during complex walking and can easily be assessed regardless of the task. This makes them excellent candidates to feed to the control loop of a biocooperative prosthesis in order to detect the cognitive workload. This information can then be used to adapt the robotic assistance to the patient's cognitive abilities. Copyright © 2015 Elsevier B.V. All rights reserved.
Marek, W; Marek, E; Vogel, P; Mückenhoff, K; Kotschy-Lang, N
2008-11-01
AIMS OF THE INVESTIGATION: The 6-minute-walk-test (6-MW) is an effective tool for measuring physical fitness in elderly patients. The increased walking distance is taken as a parameter for improved physical conditions. Frequently an unaltered walking distance is found after clinical treatment, but heart rate is significantly lower in the second challenge, indicating an improved physical fitness. This positive effect is not recognised when only the walking distance is analysed. An analysis of the 6-MW test was performed on 263 patients before and after 3 - 4 weeks clinical rehabilitation. In a control group of 26 patients 6-MW was repeated after recovery at the beginning and the end of the clinical treatment. Instrumented by a mobile pulse oximeter for recording oxygen saturation and heart rate, patients were instructed to walk as fast as they can do during 6 minutes. Measurements were performed every 30 seconds and printed out. Two new parameters, efficiency (E = S/f (C)), the ratio of distance and mean heart rate, and the theoretical increase in walking distance (S (z) = Delta f (C1)/Delta f (C2) x S (2) - S (1)) were introduced and tested. S (z) = theoretical increase in distance, Delta f (C1) = difference in heart rate at rest and mean heart rate at steady state during the first walk test with distance, S1. Delta f (C2), and S2 are measured during the second walk. Thus, the increase in distance is calculated under the assumption that the second walk test would have been performed by the patient with the same difference in heart rate that he/she achieved in the first walk. The patient groups walked 353 +/- 80 m at 106 +/- 14.3 beats/min in the 1st. 6-MW and 368 +/- 76.9 m at a heart rate of 105 +/- 14.0 beats/min in the final test. The increase of the walking distance was most significant in patients with shorter distances in the 1st 6-MW. A significant increase in the walking distance and in efficiency was found in patients with shorter walking distances or lower heart rates in the final test, using the numerical procedure described above. The patient's performance of the second walk test with an unchanged distance at a lower heart rate reveals an improved physical fitness. This is solely described by an increase by the parameter of efficiency, E. The calculation of the parameter, Sz, theoretical difference in walking distance (i. e., theoretical increase in almost all tests) provides a quantification of the effect of exercise training, even if the patient is not cooperative during the tests. Both parameters have proved to be suitable estimations for the assessment of physical fitness as a beneficial effect of clinical rehabilitation.
Kabeya, Yusuke; Goto, Atsushi; Kato, Masayuki; Matsushita, Yumi; Takahashi, Yoshihiko; Isogawa, Akihiro; Inoue, Manami; Mizoue, Tetsuya; Tsugane, Shoichiro; Kadowaki, Takashi; Noda, Mitsuhiko
2016-01-01
The association between time spent walking and risk of diabetes was investigated in a Japanese population-based cohort. Data from the Japan Public Health Center-based Prospective Diabetes cohort were analyzed. The surveys of diabetes were performed at baseline and at the 5-year follow-up. Time spent walking per day was assessed using a self-reported questionnaire (<30 minutes, 30 minutes to <1 hour, 1 to <2 hours, or ≥2 hours). A cross-sectional analysis was performed among 26 488 adults in the baseline survey. Logistic regression was used to examine the association between time spent walking and the presence of unrecognized diabetes. We then performed a longitudinal analysis that was restricted to 11 101 non-diabetic adults who participated in both the baseline and 5-year surveys. The association between time spent walking and the incidence of diabetes during the 5 years was examined. In the cross-sectional analysis, 1058 participants had unrecognized diabetes. Those with time spent walking of <30 minutes per day had increased odds of having diabetes in relation to those with time spent walking of ≥2 hours (adjusted odds ratio [OR] 1.23; 95% CI, 1.02-1.48). In the longitudinal analysis, 612 participants developed diabetes during the 5 years of follow-up. However, a significant association between time spent walking and the incidence of diabetes was not observed. Increased risk of diabetes was implied in those with time spent walking of <30 minutes per day, although the longitudinal analysis failed to show a significant result.
Variety Wins: Soccer-Playing Robots and Infant Walking
Ossmy, Ori; Hoch, Justine E.; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E.
2018-01-01
Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a “feature” or a “bug?” In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of “RoboCup.” In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths—straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence. PMID:29867427
The Effects of a Secondary Task on Forward and Backward Walking in Parkinson Disease
Hackney, Madeleine E.; Earhart, Gammon M.
2009-01-01
Background People with Parkinson disease (PD) often fall while multi-tasking or walking backward, unavoidable activities in daily living. Dual tasks involving cognitive demand during gait and unfamiliar motor skills like backward walking could identify those with fall risk, but dual tasking while walking backward has not been examined in those with PD, those who experience Freezing of Gait (FOG), or healthy older controls. Methods Seventy-eight people with PD (mean age = 65.1±9.5 years, Female: 28%) and 74 age- and sex-matched controls (mean age = 65.0±10.0 years, Female: 23%) participated. A computerized walkway measured gait velocity, stride length, swing and stance percent, cadence, heel to heel base of support, functional ambulation profile, and gait asymmetry during forward and backward walking with and without a secondary cognitive task. Results Direction and task effects on walking performance were similar between healthy controls and those with PD. However, those with PD were more affected than controls, and freezers were more affected than non-freezers, by backward walking and dual tasking. Walking backward seemed to impact gait more than dual tasking in those with PD, although the subset of freezers appeared particularly impacted by both challenges. Conclusion People with PD are impaired while performing complex motor and mental tasks simultaneously, which may put them at risk for falling. Those with FOG are more adversely affected by both motor and mental challenges than those without. Evaluation of backward walking while performing a secondary task might be an effective clinical tool to identify locomotor difficulties. PMID:19675121
Wu, Wen-Lan; Wei, Ta-Sen; Chen, Shen-Kai; Chang, Jyh-Jong; Guo, Lan-Yuen; Lin, Hwai-Ting
2010-01-01
Walking performance changes with age. This has implications for the problem of falls in older adults. The aim of this study was to investigate the effects of Yuanji-Dance practice on walking balance and the associated attention demand in healthy elderly. Fifteen community-dwelling elderly (comparison group, no regular exercise habit) and fifteen Yuanji- Dance elderly (exercise group, dancing experience: 5.40 ± 1.95 years), aged 60-70 years, were included in this study. The subjects in exercise group participated in a 90-minute Yuanji-Dance practice at least three times per week and the comparison group continued their normal daily physical activity. Walking balance measures (including walking velocity, step length, step width, and percentage of time spent in double limb support, COM velocity and COM-COP inclination angles) and attentional demand tests (button reaction time and accuracy) were conducted under different conditions. Our results showed that stride lengths, walking velocities, peak A/P velocities (AP V) of the COM, medial COM-COP inclination (M angle) angles, reaction time, and accuracy decrease significantly as the dual-task (walking plus hand button pressing tasks) applied for either the comparison or exercise groups. These results demonstrated that walking performance is attenuated in our elderly participants as the cognitive tasks applied. Analysis also identified a significantly faster RT for our exercise group both in standing and walking conditions. This may indicate that physical exercise (Yuanji-Dance) may have facilitating effects on general cognitive and perceptual- motor functions. This implies that Chinese Yuanji-Dance practice for elderly adults may improve their personal safety when walking especially under the condition of multiple task demand. Key points The purpose of this study was to investigate the training effects of a Chinese traditional exercise, Yuanji-Dance, on walking balance and the associated attention demand in the healthy elderly. Walking performance is attenuated in elderly participants as the cognitive tasks applied. A significantly faster reaction time for our exercise group both in standing and walking conditions. Yuanji-Dance exercise training can improve the information processing speed of elderly people and has no influence of the dynamic walking balance. PMID:24149395
Nordic Walking and chronic low back pain: design of a randomized clinical trial
Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis; Manniche, Claus
2006-01-01
Background Low Back Pain is a major public health problem all over the western world. Active approaches including exercise in the treatment of low back pain results in better outcomes for patients, but it is not known exactly which types of back exercises are most beneficial or whether general physical activity provide similar benefits. Nordic Walking is a popular and fast growing type of exercise in Northern Europe. Initial studies have demonstrated that persons performing Nordic Walking are able to exercise longer and harder compared to normal walking thereby increasing their cardiovascular metabolism. Until now no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to low back pain. The primary aim of this study is to investigate whether supervised Nordic Walking can reduce pain and improve function in a population of chronic low back pain patients when compared to unsupervised Nordic Walking and advice to stay active. In addition we investigate whether there is an increase in the cardiovascular metabolism in persons performing supervised Nordic Walking compared to persons who are advised to stay active. Finally, we investigate whether there is a difference in compliance between persons receiving supervised Nordic Walking and persons doing unsupervised Nordic Walking. Methods One hundred and fifty patients with low back pain for at least eight weeks and referred to a specialized secondary sector outpatient back pain clinic are included in the study. After completion of the standard back centre treatment patients are randomized into one of three groups: A) Nordic Walking twice a week for eight weeks under supervision of a specially trained instructor; B) Unsupervised Nordic Walking for eight weeks after one training session with an instructor; C) A one hour motivational talk including advice to stay active. Outcome measures are pain, function, overall health, cardiovascular ability and activity level. Results No results available at this point. Discussion This study will investigate the effect of Nordic Walking on pain and function in a population of people with chronic LBP. Trial Registration registration # NCT00209820 PMID:17014731
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session.
Gudlaugsson, Janus; Gudnason, Vilmundur; Aspelund, Thor; Siggeirsdottir, Kristin; Olafsdottir, Anna S; Jonsson, Palmi V; Arngrimsson, Sigurbjorn A; Harris, Tamara B; Johannsson, Erlingur
2012-09-10
Older adults have the highest rates of disability, functional dependence and use of healthcare resources. Training interventions for older individuals are of special interest where regular physical activity (PA) has many health benefits. The main purpose of this study was to assess the immediate and long-term effects of a 6-month multimodal training intervention (MTI) on functional fitness in old adults. For this study, 117 participants, 71 to 90 years old, were randomized in immediate intervention group and a control group (delayed intervention group). The intervention consisted of daily endurance and twice-a-week strength training. The method was based on a randomized-controlled cross-over design. Short Physical Performance Battery (SPPB), 8 foot up-and-go test, strength performance, six min walking test (6 MW), physical activity, BMI and quality of life were obtained at baseline, after a 6-month intervention- and control phase, again after 6-month crossover- and delayed intervention phase, and after anadditional 6-month follow-up. After 6 months of MTI, the intervention group improved in physical performance compared with the control group via Short Physical Performance Battery (SPPB) score (mean diff = 0.6, 95 % CI: 0.1, 1.0) and 8-foot up-and-go test (mean diff = -1.0 s, 95 % CI: -1.5, -0.6), and in endurance performance via 6-minute walking test (6 MW) (mean diff = 44.2 meters, 95 % CI: 17.1, 71.2). In strength performance via knee extension the intervention group improved while control group declined (mean diff = 55.0 Newton, 95 % CI: 28.4, 81.7), and also in PA (mean diff = 125.9 cpm, 95 % CI: 96.0, 155.8). Long-term effects of MTI on the particpants was assesed by estimating the mean difference in the variables measured between time-point 1 and 4: SPPB (1.1 points, 95 % CI: 0.8, 1.4); 8-foot up-and-go (-0.9 s, 95 % CI: -1.2, -0.6); 6 MW (18.7 m, 95 % CI: 6.5, 31.0); knee extension (4.2 Newton, 95 % CI: -10.0, 18.3); hand grip (6.7 Newton, 95 % CI: -4.4, 17.8); PA (-4.0 cpm, 95 % CI: -33.9, 26.0); BMI (-0.6 kg/m2, 95 % CI: -0.9, -0.3) and Icelandic quality of life (0.3 points, 95 % CI: -0.7, 1.4). Our results suggest that regular MTI can improve and prevent decline in functional fitness in older individuals, influence their lifestyle and positively affect their ability to stay independent, thus reducing the need for institutional care. This study was approved by the National Bioethics Committee in Iceland, VSNb20080300114/03-1.
Quantum walks with an anisotropic coin II: scattering theory
NASA Astrophysics Data System (ADS)
Richard, S.; Suzuki, A.; de Aldecoa, R. Tiedra
2018-05-01
We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest.
Gainey, Atikarn; Himathongkam, Thep; Tanaka, Hirofumi; Suksom, Daroonwan
2016-06-01
To investigate and compare the effects of Buddhist walking meditation and traditional walking on glycemic control and vascular function in patients with type 2 diabetes mellitus. Twenty three patients with type 2 diabetes (50-75 years) were randomly allocated into traditional walking exercise (WE; n=11) or Buddhism-based walking meditation exercise (WM; n=12). Both groups performed a 12-week exercise program that consisted of walking on the treadmill at exercise intensity of 50-70% maximum heart rate for 30min/session, 3 times/week. In the WM training program, the participants performed walking on the treadmill while concentrated on foot stepping by voiced "Budd" and "Dha" with each foot step that contacted the floor to practice mindfulness while walking. After 12 weeks, maximal oxygen consumption increased and fasting blood glucose level decreased significantly in both groups (p<0.05). Significant decrease in HbA1c and both systolic and diastolic blood pressure were observed only in the WM group. Flow-mediated dilatation increased significantly (p<0.05) in both exercise groups but arterial stiffness was improved only in the WM group. Blood cortisol level was reduced (p<0.05) only in the WM group. Buddhist walking meditation exercise produced a multitude of favorable effects, often superior to traditional walking program, in patients with type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rangi Ruru Walk: Social and Spatial Connections through Hybrid Intermedial Practices
ERIC Educational Resources Information Center
Wood, Becca; Mullen, Molly
2016-01-01
In 2013 Becca Wood, Spatial Performance Practitioner, and Molly Mullen, Applied Theatre Practitioner, collaborated to create a short ambulatory performance with audio score for a group of drama educators attending a conference workshop on the possibilities of walking as performance. The performance was created remotely from the intended site:…
Gollie, Jared M; Guccione, Andrew A; Panza, Gino S; Jo, Peter Y; Herrick, Jeffrey E
2017-06-01
To determine the effects of a novel overground locomotor training program on walking performance in people with chronic cervical motor incomplete spinal cord injury (iSCI). Before-after pilot study. Human performance research laboratory. Adults (N=6, age >18y) with chronic cervical iSCI with American Spinal Injury Association Impairment Scale grades C and D. Overground locomotor training included two 90-minute sessions per week for 12 to 15 weeks. Training sessions alternated between uniplanar and multiplanar stepping patterns. Each session was comprised of 5 segments: joint mobility, volitional muscle activation, task isolation, task integration, and activity rehearsal. Overground walking speed, oxygen consumption (V˙o 2 ), and carbon dioxide production (V˙co 2 ). Overground locomotor training increased overground walking speed (.36±.20 vs .51±.24 m/s, P<.001, d=.68). Significant decreases in V˙o 2 (6.6±1.3 vs 5.7±1.4mL·kg·min, P=.038, d=.67) and V˙co 2 (753.1±125.5 vs 670.7±120.3mL/min, P=.036, d=.67) during self-selected constant work rate treadmill walking were also noted after training. The overground locomotor training program used in this pilot study is feasible and improved both overground walking speed and walking economy in a small sample of people with chronic cervical iSCI. Future studies are necessary to establish the efficacy of this overground locomotor training program and to differentiate among potential mechanisms contributing to enhanced walking performance in people with iSCI after overground locomotor training. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Use of mobility aids reduces attentional demand in challenging walking conditions.
Miyasike-daSilva, Veronica; Tung, James Y; Zabukovec, Jeanie R; McIlroy, William E
2013-02-01
While mobility aids (e.g., four-wheeled walkers) are designed to facilitate walking and prevent falls in individuals with gait and balance impairments, there is evidence indicating that walkers may increase attentional demands during walking. We propose that walkers may reduce attentional demands under conditions that challenge balance control. This study investigated the effect of walker use on walking performance and attentional demand under a challenged walking condition. Young healthy subjects walked along a straight pathway, or a narrow beam. Attentional demand was assessed with a concurrent voice reaction time (RT) task. Slower RTs, reduced gait speed, and increased number of missteps (>92% of all missteps) were observed during beam-walking. However, walker use reduced attentional demand (faster RTs) and was linked to improved walking performance (increased gait speed, reduced missteps). Data from two healthy older adult cases reveal similar trends. In conclusion, mobility aids can be beneficial by reducing attentional demands and increasing gait stability when balance is challenged. This finding has implications on the potential benefit of mobility aids for persons who rely on walkers to address balance impairments. Copyright © 2012 Elsevier B.V. All rights reserved.
Strotmeyer, Elsa S.; de Rekeneire, Nathalie; Schwartz, Ann V.; Faulkner, Kimberly A.; Resnick, Helaine E.; Goodpaster, Bret H.; Shorr, Ronald I.; Vinik, Aaron I.; Harris, Tamara B.; Newman, Anne B.
2008-01-01
OBJECTIVE—Poor peripheral nerve function is prevalent in diabetes and older populations, and it has great potential to contribute to poor physical performance. RESEARCH DESIGN AND METHODS—Cross-sectional analyses were done for the Health, Aging, and Body Composition (Health ABC) Study participants (n = 2,364; 48% men; 38% black; aged 73–82 years). Sensory and motor peripheral nerve function in legs/feet was assessed by 10- and 1.4-g monofilament perception, vibration detection, and peroneal motor nerve conduction amplitude and velocity. The Health ABC lower-extremity performance battery was a supplemented version of the Established Populations for the Epidemiologic Studies of the Elderly battery (chair stands, standing balance, and 6-m walk), adding increased stand duration, single foot stand, and narrow walk. RESULTS—Diabetic participants had fewer chair stands (0.34 vs. 0.36 stands/s), shorter standing balance time (0.69 vs. 0.75 ratio), slower usual walking speed (1.11 vs. 1.14 m/s), slower narrow walking speed (0.80 vs. 0.90 m/s), and lower performance battery score (6.43 vs. 6.93) (all P < 0.05). Peripheral nerve function was associated with each physical performance measure independently. After addition of peripheral nerve function in fully adjusted models, diabetes remained significantly related to a lower performance battery score and slower narrow walking speed but not to chair stands, standing balance, or usual walking speed. CONCLUSIONS—Poor peripheral nerve function accounts for a portion of worse physical performance in diabetes and may be directly associated with physical performance in older diabetic and nondiabetic adults. The impact of peripheral nerve function on incident disability should be evaluated in older adults. PMID:18535192
Glasauer, S; Amorim, M-A; Viaud-Delmon, I; Berthoz, A
2002-08-01
While we walk through the environment, we constantly receive inputs from different sensory systems. For us to accomplish a given task, for example to reach a target location, the sensory information has to be integrated to update our knowledge of self-position and self-orientation with respect to the target so that we can correctly plan and perform the remaining trajectory. As has been shown previously, vestibular information plays a minor role in the performance of linear goal-directed locomotion when walking blindfolded toward a previously seen target within a few meters. The present study extends the question of whether vestibular information is a requirement for goal-directed locomotion by studying a more complex task that also involves rotation: walking a triangular path. Furthermore, studying this task provides information about how we walk a given trajectory, how we move around corners, and whether we are able to return to the starting point. Seven young male, five labyrinthine-defective (LD) and five age- and gender-matched control subjects were asked to walk a previously seen triangular path, which was marked on the ground, first without vision (EC) and then with vision (EO). Each subject performed three clockwise (CW) and three counterclockwise (CCW) walks under the EC condition and one CW and CCW walk under the EO condition. The movement of the subjects was recorded by means of a 3D motion analysis system. Analysis of the data showed that LD subjects had, in the EC condition, a significantly larger final arrival error, which was due to increased directional errors during the turns. However, there was no difference between the groups as regards the overall path length walked. This shows that LD subjects were able to plan and execute the given trajectory without vision, but failed to turn correctly around the corners. Hence, the results demonstrate that vestibular information enhances the ability to perform a planned trajectory incorporating whole body rotations when no visual feedback is available.
Waller, B; Munukka, M; Rantalainen, T; Lammentausta, E; Nieminen, M T; Kiviranta, I; Kautiainen, H; Häkkinen, A; Kujala, U M; Heinonen, A
2017-08-01
To investigate the effects of 4-months intensive aquatic resistance training on body composition and walking speed in post-menopausal women with mild knee osteoarthritis (OA), immediately after intervention and after 12-months follow-up. Additionally, influence of leisure time physical activity (LTPA) will be investigated. This randomised clinical trial assigned eighty-seven volunteer postmenopausal women into two study arms. The intervention group (n = 43) participated in 48 supervised intensive aquatic resistance training sessions over 4-months while the control group (n = 44) maintained normal physical activity. Eighty four participants continued into the 12-months' follow-up period. Body composition was measured with dual-energy X-ray absorptiometry (DXA). Walking speed over 2 km and the knee injury and osteoarthritis outcome score (KOOS) were measured. LTPA was recorded with self-reported diaries. After the 4-month intervention there was a significant decrease (P = 0.002) in fat mass (mean change: -1.17 kg; 95% CI: -2.00 to -0.43) and increase (P = 0.002) in walking speed (0.052 m/s; 95% CI: 0.018 to 0.086) in favour of the intervention group. Body composition returned to baseline after 12-months. In contrast, increased walking speed was maintained (0.046 m/s; 95% CI 0.006 to 0.086, P = 0.032). No change was seen in lean mass or KOOS. Daily LTPA over the 16-months had a significant effect (P = 0.007) on fat mass loss (f 2 = 0.05) but no effect on walking speed. Our findings show that high intensity aquatic resistance training decreases fat mass and improves walking speed in post-menopausal women with mild knee OA. Only improvements in walking speed were maintained at 12-months follow-up. Higher levels of LTPA were associated with fat mass loss. ISRCTN65346593. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
"Pokémon Go!" May Promote Walking, Discourage Sedentary Behavior in College Students.
Barkley, Jacob E; Lepp, Andrew; Glickman, Ellen L
2017-06-01
To assess self-reported walking and sedentary behavior in young adults before and after downloading "Pokémon Go!". In September 2016, a sample of 358 (19.8 ± 2.1 years old, n = 187 females) college students who had downloaded "Pokémon Go!" on their cellular telephones (i.e., cell phones) were surveyed for weekly walking and sedentary behavior via the International Physical Activity Questionnaire. A single interview was administered to participants who estimated their walking and sedentary behavior at three time points: the week immediately preceding their download of "Pokémon Go!" (Baseline), the first week after downloading the game (Time 1), and the week the survey was completed (Time 2). Differences in self-reported physical activity and sedentary behavior across the three time points and across the two genders were compared via analyses of variance. There was a significant main effect of time (F ≥ 49.3, P ≤ 0.001) for walking and sedentary behavior. Participants reported greater (t ≥ 9.5, P < 0.001) daily walking during Time 1 (218.6 ± 156.3 minutes) and Time 2 (182.7 ± 172.1 minutes) versus the baseline (108.5 ± 110.8 minutes). Walking behavior was also significantly greater (t = 4.1, P < 0.001) at Time 1 versus Time 2. Participants reported greater (t ≥ 6.5, P < 0.001) daily sedentary behavior during baseline (346.6 ± 201.3 minutes) versus both Time 1 (261.7 ± 172.4 minutes) and Time 2 (284.3 ± 175.4 minutes). Sedentary behavior was also significantly greater (t = 2.6, P = 0.03) at Time 2 versus Time 1. There were no effects of gender (F ≤ 1.8, P ≥ 0.17). Playing "Pokémon Go!" was associated with increased self-reported walking and decreased sedentary behavior. Such games hold promise as technology that may promote physical activity and discourage sedentary behavior.
Karstoft, Kristian; Clark, Margaret A; Jakobsen, Ida; Müller, Ida A; Pedersen, Bente K; Solomon, Thomas P J; Ried-Larsen, Mathias
2017-03-01
The aim of this study was to evaluate the effects of oxygen consumption-matched short-term interval walking training (IWT) vs continuous walking training (CWT) on glycaemic control, including glycaemic variability, in individuals with type 2 diabetes. We also assessed whether any training-induced improvements in glycaemic control were associated with systemic oxidative stress levels. Participants (n = 14) with type 2 diabetes completed a crossover trial using three interventions (control intervention [CON], CWT and IWT), each lasting 2 weeks. These were performed in a randomised order (computerised generated randomisation) and separated by washout periods of 4 or 8 weeks after CON or training interventions, respectively. Training included ten supervised treadmill sessions, lasting 60 min/session, and was performed at the research facility. CWT was performed at moderate walking speed (75.6% ± 2.5% of walking peak oxygen consumption [[Formula: see text
Giannotti, Erika; Koutsikos, Konstantinos; Pigatto, Maurizia; Rampudda, Maria Elisa; Doria, Andrea
2014-01-01
Objective. To propose a rehabilitation protocol able to produce immediate and long-term beneficial effects on level of disability and overall performance in ADLs. Materials and Methods. Forty-one FM patients were randomized to an exercise and educational-behavioral programme group (experimental group, EG = 21) or to a control group (CG = 20). Each subject was evaluated before, at the end (T1), and after 6 months (T6) from the conclusion of the rehabilitation treatment using the Fibromyalgia Impact Questionnaire (FIQ), the visual analogue scale (VAS), the Health Assessment Questionnaire (HAQ), the fatigue severity scale (FSS), the 6-minute walking test (6MWT), tender points count (TPC), and spinal active range of motion. The exercise protocol included 20 sessions consisting in self-awareness, stretching, strengthening, spine flexibility, and aerobic exercises, which patients were subsequently educated to perform at home. Results. The two groups were comparable at baseline. At T1, the EG showed a positive trend in FIQ, VAS, HAQ, and FSS scales and significant improvement in 6MWT and in most spinal active range of motion measurements (P between 0.001 and 0.04). The positive results were maintained at the follow-up. Conclusion. The proposed programme was well tolerated and produced immediate and medium-term beneficial effects improving function and strain endurance. This trial is registered with DRKS00005071 on DRKS. PMID:24616894
Treatment of acute achilles tendon rupture with the panda rope bridge technique.
Yin, Liangjun; Wu, Yahong; Ren, Changsong; Wang, Yizhong; Fu, Ting; Cheng, Xiangjun; Li, Ruidong; Nie, Mao; Mu, Yuan
2018-03-01
Although nonsurgical methods and many surgical techniques have been developed for repairing a ruptured Achilles tendon, there is no consensus on its best treatment. In this article, a novel minimally invasive technique called the Panda Rope Bridge Technique (PRBT) is described. Patient with acute Achilles tendon rupture was operated on in the prone position. The PRBT begin with making the proximal bridge anchor (Krackow sutures in the myotendinous junction), the distal bridge anchor (two suture anchors in the calcaneus bone) and the ropes (threads of the suture anchors) stretched between the anchor sites. Then a small incision was made to debride and reattach the stumps of ruptured tendon. After the surgery, no cast or splint fixation was applied. All patients performed enhanced recovery after surgery (ERAS), which included immediate ankle mobilisation from day 1, full weight-bearing walking from day 5 to 7, and gradually take part in athletic exercises from 8 weeks postoperatively. PBRT was performed in 11patients with acute Achilles tendon rupture between June 2012 and June 2015. No wound infection, fistula, skin necrosis, sural nerve damage, deep venous thrombosis or tendon re-rupture was found. One year after the surgery, all patients reported 100 AOFAS ankle-hindfoot score points and the mean ATRS was 96.6. The PRBT is a simple, effective and minimally invasive technique, with no need for immobilisation of the ankle, making possible immediate and aggressive postoperative rehabilitation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Johnston, Catherine L; Maxwell, Lyndal J; Boyle, Eileen; Maguire, Graeme P; Alison, Jennifer A
2013-01-01
To evaluate the impact of a chronic lung disease management training programme, Breathe Easy Walk Easy (BEWE), for rural and remote health-care practitioners. Quasi-experimental, before and after repeated measures design. Health-care practitioners (n = 33) from various professional backgrounds who attended the BEWE training workshop were eligible to participate. Breathe Easy Walk Easy, an interactive educational programme, consisted of a training workshop, access to online resources, provision of community awareness-raising materials and ongoing telephone/email support. Participant confidence, knowledge and attitudes were assessed via anonymous questionnaire before, immediately after and at 3 and 12 months following the BEWE workshop. At 12 months, local provision of pulmonary rehabilitation services and patient outcome data (6-min walk test results before and after pulmonary rehabilitation) were also recorded. Measured knowledge (score out of 19) improved significantly after the workshop (mean difference 7.6 correct answers, 95% confidence interval: 5.8-9.3). Participants' self-rated confidence and knowledge also increased. At 12-month follow up, three locally run pulmonary rehabilitation programmes had been established. For completing patients, there was a significant increase in 6-min walk distance following rehabilitation of 48 m (95% confidence interval: 18-70 m). The BEWE programme increased rural and remote health-care practitioner knowledge and confidence in delivering management for people living with chronic lung disease and facilitated the establishment of effective pulmonary rehabilitation programmes in regional and remote Australian settings where access to such programmes is limited. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.
Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton.
Galle, Samuel; Malcolm, Philippe; Derave, Wim; De Clercq, Dirk
2014-11-01
A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15%) at 5 km h(-1) and 5% of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 ± 2.49; 8.14 ± 2.24 mmol L(-1)), heart rate (respectively, 190.00 ± 6.50; 191.78 ± 6.50 bpm), Borg score (respectively, 18.57 ± 0.79; 18.93 ± 0.73) and VO₂ peak (respectively, 40.55 ± 2.78; 40.55 ± 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 ± 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities.
Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri
Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.
Gait performance is not influenced by working memory when walking at a self-selected pace.
Grubaugh, Jordan; Rhea, Christopher K
2014-02-01
Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2014-01-01
Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.
Eikema, D J A; Forrester, L W; Whitall, J
2014-09-01
One target for rehabilitating locomotor disorders in older adults is to increase mobility by improving walking velocity. Combining rhythmic auditory cueing (RAC) and treadmill training permits the study of the stride length/stride velocity ratio (SL/SV), often reduced in those with mobility deficits. We investigated the use of RAC to increase velocity by manipulating the SL/SV ratio in older adults. Nine participants (6 female; age: 61.1 ± 8.8 years) walked overground on a gait mat at preferred and fast speeds. After acclimatization to comfortable speed on a treadmill, participants adjusted their cadence to match the cue for 3 min at 115% of preferred speed by either (a) increasing stride length only or (b) increasing stride frequency only. Following training, participants walked across the gait mat at preferred velocity without, and then with, RAC. Group analysis determined no immediate overground velocity increase, but reintroducing RAC did produce an increase in velocity after both conditions. Group and single subject analysis determined that the SL/SV ratio changed in the intended direction only in the stride length condition. We conclude that RAC is a powerful organizer of gait parameters, evidenced by its induced after-effects following short duration training. Copyright © 2014 Elsevier B.V. All rights reserved.
Norepinephrine Remains Increased in the Six-Minute Walking Test after Heart Transplantation
Guimarães, Guilherme Veiga; Avila, Veridiana D’; Bocchi, Edimar Alcides; Carvalho, Vitor Oliveira
2010-01-01
OBJECTIVE: We sought to evaluate the neurohormonal activity in heart transplant recipients and compare it with that in heart failure patients and healthy subjects during rest and just after a 6-minute walking test. INTRODUCTION: Despite the improvements in quality of life and survival provided by heart transplantation, the neurohormonal profile is poorly described. METHODS: Twenty heart transplantation (18 men, 49±11 years and 8.5±3.3 years after transplantation), 11 heart failure (8 men, 43±10 years), and 7 healthy subjects (5 men 39±8 years) were included in this study. Blood samples were collected immediately before and during the last minute of the exercise. RESULTS: During rest, patients’ norepinephrine plasma level (659±225 pg/mL) was higher in heart transplant recipients (463±167 pg/mL) and heathy subjects (512±132), p<0.05. Heart transplant recipient’s norepinephrine plasma level was not different than that of healthy subjects. Just after the 6-minute walking test, the heart transplant recipient’s norepinephrine plasma level (1248±692 pg/mL) was not different from that of heart failure patients (1174±653 pg/mL). Both these groups had a higher level than healthy subjects had (545±95 pg/mL), p<0.05. CONCLUSION: Neurohormonal activity remains increased after the 6-minute walking test after heart transplantation. PMID:20613934
Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z
2017-08-01
Research regarding exercise-induced muscle-damage mainly focuses on adults. The present study examined exercise-induced muscle-damage responses in adults compared with children. Eleven healthy boys (10-12 y) and 15 healthy men (18-45 y) performed 5 sets of 15 maximal eccentric contractions of the knee extensors. Range of motion (ROM), delayed onset muscle soreness (DOMS) during squat and walking, and peak isometric, concentric and eccentric torque were assessed before, post, 24, 48, 72, and 96 hr postexercise. Creatine kinase (CK) activity was assessed before and 72 hr postexercise. Eccentric exercise resulted in DOMS during squat that persisted for up to 96h in men, and 48 hr in boys (p < .05), and DOMS during walking that persisted for up to 72 hr in men, and 48 hr in boys (p < .01). The ROM was lower in both age groups 48 hr postexercise (p < .001). Isometric (p < .001), concentric (p < .01) and eccentric (p < .01) force decreased post, and up to 48 hr postexercise in men. Except for a reduction in isometric force immediately after exercise, no other changes occurred in boys' isokinetic force. CK activity increased in men at 72 hr postexercise compared with pre exercise levels (p = .05). Our data provide further confirmation that children are less susceptible to exercise-induced muscle damage compared with adults.
Kabeya, Yusuke; Goto, Atsushi; Kato, Masayuki; Matsushita, Yumi; Takahashi, Yoshihiko; Isogawa, Akihiro; Inoue, Manami; Mizoue, Tetsuya; Tsugane, Shoichiro; Kadowaki, Takashi; Noda, Mitsuhiko
2016-01-01
Background The association between time spent walking and risk of diabetes was investigated in a Japanese population-based cohort. Methods Data from the Japan Public Health Center-based Prospective Diabetes cohort were analyzed. The surveys of diabetes were performed at baseline and at the 5-year follow-up. Time spent walking per day was assessed using a self-reported questionnaire (<30 minutes, 30 minutes to <1 hour, 1 to <2 hours, or ≥2 hours). A cross-sectional analysis was performed among 26 488 adults in the baseline survey. Logistic regression was used to examine the association between time spent walking and the presence of unrecognized diabetes. We then performed a longitudinal analysis that was restricted to 11 101 non-diabetic adults who participated in both the baseline and 5-year surveys. The association between time spent walking and the incidence of diabetes during the 5 years was examined. Results In the cross-sectional analysis, 1058 participants had unrecognized diabetes. Those with time spent walking of <30 minutes per day had increased odds of having diabetes in relation to those with time spent walking of ≥2 hours (adjusted odds ratio [OR] 1.23; 95% CI, 1.02–1.48). In the longitudinal analysis, 612 participants developed diabetes during the 5 years of follow-up. However, a significant association between time spent walking and the incidence of diabetes was not observed. Conclusions Increased risk of diabetes was implied in those with time spent walking of <30 minutes per day, although the longitudinal analysis failed to show a significant result. PMID:26725285
Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Tanaka, Naofumi; Izumi, Shin-Ichi
2016-02-01
Smartphone use while walking is becoming a public concern owing to an increased risk of falling that can result from cognitive-motor interference. We evaluated prefrontal cortex (PFC) activity in participants playing a smartphone game while walking, in order to elucidate the role of the PFC in the allocation of attention between physical and cognitive demands. Sixteen young and 15 older adults participated in this study. Participants were instructed to perform a touch number-selecting game on a smartphone while walking. The numbers of correct and mistake responses were analyzed as a measure of cognitive performance. Linear trunk accelerations were measured by another smartphone and analyzed for step time and acceleration magnitude as an assay of gait performance. PFC activity during the task was measured using a wearable 16-channel near-infrared spectroscopy system. Smartphone game playing while walking decreased the cognitive and gait performances compared with performances of single-task condition in older group more than in young group. There was no difference in PFC activation during smartphone use while walking between young and older groups, but age appeared to mediate correlation magnitude between PFC activation and changes in performance. In young adults, multiple regression analysis revealed an association of the right PFC with a reduction in acceleration magnitude (β = 0.581, p = 0.023), and an association of the left PFC with an increase in game-playing mistakes (β = -0.556, p = 0.032) during smartphone use while walking. In older adults, multiple regression analysis revealed an association of the middle PFC with a prolongation of step time (β = -0.550, p = 0.042) and of the left PFC with a reduction in acceleration magnitude (β = -0.648, p = 0.012). In young adults, the left PFC inhibited inappropriate action and the right PFC stabilized gait performance. In older adults, a less-lateralized PFC activity pattern suppressed the deterioration of gait performance, but this resulted in impairment on a simultaneous cognitive task. These results suggest that lateralization of motor and cognitive tasks aids in efficient task completion during a complex action such as using a smartphone while walking.
Subcalcaneal Bursitis With Plantar Fasciitis Treated by Arthroscopy
Yamakado, Kotaro
2013-01-01
We report the successful arthroscopic treatment of a case of subcalcaneal bursitis with plantar fasciitis. To our knowledge, this is the first report on arthroscopic excision of a subcalcaneal bursa. Right heel pain developed in a 50-year-old woman, without any obvious cause. She reported that the heel pain occurred immediately after waking and that the heel ached when she walked. Magnetic resonance imaging showed an extra-articular, homogeneous, high-intensity lesion in the fat pad adjacent to the calcaneal tubercle on T2-weighted sagittal and coronal images and thickening of the plantar fascia on T2-weighted sagittal images. A diagnosis of a recalcitrant subcalcaneal bursitis with plantar fasciitis was made, and surgery was performed. The arthroscope was placed between the calcaneus and the plantar fascia. With the surgeon viewing from the lateral portal and working from the medial portal, the dorsal surface of the degenerative plantar fascia was debrided and the medial half of the plantar fascia was released, followed by debridement of the subcalcaneal bursal cavity through the incised plantar fascia. Full weight bearing and gait were allowed immediately after the operation. At the latest follow-up, the patient had achieved complete resolution of heel pain without a recurrence of the mass, confirmed by magnetic resonance imaging. PMID:23875139
Effects of physical guidance on short-term learning of walking on a narrow beam
Domingo, Antoinette; Ferris, Daniel P.
2009-01-01
Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience. PMID:19674900
Dual-tasks and walking fast: relationship to extra-pyramidal signs in advanced Alzheimer disease.
Camicioli, Richard; Bouchard, Thomas; Licis, Lisa
2006-10-25
Extra-pyramidal signs (EPS) and cadence predicted falls risk in patients with advanced Alzheimer disease (AD). Dual task performance predicts falls with variable success. Dual-task performance and walking fast were examined in advanced AD patients with EPS (EPS+, >3 modified Unified Parkinson's Disease Rating Scale [UPDRS] signs) or without EPS (EPS-, three or less UPDRS signs). Demographics, mental and functional status, behavioral impairment, EPS, and quantitative gait measures (GaitRite) were determined. The effects of an automatic dual-task (simple counting) and of walking fast on spatial and temporal gait characteristics were compared between EPS+ and EPS- subjects using a repeated measures design. Cadence decreased, while stride time, swing time and variability in swing time increased with the dual task. Results were insignificant after adjusting for secondary task performance. With walking fast, speed, cadence and stride length increased while stride time, swing time and double support time decreased. Although EPS+ subjects were slower and had decreased stride length, dual task and walking fast effects did not differ from EPS- subjects. Patient characteristics, the type of secondary task and the specific gait measures examined vary in the literature. In this moderately to severely demented population, EPS did not affect "unconscious" (dual task) or "conscious" (walking fast) gait modulation. Given their high falls risk, and retained ability to modulate walking, EPS+ AD patients may be ideal candidates for interventions aimed at preventing falls.
Morone, G; Iosa, M; Pratesi, L; Paolucci, S
2014-03-01
Falls are common in patients who have had a stroke who return home after neurorehabilitation. Some studies have found that walking speed inversely correlates with the risk of falls. This study examined whether comparison between comfortable self-selected walking speed and maximum maintainable speed is informative with regard to the risk of falls in patients with stroke. A prospective cohort study was performed with 75 ambulant stroke patients. At discharge, the Barthel Index score and performance at the 10-m and 6-min walking tests were assessed. Number of falls was recorded by telephone interview every two months for one year. Regression analysis was performed to identify factors that were related to the risk of falls. Using forward multiple linear regression, only the ratio between walking speeds on the 6-min and 10-m tests was linked to the number of falls in the year after discharge (R=-0.451, p<0.001, OR=0.046). Patients who chose a walking speed for short distances that was not maintainable long term fell more frequently. A discrepancy between short and long-term walking speed can help in identifying subjects in the subacute stage after stroke with an increased risk of suffering a fall. Copyright © 2014 Elsevier B.V. All rights reserved.
Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.
Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J
2009-10-01
Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.
Six-minute walk test in children and adolescents with cystic fibrosis.
Cunha, Maristela Trevisan; Rozov, Tatiana; de Oliveira, Rosangela Caitano; Jardim, José R
2006-07-01
The 6-min walk test is a simple, rapid, and low-cost method that determines tolerance to exercise. We examined the reproducibility of the 6-min walk test in 16 children with cystic fibrosis (11 female, 5 male; age range, 11.0 +/- 1.9 years). We related the distance walked and the work performed (distance walked x body weight) with nutritional (body mass index and respiratory muscle strength) and clinical (degree of bronchial obstruction and Shwachman score) status. Patients were asked to walk as far as possible upon verbal command on two occasions. There was no statistical difference between distances walked (582.3 +/- 60 and 598.2 +/- 56.8 m, P = 0.31), heart rate, respiratory rate, pulse oxygen saturation, arterial blood pressure, dyspnea, and percentage of maximal heart rate for age in the two tests. Distance walked correlated (Pearson) with maximal expiratory pressure (98.6 +/- 28.1 cmH2O, r = 0.60, P < 0.01), maximal heart rate (157.9 +/- 10.1 bpm, r = 0.59, P < 0.02), Borg dyspnea scale (1.7 +/- 2.4, r = 0.55, P < 0.03), and double product (blood pressure x heart rate; r = 0.59, P < 0.02). The product of distance walked and body weight (work) correlated (Pearson) with height (r = 0.83, P = 0.000), maximal expiratory pressure (r = 0.64, P < 0.01), systolic blood pressure (r = 0.56, P < 0.02), and diastolic blood pressure (r = 0.55, P < 0.03). We conclude that the 6-min walk test is reproducible and easy to perform in children and adolescents with cystic fibrosis. The distance walked was related to the clinical variables studied. Work in the 6-min walk test may be an additional parameter in the determination of physical capacity.
Lindemann, Ulrich; Beck, Luisa; Becker, Clemens
2017-02-01
To evaluate the effect of course length and corridor width on 2-minute walk test results in older adults. Cross-sectional and experimental study with different test conditions. Geriatric rehabilitation clinic. A total of 21 patients (median age 81 years). Patients walked two minutes on a 20 m and 40 m course with a 2 m or 1 m corridor width and on a continuous course without any turning in a corridor of 2 m width, five walks in total. The distance traveled within the 2 minutes was recorded. Compared with the 20 m course length, median walking distances measured by the 2-minute walk test in a walk way 2 m broad were better on the continuous corridor without any turn (136.9 m vs. 129.3 m, p = 0.002) and on the 40 m course (131.8 m vs. 129.3 m, p = 0.003). Walking distance on a 20 m course length was longer in a corridor of 2 m width compared with the 1 m corridor width (129.3 m vs. 119.2 m, p = 0.005). The walking distance was not affected by corridor width on the 40 m course length. Performance of elderly patients on the 2-minute walk test is influenced by the width of the corridor and the length of the course used.
Grenier, Jordane G; Millet, Guillaume Y; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît
2012-01-01
Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01) and -10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191.
Grenier, Jordane G.; Millet, Guillaume Y.; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît
2012-01-01
Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. Purpose The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Methods Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre−/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. Results After the SMM, MVC declined by −10.2±3.6% for KE (P<0.01) and −10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. Conclusion this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Clinical Trial Registration Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191. PMID:22927995
Kim, Eunkuk; Choi, Hokyung; Cha, Jung-Hoon; Park, Jong-Chul; Kim, Taegyu
2017-01-01
The aims of this study were to investigate the ankle position, the changes and persistence of ankle kinematics after neuromuscular training in athletes with chronic ankle instability (CAI). A total of 21 national women’s field hockey players participated (CAI = 12, control = 9). Ankle position at heel strike (HS), midstance (MS), and toe touch (TT) in the frontal plane during walking, running and landing were measured using 3D motion analysis. A 6-week neuromuscular training program was undertaken by the CAI group. Measurements of kinematic data for both groups were measured at baseline and the changes in kinematic data for CAI group were measured at 6 and 24 weeks. The kinematic data at HS during walking and running demonstrated that the magnitude of the eversion in the CAI group (−5.00° and −4.21°) was less than in the control group (−13.45°and −9.62°). The kinematic data at MS also exhibited less ankle eversion in the CAI group (−9.36° and −8.18°) than in the control group (−18.52° and −15.88°). Ankle positions at TT during landing were comparable between groups. Following the 6-week training, the CAI participants demonstrated a less everted ankle at HS during walking and running (−1.77° and −1.76°) compared to the previous positions. They also showed less ankle eversion at MS (−5.14° and −4.19°). Ankle orientation at TT changed significantly to an inverted ankle position (from −0.26° to 4.11°). The ankle kinematics were restored back to the previous positions at 24 weeks except for landing. It appeared that athletes with unstable ankle had a relatively inverted ankle position, and that 6-week neuromuscular training had an immediate effect on changing ankle orientation toward a less everted direction. The changed ankle kinematics seemed to persist during landing but not during walking and running. Key points Athletes with unstable ankles had a relatively inverted ankle position during the initial contact and midstance. Six-week neuromuscular training for unstable ankles had an immediate effect on changing ankle orientation toward a relatively more inverted direction. The changed ankle kinematics persisted during jump landing but not during walking and running. PMID:28344462
McDermott, Mary McGrae; Ferrucci, Luigi; Simonsick, Eleanor M; Balfour, Jennifer; Fried, Linda; Ling, Shari; Gibson, Daniel; Guralnik, Jack M
2002-02-01
To define the association between baseline ankle brachial index (ABI) level and subsequent onset of severe disability. Prospective cohort study. Baltimore community. Eight hundred forty-seven disabled women aged 65 and older participating in the Women's Health and Aging Study. At baseline, participants underwent measurement of ABI and lower extremity functioning. Measures of lower extremity functioning included patient's report of their ability to walk one-quarter of a mile, number of city blocks walked last week, number of stair flights climbed last week, and performance-based measures including walking speed over 4 meters, five repeated chair stands, and a summary performance score. Functioning was remeasured every 6 months for 3 years. Definitions of severe disability were developed a priori, and participants who met these definitions at baseline were excluded from subsequent analyses. Participants with an ABI of less than 0.60 at baseline had significantly higher cumulative probabilities of developing severe disability than participants with a baseline ABI of 0.90 to 1.50 for walking-specific outcomes (ability to walk a quarter of a mile, number of city blocks walked last week, and walking velocity) but not for the remaining functional outcomes. In age-adjusted Cox proportional hazards analyses, hazard ratios for participants with a baseline ABI of less than 0.60 were 1.63 for becoming unable to walk a quarter of a mile (P = .044), 2.00 for developing severe disability in the number of blocks walked last week (P = .004), and 1.61 for developing severe disability in walking speed (P = .041), compared with participants with a baseline ABI of 0.90 to 1.50. Adjusting for age, race, baseline performance, and comorbidities, an ABI of less than 0.60 remained associated with becoming severely disabled in the number of blocks walked last week (hazard ratio = 1.97, P = .009) and nearly significantly associated with becoming unable to walk a quarter of a mile (hazard ratio = 1.54, P = .09). In fully adjusted random effects models, a baseline ABI of less than 0.60 was associated with significantly greater decline in walking speed per year (P = .019) and nearly significantly greater decline in number of blocks walked last week per year (P = .053) compared with a baseline ABI of 0.90 to 1.50. In community-dwelling disabled older women, a low ABI is associated with a greater incidence of severe disability in walking-specific but not other lower extremity functional outcomes, compared with persons with a normal ABI over 3 years.
A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard;
2015-01-01
Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.
Repeat six-minute walk tests in patients with chronic heart failure: are they clinically necessary?
Adsett, Julie; Mullins, Robert; Hwang, Rita; Hogden, Amy; Gibson, Ellen; Houlihan, Kylie; Tuppin, Michael; Korczyk, Dariusz; Mallitt, Kylie-Ann; Mudge, Alison
2011-08-01
Owing to a reported learning effect in patients with chronic cardiopulmonary disease, performance of at least two six-minute walk tests (6MWT) are recommended as standard practice. Patients with chronic heart failure (CHF) are typically elderly and frail and it is unknown whether current guidelines are practical in a clinical setting. The aim of this study was to determine whether repeat performance of 6MWTs in patients with CHF is related to between-test interval or baseline performance. This was a multisite observational study enrolling participants entering into heart failure rehabilitation programmes. Participants performed two 6MWTs with randomly allocated inter-test intervals between 15 and 90 minutes. Distance walked in the second test was compared with the first test using a paired t test. Eighty-eight participants (45 females, age 65 ± 14 years) with stable CHF were enrolled. Mean distance walked increased from 301 metres in test 1 to 313 metres in test 2 (p < 0.001). No significant change was recorded between test 1 and test 2 for those whose baseline distance was <300 metres. The interval between tests had no significant effect on the distance walked. The change in 6MWT distance was significantly associated with better baseline performance but not with the interval between tests.
Reynolds, Andy M; Leprêtre, Lisa; Bohan, David A
2013-11-07
Correlated random walks are the dominant conceptual framework for modelling and interpreting organism movement patterns. Recent years have witnessed a stream of high profile publications reporting that many organisms perform Lévy walks; movement patterns that seemingly stand apart from the correlated random walk paradigm because they are discrete and scale-free rather than continuous and scale-finite. Our new study of the movement patterns of Tenebrio molitor beetles in unchanging, featureless arenas provides the first empirical support for a remarkable and deep theoretical synthesis that unites correlated random walks and Lévy walks. It demonstrates that the two models are complementary rather than competing descriptions of movement pattern data and shows that correlated random walks are a part of the Lévy walk family. It follows from this that vast numbers of Lévy walkers could be hiding in plain sight.
Astronaut Scott Carpenter tests balance mechanism performance
NASA Technical Reports Server (NTRS)
1961-01-01
Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).
Stegemöller, Elizabeth L; Wilson, Jonathan P; Hazamy, Audrey; Shelley, Mack C; Okun, Michael S; Altmann, Lori J P; Hass, Chris J
2014-06-01
Cognitive impairments in Parkinson disease (PD) manifest as deficits in speed of processing, working memory, and executive function and attention abilities. The gait impairment in PD is well documented to include reduced speed, shortened step lengths, and increased step-to-step variability. However, there is a paucity of research examining the relationship between overground walking and cognitive performance in people with PD. This study sought to examine the relationship between both the mean and variability of gait spatiotemporal parameters and cognitive performance across a broad range of cognitive domains. A cross-sectional design was used. Thirty-five participants with no dementia and diagnosed with idiopathic PD completed a battery of 12 cognitive tests that yielded 3 orthogonal factors: processing speed, working memory, and executive function and attention. Participants completed 10 trials of overground walking (single-task walking) and 5 trials of overground walking while counting backward by 3's (dual-task walking). All gait measures were impaired by the dual task. Cognitive processing speed correlated with stride length and walking speed. Executive function correlated with step width variability. There were no significant associations with working memory. Regression models relating speed of processing to gait spatiotemporal variables revealed that including dual-task costs in the model significantly improved the fit of the model. Participants with PD were tested only in the on-medication state. Different characteristics of gait are related to distinct types of cognitive processing, which may be differentially affected by dual-task walking due to the pathology of PD. © 2014 American Physical Therapy Association.
Stanley, Joanna L; Lincoln, Rachael J; Brown, Terry A; McDonald, Louise M; Dawson, Gerard R; Reynolds, David S
2005-05-01
The mouse rotarod test of motor coordination/sedation is commonly used to predict clinical sedation caused by novel drugs. However, past experience suggests that it lacks the desired degree of sensitivity to be predictive of effects in humans. For example, the benzodiazepine, bretazenil, showed little impairment of mouse rotarod performance, but marked sedation in humans. The aim of the present study was to assess whether the mouse beam walking assay demonstrates: (i) an increased sensitivity over the rotarod and (ii) an increased ability to predict clinically sedative doses of benzodiazepines. The study compared the effects of the full benzodiazepine agonists, diazepam and lorazepam, and the partial agonist, bretazenil, on the mouse rotarod and beam walking assays. Diazepam and lorazepam significantly impaired rotarod performance, although relatively high GABA-A receptor occupancy was required (72% and 93%, respectively), whereas beam walking performance was significantly affected at approximately 30% receptor occupancy. Bretazenil produced significant deficits at 90% and 53% receptor occupancy on the rotarod and beam walking assays, respectively. The results suggest that the mouse beam walking assay is a more sensitive tool for determining benzodiazepine-induced motor coordination deficits than the rotarod. Furthermore, the GABA-A receptor occupancy values at which significant deficits were determined in the beam walking assay are comparable with those observed in clinical positron emission tomography studies using sedative doses of benzodiazepines. These data suggest that the beam walking assay may be able to more accurately predict the clinically sedative doses of novel benzodiazepine-like drugs.
Liao, Yung; Lin, Cheng-Yi; Huang, Jing-Huei; Park, Jong-Hwan
2017-01-01
This study examined gender differences in the associations between perceived environmental factors and walking for recreation in Taiwanese adults. In 2014, a telephone-based, cross-sectional survey targeting Taiwanese adults (20-64 years) was conducted. Data on nine items about environmental perception, time spent in walking for recreation, and socio-demographic variables were obtained from 1,065 adults using the International Physical Activity Questionnaire-long version and its environmental module. Adults who perceived good aesthetics (adjusted odds ratio [AOR] = 1.74; 95% confidence interval [CI]: 1.36-2.23) and reported seeing people being active (AOR = 1.58; 95% CI: 1.21-2.06) were more likely to perform 150 minutes of recreational walking per week. Furthermore, significant interactions regarding walking for recreation were observed between gender and five environmental correlates: access to shops (p = .046), the presence of sidewalks (p < .001), access to recreational facilities (p = .02), seeing people being active (p = .001), and aesthetics (p < .001). These five perceived environmental factors were positively associated with recreational walking in women but not in men. Gender is a potential modifier between perceived environment and walking for recreation in adults. Perceived environmental factors appear to be more critical for women in performing health-enhancing levels of recreational walking than they are for men.
Reliability and Validity of Dual-Task Mobility Assessments in People with Chronic Stroke
Yang, Lei; He, Chengqi; Pang, Marco Yiu Chung
2016-01-01
Background The ability to perform a cognitive task while walking simultaneously (dual-tasking) is important in real life. However, the psychometric properties of dual-task walking tests have not been well established in stroke. Objective To assess the test-retest reliability, concurrent and known-groups validity of various dual-task walking tests in people with chronic stroke. Design Observational measurement study with a test-retest design. Methods Eighty-eight individuals with chronic stroke participated. The testing protocol involved four walking tasks (walking forward at self-selected and maximal speed, walking backward at self-selected speed, and crossing over obstacles) performed simultaneously with each of the three attention-demanding tasks (verbal fluency, serial 3 subtractions or carrying a cup of water). For each dual-task condition, the time taken to complete the walking task, the correct response rate (CRR) of the cognitive task, and the dual-task effect (DTE) for the walking time and CRR were calculated. Forty-six of the participants were tested twice within 3–4 days to establish test-retest reliability. Results The walking time in various dual-task assessments demonstrated good to excellent reliability [Intraclass correlation coefficient (ICC2,1) = 0.70–0.93; relative minimal detectable change at 95% confidence level (MDC95%) = 29%-45%]. The reliability of the CRR (ICC2,1 = 0.58–0.81) and the DTE in walking time (ICC2,1 = 0.11–0.80) was more varied. The reliability of the DTE in CRR (ICC2,1 = -0.31–0.40) was poor to fair. The walking time and CRR obtained in various dual-task walking tests were moderately to strongly correlated with those of the dual-task Timed-up-and-Go test, thus demonstrating good concurrent validity. None of the tests could discriminate fallers (those who had sustained at least one fall in the past year) from non-fallers. Limitation The results are generalizable to community-dwelling individuals with chronic stroke only. Conclusions The walking time derived from the various dual-task assessments generally demonstrated good to excellent reliability, making them potentially useful in clinical practice and future research endeavors. However, the usefulness of these measurements in predicting falls needs to be further explored. Relatively low reliability was shown in the cognitive outcomes and DTE, which may not be preferred measurements for assessing dual-task performance. PMID:26808662
"I'm Just a'-Walking the Dog" correlates of regular dog walking.
Christian nee Cutt, Hayley; Giles-Corti, Billie; Knuiman, Matthew
2010-01-01
Intrapersonal and environmental factors associated with dog walking (N = 483) were examined. A greater proportion of regular (80%) than irregular (59%) dog walkers met the recommended 150 minutes of physical activity per week. Owners who perceived greater social support and motivation from their dogs to walk, and who had access to a dog-supportive park within their neighborhood, were more likely to regularly walk with their dogs, even after adjustment for other well-known correlates of physical activity. The higher level of physical activity of regular dog walkers can be attributed to the additional walking these owners perform with their dogs.
Walking adaptability after a stroke and its assessment in clinical settings.
Balasubramanian, Chitralakshmi K; Clark, David J; Fox, Emily J
2014-01-01
Control of walking has been described by a tripartite model consisting of stepping, equilibrium, and adaptability. This review focuses on walking adaptability, which is defined as the ability to modify walking to meet task goals and environmental demands. Walking adaptability is crucial to safe ambulation in the home and community environments and is often severely compromised after a stroke. Yet quantification of walking adaptability after stroke has received relatively little attention in the clinical setting. The objectives of this review were to examine the conceptual challenges for clinical measurement of walking adaptability and summarize the current state of clinical assessment for walking adaptability. We created nine domains of walking adaptability from dimensions of community mobility to address the conceptual challenges in measurement and reviewed performance-based clinical assessments of walking to determine if the assessments measure walking adaptability in these domains. Our literature review suggests the lack of a comprehensive well-tested clinical assessment tool for measuring walking adaptability. Accordingly, recommendations for the development of a comprehensive clinical assessment of walking adaptability after stroke have been presented. Such a clinical assessment will be essential for gauging recovery of walking adaptability with rehabilitation and for motivating novel strategies to enhance recovery of walking adaptability after stroke.
Walking Adaptability after a Stroke and Its Assessment in Clinical Settings
Balasubramanian, Chitralakshmi K.; Clark, David J.; Fox, Emily J.
2014-01-01
Control of walking has been described by a tripartite model consisting of stepping, equilibrium, and adaptability. This review focuses on walking adaptability, which is defined as the ability to modify walking to meet task goals and environmental demands. Walking adaptability is crucial to safe ambulation in the home and community environments and is often severely compromised after a stroke. Yet quantification of walking adaptability after stroke has received relatively little attention in the clinical setting. The objectives of this review were to examine the conceptual challenges for clinical measurement of walking adaptability and summarize the current state of clinical assessment for walking adaptability. We created nine domains of walking adaptability from dimensions of community mobility to address the conceptual challenges in measurement and reviewed performance-based clinical assessments of walking to determine if the assessments measure walking adaptability in these domains. Our literature review suggests the lack of a comprehensive well-tested clinical assessment tool for measuring walking adaptability. Accordingly, recommendations for the development of a comprehensive clinical assessment of walking adaptability after stroke have been presented. Such a clinical assessment will be essential for gauging recovery of walking adaptability with rehabilitation and for motivating novel strategies to enhance recovery of walking adaptability after stroke. PMID:25254140
Hall, Michelle; Hinman, Rana S; Wrigley, Tim V; Roos, Ewa M; Hodges, Paul W; Staples, Margaret; Bennell, Kim L
2012-11-27
Meniscectomy is a risk factor for knee osteoarthritis, with increased medial joint loading a likely contributor to the development and progression of knee osteoarthritis in this group. Therefore, post-surgical rehabilitation or interventions that reduce medial knee joint loading have the potential to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have recently undergone a partial medial meniscectomy. 62 people aged 30-50 years who have undergone an arthroscopic partial medial meniscectomy within the previous 3 to 12 months will be recruited and randomly assigned to a neuromuscular exercise or control group using concealed allocation. The neuromuscular exercise group will attend 8 supervised exercise sessions with a physiotherapist and will perform 6 exercises at home, at least 3 times per week for 12 weeks. The control group will not receive the neuromuscular training program. Blinded assessment will be performed at baseline and immediately following the 12-week intervention. The primary outcomes are change in the peak external knee adduction moment measured by 3-dimensional analysis during normal paced walking and one-leg rise. Secondary outcomes include the change in peak external knee adduction moment during fast pace walking and one-leg hop and change in the knee adduction moment impulse during walking, one-leg rise and one-leg hop, knee and hip muscle strength, electromyographic muscle activation patterns, objective measures of physical function, as well as self-reported measures of physical function and symptoms and additional biomechanical parameters. The findings from this trial will provide evidence regarding the effect of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during various tasks in people with a partial medial meniscectomy. If shown to reduce the knee adduction moment, neuromuscular exercise has the potential to prevent the onset of osteoarthritis or slow its progression in those with early disease. Australian New Zealand Clinical Trials Registry reference: ACTRN12612000542897.
NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.;
2015-01-01
Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.
NASA Technical Reports Server (NTRS)
Tomilovskaya, E. S.; Rukavishnikov, I. V.; Kofman, I. S.; Kitov, V. V.; Grishin, A. P.; Yu, N.; Lysova.; Cerisano, J. M.; Kozlovskaya, I. B.; Reschke, M. F.
2014-01-01
The effect that extended-duration space flights may have on human space travelers, including exploration missions, is widely discussed at the present time. Specifically, there is an increasing amount of evidence showing that the physical capacity of cosmonauts is significantly reduced after long-duration space flights. It is evident that the most impaired functions are those that rely on gravity, particularly up right posture and gait. Because of the sensorimotor disturbances manifested in the neurology of the posture and gait space flight and postflight changes may also be observed in debilitating motion sickness. While the severity of particular symptoms varies, disturbances in spatial orientation and alterations in the accuracy of voluntary movements are persistently observed after long-duration space flights. At this time most of the currently available data are primarily descriptive and not yet suitable for predicting operational impacts of most sensorimotor decrements observed upon landing on planetary surfaces or asteroids. In particular there are no existing data on the recovery dynamics or functionality of neurological, cardiovascular or muscle performance making it difficult to model or simulate the cosmonauts' activity after landing and develop the appropriate countermeasure that will ensure the rapid and safe recovery of crewmembers immediately after landing in what could be hostile environments. However and as a starting position, the videos we have acquired during recent data collection following the long duration flights of cosmonauts and astronauts walking and performing other tasks shortly after return from space flight speak volumes about their level of deconditioning. A joint Russian-American team has developed a new study specifically to address the changes in crewmembers performance and the recovery of performance with the intent of filling the missing data gaps. The first (pilot) phase of this study includes recording body kinematics and quantifying the coordination and timing of relatively simple basic movements - transition from seated and prone positions to standing, walking, stepping over obstacles, tandem walking, muscle compliance, as well as characteristics of postural sway and orthostatic tolerance. Testing for changes in these parameters have been initiated in the medical tent at the landing site. The first set of experiments showed that during the first hour after landing, cosmonauts and astronauts were able to execute (although slower and with more effort than preflight) simple movements such as egress from a seated or prone position and also to remain standing for 3.5 minutes without exhibiting pronounced cardiovascular changes. More challenging tests, however, demonstrated a prominent reduction in coordination - the obstacle task, for example, was performed at much slower speed and with a marked overestimation of the obstacle height and tandem walking was greatly degraded suggesting significant changes in proprioception, brainstem and vestibular function. There is some speculation that the neural changes, either from the bottom-up or top down may be long lasting; requiring compensatory responses that will modify or mask the adverse responses we have observed. Furthermore, these compensatory responses may actually be beneficial, helping achieve a more rapid adaptation to both weightlessness and a return to earth.
Lunar Landing Walking Simulator
1965-09-03
Lunar Landing Walking Simulator: Researchers at Langley study the ability of astronauts to walk, run and perform other tasks required during lunar exploration. The Reduced Gravity Simulator gave researchers the opportunity to look at the effects of one-sixth normal gravity on self-locomotion. Several Apollo astronauts practiced lunar waling at the facility.
16 CFR 1205.5 - Walk-behind rotary power mower controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Walk-behind rotary power mower controls... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions: (i...
Evidence for Motor Simulation in Imagined Locomotion
ERIC Educational Resources Information Center
Kunz, Benjamin R.; Creem-Regehr, Sarah H.; Thompson, William B.
2009-01-01
A series of experiments examined the role of the motor system in imagined movement, finding a strong relationship between imagined walking performance and the biomechanical information available during actual walking. Experiments 1 through 4 established the finding that real and imagined locomotion differ in absolute walking time. We then tested…
Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults
Fu, Xiao-Yu; Zelik, Karl E.; Board, Wayne J.; Browning, Raymond C.; Kuo, Arthur D.
2014-01-01
Obesity not only adds to the mass that must be carried during walking, but also changes body composition. Although extra mass causes roughly proportional increases in musculoskeletal loading, less well understood is the effect of relatively soft and mechanically compliant adipose tissue. Purpose To estimate the work performed by soft tissue deformations during walking. The soft tissue would be expected to experience damped oscillations, particularly from high force transients following heel strike, and could potentially change the mechanical work demands for walking. Method We analyzed treadmill walking data at 1.25 m/s for 11 obese (BMI > 30 kg/m2) and 9 non-obese (BMI < 30 kg/m2) adults. The soft tissue work was quantified with a method that compares the work performed by lower extremity joints as derived using assumptions of rigid body segments, with that estimated without rigid body assumptions. Results Relative to body mass, obese and non-obese individuals perform similar amounts of mechanical work. But negative work performed by soft tissues was significantly greater in obese individuals (p= 0.0102), equivalent to about 0.36 J/kg vs. 0.27 J/kg in non-obese individuals. The negative (dissipative) work by soft tissues occurred mainly after heel strike, and for obese individuals was comparable in magnitude to the total negative work from all of the joints combined (0.34 J/kg vs. 0.33 J/kg for obese and non-obese adults, respectively). Although the joints performed a relatively similar amount of work overall, obese individuals performed less negative work actively at the knee. Conclusion The greater proportion of soft tissues in obese individuals results in substantial changes in the amount, location, and timing of work, and may also impact metabolic energy expenditure during walking. PMID:25380475
The effects of smartphone multitasking on gait and dynamic balance.
Lee, Jeon Hyeong; Lee, Myoung Hee
2018-02-01
[Purpose] This study was performed to analyze the influence of smartphone multitasking on gait and dynamic balance. [Subjects and Methods] The subjects were 19 male and 20 female university students. There were 4 types of gait tasks: General Gait (walking without a task), Task Gait 1 (walking while writing a message), Task Gait 2 (walking while writing a message and listening to music), Task Gait 3 (walking while writing a message and having a conversation). To exclude the learning effect, the order of tasks was randomized. The Zebris FDM-T treadmill system (Zebris Medical GmbH, Germany) was used to measure left and right step length and width, and a 10 m walking test (10MWT) was conducted for gait velocity. In addition, a Timed Up and Go test (TUG) was used to measure dynamic balance. All the tasks were performed 3 times, and the mean of the measured values was analyzed. [Results] There were no statistically significant differences in step length and width. There were statistically significant differences in the 10MWT and TUG tests. [Conclusion] Using a smartphone while walking decreases a person's dynamic balance and walking ability. It is considered that accident rates are higher when using a smartphone.
A cognitive dual task affects gait variability in patients suffering from chronic low back pain.
Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz
2014-11-01
Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.
Pain Palliation by Percutaneous Acetabular Osteoplasty for Metastatic Hepatocellular Carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hokotate, Hirofumi; Baba, Yasutaka; Churei, Hisahiko
2001-09-15
A 68-year-old man with hepatocellular carcinoma and known skeletal metastasis developed right hip pain and gait disturbance due to an osteolytic metastasis in the right acetabulum. This was treated initially with chemoembolization and radiation therapy. When these procedures proved unsuccessful percutaneous injection of acrylic bone cement into the acetabulum was undertaken. Immediately after this procedure, he obtained sufficient pain relief and improved walking ability, which continued for 3 months until he died of hepatic insufficiency.
JPRS Report Soviet Union Political Affairs
1990-06-21
enterprise, Motor Taxi Transport No 2, resident of 4ningrad. Electoral district No 265. · 252. SIV AKOV, VJadimir )Jorisovich, porn 1 936, noll...for child criminality’s emergence exist." I was warned immediately in Kazan: "Do not walk about the city alone in the evening. Such a risk, of course...for only the woman. But, in the first place, the child is the most important social value and hence society and the state are obliged together
Bergmann, Jeannine; Krewer, Carmen; Rieß, Katrin; Müller, Friedemann; Koenig, Eberhard; Jahn, Klaus
2014-07-01
To compare the classification of two clinical scales for assessing pusher behaviour in a cohort of stroke patients. Observational case-control study. Inpatient stroke rehabilitation unit. A sample of 23 patients with hemiparesis due to a unilateral stroke (1.6 ± 0.7 months post stroke). Immediately before and after three different interventions, the Scale for Contraversive Pushing and the Burke Lateropulsion Scale were applied in a standardized procedure. The diagnosis of pusher behaviour on the basis of the Scale for Contraversive Pushing and the Burke Lateropulsion Scale differed significantly (χ2 = 54.260, p < 0.001) resulting in inconsistent classifications in 31 of 138 cases. Changes immediately after the interventions were more often detected by the Burke Lateropulsion Scales than by the Scale for Contraversive Pushing (χ2 = 19.148, p < 0.001). All cases with inconsistent classifications showed no pusher behaviour on the Scale for Contraversive Pushing, but pusher behaviour on the Burke Lateropulsion Scale. 64.5% (20 of 31) of them scored on the Burke Lateropulsion Scale on the standing and walking items only. The Burke Lateropulsion Scale is an appropriate alternative to the widely used Scale for Contraversive Pushing to follow-up patients with pusher behaviour (PB); it might be more sensitive to detect mild pusher behaviour in standing and walking. © The Author(s) 2014.
Ono, Ayaka; Matsuura, Akihiro; Yamazaki, Yumi; Sakai, Wakako; Watanabe, Kentaro; Nakanowatari, Toshihiko; Kobayashi, Hiroshi; Irimajiri, Mami; Hodate, Koichi
2017-10-01
The aim of this study was to evaluate the influence of rider's skill on the plasma cortisol levels of trekking horses on two courses, walking on field and forest courses (about 4.5 to 5.1 km each). Three riders of different skills did horse trekking (HT) in a tandem line under a fixed order: advanced-leading, beginner-second and intermediate-last. A total of six horses were used and they experienced all positions in both courses; a total of 12 experiments were done. Blood samples were obtained before HT, immediately after and 2 h after HT. As a control, additional blood samples were obtained from the same horses on non-riding days. Irrespective of the course and the rider's skill, the cortisol level before HT was higher than that of control (P < 0.05). In both courses, the cortisol levels immediately after HT ridden by the advanced rider were higher than that of control (P < 0.05). However, in every case, the cortisol level 2 h after HT was closely similar to the level of the control. Thus, we concluded the stress of trekking horse was not sufficient to disturb the circadian rhythm of the cortisol level, irrespective of the course and the rider's skill. © 2017 Japanese Society of Animal Science.
Maidan, Inbal; Nieuwhof, Freek; Bernad-Elazari, Hagar; Reelick, Miriam F; Bloem, Bas R; Giladi, Nir; Deutsch, Judith E; Hausdorff, Jeffery M; Claassen, Jurgen A H; Mirelman, Anat
2016-11-01
Gait is influenced by higher order cognitive and cortical control mechanisms. Functional near infrared spectroscopy (fNIRS) has been used to examine frontal activation during walking in healthy older adults, reporting increased oxygenated hemoglobin (HbO2) levels during dual task walking (DT), compared with usual walking. To investigate the role of the frontal lobe during DT and obstacle negotiation, in healthy older adults and patients with Parkinson's disease (PD). Thirty-eight healthy older adults (mean age 70.4 ± 0.9 years) and 68 patients with PD (mean age 71.7 ± 1.1 years,) performed 3 walking tasks: (a) usual walking, (b) DT walking, and (c) obstacles negotiation, with fNIRS and accelerometers. Linear-mix models were used to detect changes between groups and within tasks. Patients with PD had higher activation during usual walking (P < .030). During DT, HbO2 increased only in healthy older adults (P < .001). During obstacle negotiation, HbO2 increased in patients with PD (P = .001) and tended to increase in healthy older adults (P = .053). Higher DT and obstacle cost (P < .003) and worse cognitive performance were observed in patients with PD (P = .001). A different pattern of frontal activation during walking was observed between groups. The higher activation during usual walking in patients with PD suggests that the prefrontal cortex plays an important role already during simple walking. However, higher activation relative to baseline during obstacle negotiation and not during DT in the patients with PD demonstrates that prefrontal activation depends on the nature of the task. These findings may have important implications for rehabilitation of gait in patients with PD. © The Author(s) 2016.
Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew
2016-01-01
One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p < 0.001) higher than during walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.
The impact of dynamic balance measures on walking performance in multiple sclerosis.
Fritz, Nora E; Marasigan, Rhul Evans R; Calabresi, Peter A; Newsome, Scott D; Zackowski, Kathleen M
2015-01-01
Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, the impact of dynamic standing balance on walking in MS remains unclear. To determine the impact of dynamic balance, static balance, sensation, and strength measures on walking in individuals with MS. Fifty-two individuals with MS (27 women; 26 relapsing-remitting; mean age = 45.6 ± 10.3 years; median Expanded Disability Status Scale score = 3.5) participated in posturography testing (Kistler-9281 force plate), hip flexion, hip extension, ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II), and walk velocity (Optotrak Motion Analysis System). Analyses included, Mann-Whitney, Spearman correlation coefficients, and multiple regression. All measures were abnormal in individuals with MS when compared with norms (P < .05). Static balance (eyes open, feet together [EOFT]), anterior-posterior (AP) dynamic sway, and hip extension strength were strongly correlated with walking velocity (AP sway r = 0.68; hip extension strength r = 0.73; EOFT r = -0.40). Together, AP dynamic sway (ρr = 0.71; P < .001), hip extension strength (ρr = 0.54; P < .001), and EOFT static balance (ρr = -0.41; P = .01) explained more than 70% of the variance in walking velocity (P < .001). AP dynamic sway affects walking performance in MS. A combined evaluation of dynamic balance, static balance, and strength may lead to a better understanding of walking mechanisms and the development of strategies to improve walking. © The Author(s) 2014.
Findings from the School-Based Theatrical Performance "Walk in Our Shoes." Research Report
ERIC Educational Resources Information Center
Wong, Eunice C.; Cerully, Jennifer L.; Collings, Rebecca L.; Roth, Elizabeth
2014-01-01
The study presented in this report evaluates the effects of a school-based theatrical performance "Walk In Our Shoes" on a group of predominantly Latino youth in Santa Barbara County, California. The performance follows the lives of four (fictional) high school students and introduces their various experiences with both mental health…
Han, Eun Young; Im, Sang Hee
2017-03-15
To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.
Takahashi, Kota Z; Stanhope, Steven J
2013-09-01
Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.
Vertex centralities in input-output networks reveal the structure of modern economies
NASA Astrophysics Data System (ADS)
Blöchl, Florian; Theis, Fabian J.; Vega-Redondo, Fernando; Fisher, Eric O.'N.
2011-04-01
Input-output tables describe the flows of goods and services between the sectors of an economy. These tables can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with strong self-loops and are almost completely connected. We derive two measures of node centrality that are well suited for such networks. Both are based on random walks and have interpretations as the propagation of supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics of the structures of these national economies. We further validate our indices by clustering according to sectors’ centralities. This analysis reveals geographical proximity and similar developmental status.
Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.
Lin, Yuan-Pin; Wang, Yijun; Jung, Tzyy-Ping
2014-08-09
Bridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking. This study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment. Despite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s). SSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications.
Validity of the Nike+ device during walking and running.
Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R
2010-02-01
We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (p<0.05). Similar results were found for distance. The Nike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (p<0.05). In conclusion the Nike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.
Vagaggini, B; Taccola, M; Severino, S; Marcello, M; Antonelli, S; Brogi, S; De Simone, C; Giardina, A; Paggiaro, P L
2003-01-01
The incremental shuttle walking test (SWT) has recently been proposed as a more valid and reproducible alternative to the conventional 6-min walking test (6MWT) in the evaluation of exercise tolerance in patients with chronic obstructive pulmonary disease (COPD). To compare the cardiorespiratory performance obtained during two sessions of SWT with that obtained during two sessions of 6MWT. We examined 18 patients (forced expiratory volume in 1 s: 48 +/- 14%) recovering from an acute exacerbation of COPD that had required hospitalization. In the same afternoon, each patient performed two SWT and two 6MWT, with an interval of at least 30 min between each test; the sequence of the tests was randomized. Mean walking distance was greater in the second SWT test than in the first SWT. The changes from baseline in systolic blood pressure, heart rate, respiratory rate, oxygen saturation and dyspnea Borg index at the end of the test were similar between the two 6MWT and the two SWT. There was a highly significant correlation between walking distances measured during SWT and during 6MWT (rho: 0.85, p < 0.0005). Neither SWT nor 6MWT correlated with functional data of COPD. SWT, though being considered to be closer to a submaximal exercise test than 6MWT, does not induce a greater cardiorespiratory performance than 6MWT in patients recovering from acute exacerbation of COPD. Copyright 2003 S. Karger AG, Basel
2017-01-01
Purpose To use structural equation modelling (SEM) to determine (1) the direct and indirect associations of strength of paretic lower limb muscles with the level of community integration, and (2) the direct association of walking endurance and balance performance with the level of community integration in community-dwelling stroke survivors. Materials and methods In this cross-sectional study of 105 stroke survivors, the Subjective Index of Physical and Social Outcome (SIPSO) was used to measure the level of community integration. Lower-limb strength measures included isometric paretic ankle strength and isokinetic paretic knee peak torque. The Berg Balance Scale (BBS) and the 6-minute walk test (6MWT) were used to evaluate balance performance and walking endurance, respectively. Results SEM revealed that the distance walked on the 6MWT had the strongest direct association with the SIPSO score (β = 0.41, p <0.001). An increase of one standard deviation in the 6MWT distance resulted in an increase of 0.41 standard deviations in the SIPSO score. Moreover, dorsiflexion strength (β = 0.18, p = 0.044) and the BBS score (β = 0.21, p = 0.021) had direct associations with the SIPSO score. Conclusions The results of the proposed model suggest that rehabilitation training of community-dwelling stroke survivors could focus on walking endurance, balance performance and dorsiflexor muscle strengthening if the aim is to augment the level of community integration. PMID:29049293
Walking to the Beat of Their Own Drum: How Children and Adults Meet Timing Constraints
Gill, Simone V.
2015-01-01
Walking requires adapting to meet task constraints. Between 5- and 7-years old, children’s walking approximates adult walking without constraints. To examine how children and adults adapt to meet timing constraints, 57 5- to 7-year olds and 20 adults walked to slow and fast audio metronome paces. Both children and adults modified their walking. However, at the slow pace, children had more trouble matching the metronome compared to adults. The youngest children’s walking patterns deviated most from the slow metronome pace, and practice improved their performance. Five-year olds were the only group that did not display carryover effects to the metronome paces. Findings are discussed in relation to what contributes to the development of adaptation in children. PMID:26011538
Rosa, Fernanda Warken; Camelier, Aquiles; Mayer, Anamaria; Jardim, José Roberto
2006-01-01
To evaluate the applicability of the incremental (shuttle) walk test in patients with chronic obstructive pulmonary disease and compare the performance of those patients on the shuttle walk test to that of the same patients on the encouraged 6-minute walk test. A cross-sectional study was conducted, in which 24 patients with chronic obstructive pulmonary disease were selected. In random order, patients were, after an initial practice period, submitted to a shuttle walk test and an encouraged 6-minute walk test. The patients obtained a higher heart rate (expressed as a percentage of that predicted based on gender and age) on the encouraged 6-minute walk test (84.1 +/- 11.4%) than on the shuttle walk test (76.4 +/- 9.7%) (p = 0.003). The post-test sensation of dyspnea (Borg scale) was also higher on the encouraged 6-minute walk test. On average, the patients walked 307.0 +/- 89.3 meters on the shuttle walk test and 515.5 +/- 102.3 meters on the encouraged 6-minute walk test (p < 0.001). There was a good correlation between the two tests in terms of the distance walked (r = 0.80, p < 0.001). The shuttle walk test is simple and easy to implement in patients with chronic obstructive pulmonary disease. The encouraged 6-minute walk test produced higher post-test heart rate and greater post-test sensation of dyspnea than did the shuttle walk test.
Stevens, Sandra L; Caputo, Jennifer L; Fuller, Dana K; Morgan, Don W
2015-01-01
To document the effects of underwater treadmill training (UTT) on leg strength, balance, and walking performance in adults with incomplete spinal cord injury (iSCI). Pre-test and post-test design. Exercise physiology laboratory. Adult volunteers with iSCI (n = 11). Participants completed 8 weeks (3 × /week) of UTT. Each training session consisted of three walks performed at a personalized speed, with adequate rest between walks. Body weight support remained constant for each participant and ranged from 29 to 47% of land body weight. Increases in walking speed and duration were staggered and imposed in a gradual and systematic fashion. Lower-extremity strength (LS), balance (BL), preferred and rapid walking speeds (PWS and RWS), 6-minute walk distance (6MWD), and daily step activity (DSA). Significant (P < 0.05) increases were observed in LS (13.1 ± 3.1 to 20.6 ± 5.1 N·kg(-1)), BL (23 ± 11 to 32 ± 13), PWS (0.41 ± 0.27 to 0.55 ± 0.28 m·s(-1)), RWS (0.44 ± 0.31 to 0.71 ± 0.40 m·s(-1)), 6MWD (97 ± 80 to 177 ± 122 m), and DSA (593 ± 782 to 1310 ± 1258 steps) following UTT. Physical function and walking ability were improved in adults with iSCI following a structured program of UTT featuring individualized levels of body weight support and carefully staged increases in speed and duration. From a clinical perspective, these findings highlight the potential of UTT in persons with physical disabilities and diseases that would benefit from weight-supported exercise.
Corseuil Giehl, Maruí W; Hallal, Pedro C; Brownson, Ross C; d'Orsi, Eleonora
2017-02-01
To investigate the associations between perceived environment features and walking in older adults. A cross-sectional population-based study was performed in Florianopolis, Brazil, including 1,705 older adults (60+ years). Walking was measured by the International Physical Activity Questionnaire (IPAQ), and perceived environment was assessed through the Neighborhood Environment Walkability Scale. We conducted a multinomial logistic regression to examine the association between perceived environment and walking. The presence of sidewalks was related to both walking for transportation and for leisure. Existence of crosswalks in the neighborhood, safety during the day, presence of street lighting, recreational facilities, and having dog were significant predictors of walking for transportation. Safety during the day and social support were significantly associated with walking for leisure. The perceived environment may affect walking for specific purposes among older adults. Investments in the environment may increase physical activity levels of older adults in Brazil.
USDA-ARS?s Scientific Manuscript database
The Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say 1824) is a diurnal insect that strongly relies on vision to guide its walk. In the present study, we investigated the orientation behavior of nondiapausing walking CPB in response to emissive colors produced by light emitting diodes (L...
CRiT Walking in Higher Education: Activating Critical Race Theory in the Academy
ERIC Educational Resources Information Center
Hughes, Robin; Giles, Mark
2010-01-01
In this article, the authors introduce the epistemological concept of CRiT walking based on critical race theory (CRT). Using performance methodology, an operational extension of critical race theory is introduced as a CRiT walk through academic neighborhoods. The authors recommend openly questioning the structural inequities deeply embedded…
Engeroff, Tobias; Fleckenstein, Johannes; Banzer, Winfried
2017-03-01
We developed an experiment to help students understand basic regulation of postabsorptive and postprandial glucose metabolism and the availability of energy sources for physical activity in the fed and fasted state. Within a practical session, teams of two or three students (1 subject and 1 or 2 investigators) performed one of three different trials: 1) inactive, in which subjects ingested a glucose solution (75 g in 300 ml of water) and rested in the seated position until the end of the trial; 2) prior activity, in which the subject performed 15 min of walking before glucose ingestion and a subsequent resting phase; and 3) postactivity, in which the subject ingested glucose solution, walked (15 min), and rested afterwards. Glucose levels were drawn before trials (fasting value), immediately after glucose ingestion (0 min), and 5, 10, 15, 20, 25, 30, 40, 50, and 60 min thereafter. Students analyzed glucose values and worked on 12 tasks. Students evaluated the usefulness of the experiment; 54.2% of students found the experiment useful to enable them to gain a further understanding of the learning objectives and to clarify items, and 44.1% indicated that the experiment was necessary to enable them to understand the learning objectives. For 6.8% the experiment was not necessary but helpful to check what they had learned, and 3.4% found that the experiment was not necessary. The present article shows the great value of experiments within practical courses to help students gain knowledge of energy metabolism. Using an active learning strategy, students outworked complex physiological tasks and improved beneficial communication and interaction between students with different skill sets and problem-solving strategies. Copyright © 2017 the American Physiological Society.
Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis
Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael
2014-01-01
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087
Kierkegaard, Marie; Petitclerc, Emilie; Hébert, Luc J; Gagnon, Cynthia
2017-02-01
Performance-based assessments of physical function are essential in people with myotonic dystrophy type 1 (DM1) to monitor disease progression and evaluate interventions. Commonly used are the six-minute walk test, the 10 m-walk test, the timed up-and-go test, the timed-stands test, grip strength tests and the nine-hole peg test. The number of trials needed on a same-day test occasion and whether the first, best or average of trials should be reported as result is unknown. Thus, the aim was to describe and explore differences between trials in these measures of walking, mobility and fine hand use in 70 adults with DM1. Three trials were performed for each test except for the six-minute walk test where two trials were allowed. There were statistical significant differences over trials in all tests except for the 10 m-walk test and grip strength tests. Pair-wise comparisons showed that the second and third trials were in general better than the first, although effect sizes were small. At which trial the individuals performed their best differed between individuals and tests. People with severe muscular impairment had difficulties to perform repeated trials. Intraclass correlation coefficients were all high in analyses exploring how to report results. The conclusion and clinical implication is that, for a same-day test occasion, one trial is sufficient for the 10 m-walk test and grip strength tests, and that repeated trials should be allowed in the timed up-and-go test, timed-stands test and nine-hole peg tests. We recommend that two trials are performed for these latter tests as such a protocol could accommodate people with various levels of impairments and physical limitations. Copyright © 2016 Elsevier B.V. All rights reserved.
Doescher, Mark P; Lee, Chanam; Saelens, Brian E; Lee, Chunkuen; Berke, Ethan M; Adachi-Mejia, Anna M; Patterson, Davis G; Moudon, Anne Vernez
2017-04-01
Walking among Latinos in US Micropolitan towns may vary by language spoken. In 2011-2012, we collected telephone survey and built environment (BE) data from adults in six towns located within micropolitan counties from two states with sizable Latino populations. We performed mixed-effects logistic regression modeling to examine relationships between ethnicity-language group [Spanish-speaking Latinos (SSLs); English-speaking Latinos (ESLs); and English-speaking non-Latinos (ENLs)] and utilitarian walking and recreational walking, accounting for socio-demographic, lifestyle and BE characteristics. Low-income SSLs reported higher amounts of utilitarian walking than ENLs (p = 0.007), but utilitarian walking in this group decreased as income increased. SSLs reported lower amounts of recreational walking than ENLs (p = 0.004). ESL-ENL differences were not significant. We identified no statistically significant interactions between ethnicity-language group and BE characteristics. Approaches to increase walking in micropolitan towns with sizable SSL populations may need to account for this group's differences in walking behaviors.
Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K
2015-07-12
Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce the likelihood of toe-ground contacts is to attain higher mid-swing clearance by eliminating the MTC event, i.e. demonstrating non-MTC gaits cycles.
Paillard, T; Lafont, C; Costes-Salon, M C; Rivière, D; Dupui, P
2004-10-01
This work analyses the short-term physiological and neurophysiological effects of a brisk walking programme in ageing, healthy, active men. Twenty-one men 63 to 72 years of age were recruited and separated into 2 groups. One group performed a walking programme (WP) (n = 11) and another served as control (C) group (n = 10). The walking programme lasted for twelve weeks and included five sessions per week. Several parameters were assessed before and after the programme for the WP group. The same tests were performed (separated by twelve weeks) in group C. During each assessment, the subjects were put through static and dynamic balance tests, spatio-temporal gait analysis, body composition measurements and determination of aerobic capacity and bone mineral density. The statistic analysis showed a significant improvement in dynamic balance performance, especially in lateral sway when the subjects kept their eyes open, an increase of VO(2) max and loss of fat mass in the WP group. However, no alterations appeared in spatiotemporal gait characteristics, static balance performance, lean mass or bone mineral density (total body and hip). According to these results, this walking programme may have positive effects on preventing ageing subjects from falling.
Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn
2017-05-01
The ability to adapt walking to environmental circumstances is an important aspect of walking, yet difficult to assess. The Interactive Walkway was developed to assess walking adaptability by augmenting a multi-Kinect-v2 10-m walkway with gait-dependent visual context (stepping targets, obstacles) using real-time processed markerless full-body kinematics. In this study we determined Interactive Walkway's usability for walking-adaptability assessments in terms of between-systems agreement and sensitivity to task and subject variations. Under varying task constraints, 21 healthy subjects performed obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous walking-adaptability outcome measures were concurrently determined with the Interactive Walkway and a gold-standard motion-registration system: available response time, obstacle-avoidance and sudden-stop margins, step length, stepping accuracy and walking speed. The same holds for dichotomous classifications of success and failure for obstacle-avoidance and sudden-stops tasks and performed short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-adaptability outcome measures generally agreed well between systems (high intraclass correlation coefficients for absolute agreement, low biases and narrow limits of agreement) and were highly sensitive to task and subject variations. Success and failure ratings varied with available response times and obstacle types and agreed between systems for 85-96% of the trials while obstacle-avoidance strategies were always classified correctly. We conclude that Interactive Walkway walking-adaptability outcome measures are reliable and sensitive to task and subject variations, even in high-functioning subjects. We therefore deem Interactive Walkway walking-adaptability assessments usable for obtaining an objective and more task-specific examination of one's ability to walk, which may be feasible for both high-functioning and fragile populations since walking adaptability can be assessed at various levels of difficulty. Copyright © 2017 Elsevier B.V. All rights reserved.
Balance and gait in children with dyslexia.
Moe-Nilssen, Rolf; Helbostad, Jorunn L; Talcott, Joel B; Toennessen, Finn Egil
2003-05-01
Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia ( n=22) and controls ( n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences ( P<0.05) and classified correctly 70-77.5% of the subjects into their respective groups. Mean walking speed during very fast walking on both flat and uneven surface was > or =0.2 m/s ( P< or =0.01) faster for controls than for the group with dyslexia. This test classified 77.5% and 85% of the subjects correctly on flat and uneven surface, respectively. Cadence at preferred or very fast speed did not differ statistically between groups, but revealed significant group differences when all subjects were compared at a normalised walking speed ( P< or =0.04). Very fast walking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.
Reider, L; Hawkes, W; Hebel, J R; D'Adamo, C; Magaziner, J; Miller, R; Orwig, D; Alley, D E
2013-01-01
To determine whether body mass index (BMI) at the time of hospitalization or weight change in the period immediately following hospitalization predict physical function in the year after hip fracture. Prospective observational study. Two hospitals in Baltimore, Maryland. Female hip fracture patients age 65 years or older (N=136 for BMI analysis, N=41 for analysis of weight change). Body mass index was calculated based on weight and height from the medical chart. Weight change was based on DXA scans at 3 and 10 days post fracture. Physical function was assessed at 2, 6 and 12 months following fracture using the lower extremity gain scale (LEGS), walking speed and grip strength. LEGS score and walking speed did not differ across BMI tertiles. However, grip strength differed significantly across BMI tertiles (p=0.029), with underweight women having lower grip strength than normal weight women at all time points. Women experiencing the most weight loss (>4.8%) had significantly lower LEGS scores at all time points, slower walking speed at 6 months, and weaker grip strength at 12 months post-fracture relative to women with more modest weight loss. In adjusted models, overall differences in function and functional change across all time points were not significant. However, at 12 months post fracture,women with the most weight loss had an average grip strength 7.0 kg lower than women with modest weight loss (p=0.030). Adjustment for confounders accounts for much of the relationships between BMI and function and weight change and function in the year after fracture. However, weight loss is associated with weakness during hip fracture recovery. Weight loss during and immediately after hospitalization appears to identify women at risk of poor function and may represent an important target for future interventions.
van Bloemendaal, Maijke; Bus, Sicco A; de Boer, Charlotte E; Nollet, Frans; Geurts, Alexander C H; Beelen, Anita
2016-10-01
Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence is mostly limited to the orthotic effects of peroneal functional electrical stimulation in the chronic phase after stroke. The aim of this study is to investigate the therapeutic effects of up to 10 weeks of multi-channel functional electrical stimulation (MFES)-assisted gait training on the restoration of spatiotemporal gait symmetry and walking capacity in subacute stroke patients. In a proof-of-principle study with a randomised controlled design, 40 adult patients with walking deficits who are admitted for inpatient rehabilitation within 31 days since the onset of stroke are randomised to either MFES-assisted gait training or conventional gait training. Gait training is delivered in 30-minute sessions each workday for up to 10 weeks. The step length symmetry ratio is the primary outcome. Blinded assessors conduct outcome assessments at baseline, every 2 weeks during the intervention period, immediately post intervention and at 3-month follow-up. This study aims to provide preliminary evidence for the feasibility and effectiveness of MFES-assisted gait rehabilitation early after stroke. Results will inform the design of a larger multi-centre trial. This trial is registered at the Netherlands Trial Register (number NTR4762 , registered 28 August 2014).
Effects of treadmill training on functional recovery following peripheral nerve injury in rats
Boeltz, Tiffany; Ireland, Meredith; Mathis, Kristin; Nicolini, Jennifer; Poplavski, Karen; Rose, Samuel J.; Wilson, Erin
2013-01-01
Exercise, in the form of moderate daily treadmill training following nerve transection and repair leads to enhanced axon regeneration, but its effect on functional recovery is less well known. Female rats were exercised by walking continuously, at a slow speed (10 m/min), for 1 h/day on a level treadmill, beginning 3 days after unilateral transection and surgical repair of the sciatic nerve, and conducted 5 days/wk for 2 wk. In Trained rats, both direct muscle responses to tibial nerve stimulation and H reflexes in soleus reappeared earlier and increased in amplitude more rapidly over time than in Untrained rats. The efficacy of the restored H reflex was greater in Trained rats than in Untrained controls. The reinnervated tibialis anterior and soleus were coactivated during treadmill locomotion in Untrained rats. In Trained animals, the pattern of activation of soleus, but not tibialis anterior, was not significantly different from that found in Intact rats. The overall length of the hindlimb during level and up- and downslope locomotion was conserved after nerve injury in both groups. This conservation was achieved by changes in limb orientation. Limb length was conserved effectively in all rats during downslope walking but only in Trained rats during level and upslope walking. Moderate daily exercise applied immediately after sciatic nerve transection is sufficient to promote axon regeneration, to restore muscle reflexes, and to improve the ability of rats to cope with different biomechanical demands of slope walking. PMID:23468390
Effects of low-dye taping on plantar pressure pre and post exercise: an exploratory study.
Nolan, Damien; Kennedy, Norelee
2009-04-21
Low-Dye taping is used for excessive pronation at the subtalar joint of the foot. Previous research has focused on the tape's immediate effect on plantar pressure. Its effectiveness following exercise has not been investigated. Peak plantar pressure distribution provides an indirect representation of subtalar joint kinematics. The objectives of the study were 1) To determine the effects of Low-Dye taping on peak plantar pressure immediately post-application. 2) To determine whether any initial effects are maintained following exercise. 12 asymptomatic subjects participated; each being screened for excessive pronation (navicular drop > 10 mm). Plantar pressure data was recorded, using the F-scan, at four intervals during the testing session: un-taped, baseline-taped, post-exercise session 1, and post-exercise session 2. Each exercise session consisted of a 10-minute walk at a normal pace. The foot was divided into 6 regions during data analysis. Repeated-measures analysis of variance (ANOVA) was used to assess regional pressure variations across the four testing conditions. Reduced lateral forefoot peak plantar pressure was the only significant difference immediately post tape application (p = 0.039). This effect was lost after 10 minutes of exercise (p = 0.036). Each exercise session resulted in significantly higher medial forefoot peak pressure compared to un-taped; (p = 0.015) and (p = 0.014) respectively, and baseline-taped; (p = 0.036) and (p = 0.015) respectively. Medial and lateral rearfoot values had also increased after the second session (p = 0.004), following their non-significant reduction at baseline-taped. A trend towards a medial-to-lateral shift in pressure present in the midfoot immediately following tape application was still present after 20 minutes of exercise. Low-Dye tape's initial effect of reduced lateral forefoot peak plantar pressure was lost after a 10-minute walk. However, the tape continued to have an effect on the medial forefoot after 20 minutes of exercise. Further studies with larger sample sizes are required to examine the important finding of the anti-pronatory trend present in the midfoot.
Effect of complete dentures on dynamic measurement of changing head position: A pilot study.
Usumez, Aslihan; Usumez, Serdar; Orhan, Metin
2003-10-01
Complete dentures contribute significantly to the facial esthetics of edentulous patients. However, information as to the effect of complete dentures on the natural position of the head is limited. The purpose of this pilot study was to evaluate the immediate and 30-day effect of wearing complete dentures on the dynamic natural head position measured during walking. The sample consisted of a volunteer group of 16 patients, 8 women and 8 men, who received new complete dentures. The ages of the subjects ranged from 45 to 64 years (mean=52 years). Dynamic measurement of head posture was carried out by a specially constructed inclinometer device. Each subject in turn was fitted with the inclinometer system and instructed to walk in a relaxed manner for 5 minutes. The data, measured as degrees, were stored in a pocket data logger. This procedure was repeated before insertion of dentures (T1), immediately after insertion of dentures (T2), and 30 days after insertion of dentures (T3). Stored dynamic head posture data were transferred to computer for analysis. The means of the measurements were statistically compared with Friedman and following Wilcoxon tests (alpha =.05). Twelve of 16 (75%) subjects showed an average of 4.6 degrees of cranial extension immediately after insertion of dentures. Six (37.5%) subjects showed an average of 6.4 degrees of cranial flexion, and 8 (50%) subjects showed an average of 5.2 degrees of cranial extension at T3 relative to the T1 measurement. Dynamic head posture measurements of the other 2 subjects remained unchanged. There were significant differences between different measurements of dynamic head posture positions (P<.025). However, only the T1 and T2 measurements were significantly different (P<.015). The findings indicate that the statistically significant average extension 4.6 degrees in subjects immediately after insertion of complete dentures was not stable after a 30-day evaluation period and did not produce any statistically significant change. The overall effect of wearing dentures was an irregular flexion or extension pattern on dynamic head posture.
NASA Technical Reports Server (NTRS)
Kreutzberg, G. A.; Rosenberg, M. J. F.; Peters, B. T.; Reschke,M. F.
2017-01-01
Long-duration spaceflight results in sensorimotor adaptations, which cause functional deficits during gravitational transitions, such as landing on a planetary surface after long-duration microgravity exposure. Both the vestibular system and the central nervous system are affected by gravitational transitions. These systems are responsible for coordinating head and eye movements via the vestibulo-ocular reflex (VOR) and go through an adaptation period upon exposure to microgravity. Consequently, they must also re-adapt to Earth's gravitational environment upon landing. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with crewmembers reporting oscillopsia and blurred vision caused by retinal slip, or the inability to keep an image focused on their retina. This is thought to drive motion sickness symptoms experienced by most crewmembers following landing. Retinal slip can be estimated by dynamic visual acuity (DVA); visual acuity while in motion. Previously, DVA has been assessed in the laboratory where subjects walked at 6.4 km/hr on a motorized treadmill. Using this method, Peters et al. (2011) found that DVA is worsened in astronauts by an average of 0.75 eye-chart lines one day after landing. However, it is believed that re-adaptation occurs quickly and that DVA might be worse immediately upon re-exposure to a gravitational environment. Since many crewmembers are unable to walk safely upon landing, it was necessary to develop a method for replicating the vertical head movements associated with walking. In addition, the use of a chair to imitate the head displacement caused by walking isolates eye-head interactions without allowing for trunk and lower-body compensation, as seen with treadmill walking (Mulavara & Bloomberg 2003). Therefore, a modality for assessing DVA in the field within a few hours of landing was developed. In this study, we validated the ability of a manually operated oscillating chair to reproduce the oscillatory frequency of walking on a treadmill. Healthy non-astronaut subjects (n=14) participated in one test session and completed three static (seated) and three dynamic (walking/oscillated) visual acuity tests. DVA was assessed using a motorized treadmill, an automated oscillating chair, and a manually operated chair, both developed in the Neuroscience Laboratory at JSC. The automated chair was motor-driven and set to oscillate vertically at 2 Hz with a vertical displacement of +/- 5 cm to simulate vertical translation while walking. The manually operated chair was oscillated vertically by a test operator to the beat of a metronome at 120 beats/min (2 Hz) and a vertical displacement of approximately +/- 5 cm. As the subject was oscillated, they were asked to discern the direction gap of Landolt-C optotypes of varying sizes and verbally reported the direction while an operator recorded their response using a gamepad. Subjects were outfitted with accelerometers (sampling rate = 128 Hz) on their head, trunk and lumbar spine. A fast Fourier transform was performed on the vertical trunk acceleration to compare the peak and spread of the distribution of oscillation frequencies for each oscillating condition. The spread of the frequency distribution for the manual chair was not significantly different from either the treadmill or the automated chair. However, all three conditions had similar non-zero standard error values, suggesting a variance in head movement frequency which may affect DVA. The average oscillation frequency of the manual chair (1.85 Hz) was significantly different (a=0.05) from that of treadmill walking (2.24 Hz), but not significantly different from that of the automated chair (1.85 Hz) and all three conditions had small standard errors (SEM = 0.04, 0.06, and 0.08 Hz for manual, treadmill, and automated respectively). This implies that both chairs oscillate at a frequency below that of treadmill walking, but are comparable to each other and reproducible across sessions. Additionally, DVA scores did not vary significantly across conditions. The smaller spread values of the oscillating chairs' frequencies indicated mitigation of variation induced by locomotor strategies, which enables better examination of the issue of VOR adaptation. Furthermore, due to the deconditioned state of crewmembers in the initial hours after landing, it is easier to transport a manual bouncing chair into the field and safer to perform a vision test while seated in a chair versus walking on a treadmill. Therefore, the manually oscillating chair has been deemed to meet and exceed the DVA testing capabilities previously obtained by treadmill walking.
Krasovsky, Tal; Weiss, Patrice L; Kizony, Rachel
2018-04-06
Texting while walking (TeWW) has become common among people of all ages, and mobile phone use during gait is increasingly associated with pedestrian injury. Although dual-task walking performance is known to decline with age, data regarding the effect of age on dual-task performance in ecological settings are limited. The objective of this study was to evaluate the effect of age, environment (indoors/outdoors), and mixed reality (merging of real and virtual environments) on TeWW performance. A cross-sectional design was used. Young (N = 30; 27.8 ± 4.4 years) and older (N = 20; 68.9 ± 3.9 years) adults performed single and dual-task texting and walking indoors and outdoors, with and without a mixed reality display. Participants also completed evaluations of visual scanning and cognitive flexibility (Trail Making Test) and functional mobility (Timed Up and Go). Indoors, similar interference to walking and texting occurred for both groups, but only older adults' gait variability increased under dual task conditions. Outdoors, TeWW was associated with larger age-related differences in gait variability, texting accuracy, and gait dual-task costs. Young adults with better visual scanning and cognitive flexibility performed TeWW with lower gait costs (r = 0.52 to r = 0.65). The mixed reality display was unhelpful and did not modify walking or texting. Older adults tested in this study were relatively high-functioning. Gaze of participants was not directly monitored. Although young and older adults possess the resources necessary for TeWW, older adults pay an additional "price" when dual-tasking, especially outdoors. TeWW may have potential as an ecologically-valid assessment and/or an intervention paradigm for dual task performance among older adults as well as for clinical populations.
Holleran, Carey L; Rodriguez, Kelly S; Echauz, Anthony; Leech, Kristan A; Hornby, T George
2015-04-01
Many interventions can improve walking ability of individuals with stroke, although the training parameters that maximize recovery are not clear. For example, the contribution of training intensity has not been well established and may contribute to the efficacy of many locomotor interventions. The purpose of this preliminary study was to evaluate the effects of locomotor training intensity on walking outcomes in individuals with gait deficits poststroke. Using a randomized cross-over design, 12 participants with chronic stroke (>6-month duration) performed either high-intensity (70%-80% of heart rate reserve; n = 6) or low-intensity (30%-40% heart rate reserve; n = 6) locomotor training for 12 or fewer sessions over 4 to 5 weeks. Four weeks following completion, the alternate training intervention was performed. Training intensity was manipulated by adding loads or applying resistance during walking, with similar speeds, durations, and amount of stepping practice between conditions. Greater increases in 6-Minute Walk Test performance were observed following high-intensity training compared with low-intensity training. A significant interaction of intensity and order was also observed for 6-Minute Walk Test and peak treadmill speed, with the largest changes in those who performed high-intensity training first. Moderate correlations were observed between locomotor outcomes and measures of training intensity. This study provides the first evidence that the intensity of locomotor practice may be an important independent determinant of walking outcomes poststroke. In the clinical setting, the intensity of locomotor training can be manipulated in many ways, although this represents only 1 parameter to consider.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A90).
Does dual task training improve walking performance of older adults with concern of falling?
Wollesen, B; Schulz, S; Seydell, L; Delbaere, K
2017-09-11
Older adults with concerns of falling show decrements of gait stability under single (ST) and dual task (DT) conditions. To compare the effects of a DT training integrating task managing strategies for independent living older adults with and without concern about falling (CoF) to a non-training control group on walking performance under ST and DT conditions. Single center parallel group single blind randomized controlled trial with group-based interventions (DT-managing balance training) compared to a control group (Ninety-five independent living older adults; 71.5 ± 5.2 years). A progressive DT training (12 sessions; 60 min each; 12 weeks) including task-managing strategies was compared to a non-training control group. group based intervention for independent living elderly in a gym. ST and DT walking (visual verbal Stroop task) were measured on a treadmill. Gait parameters (step length, step width, and gait line) and cognitive performance while walking were compared with a 2x2x2 Repeated Measures Analyses of Variance. Participants in the intervention group showed an increased step length under ST and DT conditions following the intervention, for both people with and without CoF compared to their respective control groups. Foot rolling movement and cognitive performance while walking however only improved in participants without CoF. The results showed that DT managing training can improve walking performance under ST and DT conditions in people with and without CoF. Additional treatment to directly address CoF, such as cognitive behavioural therapy, should be considered to further improve the cautious gait pattern (as evidenced by reduced foot rolling movements). The study was retrospectively registered in the German Clinical Trials Register (DRKS; Identification number DRKS00012382 , 11.05.2017).
Squassoni, Selma Denis; Machado, Nadine Cristina; Lapa, Mônica Silveira; Cordoni, Priscila Kessar; Bortolassi, Luciene Costa; de Oliveira, Juliana Nascimento; Tavares, Cecilia Melo Rosa; Fiss, Elie
2014-01-01
Objective To evaluate the influence of the altitude on the 6-minute walking test in patients with moderate to severe pulmonary disease. Methods Twenty-nine patients performed the 6-minute walk test at a pulmonary rehabilitation clinic in Santo André (above sea level), in São Paulo State, and at the Enseada Beach, in Guarujá (at sea level), also in São Paulo State. Of these 29 patients, 8 did the test both on hard sand and on asphalt to analyze if there were differences in performance during the tests. Data such as heart rate, oxygen saturation, test distance, and Borg scale were compared. Results We found no statistical difference in relation to oxygen saturation at rest before the beginning of the walking test in Santo André 94.67±2.26% and at sea level 95.56±2% (p=0.71). The minimum saturation measured during the test was 87.27±6.54% in Santo André and 89.10±5.41% in Guarujá (p=0.098). There were no differences in the performed distance between the different kinds of terrains; the distance on sand was 387.75±5.02m and on asphalt it was 375.00±6.54m (p=0.654). Regarding oxygen saturation during walking, the pulse oximetry on sand was 95.12±1.80% and on asphalt it was 96.87±1.64% (p=1.05). Conclusion Altitude did not affect the performance of the walking test in patients with moderate to severe pulmonary disease and the results were similar in both cases, on sand and on asphalt. PMID:25628195
The impact of dynamic balance measures on walking performance in multiple sclerosis
Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.
2014-01-01
Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162
Metabolic Rate and Perceived Exertion of Walking in Older Adults With Idiopathic Chronic Fatigue
Corbett, Duane B.; Knaggs, Jeffrey D.; Manini, Todd M.
2016-01-01
Abstract Background: Fatigue is a common complaint in older adults, often not associated with underlying medical conditions. The purpose of this study was to investigate metabolic rate (MR) of walking, walking performance, and perception-based exertion during walking in older adults with and without idiopathic chronic fatigue (ICF). Methods: 20 older adults (aged 70.8±4.9 years), reporting 2 SD above normative values of the Functional Assessment of Chronic Illness Therapy-Fatigue scale and without overt health conditions that explained their symptoms, were compared with 25 age-matched older adults (73.2±5.1 years) without fatigue symptoms. Participants walked 400 m at a rapid pace on a 20-m course. On a separate visit, oxygen consumption was measured during treadmill test at standard (40.2 m/min), preferred paces (40–83 m/min) and peak capacity. Ratings of perceived exertion (RPE) were measured at each treadmill stage and after each lap of the 400-m walk test. Results: During the 400-m walk test, individuals with ICF showed lower overall walking speed and reported a steady increase in RPE with no change observed in non-fatigued group (1.63±1.72 vs 0.27±0.68, p < .01). Similar findings on RPE were noted on treadmill test. Gross MR, mass-specific MR, mass-specific net MR, and MR as a percent of peak oxygen consumption of walking were similar between groups during standard, preferred paces and peak capacity on treadmill. Conclusions: This study suggests that ICF in older adults is not related to elevated metabolic cost of walking. Higher RPE without concomitant decreases in performance indicate a potential disconnect between metabolic output and sensations during movement. PMID:27271253
The effects of smartphone multitasking on gait and dynamic balance
Lee, Jeon Hyeong; Lee, Myoung Hee
2018-01-01
[Purpose] This study was performed to analyze the influence of smartphone multitasking on gait and dynamic balance. [Subjects and Methods] The subjects were 19 male and 20 female university students. There were 4 types of gait tasks: General Gait (walking without a task), Task Gait 1 (walking while writing a message), Task Gait 2 (walking while writing a message and listening to music), Task Gait 3 (walking while writing a message and having a conversation). To exclude the learning effect, the order of tasks was randomized. The Zebris FDM-T treadmill system (Zebris Medical GmbH, Germany) was used to measure left and right step length and width, and a 10 m walking test (10MWT) was conducted for gait velocity. In addition, a Timed Up and Go test (TUG) was used to measure dynamic balance. All the tasks were performed 3 times, and the mean of the measured values was analyzed. [Results] There were no statistically significant differences in step length and width. There were statistically significant differences in the 10MWT and TUG tests. [Conclusion] Using a smartphone while walking decreases a person’s dynamic balance and walking ability. It is considered that accident rates are higher when using a smartphone. PMID:29545698
Boes, Morgan K; Bollaert, Rachel E; Kesler, Richard M; Learmonth, Yvonne C; Islam, Mazharul; Petrucci, Matthew N; Motl, Robert W; Hsiao-Wecksler, Elizabeth T
2018-03-01
To determine whether a powered ankle-foot orthosis (AFO) that provides dorsiflexor and plantar flexor assistance at the ankle can improve walking endurance of persons with multiple sclerosis (MS). Short-term intervention. University research laboratory. Participants (N=16) with a neurologist-confirmed diagnosis of MS and daily use of a prescribed custom unilateral passive AFO. Three 6-minute walk tests (6MWTs), 1 per footwear condition: shoes (no AFO), prescribed passive AFO, and portable powered AFO (PPAFO). Assistive devices were worn on the impaired limb. Distance walked and metabolic cost of transport were recorded during each 6MWT and compared between footwear conditions. Each participant completed all three 6MWTs within the experimental design. PPAFO use resulted in a shorter 6MWT distance than did a passive AFO or shoe use. No differences were observed in metabolic cost of transport between footwear conditions. The current embodiment of this PPAFO did not improve endurance walking performance during the 6MWT in a sample of participants with gait impairment due to MS. Further research is required to determine whether expanded training or modified design of this powered orthosis can be effective in improving endurance walking performance in persons with gait impairment due to MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Curotto Grasiosi, Jorge; Peressotti, Bruno; Machado, Rogelio A; Filipini, Eduardo C; Angel, Adriana; Delgado, Jorge; Cortez Quiroga, Gustavo A; Rus Mansilla, Carmen; Martínez Quesada, María del Mar; Degregorio, Alejandro; Cordero, Diego J; Dak, Marcelo; Izurieta, Carlos; Esper, Ricardo J
2013-10-01
To assess whether levothyroxine treatment improves functional capacity in patients with chronic heart failure (New York Heart Association class i-iii) and subclinical hypothyroidism. One hundred and sixty-three outpatients with stable chronic heart failure followed up for at least 6 months were enrolled. A physical examination was performed, and laboratory tests including thyroid hormone levels, Doppler echocardiogram, radionuclide ventriculography, and Holter monitoring were requested. Functional capacity was assessed by of the 6-min walk test. Patients with subclinical hypothyroidism were detected and, after undergoing the s6-min walk test, were given replacement therapy. When they reached normal thyrotropin (TSH) levels, the 6-min walk test was performed again. The distance walked in both tests was recorded, and the difference in meters covered by each patient was analyzed. Prevalence of subclinical hypothyroidism in patients with heart failure was 13%. These patients walked 292±63m while they were hypothyroid and 350±76m when TSH levels returned to normal, a difference of 58±11m (P<.011). Patients with normal baseline TSH levels showed no significant difference between the 2 6-min walk tests. Patients with chronic heart failure and subclinical hypothyroidism significantly improved their physical performance when normal TSH levels were reached. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.
Variability in energy cost and walking gait during race walking in competitive race walkers.
Brisswalter, J; Fougeron, B; Legros, P
1998-09-01
The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.
The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.
Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L
2013-09-01
Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.
Kim, Kyunghoon; Lee, Sukmin; Lee, Kyoungbo
2014-12-01
[Purpose] The purpose of the present study was to examine the effects of progressive body weight supported treadmill forward and backward walking training (PBWSTFBWT), progressive body weight supported treadmill forward walking training (PBWSTFWT), progressive body weight supported treadmill backward walking training (PBWSTBWT), on stroke patients' affected side lower extremity's walking ability. [Subjects and Methods] A total of 36 chronic stroke patients were divided into three groups with 12 subjects in each group. Each of the groups performed one of the progressive body weight supported treadmill training methods for 30 minute, six times per week for three weeks, and then received general physical therapy without any other intervention until the follow-up tests. For the assessment of the affected side lower extremity's walking ability, step length of the affected side, stance phase of the affected side, swing phase of the affected side, single support of the affected side, and step time of the affected side were measured using optogait and the symmetry index. [Results] In the within group comparisons, all the three groups showed significant differences between before and after the intervention and in the comparison of the three groups, the PBWSTFBWT group showed more significant differences in all of the assessed items than the other two groups. [Conclusion] In the present study progressive body weight supported treadmill training was performed in an environment in which the subjects were actually walked, and PBWSTFBWT was more effective at efficiently training stroke patients' affected side lower extremity's walking ability.
Walking economy during cued versus non-cued treadmill walking in persons with Parkinson's disease.
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2013-01-01
Gait impairment is common in Parkinson's disease (PD) and may result in greater energy expenditure, poorer walking economy, and fatigue during activities of daily living. Auditory cueing is an effective technique to improve gait; but the effects on energy expenditure are unknown. To determine whether energy expenditure differs in individuals with PD compared with healthy controls and if auditory cueing improves walking economy in PD. Twenty participants (10 PD and 10 controls) came to the laboratory for three sessions. Participants performed two, 6-minute bouts of treadmill walking at two speeds (1.12 m·sec-1 and 0.67 m·sec-1). One session used cueing and the other without cueing. A metabolic cart measured energy expenditure and walking economy was calculated (energy expenditure/power). PD had worse walking economy and higher energy expenditure than control participants during cued and non-cued walking at the 0.67 m·sec-1 speed and during non-cued walking at the 1.12 m·sec-1. With auditory cueing, energy expenditure and walking economy worsened in both participant groups. People with PD use more energy and have worse walking economy than adults without PD. Walking economy declines further with auditory cuing in persons with PD.
Hotrabhavananda, Benjamin; Mishra, Anup K; Skubic, Marjorie; Hotrabhavananda, Nijaporn; Abbott, Carmen
2016-08-01
We compared the performance of the Kinect skeletal data with the Kinect depth data in capturing different gait parameters during the Timed-up and Go Test (TUG) and Figure of 8 Walk Test (F8W). The gait parameters considered were stride length, stride time, and walking speed for the TUG, and number of steps and completion time for the F8W. A marker-based Vicon motion capture system was used for the ground-truth measurements. Five healthy participants were recruited for the experiment and were asked to perform three trials of each task. Results show that depth data analysis yields stride length and stride time measures with significantly low percentile errors as compared to the skeletal data analysis. However, the skeletal and depth data performed similar with less than 3% of absolute mean percentile error in determining the walking speed for the TUG and both parameters of F8W. The results show potential capabilities of Kinect depth data analysis in computing many gait parameters, whereas, the Kinect skeletal data can also be used for walking speed in TUG and F8W gait parameters.
Vicary, Staci; Sperling, Matthias; von Zimmermann, Jorina; Richardson, Daniel C; Orgs, Guido
2017-01-01
Synchronized movement is a ubiquitous feature of dance and music performance. Much research into the evolutionary origins of these cultural practices has focused on why humans perform rather than watch or listen to dance and music. In this study, we show that movement synchrony among a group of performers predicts the aesthetic appreciation of live dance performances. We developed a choreography that continuously manipulated group synchronization using a defined movement vocabulary based on arm swinging, walking and running. The choreography was performed live to four audiences, as we continuously tracked the performers' movements, and the spectators' affective responses. We computed dynamic synchrony among performers using cross recurrence analysis of data from wrist accelerometers, and implicit measures of arousal from spectators' heart rates. Additionally, a subset of spectators provided continuous ratings of enjoyment and perceived synchrony using tablet computers. Granger causality analyses demonstrate predictive relationships between synchrony, enjoyment ratings and spectator arousal, if audiences form a collectively consistent positive or negative aesthetic evaluation. Controlling for the influence of overall movement acceleration and visual change, we show that dance communicates group coordination via coupled movement dynamics among a group of performers. Our findings are in line with an evolutionary function of dance-and perhaps all performing arts-in transmitting social signals between groups of people. Human movement is the common denominator of dance, music and theatre. Acknowledging the time-sensitive and immediate nature of the performer-spectator relationship, our study makes a significant step towards an aesthetics of joint actions in the performing arts.
Neogi, Tuhina; King, Wendy C.; LaValley, Michael P.; Kritchevsky, Stephen B.; Nevitt, Michael C.; Harris, Tamara B.; Ferrucci, Luigi; Simonsick, Eleanor M.; Satterfield, Suzanne; Strotmeyer, Elsa S.; Zhang, Yuqing
2014-01-01
Background The ability to walk for short and prolonged periods of time is often measured with separate walking tests. It is unclear whether decline in the 2-minute walk coincides with decline in a shorter 20-m walk among older adults. Objective The aim of this study was to describe patterns of change in the 20-m walk and 2-minute walk over 8 years among a large cohort of older adults. Should change be similar between tests of walking ability, separate retesting of prolonged walking may need to be reconsidered. Design A longitudinal, observational cohort study was conducted. Methods Data were from 1,893 older adults who were well-functioning (≥70 years of age). The 20-m walk and 2-minute walk were repeatedly measured over 8 years to measure change during short and prolonged periods of walking, respectively. Change was examined using a dual group-based trajectory model (dual model), and agreement between walking trajectories was quantified with a weighted kappa statistic. Results Three trajectory groups for the 20-m walk and 2-minute walk were identified. More than 86% of the participants were in similar trajectory groups for both tests from the dual model. There was high chance-corrected agreement (kappa=.84; 95% confidence interval=.82, .86) between the 20-m walk and 2-minute walk trajectory groups. Limitations One-third of the original Health, Aging and Body Composition (Health ABC) study cohort was excluded from analysis due to missing clinic visits, followed by being excluded for health reasons for performing the 2-minute walk, limiting generalizability to healthy older adults. Conclusions Patterns of change in the 2-minute walk are similar to those in the 20-m walk. Thus, separate retesting of the 2-minute walk may need to be reconsidered to gauge change in prolonged walking. PMID:24786943
2013-01-01
Background The Six-minute walk (6MW) and Timed-Up-and-Go (TUG) are short walk tests commonly used to evaluate functional recovery after total knee arthroplasty (TKA). However, little is known about walking capacity of TKA recipients over extended periods typical of everyday living and whether these short walk tests actually predict longer, more functional distances. Further, short walk tests only correlate moderately with patient-reported outcomes. The overarching aims of this study were to compare the performance of TKA recipients in an extended walk test to healthy age-matched controls and to determine the utility of this extended walk test as a research tool to evaluate longer term functional mobility in TKA recipients. Methods The mobility of 32 TKA recipients one year post-surgery and 43 healthy age-matched controls were assessed using the TUG, 6MW and 30-minute walk (30MW) tests. The latter test was repeated one week later. Self-reported function was measured using the WOMAC Index and a physical activity questionnaire. Results 30MW distance was significantly shorter amongst TKA recipients (mean 2108 m [95% CI 1837 to 2381 m]; Controls 3086 m [2981 to 3191 m], P < 0.001). Test-retest repeatability was high (ICC = 0.97, TKA; 0.96, Controls). Amongst TKA recipients, the 30MW distance correlated strongly with the shorter tests (6MW, r = 0.97, P < 0.001; TUG, r = −0.82, P < 0.001). Multiple regression modeling found 6MW distance to be the only significant predictor (P < 0.001) of 30MW distance, explaining 96% of the variability. The TUG test models were moderate predictors of WOMAC function (55%) and physical activity (36%) and were stronger predictors than 6MW and 30 MW tests. Conclusions Though TKA recipients are able to walk for 30 minutes one year post-surgery, their performance falls significantly short of age-matched norms. The 30MW test is strongly predicted by 6MW test performance, thus providing strong construct validity for the use of the 6MW test in the TKA population. Neither a short nor long walk test is a strong predictor of patient-reported function after TKA. PMID:23617377
Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A
2018-04-01
Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.
Holdgate, Matthew R.; Meehan, Cheryl L.; Hogan, Jennifer N.; Miller, Lance J.; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J.
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare. PMID:27414411
Holdgate, Matthew R; Meehan, Cheryl L; Hogan, Jennifer N; Miller, Lance J; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.
Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau
2017-06-22
This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.;
2014-01-01
Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (<24 hr) recovery process, nor is it possible to accurately assess the full impact of the decrements associated with long duration flight. To overcome these limitations, both the Russian and U.S. sides have implemented testing at landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (< 2 hr) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessment of hand/eye coordination, ability to egress from a seated position, walk normally without falling, measurement of dynamic visual acuity, ability to discriminate different forces generated with both the hands and legs, recovery from a fall, a coordinated walk involving tandem heel-to-toe placement, and determination of postural ataxia while standing. The cardiovascular portion of the investigation includes blood pressure and heart rate measurements during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired at a minimum of one to three more other times within the 24 hr following landing and continue until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of jointly agreed upon subset of tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT was first conducted following the September 2013 landing of the Soyuz spacecraft (34S) and again following the landing of Soyuz 35S in November. Testing included: (1) a sit-tostand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 min while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors and severity of postflight motion sickness were collected for analysis. In summary, the level of functional deficit is expected to be most profound during the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiological data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiological measurements will allow estimation of nonlinear sensorimotor and cardiovascular recovery trends to an accuracy that has not been previously captured in over 50 years of space flight.
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.;
2014-01-01
Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short-duration (Space Shuttle) and long-duration (Mir and International Space Station [ISS]) space flights. While the unloading paradigms associated with dry immersion and bed rest does serve as acceptable flight analogs, testing of crew responses following the long-duration flights previously has not been possible until a minimum of 24 hours after landing. As a result, it is not possible to estimate the nonlinear trend of the early (<24 hours) recovery process nor is it possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented testing at the landing site. By joint agreement, this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long-duration space-flight crews beginning as soon after landing as possible (< 2 hours) with one to three immediate follow-up measurements on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, egressing from a seated position, walking normally without falling, measuring of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall, coordinated walking involving tandem heel-to-toe placement, and determining postural ataxia while standing. The cardiovascular portion of the investigation includes measuring blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired between one and three more other times within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-totoe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors, and severity of postflight motion sickness were collected for each test session. In summary, the level of functional deficit is expected to be most profound during the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow estimation of nonlinear sensorimotor and cardiovascular recovery trends that has not been previously captured in over 50 years of space flight.
Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina
2009-09-01
Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.
Wu, Y J; Chen, S Y; Lin, M C; Lan, C; Lai, J S; Lien, I N
2001-02-01
To compare the energy expenditure of locomotion by wheelchair with that required for prosthetic ambulation in a person with bilateral transfemoral (TF) amputations. Observational, single patient, descriptive. An 80-meter long rectangular hallway in a rehabilitation unit. A 41-year-old woman with bilateral TF amputations that were performed 79 days before her admission to the rehabilitation unit. The oxygen uptake, oxygen cost, heart rate, speed, cadence, and stride length of walking measured during a 4-month course of prosthetic rehabilitation. Five locomotion conditions were evaluated: (1) wheelchair propulsion, (2) walking with short-leg prostheses (stubbies) and a walker, (3) long-leg prostheses and a walker, (4) long-leg prostheses without knee mechanism and axillary crutches, and (5) long-leg prostheses with right polycentric knee and left locked knee and axillary crutches. A portable and telemetric system was used to measure the metabolic parameters. An arm ergometry graded exercise test was performed at the end of rehabilitation. Oxygen cost (range, 466%--707% of that of wheeling) and heart rate (range, 106%--116% of that of wheeling) were higher during walking with various combinations of prostheses and walking aids. The speed of prosthetic walking was only 24% to 33% of that of wheeling. Our patient preferred using a wheelchair to prosthetic walking after discharge. People with bilateral TF amputations require very high cardiorespiratory endurance to fulfill the energy demand during prosthetic rehabilitation. The high energy cost of prosthetic walking will limit its application in daily activities.
Walking dreams in congenital and acquired paraplegia.
Saurat, Marie-Thérèse; Agbakou, Maité; Attigui, Patricia; Golmard, Jean-Louis; Arnulf, Isabelle
2011-12-01
To test if dreams contain remote or never-experienced motor skills, we collected during 6 weeks dream reports from 15 paraplegics and 15 healthy subjects. In 9/10 subjects with spinal cord injury and in 5/5 with congenital paraplegia, voluntary leg movements were reported during dream, including feelings of walking (46%), running (8.6%), dancing (8%), standing up (6.3%), bicycling (6.3%), and practicing sports (skiing, playing basketball, swimming). Paraplegia patients experienced walking dreams (38.2%) just as often as controls (28.7%). There was no correlation between the frequency of walking dreams and the duration of paraplegia. In contrast, patients were rarely paraplegic in dreams. Subjects who had never walked or stopped walking 4-64 years prior to this study still experience walking in their dreams, suggesting that a cerebral walking program, either genetic or more probably developed via mirror neurons (activated when observing others performing an action) is reactivated during sleep. Copyright © 2011 Elsevier Inc. All rights reserved.
Vicary, Staci; Sperling, Matthias; von Zimmermann, Jorina; Richardson, Daniel C.
2017-01-01
Synchronized movement is a ubiquitous feature of dance and music performance. Much research into the evolutionary origins of these cultural practices has focused on why humans perform rather than watch or listen to dance and music. In this study, we show that movement synchrony among a group of performers predicts the aesthetic appreciation of live dance performances. We developed a choreography that continuously manipulated group synchronization using a defined movement vocabulary based on arm swinging, walking and running. The choreography was performed live to four audiences, as we continuously tracked the performers’ movements, and the spectators’ affective responses. We computed dynamic synchrony among performers using cross recurrence analysis of data from wrist accelerometers, and implicit measures of arousal from spectators’ heart rates. Additionally, a subset of spectators provided continuous ratings of enjoyment and perceived synchrony using tablet computers. Granger causality analyses demonstrate predictive relationships between synchrony, enjoyment ratings and spectator arousal, if audiences form a collectively consistent positive or negative aesthetic evaluation. Controlling for the influence of overall movement acceleration and visual change, we show that dance communicates group coordination via coupled movement dynamics among a group of performers. Our findings are in line with an evolutionary function of dance–and perhaps all performing arts–in transmitting social signals between groups of people. Human movement is the common denominator of dance, music and theatre. Acknowledging the time-sensitive and immediate nature of the performer-spectator relationship, our study makes a significant step towards an aesthetics of joint actions in the performing arts. PMID:28742849
Villiger, Michael; Liviero, Jasmin; Awai, Lea; Stoop, Rahel; Pyk, Pawel; Clijsen, Ron; Curt, Armin; Eng, Kynan; Bolliger, Marc
2017-01-01
Key factors positively influencing rehabilitation and functional recovery after spinal cord injury (SCI) include training variety, intensive movement repetition, and motivating training tasks. Systems supporting these aspects may provide profound gains in rehabilitation, independent of the subject's treatment location. In the present study, we test the hypotheses that virtual reality (VR)-augmented training at home (i.e., unsupervised) is feasible with subjects with an incomplete SCI (iSCI) and that it improves motor functions such as lower limb muscle strength, balance, and functional mobility. In the study, 12 chronic iSCI subjects used a home-based, mobile version of a lower limb VR training system. The system included motivating training scenarios and combined action observation and execution. Virtual representations of the legs and feet were controlled via movement sensors. The subjects performed home-based training over 4 weeks, with 16-20 sessions of 30-45 min each. The outcome measures assessed were the Lower Extremity Motor Score (LEMS), Berg Balance Scale (BBS), Timed Up and Go (TUG), Spinal Cord Independence Measure mobility, Walking Index for Spinal Cord Injury II, and 10 m and 6 min walking tests. Two pre-treatment assessment time points were chosen for outcome stability: 4 weeks before treatment and immediately before treatment. At post-assessment (i.e., immediately after treatment), high motivation and positive changes were reported by the subjects (adapted Patients' Global Impression of Change). Significant improvements were shown in lower limb muscle strength (LEMS, P = 0.008), balance (BBS, P = 0.008), and functional mobility (TUG, P = 0.007). At follow-up assessment (i.e., 2-3 months after treatment), functional mobility (TUG) remained significantly improved ( P = 0.005) in contrast to the other outcome measures. In summary, unsupervised exercises at home with the VR training system led to beneficial functional training effects in subjects with chronic iSCI, suggesting that it may be useful as a neurorehabilitation tool. Canton of Zurich ethics committee (EK-24/2009, PB_2016-00545), ClinicalTrials.gov: NCT02149186. Registered 24 April 2014.
Performance of a visuomotor walking task in an augmented reality training setting.
Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper
2017-12-01
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Myoung Kwon; Shin, Young Jun
2017-01-01
Background The objective of this study was to investigate the immediate effect on gait function when ankle balance taping is applied to amateur soccer players with lateral ankle sprain. Material/Methods A cross-over randomized design was used. Twenty-two soccer players with an ankle sprain underwent 3 interventions in a random order. Subjects were randomly assigned to ankle balance taping, placebo taping, and no taping groups. The assessment was performed using the GAITRite portable walkway system, which records the location and timing of each footfall during ambulation. Results Significant differences were found in the velocity, step length, stride length, and H-H base support among the 3 different taping methods (p<0.05). The ankle balance taping group showed significantly greater velocity, step length, and stride length in comparison to the placebo and no taping group. The ankle balance taping group showed a statistically significant decrease (p<0.05) in the H-H base support compared to the placebo and no taping groups, and the placebo group showed significantly greater velocity in comparison to the no taping group (p<0.05). Conclusions We conclude that ankle balance taping that uses kinesiology tape instantly increased the walking ability of amateur soccer players with lateral ankle sprain. Therefore, ankle balance taping is a useful alternative to prevent and treat ankle sprain of soccer players. PMID:29158472
Fong, Daniel Tik-Pui; Pang, Kai-Yip; Chung, Mandy Man-Ling; Hung, Aaron See-Long; Chan, Kai-Ming
2012-12-01
It is a routine practice to prescribe a combination of rocker shoes and custom-made foot orthoses for patients with plantar fasciitis. Recently, there has been a debate on this practice, and studies have shown that the individual prescription of rocker shoes or custom-made foot orthoses is effective in treating plantar fasciitis. The aim of this study was to evaluate and compare the immediate therapeutic effects of individually prescribed rocker sole shoes and custom-made foot orthoses, and a combined prescription of them on plantar fasciitis. This was a cross-over study. Fifteen patients with unilateral plantar fasciitis were recruited; they were from both genders and aged between 40 and 65. Subjects performed walking trials which consisted of one 'unshod' condition and four 'shod' conditions while wearing baseline shoes, rocker shoes, baseline shoes with foot orthotics, and rocker shoes with foot orthotics. The study outcome measures were the immediate heel pain intensity levels as reflected by visual analog scale pain ratings and the corresponding dynamic plantar pressure redistribution patterns as evaluated by a pressure insole system. The results showed that a combination of rocker shoes and foot orthoses produced a significantly lower visual analog scale pain score (9.7 mm) than rocker shoes (30.9 mm) and foot orthoses (29.5 mm). With regard to baseline shoes, it also significantly reduced the greatest amount of medial heel peak pressure (-33.58%) without overloading other plantar regions when compared to rocker shoes (-7.99%) and foot orthoses (-28.82%). The findings indicate that a combined prescription of rocker sole shoes and custom-made foot orthoses had greater immediate therapeutic effects compared to when each treatment had been individually prescribed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interception of moving objects while walking in children with spastic hemiparetic cerebral palsy.
Ricken, Annieck X C; Savelsbergh, G J P; Bennett, S J
2007-01-15
The purpose of the study was to examine the coordination of reaching and walking behaviour when children with Spastic Hemiparetic Cerebral Palsy (SHCP) intercept an approaching and hence externally-timed object. Using either the impaired or non-impaired arm, children intercepted a ball approaching from a fixed distance with one of three velocities. Each participant's initial starting position was scaled to their maximum walking velocity determined prior to testing; for the medium ball velocity, participants would arrive at the point of interception at the correct time if they walked with their maximum velocity. Children with SHCP adapted their reaching and walking behaviour to the different ball approach velocities. These adaptations were exhibited when using the impaired and non-impaired arm, and resulted in similar outcome performance irrespective of which arm was used. Still, children with SHCP found it necessary to increase trunk movement to compensate for the decreased elbow excursion and a decreased peak velocity of the impaired arm. Children with SHCP exhibited specific adaptations to their altered movement capabilities when performing a behaviourally-realistic task. The provision of an external timing constraint appeared to facilitate both reaching and walking movements and hence could represent a useful technique in rehabilitation.
van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R
2017-06-07
Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.004), complex I (CI + ETF) P (p = 0.003), complex I + complex II (CI + CII + ETF) P (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.0013), complex I (CI + ETF) P (p = 0.0005), complex I + complex II (CI + CII + ETF) P (p = 0.011) and electron transfer system capacity (CI + CII + ETF) E (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity. Trial registration ClinicalTrials.gov ID: NCT023110256.
Reliability and feasibility of the six minute walk test in subjects with myotonic dystrophy.
Kierkegaard, Marie; Tollbäck, Anna
2007-12-01
The objective was to describe test-retest reliability and feasibility of the six minute walk test in adult subjects with myotonic dystrophy type 1. Twelve subjects (28-68 years, mean 44) performed three six minute walk tests on two occasions, one week apart. Relative reliability was high (ICC(2.1)=0.99) and absolute reliability values were low (standard error of measurement 12 m, repeatability 33 m). Feasibility was investigated in a sample of 64 subjects (19-70 years, mean 43). Fifty-two subjects were able to perform two tests on the same day. Subjects with severe proximal weakness had difficulties performing repeated tests. A practice trial followed by a second test on the same day can be recommended for most subjects, and the best test should be used for evaluations. In conclusion, even though the study sample was small, the present study indicates that the six minute walk test is reliable and feasible in subjects with myotonic dystrophy type 1.
Yogev-Seligmann, Galit; Giladi, Nir; Brozgol, Marina; Hausdorff, Jeffrey M
2012-01-01
Impairments in the ability to perform another task while walking (ie, dual tasking [DT]) are associated with an increased risk of falling. Here we describe a program we developed specifically to improve DT performance while walking based on motor learning principles and task-specific training. We examined feasibility, potential efficacy, retention, and transfer to the performance of untrained tasks in a pilot study among 7 patients with Parkinson's disease (PD). Seven patients (Hoehn and Yahr stage, 2.1±0.2) were evaluated before, after, and 1 month after 4 weeks of DT training. Gait speed and gait variability were measured during usual walking and during 4 DT conditions. The 4-week program of one-on-one training included walking while performing several distinct cognitive tasks. Gait speed and gait variability during DT significantly improved. Improvements were also seen in the DT conditions that were not specifically trained and were retained 1 month after training. These initial findings support the feasibility of applying a task-specific DT gait training program for patients with PD and suggest that it positively affects DT gait, even in untrained tasks. The present results are also consistent with the possibility that DT gait training enhances divided attention abilities during walking. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gharib, Nevein Mm; El-Maksoud, Gehan M Abd; Rezk-Allah, Soheir S
2011-10-01
To assess the effects of additional gait trainer assisted walking exercises on walking performance in children with hemiparetic cerebral palsy. A randomized controlled study. Paediatric physical therapy outpatient clinic. Thirty spastic hemiparetic cerebral palsied children of both sexes (10-13 years - 19 girls and 11 boys). Children were randomly assigned into two equal groups; experimental and control groups. Participants in both groups received a traditional physical therapy exercise programme. Those in the experimental group received additional gait trainer based walking exercises which aimed to improve walking performance. Treatment was provided three times per week for three successive months. Children received baseline and post-treatment assessments using Biodex Gait Trainer 2 assessment device to evaluate gait parameters including: average step length, walking speed, time on each foot (% of gait cycle) and ambulation index. Children in the experimental group showed a significant improvement as compared with those in the control group. The ambulation index was 75.53±7.36 (11.93 ± 2.89 change score) for the experimental group and 66.06 ± 5.48 (2.13 ± 4.43 change score) for the control group (t = 3.99 and P = 0.0001). Time of support for the affected side was 42.4 ± 3.37 (7 ± 2.20 change score) for the experimental group and 38.06 ± 4.63 (3.33 ± 6.25 change score) for the control group (t = 2.92 and P = 0.007). Also, there was a significant improvement in step length and walking speed in both groups. Gait trainer combined with traditional physiotherapy increase the chance of improving gait performance in children with spastic hemiparetic cerebral palsy.
The impact of walking while using a smartphone on pedestrians' awareness of roadside events.
Lin, Ming-I Brandon; Huang, Yu-Ping
2017-04-01
Previous studies have shown that using a cell phone to talk or text while walking changes gait kinematics and encourages risky street-crossing behaviors. However, less is known about how the motor-cognitive interference imposed by smartphone tasks affects pedestrians' situational awareness to environmental targets relevant to pedestrian safety. This study systematically investigated the influence of smartphone use on detection of and responses to a variety of roadside events in a semi-virtual walking environment. Twenty-four healthy participants completed six treadmill walking sessions while engaged in a concurrent picture-dragging, texting, or news-reading task. During distracted walking, they were required to simultaneously monitor the occurrence of road events for two different levels of event frequency. Performance measures for smartphone tasks and event responses, eye movements, and perceived workload and situational awareness were compared across different dual-task conditions. The results revealed that during dual-task walking, the reading app was associated with a significantly higher level of perceived workload, and impaired awareness of the surrounding environment to a greater extent compared with the texting or picture-dragging apps. Pedestrians took longer to visually detect the roadside events in the reading and texting conditions than in the dragging condition. Differences in event response performances were mainly dependent on their salient features but were also affected by the type of smartphone task. Texting was found to make participants more reliant on their central vision to detect road events. Moreover, different gaze-scanning patterns were adopted by participants to better protect dual-task performance in response to the changes in road-event frequency. The findings of relationships between workload, dual-task performances, and allocation strategies for visual attention further our understanding of pedestrian behavior and safety. By knowing how attentional and motor demands involved in different smartphone tasks affect pedestrians' awareness to critical roadside events, effective awareness campaigns might be devised to discourage smartphone use while walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline
2017-07-01
With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (P<0.05). The NWG showed significantly greater walk distance than the WG (P<0.05). Both ACS and PAOD groups showed improvement, but improvement was significant for only PAOD patients. After a 4-week training period, Nordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.
Physical performance tests after stroke: reliability and validity.
Maeda, A; Yuasa, T; Nakamura, K; Higuchi, S; Motohashi, Y
2000-01-01
To evaluate the reliability and validity of the modified physical performance tests for stroke survivors who live in a community. The subjects included 40 stroke survivors and 40 apparently healthy independent elderly persons. The physical performance tests for the stroke survivors comprised two physical capacity evaluation tasks that represented physical abilities necessary to perform the main activities of daily living, e.g., standing-up ability (time needed to stand up from bed rest) and walking ability (time needed to walk 10 m). Regarding the reliability of tests, significant correlations were confirmed between test and retest of physical performance tests with both short and long intervals in individuals after stroke. Regarding the validity of tests, the authors studied the significant correlations between the maximum isometric strength of the quardriceps muscle and the time needed to walk 10 m, centimeters reached while sitting and reaching, and the time needed to stand up from bed rest. The authors confirmed that there were significant correlations between the instrumental activity of daily living and the time needed to stand up from bed rest, along with the time needed to walk 10 m for the stroke survivors. These physical performance tests are useful guides for evaluating a level of activity of daily living and physical frailty of stroke survivors living in a community.
The effects of ageing on respiratory muscle function and performance in older adults.
Watsford, Mark L; Murphy, Aron J; Pine, Matthew J
2007-02-01
The reduced physiological capacity evident with ageing may affect the ability to perform many tasks, potentially affecting quality of life. Previous research has clearly demonstrated the reduced capacity of the respiratory system with ageing and described the effect that habitual physical activity has upon this decline. This research aimed to examine the influence of age on respiratory muscle (RM) function and the relationship between RM function and physical performance within the Australian population. Seventy-two healthy older adults (50-79 years) were divided into males (n=36) and females (n=36) and examined for pulmonary function, RM strength, inspiratory muscle endurance (IME) and 1.6 km walking performance. There were no significant age by gender effects for any variables; however, ageing was significantly related to reduced RM function and walking capacity within each gender. Furthermore, regression analysis showed that the RM strength could be predicted from age. Partial correlations controlling for age indicated that expiratory muscle strength was significantly related to walking performance in males (p=0.04), whilst IME contributed significantly to walking performance in all participants. These within-gender effects and relationships indicate that RM strength is an important physiological variable to maintain in the older population, as it may be related to functional ability.
Exercising with a Muscle Disease
... for extended periods of time. Examples are walking, running, swimming and cycling. anaerobic exercise : exercise that does ... movements to perform specific functions, such as walking, running or manipulation of small objects; eye-hand coordination ...
Park, Seong Doo; Yu, Seong Hun
2015-01-01
[Purpose] This study examined Nordic walking as an exercise intervention for the elderly with depression. [Subjects] Twenty-four patients who were diagnosed with depression were randomly selected and divided into two groups, an experimental group which performed Nordic walking, and a control group, which performed normal walking. [Methods] Both groups practiced their respective walking exercise for 50 minutes per day, three times a week for eight weeks. To compare the effects of the intervention, psychological factors using the Beck depression inventory and sleep quality was assessed using the Korean version Pittsburgh sleep quality index. Skeletal muscle mass, fat free mass, body mass index, body fat percentage, and basal metabolism were estimated three times by a body composition analyzer, before the intervention, four weeks after the intervention, and eight weeks after the intervention. [Results] There was a significant difference in depression with a main effect of time in both groups. There was also a significant difference in sleep in over time and interaction. The differences over time between the two groups were significant for depression, sleep, and skeletal muscle mass. [Conclusion] The results suggests that Nordic walking has a positive effect on depression and sleeping disorders of the elderly, suggesting that Nordic walking based exercise programs should be developed for the elderly who suffer from depression or a sleeping disorder. PMID:26357429
Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors
Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia
2015-01-01
The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630
Step detection and activity recognition accuracy of seven physical activity monitors.
Storm, Fabio A; Heller, Ben W; Mazzà, Claudia
2015-01-01
The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.
Quantification of gait changes in subjects with visual height intolerance when exposed to heights.
Schniepp, Roman; Kugler, Günter; Wuehr, Max; Eckl, Maria; Huppert, Doreen; Huth, Sabrina; Pradhan, Cauchy; Jahn, Klaus; Brandt, Thomas
2014-01-01
Visual height intolerance (vHI) manifests as instability at heights with apprehension of losing balance or falling. We investigated contributions of visual feedback and attention on gait performance of subjects with vHI. Sixteen subjects with vHI walked over a gait mat (GAITRite®) on a 15-m-high balcony and at ground-level. Subjects walked at different speeds (slow, preferred, fast), during changes of the visual input (gaze straight/up/down; eyes open/closed), and while doing a cognitive task. An rmANOVA with the factors "height situation" and "gait condition" was performed. Subjects were also asked to estimate the height of the balcony over ground level. The individual estimates were used for correlations with the gait parameters. Study participants walked slower at heights, with reduced cadence and stride length. The double support phases were increased (all p < 0.01), which correlated with the estimated height of the balcony (R (2) = 0.453, p < 0.05). These changes were still present when walking with upward gaze or closure of the eyes. Under the conditions walking and looking down to the floor of the balcony, during dual-task and fast walking, there were no differences between the gait performance on the balcony and at ground-level. The found gait changes are features of a cautious gait control. Internal, cognitive models with anxiety play an important role for vHI; gait was similarly affected when the visual perception of the depth was prevented. Improvement by dual task at heights may be associated by a reduction of the anxiety level. It is conceivable that mental distraction by dual task or increasing the walking speed might be useful recommendations to reduce the imbalance during locomotion in subjects susceptible to vHI.
Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R
2017-07-01
To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Greenisen, M. C.; Bishop, P. A.; Sothmann, M.
2008-01-01
The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.
Stevens, Sandra L.; Caputo, Jennifer L.; Fuller, Dana K.; Morgan, Don W.
2015-01-01
Objective To document the effects of underwater treadmill training (UTT) on leg strength, balance, and walking performance in adults with incomplete spinal cord injury (iSCI). Design Pre-test and post-test design. Setting Exercise physiology laboratory. Participants Adult volunteers with iSCI (n = 11). Intervention Participants completed 8 weeks (3 × /week) of UTT. Each training session consisted of three walks performed at a personalized speed, with adequate rest between walks. Body weight support remained constant for each participant and ranged from 29 to 47% of land body weight. Increases in walking speed and duration were staggered and imposed in a gradual and systematic fashion. Outcome measures Lower-extremity strength (LS), balance (BL), preferred and rapid walking speeds (PWS and RWS), 6-minute walk distance (6MWD), and daily step activity (DSA). Results Significant (P < 0.05) increases were observed in LS (13.1 ± 3.1 to 20.6 ± 5.1 N·kg−1), BL (23 ± 11 to 32 ± 13), PWS (0.41 ± 0.27 to 0.55 ± 0.28 m·s−1), RWS (0.44 ± 0.31 to 0.71 ± 0.40 m·s−1), 6MWD (97 ± 80 to 177 ± 122 m), and DSA (593 ± 782 to 1310 ± 1258 steps) following UTT. Conclusion Physical function and walking ability were improved in adults with iSCI following a structured program of UTT featuring individualized levels of body weight support and carefully staged increases in speed and duration. From a clinical perspective, these findings highlight the potential of UTT in persons with physical disabilities and diseases that would benefit from weight-supported exercise. PMID:24969269
Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis
Goršič, Maja; Kamnik, Roman; Ambrožič, Luka; Vitiello, Nicola; Lefeber, Dirk; Pasquini, Guido; Munih, Marko
2014-01-01
This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based on heuristic threshold rules, dividing a steady-state walking stride into four phases. For the evaluation of the algorithm, experiments with three amputees, walking with the robotic prosthesis and wearable sensors, were performed. Results show a high rate of successful detection for all four phases (the average success rate across all subjects >90%). A comparison of the proposed method to an off-line trained algorithm using hidden Markov models reveals a similar performance achieved without the need for learning dataset acquisition and previous model training. PMID:24521944
Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W
2014-04-01
Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.
Lam, Tania; Pauhl, Katherine; Krassioukov, Andrei; Eng, Janice J
2011-01-01
The efficacy of task-specific gait training for people with spinal cord injury (SCI) is premised on evidence that the provision of gait-related afferent feedback is key for the recovery of stepping movements. Recent findings have shown that sensory feedback from flexor muscle afferents can facilitate flexor muscle activity during the swing phase of walking. This case report was undertaken to determine the feasibility of using robot-applied forces to resist leg movements during body-weight-supported treadmill training (BWSTT) and to measure its effect on gait and other health-related outcomes. The patient described in this case report was a 43-year-old man with a T11 incomplete chronic SCI. He underwent 36 sessions of BWSTT using a robotic gait orthosis to provide forces that resist hip and knee flexion. Tolerance to the training program was monitored using the Borg CR10 scale and heart rate and blood pressure changes during each training session. Outcome measures (ie, 10-Meter Walk Test, Six-Minute Walk Test, modified Emory Functional Ambulation Profile [mEFAP], Activities-specific Balance Confidence Scale, and Canadian Occupational Performance Measure) were completed and kinematic parameters of gait, lower-extremity muscle strength (force-generating capacity), lower-limb girth, and tolerance to orthostatic stress were measured before and after the training program. The patient could tolerate the training. Overground walking speed, endurance, and performance on all subtasks of the mEFAP improved and were accompanied by increased lower-limb joint flexion and toe clearance during gait. The patient's ambulatory self-confidence and self-perceived performance in walking also improved. These findings suggest that this new approach to BWSTT is a feasible and potentially effective therapy for improving skilled overground walking performance.
ERIC Educational Resources Information Center
Ringrose, Jessica; Renold, Emma
2012-01-01
This viewpoint begins by exploring whether the global phenomenon of the 2011 "SlutWalks" constitutes a feminist politics of re-signification. We then look at some qualitative, focus group data with teen girls who participated in a UK SlutWalk. We suggest girls are not only negotiating a schizoid double pull towards performing knowing…
Kahraman, Turhan; Ozdogar, Asiye Tuba; Yigit, Pinar; Hosgel, Ilknur; Mehdiyev, Zaur; Ertekin, Ozge; Ozakbas, Serkan
To the best of our knowledge, there has been no study on yoga that includes both persons with multiple sclerosis (MS) and their family members. Because yoga has therapeutic effects in both persons with MS and healthy persons, we hypothesized that it would be an effective method to improve not only the physical and psychosocial status but also the time persons with MS and their family members spend together. To examine the feasibility of a 6-month (long-term) yoga program to improve the physical and psychosocial status of persons with MS and their family members. Uncontrolled clinical trial. The protocol was developed at the Department of Neurology, Faculty of Medicine, and School of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey. Persons with MS and healthy family members. Walking, balance, fatigue, health-related quality of life, depression, pain, and kinesiophobia. Yoga training was given once a week (at least 1h) for 6 months. The same assessors who assessed at baseline also performed the same assessments immediately after the end of the training (i.e., after 6 months). In total, 44 participants (27 persons with MS and 17 healthy family members) participated in the study. Twelve persons with MS and three healthy family members completed the 6-month yoga intervention. The completion rate for persons with MS and healthy subjects was 44.4% and 17.6%, respectively. In persons with MS, the mental dimension of health-related quality of life, walking speed, fatigue, and depression levels significantly improved after the yoga program (p < .05). However, there was no significant change in the self-reported walking impact, balance, pain, physical dimension of health-related quality of life, and kinesiophobia levels in the persons with MS (p > .05). This study suggests that a 6-month yoga program can improve the mental dimension of health-related quality of life, walking speed, fatigue, and depression in the persons with MS. However, the 6-month yoga program does not appear to be a feasible method to increase the time that persons with MS spend together with their family members. Copyright © 2018 Elsevier Inc. All rights reserved.
Kusumoto, Yasuaki; Nitta, Osamu; Takaki, Kenji
2016-10-01
In the present study, we aimed to determine whether similarly loaded sit-to-stand exercises at different speeds improve the physiological cost of walking in children with spastic diplegia. This design was a single-blind randomized clinical trial. Sixteen children with cerebral palsy (CP), aged 12-18 years, with a diagnosis of spastic diplegia, were randomly allocated to a slow loaded sit-to-stand exercise group (n=8) and a self-paced loaded sit-to-stand exercise group (n=8). Loaded sit-to-stand exercise was conducted at home for 15min, 4 sets per day, 3-4days per week, for 6 weeks. The patients were evaluated immediately before the intervention and after the training. Lower limb muscle strength using a hand-held dynamometer, selective voluntary motor control using SCALE, 6-min walk distance (6MWD), and Physiological Cost Index (PCI) were measured. The 6MWD showed a significant difference before and after intervention. PCI showed a significant difference between the two groups and the two time points. 6MWD and the PCI improved after intervention in the slow sit-to-stand exercise group. Compared to loaded sit-to-stand exercise at a regular speed, slow low-loaded sit-to-stand exercise improved the 6MWD and PCI in children with CP, suggesting that this decrease in speed during exercise improves the physiological cost of walking in these children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aerosol deposition in the human respiratory tract
NASA Astrophysics Data System (ADS)
Winchester, John W.; Jones, Donald L.; Mu-tian, Bi
1984-04-01
Rising sulfur dioxide emissions from increased coal combustion present risks, not only of acid rain, but also to health by inhalation of the SO 2 and acid to the lung. We are investigating human inhalation of ppm SO 2 concentrations mixed with aerosol of submicrometer aqueous salt droplets to determine the effects on lung function and body chemistry. Unlike some investigators, we emphasize ammonium sulfate and trace element aerosol composition which simulates ambient air; aerosol pH, relative humidity, and temperature control to reveal gas-particle reaction mechanisms; and dose estimates from length of exposure, SO 2 concentration, and a direct measurement of respiratory deposition of aerosol as a function of particle size by cascade impactor sampling and elemental analysis by PIXE. Exposures, at rest or during exercise, are in a walk-in chamber at body temperature and high humidity to simulate Florida's summer climate. Lung function measurement by spirometry is carried out immediately after exposure. The results are significant in relating air quality to athletic performance and to public health in the southeastern United States.
Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Lacquaniti, Francesco
2004-08-01
Six spinal cord injured (SCI) patients were trained to step on a treadmill with body-weight support for 1.5-3 months. At the end of training, foot motion recovered the shape and the step-by-step reproducibility that characterize normal gait. They were then asked to step backward on the treadmill belt that moved in the opposite direction relative to standard forward training. In contrast to healthy subjects, who can immediately reverse the direction of walking by time-reversing the kinematic waveforms, patients were unable to step backward. Similarly patients were unable to perform another untrained locomotor task, namely stepping in place on the idle treadmill. Two patients who were trained to step backward for 2-3 weeks were able to develop control of foot motion appropriate for this task. The results show that locomotor improvement does not transfer to untrained tasks, thus supporting the idea of task-dependent plasticity in human locomotor networks.
Tanigawa, Takanori; Takechi, Hajime; Arai, Hidenori; Yamada, Minoru; Nishiguchi, Shu; Aoyama, Tomoki
2014-10-01
It is very important to maintain cognitive function in patients with mild cognitive disorder. The aim of the present study was to determine whether the amount of physical activity is associated with memory function in older adults with mild cognitive disorder. A total of 47 older adults with mild cognitive disorder were studied; 30 were diagnosed with mild Alzheimer's disease and 17 with mild cognitive impairment. The global cognitive function, memory function, physical performance and amount of physical activity were measured in these patients. We divided these patients according to their walking speed (<1 m/s or >1 m/s). A total of 26 elderly patients were classified as the slow walking group, whereas 21 were classified as the normal walking group. The normal walking group was younger and had significantly better scores than the slow walking group in physical performance. Stepwise multiple linear regression analysis showed that only the daily step counts were associated with the Scenery Picture Memory Test in patients of the slow walking group (β=0.471, P=0.031), but not other variables. No variable was significantly associated with the Scenery Picture Memory Test in the normal walking group. Memory function was strongly associated with the amount of physical activity in patients with mild cognitive disorder who showed slow walking speed. The results show that lower physical activities could be a risk factor for cognitive decline, and that cognitive function in the elderly whose motor function and cognitive function are declining can be improved by increasing the amount of physical activity. © 2014 Japan Geriatrics Society.
Vasunilashorn, Sarinnapha; Coppin, Antonia K; Patel, Kushang V; Lauretani, Fulvio; Ferrucci, Luigi; Bandinelli, Stefania; Guralnik, Jack M
2009-02-01
Early detection of mobility limitations remains an important goal for preventing mobility disability. The purpose of this study was to examine the association between the Short Physical Performance Battery (SPPB) and the loss of ability to walk 400 m, an objectively assessed mobility outcome increasingly used in clinical trials. The study sample consisted of 542 adults from the InCHIANTI study aged 65 and older, who completed the 400 m walk at baseline and had evaluations on the SPPB and 400 m walk at baseline and 3-year follow-up. Multiple logistic regression models were used to determine whether SPPB scores predict the loss of ability to walk 400 m at follow-up among persons able to walk 400 m at baseline. The 3-year incidence of failing the 400 m walk was 15.5%. After adjusting for age, sex, education, body mass index, Mini-Mental State Examination, number of medical conditions, and 400 m walk gait speed at baseline, SPPB score was significantly associated with loss of ability to walk 400 m after 3 years. Participants with SPPB scores of 10 or lower at baseline had significantly higher odds of mobility disability at follow-up (odds ratio [OR] = 3.38, 95% confidence interval [CI]: 1.32-8.65) compared with those who scored 12, with a graded response across the range of SPPB scores (OR = 26.93, 95% CI: 7.51-96.50; OR = 7.67, 95% CI: 2.26-26.04; OR = 8.28, 95% CI: 3.32-20.67 for SPPB < or = 7, SPPB 8, and SPPB 9, respectively). The SPPB strongly predicts loss of ability to walk 400 m. Thus, using the SPPB to identify older persons at high risk of lower body functional limitations seems a valid means of recognizing individuals who would benefit most from preventive interventions.
Coppin, Antonia K.; Patel, Kushang V.; Lauretani, Fulvio; Ferrucci, Luigi; Bandinelli, Stefania; Guralnik, Jack M.
2009-01-01
Background Early detection of mobility limitations remains an important goal for preventing mobility disability. The purpose of this study was to examine the association between the Short Physical Performance Battery (SPPB) and the loss of ability to walk 400 m, an objectively assessed mobility outcome increasingly used in clinical trials. Methods The study sample consisted of 542 adults from the InCHIANTI study aged 65 and older, who completed the 400 m walk at baseline and had evaluations on the SPPB and 400 m walk at baseline and 3-year follow-up. Multiple logistic regression models were used to determine whether SPPB scores predict the loss of ability to walk 400 m at follow-up among persons able to walk 400 m at baseline. Results The 3-year incidence of failing the 400 m walk was 15.5%. After adjusting for age, sex, education, body mass index, Mini-Mental State Examination, number of medical conditions, and 400 m walk gait speed at baseline, SPPB score was significantly associated with loss of ability to walk 400 m after 3 years. Participants with SPPB scores of 10 or lower at baseline had significantly higher odds of mobility disability at follow-up (odds ratio [OR] = 3.38, 95% confidence interval [CI]: 1.32–8.65) compared with those who scored 12, with a graded response across the range of SPPB scores (OR = 26.93, 95% CI: 7.51–96.50; OR = 7.67, 95% CI: 2.26–26.04; OR = 8.28, 95% CI: 3.32–20.67 for SPPB ≤ 7, SPPB 8, and SPPB 9, respectively). Conclusions The SPPB strongly predicts loss of ability to walk 400 m. Thus, using the SPPB to identify older persons at high risk of lower body functional limitations seems a valid means of recognizing individuals who would benefit most from preventive interventions. PMID:19182232
Community-based walking exercise for peripheral artery disease: An exploratory pilot study
Mays, Ryan J; Hiatt, William R; Casserly, Ivan P; Rogers, R Kevin; Main, Deborah S; Kohrt, Wendy M; Ho, P Michael; Regensteiner, Judith G
2016-01-01
Supervised walking exercise is an effective treatment to improve walking ability of patients with peripheral artery disease (PAD), but few exercise programs in community settings have been effective. The aim of this study was to determine the efficacy of a community-based walking exercise program with training, monitoring, and coaching (TMC) components to improve exercise performance and patient-reported outcomes in PAD patients. This was a randomized, controlled trial including PAD patients who previously received peripheral endovascular therapy or presented with stable claudication. Patients randomized (n=25) to the intervention group received a comprehensive community-based walking exercise program with elements of TMC over 14 weeks. Patients in the control group did not receive treatment beyond standard advice to walk. The primary outcome in the intent-to-treat (ITT) analyses was peak walking time (PWT) on a graded treadmill. Secondary outcomes included claudication onset time (COT) and patient-reported outcomes assessed via the Walking Impairment Questionnaire (WIQ). Intervention group patients (n=10) did not significantly improve PWT when compared with the control group patients (n=10) (mean±standard error: +2.1±0.7 vs. 0.0±0.7 min, p=0.052). Changes in COT and WIQ scores were greater for intervention patients compared with control patients (COT: +1.6±0.8 vs. −0.6±0.7 min, p=0.045; WIQ: +18.3±4.2 vs. −4.6±4.2%, p=0.001). This pilot using a walking program with TMC and an ITT analyses did not improve the primary outcome in PAD patients. Other walking performance and patient self-reported outcomes were improved following exercise in community settings. Further study is needed to determine whether this intervention improves outcomes in a trial employing a larger sample size. PMID:25755148
Effects of Standing and Light-Intensity Walking and Cycling on 24-h Glucose.
Crespo, Noe C; Mullane, Sarah L; Zeigler, Zachary S; Buman, Matthew P; Gaesser, Glenn A
2016-12-01
This study aimed to compare 24-h and postprandial glucose responses to incremental intervals of standing (STAND), walking (WALK), and cycling (CYCLE) to a sit-only (SIT) condition. Nine overweight/obese (body mass index = 29 ± 3 kg·m) adults (30 ± 15 yr) participated in this randomized crossover full-factorial study, with each condition performed 1 wk apart. STAND, CYCLE, and WALK intervals increased from 10 to 30 min·h (2.5 h total) during an 8-h workday. WALK (1.0 mph) and STAND were matched for upright time, and WALK and CYCLE were matched for energy expenditure (~2 METs). Continuous interstitial glucose monitoring was performed for 24 h to include the 8-h workday (LAB), after-work evening hours (EVE), and sleep (SLEEP). Three 2-h postprandial periods were also analyzed. Linear mixed models were used to test for condition differences. Compared with SIT (5.7 ± 1.0 mmol·L), mean 24-h glucose during STAND (5.4 ± 0.9 mmol·L) and WALK (5.3 ± 0.9 mmol·L) were lower, and CYCLE (5.1 ± 1.0 mmol·L) was lower than all other conditions (all P < 0.001). During LAB and EVE, mean glucose was lower for STAND, WALK, and CYCLE compared with SIT (P < 0.001). During SLEEP, the mean glucose for CYCLE was lower than all other conditions (P < 0.001). Compared with SIT, cumulative 6-h postprandial mean glucose was 5%-12% lower (P < 0.001) during STAND, WALK, and CYCLE, and 6-h postprandial glucose integrated area under the curve was 24% lower during WALK (P < 0.05) and 44% lower during CYCLE (P < 0.001). Replacing sitting with regular intervals of standing or light-intensity activity during an 8-h workday reduces 24-h and postprandial glucose. These effects persist during evening hours, with CYCLE having the largest and most sustained effect.
Hämäläinen, H Pauliina; Suni, Jaana H; Pasanen, Matti E; Malmberg, Jarmo J; Miilunpalo, Seppo I
2006-06-01
The functional independence of elderly populations deteriorates with age. Several tests of physical performance have been developed for screening elderly persons who are at risk of losing their functional independence. The purpose of the present study was to investigate whether several components of health-related fitness (HRF) are valid in predicting the occurrence of self-reported mobility difficulties (MD) among high-functioning older adults. Subjects were community-dwelling men and women, born 1917-1941, who participated in the assessment of HRF [6.1-m (20-ft) walk, one-leg stand, backwards walk, trunk side-bending, dynamic back extension, one-leg squat, 1-km walk] and who were free of MD in 1996 (no difficulties in walking 2- km, n=788; no difficulties in climbing stairs, n=647). Postal questionnaires were used to assess the prevalence of MD in 1996 and the occurrence of new MD in 2002. Logistic regression analysis was used as the statistical method. Both inability to perform the backwards walk and a poorer result in it were associated with risk of walking difficulties in the logistic model, with all the statistically significant single test items included. Results of 1-km walk time and one-leg squat strength test were also associated with risk, although the squat was statistically significant only in two older birth cohorts. Regarding stair-climbing difficulties, poorer results in the 1-km walk, dynamic back extension and one-leg squat tests were associated with increased risk of MD. The backwards walk, one-leg squat, dynamic back extension and 1-km walk tests were the best predictors of MD. These tests are recommended for use in screening high-functioning older people at risk of MD, as well as to target physical activity counseling to those components of HRF that are important for functional independence.
Single- and Dual-Task Balance Training Are Equally Effective in Youth
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. PMID:29928248
Single- and Dual-Task Balance Training Are Equally Effective in Youth.
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p < 0.001, d = 5.1), shorter stride length ( p < 0.001, d = 4.8), and longer stride time ( p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity ( p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes ( p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.
Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work.
McKendrick, Ryan; Mehta, Ranjana; Ayaz, Hasan; Scheldrup, Melissa; Parasuraman, Raja
2017-02-01
The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.
Bogaerts, An; Delecluse, Christophe; Boonen, Steven; Claessens, Albrecht L; Milisen, Koen; Verschueren, Sabine M P
2011-03-01
Falls in the elderly constitute a growing public health problem. This randomized controlled trial investigated the potential benefit of 6 months of whole body vibration (WBV) training and/or vitamin D supplementation on balance, functionality and estimated fall risk in institutionalized elderly women. A total of 113 women (mean age: 79.6) were randomly assigned to either a WBV or a no-training group, receiving either a conventional dose (880 IU/d) or a high dose (1600 IU/d) of vitamin D3. The WBV group performed exercises on a vibration platform 3×/week. Balance was evaluated by computerized posturography. Functionality was assessed by 10 m walk test, Timed up and Go (TUG) performance and endurance capacity (Shuttle Walk). Fall risk was determined with the Physiological Profile Assessment. Performance on the 10 m walk test and on TUG improved over time in all groups. For none of the parameters, high-dose vitamin D resulted in a better performance than conventional dosing. The improvements in the WBV group in endurance capacity, walking at preferred speed, and TUG were significantly larger than the changes with supplementation alone. No additional benefit of WBV training could be detected on fall risk and postural control, although sway velocity and maximal isometric knee extension strength improved only in the WBV group. This trial showed that a high-dose vitamin D supplementation is not more efficient than conventional dosing in improving functionality in institutionalized elderly. WBV training on top of vitamin D supplementation provided an added benefit with regard to walking, TUG performance, and endurance capacity. Copyright © 2010 Elsevier B.V. All rights reserved.
Morgan, Sara J; Hafner, Brian J; Kelly, Valerie E
2016-08-01
Many people with lower limb loss report the need to concentrate on walking. This may indicate increased reliance on cognitive resources when walking compared to individuals without limb loss. This study quantified changes in walking associated with addition of a concurrent cognitive task in persons with transfemoral amputation using microprocessor knees compared to age- and sex-matched controls. Observational, cross-sectional study. Quantitative motion analysis was used to assess walking under both single-task (walking alone) and dual-task (walking while performing a cognitive task) conditions. Primary outcomes were walking speed, step width, step time asymmetry, and cognitive task response latency and accuracy. Repeated-measures analysis of variance was used to examine the effects of task (single-task and dual-task) and group (transfemoral amputation and control) for each outcome. No significant interactions between task and group were observed (all p > 0.11) indicating that a cognitive task did not differentially affect walking between groups. However, walking was slower with wider steps and more asymmetry in people with transfemoral amputation compared to controls under both conditions. Although there were significant differences in walking between people with transfemoral amputation and matched controls, the effects of a concurrent cognitive task on walking were similar between groups. The addition of a concurrent task did not differentially affect walking outcomes in people with and without transfemoral amputation. However, compared to people without limb loss, people with transfemoral amputation adopted a conservative walking strategy. This strategy may reduce the need to concentrate on walking but also contributed to notable gait deviations. © The International Society for Prosthetics and Orthotics 2015.
Comparison of two 6-minute walk tests to assess walking capacity in polio survivors.
Brehm, Merel-Anne; Verduijn, Suzan; Bon, Jurgen; Bredt, Nicoline; Nollet, Frans
2017-11-21
To compare walking dynamics and test-retest reliability for 2 frequently applied walk tests in polio survivors: the 6-minute walk test (6MWT) to walk as far as possible; and the 6-minute walking energy cost test (WECT) at comfortable speed. Observational study. Thirty-three polio survivors, able to walk ≥ 150 m. On the same day participants performed a 6MWT and a WECT, which were repeated 1-3 weeks later. For each test, distance walked, heart rate and reduction in speed were assessed. The mean distance walked and mean heart rate were significantly higher in the 6MWT (441 m (standard deviation) (SD 79.7); 118 bpm (SD 19.2)) compared with the WECT (366 m (SD 67.3); 103 bpm (SD 14.3)); p< 0.001. Furthermore, during the 6MWT, patients continuously slowed down (-6%), while during the WECT speed dropped only slightly during the first 2 min, by -1.8% in total. Test-retest reliability of both tests was excellent (intraclass correlation coefficient (ICC) ≥ 0.95; lower bound 95% confidence interval (95% CI) ≥ 0.87). The smallest detectable change for the walked distance was 42 m (9.7% change from the mean) and 50 m (13.7%) on the 6MWT and WECT, respectively. Both the 6MWT and the WECT are reliable to assess walking capacity in polio survivors, with slightly superior sensitivity to detect change for the 6MWT. Differences in walking dynamics confirm that the tests cannot be used interchangeably. The 6MWT is recommended for measuring maximal walking capacity and the WECT for measuring submaximal walking capacity.
Sawers, Andrew; Ting, Lena H
2015-02-01
The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
Poncumhak, Puttipong; Saengsuwan, Jiamjit; Amatachaya, Sugalya
2014-01-01
Background/Objectives More than half of independent ambulatory patients with spinal cord injury (SCI) need a walking device to promote levels of independence. However, long-lasting use of a walking device may introduce negative impacts for the patients. Using a standard objective test relating to the requirement of a walking device may offer a quantitative criterion to effectively monitor levels of independence of the patients. Therefore, this study investigated (1) ability of the three functional tests, including the five times sit-to-stand test (FTSST), timed up and go test (TUGT), and 10-meter walk test (10MWT) to determine the ability of walking without a walking device, and (2) the inter-tester reliability of the tests to assess functional ability in patients with SCI. Methods Sixty independent ambulatory patients with SCI, who walked with and without a walking device (30 subjects/group), were assessed cross-sectionally for their functional ability using the three tests. The first 20 subjects also participated in the inter-tester reliability test. Results The time required to complete the FTSST <14 seconds, the TUGT < 18 seconds, and the 10MWT < 6 seconds had good-to-excellent capability to determine the ability of walking without a walking device of subjects with SCI. These tests also showed excellent inter-tester reliability. Conclusions Methods of clinical evaluation for walking are likely performed using qualitative observation, which makes the results difficult to compare among testers and test intervals. Findings of this study offer a quantitative target criterion or a clear level of ability that patients with SCI could possibly walk without a walking device, which would benefit monitoring process for the patients. PMID:24621030
Human pair walking behavior: evaluation of cooperation strategies
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Bodova, Katarina; Kollar, Richard; Erban, Radek
2015-03-01
Human walkers are notoriously poor at keeping a direction without external cues: Experimental work by Souman et al. with blindfolded subjects told to walk in a straight line revealed intriguing circular and spiraling trajectories, which can be approximated by a stochastic process. In this work, motivated by pair walking experiments by Miglierini et al., we introduce an analysis of various strategies employed by a pair of blindfolded walkers, who are communicating via auditory cues, to maximize their efficiency at walking straight. To this end, we characterize pairs of strategies such as free walking, side-by-side walking and unconditional following from data generated by robot pair walking experiments (using computer vision techniques) and numerical simulations. We extract the mean exit distances of walker pairs from a corridor with finite width to construct phase portraits of the walking performance. We find intriguing cooperative effects leading to non-trivial enhancements of the efficiency at walking straight. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 239870; and from the Royal Society through a Research Grant.
Experimental realization of generalized qubit measurements based on quantum walks
NASA Astrophysics Data System (ADS)
Zhao, Yuan-yuan; Yu, Neng-kun; Kurzyński, Paweł; Xiang, Guo-yong; Li, Chuan-Feng; Guo, Guang-Can
2015-04-01
We report an experimental implementation of a single-qubit generalized measurement scenario, the positive-operator valued measure (POVM), based on a quantum walk model. The qubit is encoded in a single-photon polarization. The photon performs a quantum walk on an array of optical elements, where the polarization-dependent translation is performed via birefringent beam displacers and a change of the polarization is implemented with the help of wave plates. We implement: (i) trine POVM, i.e., the POVM elements uniformly distributed on an equatorial plane of the Bloch sphere; (ii) symmetric-informationally-complete (SIC) POVM; and (iii) unambiguous discrimination of two nonorthogonal qubit states.
Humans do not have direct access to retinal flow during walking
Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.
2013-01-01
Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509
Demura, Tomohiro; Demura, Shin-ich
2011-01-01
Because elderly individuals experience marked declines in various physical functions (e.g., vision, joint function) simultaneously, it is difficult to clarify the individual effects of these functional declines on walking. However, by imposing vision and joint function restrictions on young men, the effects of these functional declines on walking can be clarified. The authors aimed to determine the effect of restricted vision and range of motion (ROM) of the knee joint on gait properties while walking and ascending or descending stairs. Fifteen healthy young adults performed level walking and stair ascent and descent during control, vision restriction, and knee joint ROM restriction conditions. During level walking, walking speed and step width decreased, and double support time increased significantly with vision and knee joint ROM restrictions. Stance time, step width, and walking angle increased only with knee joint ROM restriction. Stance time, swing time, and double support time were significantly longer in level walking, stair descent, and stair ascent, in that order. The effects of vision and knee joint ROM restrictions were significantly larger than the control conditions. In conclusion, vision and knee joint ROM restrictions affect gait during level walking and stair ascent and descent. This effect is marked in stair ascent with knee joint ROM restriction.
Simieli, Lucas; Barbieri, Fabio Augusto; Orcioli-Silva, Diego; Lirani-Silva, Ellen; Stella, Florindo; Gobbi, Lilian Teresa Bucken
2015-01-01
The aim of this study was to analyze the effects of dual tasking on obstacle crossing during walking by individuals with Alzheimer's disease (AD) and by healthy older people. Thirty four elderly individuals (16 healthy subjects and 18 individuals with AD) were recruited to participate in this study. Three AD individuals and one control participant were excluded due to exclusion criteria. The participants were instructed to walk barefoot at their own speed along an 8 m long pathway. Each participant performed five trials for each condition (unobstructed walking, unobstructed walking with dual tasking, and obstacle crossing during walking with dual tasking). The trials were completely randomized for each participant. The mid-pathway stride was measured in the unobstructed walking trials and the stride that occurred during the obstacle avoidance was measured in the trials that involved obstacle crossing. The behavior of the healthy elderly subjects and individuals with AD was similar for obstacle crossing during walking with dual tasking. Both groups used the "posture first" strategy to prioritize stability and showed decreased attention to executive tasking while walking. Additionally, AD had a strong influence on the modifications that are made by the elderly while walking under different walking conditions.
Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S
2017-01-01
We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
...), specified a test procedure that must be followed when determining the insulation value of the insulating... tests must be performed on walk-in panels and when tests may be performed on insulation foam used in the... WICF doors: The door type, R-value of the door insulation, and a declaration that the manufacturer has...
NASA Technical Reports Server (NTRS)
Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.
1991-01-01
A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.
The short physical performance battery as a predictor of functional capacity after stroke.
Stookey, Alyssa D; Katzel, Leslie I; Steinbrenner, Gregory; Shaughnessy, Marianne; Ivey, Frederick M
2014-01-01
The short physical performance battery is a widely used instrument for quantifying lower extremity function in older adults. However, its utility for predicting endurance-based measures of functional performance that are more difficult to conduct in clinical settings is unknown. An understanding of this could be particularly relevant in mobility impaired stroke survivors, for whom establishing the predictive strength of simpler to perform measures would aid in tracking broader categories of functional disability. This cross-sectional study was conducted to determine whether the short physical performance battery is related to functional measures with a strong endurance component. Functional measures (short physical performance battery, peak aerobic capacity, and 6-minute walk) were obtained and compared for the first time in stroke survivors with hemiparetic gait. Pearson correlation coefficients were used to assess strength of the relationships (α P < .05). Forty-three stroke participants performed a standardized short physical performance battery. Forty-one of the subjects completed a 6-minute walk, and 40 completed a peak treadmill test. Mean short physical performance battery (6.3 ± 2.5 [mean ± SD]), 6-minute walk (242 ± 115 meters), and peak aerobic capacity (17.4 ± 5.4 mL/kg/min) indicated subjects had moderate to severely impaired lower extremity functional performance. The short physical performance battery was related to both 6-minute walk (r = 0.76; P < .0001) and peak fitness (r = 0.52; P < .001). Our results show that the short physical performance battery may be reflective of endurance-based, longer-distance performance measures that would be difficult to perform in standard clinical stroke settings. Additional studies are needed to explore the value of using the short physical performance battery to assess rehabilitation-related functional progression after stroke. Published by Elsevier Inc.
Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S
2016-10-01
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking. Copyright © 2016. Published by Elsevier B.V.
Joshi, Varun; Srinivasan, Manoj
2015-02-08
Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.
Joshi, Varun; Srinivasan, Manoj
2015-01-01
Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations. PMID:25663810
Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan
2018-06-25
High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.
The impact of exposure to films of natural and built environments on state body appreciation.
Swami, Viren; Pickering, Mark; Barron, David; Patel, Shreepali
2018-06-12
Previous work has shown that exposure to images of nature results in elevated state body appreciation, but static images may lack ecological validity. Here, we examined the impact of exposure to short films of simulated, first-person walks in natural or built environments. Thirty-six university students completed a measure of state body appreciation before and after watching films of either a walk in a natural or a built environment created specifically for the present study. Two weeks later, they completed the same task but watched the other film type. Results indicated that exposure to the film of a natural environment resulted in significantly elevated state body appreciation (d = 0.66). There was no significant change in state body appreciation following exposure to the film of the built environment (d = 0.14). These findings suggest that exposure to films depicting the natural environment may promote immediate, moderate-sized improvements in state body image. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beck, Eric N; Intzandt, Brittany N; Almeida, Quincy J
2018-01-01
It may be possible to use attention-based exercise to decrease demands associated with walking in Parkinson's disease (PD), and thus improve dual task walking ability. For example, an external focus of attention (focusing on the effect of an action on the environment) may recruit automatic control processes degenerated in PD, whereas an internal focus (limb movement) may recruit conscious (nonautomatic) control processes. Thus, we aimed to investigate how externally and internally focused exercise influences dual task walking and symptom severity in PD. Forty-seven participants with PD were randomized to either an Externally (n = 24) or Internally (n = 23) focused group and completed 33 one-hour attention-based exercise sessions over 11 weeks. In addition, 16 participants were part of a control group. Before, after, and 8 weeks following the program (pre/post/washout), gait patterns were measured during single and dual task walking (digit-monitoring task, ie, walking while counting numbers announced by an audio-track), and symptom severity (UPDRS-III) was assessed ON and OFF dopamine replacement. Pairwise comparisons (95% confidence intervals [CIs]) and repeated-measures analyses of variance were conducted. Pre to post: Dual task step time decreased in the external group (Δ = 0.02 seconds, CI 0.01-0.04). Dual task step length (Δ = 2.3 cm, CI 0.86-3.75) and velocity (Δ = 4.5 cm/s, CI 0.59-8.48) decreased (became worse) in the internal group. UPDRS-III scores (ON and OFF) decreased (improved) in only the External group. Pre to washout: Dual task step time ( P = .005) and percentage in double support ( P = .014) significantly decreased (improved) in both exercise groups, although only the internal group increased error on the secondary counting task (ie, more errors monitoring numbers). UPDRS-III scores in both exercise groups significantly decreased ( P = .001). Since dual task walking improvements were found immediately, and 8 weeks after the cessation of an externally focused exercise program, we conclude that externally focused exercise may improve on functioning of automatic control networks in PD. Internally focused exercise hindered dual tasking ability. Overall, externally focused exercise led to greater rehabilitation benefits in dual tasking and motor symptoms compared with internally focused exercise.
Krinski, Kleverton; Machado, Daniel G S; Lirani, Luciana S; DaSilva, Sergio G; Costa, Eduardo C; Hardcastle, Sarah J; Elsangedy, Hassan M
2017-04-01
In order to examine whether environmental settings influence psychological and physiological responses of women with obesity during self-paced walking, 38 women performed two exercise sessions (treadmill and outdoors) for 30 min, where oxygen uptake, heart rate, ratings of perceived exertion, affect, attentional focus, enjoyment, and future intentions to walk were analyzed. Physiological responses were similar during both sessions. However, during outdoor exercise, participants displayed higher externally focused attention, positive affect, and lower ratings of perceived exertion, followed by greater enjoyment and future intention to participate in outdoor walking. The more externally focused attention predicted greater future intentions to participate in walking. Therefore, women with obesity self-selected an appropriate exercise intensity to improve fitness and health in both environmental settings. Also, self-paced outdoor walking presented improved psychological responses. Health care professionals should consider promoting outdoor forms of exercise to maximize psychological benefits and promote long-term adherence to a physically active lifestyle.
Dual Task Gait Performance in Frail Individuals with and without Mild Cognitive Impairment.
Martínez-Ramírez, Alicia; Martinikorena, Ion; Lecumberri, Pablo; Gómez, Marisol; Millor, Nora; Casas-Herrero, Alvaro; Zambom-Ferraresi, Fabrício; Izquierdo, Mikel
2016-01-01
Several studies have stated that frailty is associated with cognitive impairment. Based on various studies, cognition impairment has been considered as a component of frailty. Other authors have shown that physical frailty is associated with low cognitive performance. Dual task gait tests are used as a strong predictor of falls in either dementia or frailty. Consequently, it is important to investigate dual task walking tests in elderly populations including control robust oldest old, frail oldest old with mild cognitive impairment (MCI) and frail oldest old without MCI. Dual task walking tests were carried out to examine the association between frailty and cognitive impairment in a population with advanced age. Forty-one elderly men and women participated in this study. The subjects from control, frail with MCI and frail without MCI groups, completed the 5-meter walk test at their own gait velocity. Arithmetic and verbal dual task walking performance was also assessed. Kinematic data were acquired from a unique tri-axial inertial sensor. The spatiotemporal and frequency parameters related to gait disorders did not show any significant differences between frail with and without MCI groups. The evaluation of these parameters extracted from the acceleration signals led us to conclude that these results expand the knowledge regarding the common conditions in frailty and MCI and may highlight the idea that the impairment in walking performance does not depend of frailty and cognitive status. © 2016 S. Karger AG, Basel.
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-01-01
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. PMID:26289658
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-09-06
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. © 2015 The Authors.
Metabolic and Circulatory Responses to Walking and Jogging in Water.
ERIC Educational Resources Information Center
Evans, Blanch W.
1978-01-01
Water resistance makes running or walking through waist-deep water more strenuous than when performed under normal conditions; however, the buoyancy of the water reduces the stress on weight-bearing muscles and joints. (MM)
O'Donovan, Rhona; Kennedy, Norelee
2015-01-01
Nordic Walking (NW) is growing in popularity among people with arthritis. The aim of this study was to explore the perspectives of participants with arthritis on a NW-based walking programme including factors contributing to sustained participation in the programme. Three semi-structured focus groups were conducted with a total of 27 participants with various types of arthritis. The groups consisted of participants who completed a NW-based walking programme in the previous 4 years. Only participants who had sustained involvement in the walking group were included. Groups were audio-recorded, transcribed verbatim and thematic analysis was performed. Participants reported that the walking programme offered numerous benefits. Two distinct themes emerged: (1) "four legs instead of two legs" and (2) "a support group". Theme 1 incorporates the physical, psychological and educational benefits that stem from involvement in a walking group while Theme 2 incorporates the benefits of social support in group-based activity. Several benefits of a NW-based walking programme from the perspectives of individuals with arthritis who engage in group-based walking programmes were identified. The benefits may encourage sustained participation and justify the promotion of NW as an intervention for people with arthritis. Considering how to sustain exercise participation is important to ensure continued benefits from physical activity participation. A community-based Nordic walking-based walking programme for people with arthritis improved exercise knowledge and confidence to exercise. Group exercise is valuable in providing support and motivation to continue exercising.
Effects of changing speed on knee and ankle joint load during walking and running.
de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren
2015-01-01
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.
Liao, Yung; Huang, Pin-Hsuan; Chen, Yi-Ling; Hsueh, Ming-Chun; Chang, Shao-Hsi
2018-04-04
This study examined the prevalence of dog ownership and dog walking and its association with leisure-time walking among metropolitan and nonmetropolitan older adults. A telephone-based cross-sectional survey targeting Taiwanese older adults was conducted in November 2016. Data related to dog ownership, time spent dog walking (categorized as non-dog owner, non-dog walkers, and dog walkers), and sociodemographic variables were obtained from 1074 older adults. Adjusted binary logistic regression was then performed. In this sample, 12% of Taiwanese older adults owned a dog and 31% of them walked their dogs for an average of 232.13 min over 5.9 days/week (standard deviation = 2.03). Older adults living in nonmetropolitan areas were more likely to own a dog (14.7% vs. 9.1%) but less likely to walk their dog (25.9% vs. 39.6%) than were those living in metropolitan areas. Compared with non-dog owners, only older adults living in nonmetropolitan areas who were dog walkers achieved 150 min of leisure-time walking (odds ratio: 3.03, 95% confidence interval: 1.05-8.77), after adjustment for potential confounders. Older Taiwanese adults living in nonmetropolitan areas who owned and walked their dogs were more likely to achieve health-enhancing levels of leisure-time walking. Tailored physical activity interventions for promoting dog walking should be developed for older adults who are dog owners living in nonmetropolitan areas and who do not engage in dog walking.
Quantum walks with an anisotropic coin I: spectral theory
NASA Astrophysics Data System (ADS)
Richard, S.; Suzuki, A.; Tiedra de Aldecoa, R.
2018-02-01
We perform the spectral analysis of the evolution operator U of quantum walks with an anisotropic coin, which include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. In particular, we determine the essential spectrum of U, we show the existence of locally U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds, and we prove the absence of singular continuous spectrum for U. Our analysis is based on new commutator methods for unitary operators in a two-Hilbert spaces setting, which are of independent interest.
2012-01-01
Background Meniscectomy is a risk factor for knee osteoarthritis, with increased medial joint loading a likely contributor to the development and progression of knee osteoarthritis in this group. Therefore, post-surgical rehabilitation or interventions that reduce medial knee joint loading have the potential to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have recently undergone a partial medial meniscectomy. Methods/design 62 people aged 30–50 years who have undergone an arthroscopic partial medial meniscectomy within the previous 3 to 12 months will be recruited and randomly assigned to a neuromuscular exercise or control group using concealed allocation. The neuromuscular exercise group will attend 8 supervised exercise sessions with a physiotherapist and will perform 6 exercises at home, at least 3 times per week for 12 weeks. The control group will not receive the neuromuscular training program. Blinded assessment will be performed at baseline and immediately following the 12-week intervention. The primary outcomes are change in the peak external knee adduction moment measured by 3-dimensional analysis during normal paced walking and one-leg rise. Secondary outcomes include the change in peak external knee adduction moment during fast pace walking and one-leg hop and change in the knee adduction moment impulse during walking, one-leg rise and one-leg hop, knee and hip muscle strength, electromyographic muscle activation patterns, objective measures of physical function, as well as self-reported measures of physical function and symptoms and additional biomechanical parameters. Discussion The findings from this trial will provide evidence regarding the effect of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during various tasks in people with a partial medial meniscectomy. If shown to reduce the knee adduction moment, neuromuscular exercise has the potential to prevent the onset of osteoarthritis or slow its progression in those with early disease. Trial Registration Australian New Zealand Clinical Trials Registry reference: ACTRN12612000542897 PMID:23181415
2014-01-01
Background Although the Six-Minute Walk Test (6MWT), as recommended by the American Thoracic Society, is widely used as a measure of functional endurance, it may not be applicable in some settings and populations. We sought to examine, therefore, performance over the first 2 minutes and the full 6 minutes of the 6MWT. Specifically, we investigated completion rates, distances walked, test-retest reliability, and the relationship between distances walked over the first 2 and the full 6 minutes of the 6MWT. Methods Community-dwelling children and adults age 3–85 years (n = 337) were asked to walk back and forth on a 15.24 meter (50 ft) course as far as possible without running over a 6 minute period. Test completion and the distance covered by the participants at 2 and 6 minutes were documented. The reliability of distances covered at 2 and 6 minutes was determined by retesting a subsample of 54 participants 6 to 10 days later. The relationship between distances covered at 2 and 6 minutes was determined for the 330 participants completing the 6MWT. Results All 337 participants completed at least 2 minutes of walking, but 7 children less than 5 years of age ceased walking before 6 minutes had elapsed. For the remaining 330 participants the mean distance walked was 186 meters at 2 minutes and 543 meters at 6 minutes. The distances covered at 2 and 6 minutes were reliable between sessions (intraclass correlation coefficients = 0.888 and 0.917, respectively). The distances covered over 2 and 6 minutes were highly correlated (r = 0.968). Conclusions The completion rate, values obtained, test-retest reliability, and relationship of the distances walked in 2 and 6 minutes support documentation of 2 minute distance during the 6MWT. The findings also provide support for use of a Two-Minute Walk Test as the endurance component in the Motor Battery of the NIH Toolbox. PMID:24767634
Outermans, Jacqueline C; van de Port, Ingrid; Kwakkel, Gert; Visser-Meily, Johanna M; Wittink, Harriet
2018-03-12
Reports on the association between aerobic capacity and walking capacity in people after stroke show disparate results. To determine (1) if the predictive validity of peak oxygen uptake (VO2peak) for walking capacity post stroke is different from that of maximal oxygen uptake (VO2max) and (2) if postural control, hemiplegic lower extremity muscle strength, age and gender distort the association between aerobic capacity and walking capacity. Cross-sectional study. General community in Utrecht, the Netherlands. Community-dwelling people more than three months after stroke. Measurement of aerobic capacity were performed with cardiopulmonary exercise testing (CPET) and differentiated between the achievement of VO2peak or VO2max. Measurement of walking capacity with the Six Minute Walk Test (6MWT), postural control with the Performance Oriented Mobility Assessment (POMA) and hemiplegic lower extremity muscle strength with the Motricity Index (MI-LE). Fifty-one out of 62 eligible participants, aged 64.7 (±12.5) years were included. Analysis of covariance (ANCOVA) showed a nonsignificant difference between the predictive validities of VO2max (N = 22, β = 0.56; 95%CI 0.12 - 0.97) and VO2peak (N = 29, β = 0.72; 95%CI 0.38 - 0.92). Multiple regression analysis of the pooled sample showed a significant decrease in the β value of VO2peak (21.6%) for the 6MWT when adding the POMA as a covariate in the association model. VO2peak remained significantly related to 6MWT after correcting for the POMA (β = 0.56 (95%CI 0.39 - 0.75)) CONCLUSIONS: The results suggest similar predictive validity of aerobic capacity for walking capacity in participants achieving VO2max compared to those only achieving VO2peak. Postural control confounds the association between aerobic capacity and walking capacity. Aerobic capacity remains a valid predictor of walking capacity. Aerobic capacity is an important factor associated with walking capacity after stroke. However, to understand this relationship, postural control needs to be measured. Both aerobic capacity and postural control may need to be addressed during interventions aiming to improve walking capacity after stroke.
APFELBAUM, HENRY; PELAH, ADAR; PELI, ELI
2007-01-01
Virtual reality locomotion simulators are a promising tool for evaluating the effectiveness of vision aids to mobility for people with low vision. This study examined two factors to gain insight into the verisimilitude requirements of the test environment: the effects of treadmill walking and the suitability of using controls as surrogate patients. Ten “tunnel vision” patients with retinitis pigmentosa (RP) were tasked with identifying which side of a clearly visible obstacle their heading through the virtual environment would lead them, and were scored both on accuracy and on their distance from the obstacle when they responded. They were tested both while walking on a treadmill and while standing, as they viewed a scene representing progress through a shopping mall. Control subjects, each wearing a head-mounted field restriction to simulate the vision of a paired patient, were also tested. At wide angles of approach, controls and patients performed with a comparably high degree of accuracy, and made their choices at comparable distances from the obstacle. At narrow angles of approach, patients’ accuracy increased when walking, while controls’ accuracy decreased. When walking, both patients and controls delayed their decisions until closer to the obstacle. We conclude that a head-mounted field restriction is not sufficient for simulating tunnel vision, but that the improved performance observed for walking compared to standing suggests that a walking interface (such as a treadmill) may be essential for eliciting natural perceptually-guided behavior in virtual reality locomotion simulators. PMID:18167511
Apfelbaum, Henry; Pelah, Adar; Peli, Eli
2007-01-01
Virtual reality locomotion simulators are a promising tool for evaluating the effectiveness of vision aids to mobility for people with low vision. This study examined two factors to gain insight into the verisimilitude requirements of the test environment: the effects of treadmill walking and the suitability of using controls as surrogate patients. Ten "tunnel vision" patients with retinitis pigmentosa (RP) were tasked with identifying which side of a clearly visible obstacle their heading through the virtual environment would lead them, and were scored both on accuracy and on their distance from the obstacle when they responded. They were tested both while walking on a treadmill and while standing, as they viewed a scene representing progress through a shopping mall. Control subjects, each wearing a head-mounted field restriction to simulate the vision of a paired patient, were also tested. At wide angles of approach, controls and patients performed with a comparably high degree of accuracy, and made their choices at comparable distances from the obstacle. At narrow angles of approach, patients' accuracy increased when walking, while controls' accuracy decreased. When walking, both patients and controls delayed their decisions until closer to the obstacle. We conclude that a head-mounted field restriction is not sufficient for simulating tunnel vision, but that the improved performance observed for walking compared to standing suggests that a walking interface (such as a treadmill) may be essential for eliciting natural perceptually-guided behavior in virtual reality locomotion simulators.
Ostchega, Y; Harris, T B; Hirsch, R; Parsons, V L; Kington, R; Katzoff, M
2000-09-01
This report provides reliability and prevalence estimates by sex, age, and race/ethnicity of an observed physical performance examination (PPE) assessing mobility and balance. The Third National Health and Nutrition Examination Survey (NHANES III) 1988-1994. A cross-sectional nationally representative survey. All persons aged 60 and older (n = 5,403) who performed the PPE either in the mobile examination center (MEC) or in the home during NHANES III (conducted 1988-1994). The PPE included timed chair stand, full tandem stand, and timed 8-foot walk. Timed chair stand and 8-foot timed walk were reliable measurements (Intraclass Correlations > 0.5). Women were significantly slower (P < .001) than men for both timed chair stands and timed walk. Non-Hispanic white men and women did the maneuvers in significantly less time than non-Hispanic black men and women and Mexican Americans women (P < .001). Lower extremity functions measured by timed chair stand and walk are reliable. Women at every age group were more physically limited than men.
Kim, Min-Hee; Yoo, Won-Gyu
2014-06-01
[Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.
A passive exoskeleton with artificial tendons: design and experimental evaluation.
van Dijk, Wietse; van der Kooij, Herman; Hekman, Edsko
2011-01-01
We developed a passive exoskeleton that was designed to minimize joint work during walking. The exoskeleton makes use of passive structures, called artificial tendons, acting in parallel with the leg. Artificial tendons are elastic elements that are able to store and redistribute energy over the human leg joints. The elastic characteristics of the tendons have been optimized to minimize the mechanical work of the human leg joints. In simulation the maximal reduction was 40 percent. The performance of the exoskeleton was evaluated in an experiment in which nine subjects participated. Energy expenditure and muscle activation were measured during three conditions: Normal walking, walking with the exoskeleton without artificial tendons, and walking with the exoskeleton with the artificial tendons. Normal walking was the most energy efficient. While walking with the exoskeleton, the artificial tendons only resulted in a negligibly small decrease in energy expenditure. © 2011 IEEE
Effect of divided attention on gait in subjects with and without cognitive impairment.
Pettersson, Anna F; Olsson, Elisabeth; Wahlund, Lars-Olof
2007-03-01
The aim of this study was to investigate the influence of cognition on motor function using 2 simple everyday tasks, talking and walking, in younger subjects with Alzheimer's disease and mild cognitive impairment. A second aim was to evaluate reliability for the dual-task test Talking While Walking. Walking speed during single and dual task and time change between single and dual task were compared between groups. The test procedure was repeated after 1 week. Subjects with AD had lower walking speed and greater time change between single and dual task compared with healthy controls. Reliability for Talking While Walking was very good. The results show that motor function in combination with a cognitive task, as well as motor function alone, influences subjects with Alzheimer's disease in a negative way and that decreased walking speed during single- and dual-task performance may be an early symptom in Alzheimer's disease.
Enhanced Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older Adults
Christou, Evangelos A.; Ring, Sarah A.; Williamson, John B.; Doty, Leilani
2014-01-01
Background. The coordination of steady state walking is relatively automatic in healthy humans, such that active attention to the details of task execution and performance (controlled processing) is low. Somatosensation is a crucial input to the spinal and brainstem circuits that facilitate this automaticity. Impaired somatosensation in older adults may reduce automaticity and increase controlled processing, thereby contributing to deficits in walking function. The primary objective of this study was to determine if enhancing somatosensory feedback can reduce controlled processing during walking, as assessed by prefrontal cortical activation. Methods. Fourteen older adults (age 77.1±5.56 years) with mild mobility deficits and mild somatosensory deficits participated in this study. Functional near-infrared spectroscopy was used to quantify metabolic activity (tissue oxygenation index, TOI) in the prefrontal cortex. Prefrontal activity and gait spatiotemporal data were measured during treadmill walking and overground walking while participants wore normal shoes and under two conditions of enhanced somatosensation: wearing textured insoles and no shoes. Results. Relative to walking with normal shoes, textured insoles yielded a bilateral reduction of prefrontal cortical activity for treadmill walking (ΔTOI = −0.85 and −1.19 for left and right hemispheres, respectively) and for overground walking (ΔTOI = −0.51 and −0.66 for left and right hemispheres, respectively). Relative to walking with normal shoes, no shoes yielded lower prefrontal cortical activity for treadmill walking (ΔTOI = −0.69 and −1.13 for left and right hemispheres, respectively), but not overground walking. Conclusions. Enhanced somatosensation reduces prefrontal activity during walking in older adults. This suggests a less intensive utilization of controlled processing during walking. PMID:25112494
2010-01-01
Background Active approaches including both specific and unspecific exercise are probably the most widely recommended treatment for patients with chronic low back pain but it is not known exactly which types of exercise provide the most benefit. Nordic Walking - power walking using ski poles - is a popular and fast growing type of exercise in Northern Europe that has been shown to improve cardiovascular metabolism. Until now, no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to back pain. Methods A total of 151 patients with low back and/or leg pain of greater than eight weeks duration were recruited from a hospital based outpatient back pain clinic. Patients continuing to have pain greater than three on the 11-point numeric rating scale after a multidisciplinary intervention were included. Fifteen patients were unable to complete the baseline evaluation and 136 patients were randomized to receive A) Nordic walking supervised by a specially trained instructor twice a week for eight weeks B) One-hour instruction in Nordic walking by a specially trained instructor followed by advice to perform Nordic walking at home as much as they liked for eight weeks or C) Individual oral information consisting of advice to remain active and about maintaining the daily function level that they had achieved during their stay at the backcenter. Primary outcome measures were pain and disability using the Low Back Pain Rating Scale, and functional limitation further assessed using the Patient Specific Function Scale. Furthermore, information on time off work, use of medication, and concurrent treatment for their low back pain was collected. Objective measurements of physical activity levels for the supervised and unsupervised Nordic walking groups were performed using accelerometers. Data were analyzed on an intention-to-treat basis. Results No mean differences were found between the three groups in relation to any of the outcomes at baseline. For pain, disability, and patient specific function the supervised Nordic walking group generally faired best however no statistically significant differences were found. Regarding the secondary outcome measures, patients in the supervised group tended to use less pain medication, to seek less concurrent care for their back pain, at the eight-week follow-up. There was no difference between physical activity levels for the supervised and unsupervised Nordic walking groups. No negative side effects were reported. Conclusion We did not find statistically significant differences between eight weeks of supervised or unsupervised Nordic walking and advice to remain active in a group of chronic low back pain patients. Nevertheless, the greatest average improvement tended to favor the supervised Nordic walking group and - taking into account other health related benefits of Nordic walking - this form of exercise may potentially be of benefit to selected groups of chronic back pain patients. Trial registration http://www.ClinicalTrials.gov # NCT00209820 PMID:20146793
Validity of Different Activity Monitors to Count Steps in an Inpatient Rehabilitation Setting.
Treacy, Daniel; Hassett, Leanne; Schurr, Karl; Chagpar, Sakina; Paul, Serene S; Sherrington, Catherine
2017-05-01
Commonly used activity monitors have been shown to be accurate in counting steps in active people; however, further validation is needed in slower walking populations. To determine the validity of activity monitors for measuring step counts in rehabilitation inpatients compared with visually observed step counts. To explore the influence of gait parameters, activity monitor position, and use of walkers on activity monitor accuracy. One hundred and sixty-six inpatients admitted to a rehabilitation unit with an average walking speed of 0.4 m/s (SD 0.2) wore 16 activity monitors (7 different devices in different positions) simultaneously during 6-minute and 6-m walks. The number of steps taken during the tests was also counted by a physical therapist. Gait parameters were assessed using the GAITRite system. To analyze the influence of different gait parameters, the percentage accuracy for each monitor was graphed against various gait parameters for each activity monitor. The StepWatch, Fitbit One worn on the ankle and the ActivPAL showed excellent agreement with observed step count (ICC 2,1 0.98; 0.92; 0.78 respectively). Other devices (Fitbit Charge, Fitbit One worn on hip, G-Sensor, Garmin Vivofit, Actigraph) showed poor agreement with the observed step count (ICC 2,1 0.12-0.40). Percentage agreement with observed step count was highest for the StepWatch (mean 98%). The StepWatch and the Fitbit One worn on the ankle maintained accuracy in individuals who walked more slowly and with shorter strides but other devices were less accurate in these individuals. There were small numbers of participants for some gait parameters. The StepWatch showed the highest accuracy and closest agreement with observed step count. This device can be confidently used by researchers for accurate measurement of step counts in inpatient rehabilitation in individuals who walk slowly. If immediate feedback is desired, the Fitbit One when worn on the ankle would be the best choice for this population. © 2017 American Physical Therapy Association
Streeter, Chris C; Whitfield, Theodore H; Owen, Liz; Rein, Tasha; Karri, Surya K; Yakhkind, Aleksandra; Perlmutter, Ruth; Prescot, Andrew; Renshaw, Perry F; Ciraulo, Domenic A; Jensen, J Eric
2010-11-01
Yoga and exercise have beneficial effects on mood and anxiety. γ-Aminobutyric acid (GABA)-ergic activity is reduced in mood and anxiety disorders. The practice of yoga postures is associated with increased brain GABA levels. This study addresses the question of whether changes in mood, anxiety, and GABA levels are specific to yoga or related to physical activity. Healthy subjects with no significant medical/psychiatric disorders were randomized to yoga or a metabolically matched walking intervention for 60 minutes 3 times a week for 12 weeks. Mood and anxiety scales were taken at weeks 0, 4, 8, 12, and before each magnetic resonance spectroscopy scan. Scan 1 was at baseline. Scan 2, obtained after the 12-week intervention, was followed by a 60-minute yoga or walking intervention, which was immediately followed by Scan 3. The yoga subjects (n = 19) reported greater improvement in mood and greater decreases in anxiety than the walking group (n = 15). There were positive correlations between improved mood and decreased anxiety and thalamic GABA levels. The yoga group had positive correlations between changes in mood scales and changes in GABA levels. The 12-week yoga intervention was associated with greater improvements in mood and anxiety than a metabolically matched walking exercise. This is the first study to demonstrate that increased thalamic GABA levels are associated with improved mood and decreased anxiety. It is also the first time that a behavioral intervention (i.e., yoga postures) has been associated with a positive correlation between acute increases in thalamic GABA levels and improvements in mood and anxiety scales. Given that pharmacologic agents that increase the activity of the GABA system are prescribed to improve mood and decrease anxiety, the reported correlations are in the expected direction. The possible role of GABA in mediating the beneficial effects of yoga on mood and anxiety warrants further study.
Aengevaeren, Vincent L; Hopman, Maria T E; Thijssen, Dick H J; van Kimmenade, Roland R; de Boer, Menko-Jan; Eijsvogels, Thijs M H
2017-01-15
Healthy athletes demonstrated increased B-type natriuretic peptide (BNP) concentrations following exercise, but it is unknown whether these responses are exaggerated in individuals with cardiovascular risk factors (CVRF) or disease (CVD). We compared exercise-induced increases in BNP between healthy controls (CON) and individuals with CVRF or CVD. Furthermore, we aimed to identify predictors for BNP responses. Serum BNP concentrations were measured in 191 participants (60±12yrs) of the Nijmegen Marches before (baseline) and immediately after 4 consecutive days of walking exercise (30-50km/day). CVRF (n=54) was defined as hypertension, hypercholesterolemia, obesity or smoking and CVD (n=55) was defined as a history of myocardial infarction, heart failure, atrial fibrillation or angina pectoris. Individuals walked 487±79min/day at 65±10% of their maximum heart rate. Baseline BNP concentrations were higher for CVD (median: 28.1pg/ml; interquartile range: 13-50, p<0.001) compared to CVRF (3.9pg/ml; 0-14) and CON (5.5pg/ml; 0-14). Post-exercise BNP concentrations were elevated in CVD (35.7pg/ml, 17-67, p=0.01), but not in CVRF participants (p=0.11) or CON (p=0.07). No cumulative effect in BNP concentrations was observed across the consecutive walking days (p>0.05). Predictors for post-exercise BNP (R 2 =0.77) were baseline BNP, beta-blocker use and age. Prolonged moderate-intensity walking exercise increases BNP concentrations in CVD participants, but not in CVRF and CON. BNP increases were small, and did not accumulate across consecutive days of exercise. These findings suggest that prolonged walking exercise for multiple consecutive days is feasible with minimal effect on myocardial stretch, even for participants with CVD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Colberg, Sheri R; Zarrabi, Lida; Bennington, Linda; Nakave, Abhijeet; Thomas Somma, C; Swain, David P; Sechrist, Scott R
2009-07-01
In prior studies of exercise done before or after breakfast and lunch, postprandial activity generally reduces glycemia more than pre-meal. This study sought to examine the effects of exercise before or after an evening meal. Examined the differing effects of a single bout of pre- or postprandial moderate exercise or no exercise on the glycemic response to an evening (dinner) meal in individuals with type 2 diabetes. Community-dwelling participants tested at a research university in Virginia. Twelve men and women subjects (mean age of 61.4+/-2.7 years) with type 2 diabetes treated with diet and/or oral medications. Three trials conducted on separate days consisting of a rest day when subjects consumed a standardized dinner with a moderate glycemic effect and 2 exercise days when they undertook 20 minutes of self-paced treadmill walking immediately before or 15 to 20 minutes after eating. Blood samples taken every 30 minutes over a 4-hour period and later assayed for plasma glucose; from these data both absolute and relative changes in glucose levels were determined, as well as the total glucose area under the curve (AUC) of the 4-hour testing period. Initial samples were additionally assayed for glycated hemoglobin and lipid levels. Twenty minutes of self-paced walking done shortly after meal consumption resulted in lower plasma glucose levels at the end of exercise compared to values at the same time point when subjects had walked pre-dinner. Total glucose AUC over 4-hours was not significantly different among trials. Postprandial walking may be more effective at lowering the glycemic impact of the evening meal in individuals with type 2 diabetes compared with pre-meal or no exercise and may be an effective means to blunt postprandial glycemic excursions.
Motl, Robert W; Smith, Douglas C; Elliott, Jeannette; Weikert, Madeline; Dlugonski, Deirdre; Sosnoff, Jacob J
2012-03-01
The disabling consequences of multiple sclerosis (MS) emphasize the significance of developing physiologically relevant strategies for rehabilitation of function. This pilot study examined changes in walking function associated with combined exercise training consisting of aerobic, resistance, and balance activities in persons with MS who had recent onset of gait impairment. Thirteen participants with significant disability due to MS (Expanded Disability Status Scale range = 4.0-6.0) completed the Multiple Sclerosis Walking Scale-12, 2 trials of the Timed 25-Foot Walk, the Timed Up & Go, and functional ambulation profile score derived from 4 walking trials on an instrumented walkway (GaitRite) before and after an 8-week training period. The training program was designed by a physical therapist and was performed 3 days per week under the supervision of an exercise specialist. In week 1, the session was 15 minutes in duration (ie, 5 minutes of each mode of exercise), session durations were increased by approximately 5 minutes per week up to a maximum of 60 minutes in week 8 (ie, 20 minutes of each mode of exercise). There were significant improvements in Multiple Sclerosis Walking Scale-12 scores (Mpre = 56.0, Mpost = 46.7, P = 0.03, d = 0.56), Timed 25-Foot Walk (Mpre = 11.7, Mpost = 9.8, P = 0.004, d = 0.90) and Timed Up & Go (Mpre = 16.0, Mpost = 13.0, P = 0.01, d = 0.72) performance, and functional ambulation profile score (Mpre = 72.8, Mpost = 77.6, P = 0.02, d = 0.65). These results suggest that a moderately intense, comprehensive, combined exercise training program represents a rehabilitation strategy that is associated with improved walking mobility in a small sample of persons with MS who have recent onset of gait impairment.
Choi, Seongjin; Reiter, David A; Shardell, Michelle; Simonsick, Eleanor M; Studenski, Stephanie; Spencer, Richard G; Fishbein, Kenneth W; Ferrucci, Luigi
2016-12-01
Aerobic fitness and muscle bioenergetic capacity decline with age; whether such declines explain age-related slowing of walking speed is unclear. We hypothesized that muscle energetics and aerobic capacity are independent correlates of walking speed in simple and challenging performance tests and that they account for the observed age-related decline in walking speed in these same tests. Muscle bioenergetics was assessed as postexercise recovery rate of phosphocreatine (PCr), k PCr , using phosphorus magnetic resonance spectroscopy ( 31 P-MRS) in 126 participants (53 men) of the Baltimore Longitudinal Study of Aging aged 26-91 years (mean = 72 years). Four walking tasks were administered-usual pace over 6 m and 150 seconds and fast pace over 6 m and 400 m. Separately, aerobic fitness was assessed as peak oxygen consumption (peak VO 2 ) using a graded treadmill test. All gait speeds, k PCr , and peak VO 2 were lower with older age. Independent of age, sex, height, and weight, both k PCr and peak VO 2 were positively and significantly associated with fast pace and long distance walking but only peak VO 2 and not k PCr was significantly associated with usual gait speed over 6 m. Both k PCr and peak VO 2 substantially attenuated the association between age and gait speed for all but the least stressful walking task of 6 m at usual pace. Muscle bioenergetics assessed using 31 P-MRS is highly correlated with walking speed and partially explains age-related poorer performance in fast and long walking tasks. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Brach, Jennifer S.; Van Swearingen, Jessie M.; Perera, Subashan; Wert, David M.; Studenski, Stephanie
2013-01-01
Background Current exercise recommendationsfocus on endurance and strength, but rarely incorporate principles of motor learning. Motor learning exerciseis designed to address neurological aspects of movement. Motor learning exercise has not been evaluated in older adults with subclinical gait dysfunction. Objectives Tocompare motor learning versus standard exercise on measures of mobility and perceived function and disability. Design Single-blind randomized trial. Setting University research center. Participants Olderadults (n=40), mean age 77.1±6.0 years), who had normal walking speed (≥1.0 m/s) and impaired motor skill (Figure of 8 walk time > 8 s). Interventions The motor learning program (ML) incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program (S) employed endurance training by treadmill walking.Both included strength training and were offered twice weekly for one hour for 12 weeks. Measurements Primary outcomes included mobility performance (gait efficiency, motor skill in walking, gait speed, and walking endurance)and secondary outcomes included perceived function and disability (Late Life Function and Disability Instrument). Results 38 of 40 participants completed the trial (ML, n=18; S, n=20). ML improved more than Sin gait speed (0.13 vs. 0.05 m/s, p=0.008) and motor skill (−2.2 vs. −0.89 s, p<0.0001). Both groups improved in walking endurance (28.3 and 22.9m, but did not differ significantly p=0.14). Changes in gait efficiency and perceived function and disability were not different between the groups (p>0.10). Conclusion In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. PMID:24219189
Iorizzo, Dana B.; Riley, Meghan E.; Hayhoe, Mary; Huxlin, Krystel R.
2011-01-01
The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ~80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ~90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. PMID:21414339
Iorizzo, Dana B; Riley, Meghan E; Hayhoe, Mary; Huxlin, Krystel R
2011-05-25
The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sedighi, Alireza; Ulman, Sophia M.
2018-01-01
The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614
Baetens, Tina; De Kegel, Alexandra; Palmans, Tanneke; Oostra, Kristine; Vanderstraeten, Guy; Cambier, Dirk
2013-04-01
To evaluate fall risk in stroke patients based on single- and dual-task gait analyses, and to investigate the difference between 2 cognitive tasks in the dual-task paradigm. Prospective cohort study. Rehabilitation hospitals. Subacute stroke patients (N=32), able to walk without physical/manual help with or without walking aids, while performing a verbal task. Not applicable. Functional gait measures were Functional Ambulation Categories (FAC) and use of a walking aid. Gait measures were evaluated by an electronic walkway system under single- and dual-task (DT) conditions. For the single-task, subjects were instructed to walk at their usual speed. One of the DTs was a verbal fluency dual task, whereby subjects had to walk while simultaneously enumerating as many different animals as possible. For the other DT (counting dual task), participants had to walk while performing serial subtractions. After inclusion, participants kept a 6-month falls diary. Eighteen (56.3%) of the 32 included patients fell. Ten (31.3%) were single fallers (SFs), and 8 (25%) were multiple fallers (MFs). Fallers (Fs) more frequently used a walking aid and more frequently needed an observatory person for walking safely (FAC score of 3) than nonfallers (NFs). Two gait decrement parameters in counting dual task could distinguish potential Fs from NFs: decrement in stride length percentage (P=.043) and nonparetic step length percentage (P=.047). Regarding the division in 3 groups (NFs, SFs, and MFs), only MFs had a significantly higher percentage of decrement for paretic step length (P=.023) than SFs. Examining the decrement of spatial gait characteristics (stride length and paretic and nonparetic step length) during a DT addressing working memory can identify fall-prone subacute stroke patients. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace
2017-07-01
This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO 2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min -1 ), pulmonary ventilation (>7.7 L·min -1 ), carbon dioxide output (>0.23 L·min -1 ), heart rate (>15 beats·min -1 ), oxygen pulse (>0.88 15 mL·beats -1 ), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg -1 ·km -1 ·bout -1 ). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (P<0.001). In all participants, %HRR and %VO 2 R throughout walking and running bouts were around or above the gas exchange threshold. In conclusion, elderly men exhibited higher cardiorespiratory responses during 30-min bouts of running than walking at WRTS. Nevertheless, walking corresponded to relative metabolic intensities compatible with preservation or improvement of cardiorespiratory fitness and should be preferable over running at WRTS in the untrained elderly characterized by poor fitness and reduced exercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.
Walking Stroop carpet: an innovative dual-task concept for detecting cognitive impairment.
Perrochon, A; Kemoun, G; Watelain, E; Berthoz, A
2013-01-01
Several studies have reported the potential value of the dual-task concept during locomotion in clinical evaluation because cognitive decline is strongly associated with gait abnormalities. However, current dual-task tests appear to be insufficient for early diagnosis of cognitive impairment. Forty-nine subjects (young, old, with or without mild cognitive impairment) underwent cognitive evaluation (Mini-Mental State Examination, Frontal Assessment Battery, five-word test, Stroop, clock-drawing) and single-task locomotor evaluation on an electronic walkway. They were then dual-task-tested on the Walking Stroop carpet, which is an adaptation of the Stroop color-word task for locomotion. A cluster analysis, followed by an analysis of variance, was performed to assess gait parameters. Cluster analysis of gait parameters on the Walking Stroop carpet revealed an interaction between cognitive and functional abilities because it made it possible to distinguish dysexecutive cognitive fragility or decline with a sensitivity of 89% and a specificity of 94%. Locomotor abilities differed according to the group and dual-task conditions. Healthy subjects performed less well on dual-tasking under reading conditions than when they were asked to distinguish colors, whereas dysexecutive subjects had worse motor performances when they were required to dual task. The Walking Stroop carpet is a dual-task test that enables early detection of cognitive fragility that has not been revealed by traditional neuropsychological tests or single-task walking analysis.
Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min
2018-06-25
Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.
Walking Stroop carpet: an innovative dual-task concept for detecting cognitive impairment
Perrochon, A; Kemoun, G; Watelain, E; Berthoz, A
2013-01-01
Background Several studies have reported the potential value of the dual-task concept during locomotion in clinical evaluation because cognitive decline is strongly associated with gait abnormalities. However, current dual-task tests appear to be insufficient for early diagnosis of cognitive impairment. Methods Forty-nine subjects (young, old, with or without mild cognitive impairment) underwent cognitive evaluation (Mini-Mental State Examination, Frontal Assessment Battery, five-word test, Stroop, clock-drawing) and single-task locomotor evaluation on an electronic walkway. They were then dual-task-tested on the Walking Stroop carpet, which is an adaptation of the Stroop color–word task for locomotion. A cluster analysis, followed by an analysis of variance, was performed to assess gait parameters. Results Cluster analysis of gait parameters on the Walking Stroop carpet revealed an interaction between cognitive and functional abilities because it made it possible to distinguish dysexecutive cognitive fragility or decline with a sensitivity of 89% and a specificity of 94%. Locomotor abilities differed according to the group and dual-task conditions. Healthy subjects performed less well on dual-tasking under reading conditions than when they were asked to distinguish colors, whereas dysexecutive subjects had worse motor performances when they were required to dual task. Conclusion The Walking Stroop carpet is a dual-task test that enables early detection of cognitive fragility that has not been revealed by traditional neuropsychological tests or single-task walking analysis. PMID:23682211
Walk test and school performance in mouth-breathing children.
Boas, Ana Paula Dias Vilas; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; Sakano, Eulália; Conti, Patricia Blau Margosian; Toro, Adyléia Dalbo Contrera; Ribeiro, José Dirceu
2013-01-01
In recent decades, many studies on mouth breathing (MB) have been published; however, little is known about many aspects of this syndrome, including severity, impact on physical and academic performances. Compare the physical performance in a six minutes walk test (6MWT) and the academic performance of MB and nasal-breathing (NB) children and adolescents. This is a descriptive, cross-sectional, and prospective study with MB and NB children submitted to the 6MWT and scholar performance assessment. We included 156 children, 87 girls (60 NB and 27 MB) and 69 boys (44 NB and 25 MB). Variables were analyzed during the 6MWT: heart rate (HR), respiratory rate, oxygen saturation, distance walked in six minutes and modified Borg scale. All the variables studied were statistically different between groups NB and MB, with the exception of school performance and HR in 6MWT. MB affects physical performance and not the academic performance, we noticed a changed pattern in the 6MWT in the MB group. Since the MBs in our study were classified as non-severe, other studies comparing the academic performance variables and 6MWT are needed to better understand the process of physical and academic performances in MB children.
Maclean, Linda M; Brown, Laura J E; Khadra, H; Astell, Arlene J
2017-03-01
Previous studies exploring the effects of attention-prioritization on cognitively healthy older adults' gait and cognitive dual task (DT) performance have shown DT cost in gait outcomes but inconsistent effects on cognitive performance, which may reflect task difficulty (the cognitive load). This study aimed to identify whether changing the cognitive load during a walking and counting DT improved the challenge/sensitivity of the cognitive task to observe prioritization effects on concurrent gait and cognitive performance outcomes. Seventy-two cognitively healthy older adults (Mean=73years) walked 15m, counted backwards in 3s and 7s as single tasks (ST), and concurrently walked and counted backwards as DTs. Attention-prioritization was examined in Prioritizing Walking (PW) and Prioritizing Counting (PC) DT conditions. Dual-task performance costs (DTC) were calculated for number of correct cognitive responses (CCR) in the counting tasks, and step-time variability and velocity in the gait task. All DT conditions showed a benefit (DTB) for cognitive outcomes with trade-off cost to gait. In the Serial 3s task, the cognitive DTBs increased in PC over the PW condition (p<0.05), with a greater cost to walking velocity (p<0.05). DT effects were more pronounced in the Serial 7s with a lower cognitive DTB when PC than when PW, (p<0.05) with no trade-off increase in cost to gait outcomes (p<0.05). The findings suggest that increased cognitive load during a gait and cognitive DT produces more pronounced gait measures of attention-prioritization in cognitively healthy older adults. A cognitive load effect was also observed in the cognitive outcomes, with unexpected results. Copyright © 2017 Elsevier B.V. All rights reserved.
Soma, Yuki; Tsunoda, Kenji; Kitano, Naruki; Jindo, Takashi; Tsuji, Taishi; Saghazadeh, Mahshid; Okura, Tomohiro
2017-03-01
To explore the relationships between the built environment and older adults' physical function. The present cross-sectional study carried out in 2010-2012 used data drawn from 509 community-dwelling older adults aged 65-86 years living in Kasama City, a Japanese rural region. We evaluated physical function with the following performance tests: grip strength, sit-to-stand, timed up & go and walking speed. Using geographic information systems, we measured population density and the number of destinations related to daily life, community centers, medical facilities and recreational facilities within participants' neighborhoods. After adjusting for potential confounders, we found lower population density was related to poor performance of sit-to-stand and walking speed in both sexes, and grip strength in women (trend P < 0.05). A lower number of daily life-related destinations was related to poor performance of sit-to-stand and walking speed in men, and grip strength and sit-to-stand in women. Similarly, the number of community centers was related to walking speed in both sexes. The number of medical and recreational facilities was also related to some physical performance in both sexes. A lower land use mix score, calculated by principal component analysis, was related to lower performance of sit-to-stand and walking speed in men, and grip strength and sit-to-stand in women. The present study suggests that, although there are some sex differences, low population density, land use mix, and fewer daily life-related destinations, community centers, medical facilities and recreational facilities are negative determinants of physical function. Geriatr Gerontol Int 2017; 17: 382-390. © 2016 Japan Geriatrics Society.
Walking and wheelchair energetics in persons with paraplegia.
Cerny, D; Waters, R; Hislop, H; Perry, J
1980-09-01
The energetics of walking with orthoses and wheelchair propulsion at free velocity were tested in 10 adults with low-level spinal cord injuries. Eight were subjects who customarily used wheelchairs as their primary mode of locomotion; the other two used orthoses and had discontinued use of their wheelchairs. All required bilateral knee-ankle-foot orthoses to walk. A third habitual walker also was tested during walking only. Patients walked or propelled their wheelchairs around a 60.5-meter outdoor cement track. Heart rate, respiratory rate, and step frequency were recorded and transmitted by radiotelemetry. Expired air was collected for gas analysis in a polyethylene bag during the activity after a three-minute warm-up. During wheelchair propulsion all subjects demonstrated physiological responses within normal limits. Walking was significantly more difficult to perform than wheelchair propulsion (p < .005). Subjects who customarily used orthoses walked at a mean velocity of 59 +/- 5 m/min; those who primarily used wheelchairs had a mean walking velocity of 22 +/- 13 m/min. Oxygen uptake per minute was similar for both groups. These data suggest that the wheelchair will be the primary mode of locomotion for persons with spinal cord injury who need two knee-ankle-foot orthoses to walk, unless they are willing to work under anaerobic conditions and can walk at a velocity of 54 m/min or better.
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina P.; Costa, Lino
2012-09-01
In this paper, a study based on sensitivity analysis is performed for a gait multi-objective optimization system that combines bio-inspired Central Patterns Generators (CPGs) and a multi-objective evolutionary algorithm based on NSGA-II. In this system, CPGs are modeled as autonomous differential equations, that generate the necessary limb movement to perform the required walking gait. In order to optimize the walking gait, a multi-objective problem with three conflicting objectives is formulated: maximization of the velocity, the wide stability margin and the behavioral diversity. The experimental results highlight the effectiveness of this multi-objective approach and the importance of the objectives to find different walking gait solutions for the quadruped robot.
DOT National Transportation Integrated Search
2016-07-01
Currently, the Louisiana Department of Transportation and Development (DOTD) : maintains approximately 200 miles of concrete safety walk barrier railing systems on : its bridges. Some of these vintage systems do not meet the current crash performance...
Mind your step: metabolic energy cost while walking an enforced gait pattern.
Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H
2011-04-01
The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.
Dalgas, U; Langeskov-Christensen, M; Skjerbæk, A; Jensen, E; Baert, I; Romberg, A; Santoyo Medina, C; Gebara, B; Maertens de Noordhout, B; Knuts, K; Béthoux, F; Rasova, K; Severijns, D; Bibby, B M; Kalron, A; Norman, B; Van Geel, F; Wens, I; Feys, P
2018-04-15
The relationship between fatigue impact and walking capacity and perceived ability in patients with multiple sclerosis (MS) is inconclusive in the existing literature. A better understanding might guide new treatment avenues for fatigue and/or walking capacity in patients with MS. To investigate the relationship between the subjective impact of fatigue and objective walking capacity as well as subjective walking ability in MS patients. A cross-sectional multicenter study design was applied. Ambulatory MS patients (n = 189, age: 47.6 ± 10.5 years; gender: 115/74 women/men; Expanded Disability Status Scale (EDSS): 4.1 ± 1.8 [range: 0-6.5]) were tested at 11 sites. Objective tests of walking capacity included short walking tests (Timed 25-Foot Walk (T25FW), 10-Metre Walk Test (10mWT) at usual and fastest speed and the timed up and go (TUG)), and long walking tests (2- and 6-Minute Walk Tests (MWT). Subjective walking ability was tested applying the Multiple Sclerosis Walking Scale-12 (MSWS-12). Fatigue impact was measured by the self-reported modified fatigue impact scale (MFIS) consisting of a total score (MFIS total ) and three subscales (MFIS physical , MFIS cognitive and MFIS psychosocial ). Uni- and multivariate regression analysis were performed to evaluate the relation between walking and fatigue impact. MFIS total was negatively related with long (6MWT, r = -0.14, p = 0.05) and short composite (TUG, r = -0.22, p = 0.003) walking measures. MFIS physical showed a significant albeit weak relationship to walking speed in all walking capacity tests (r = -0.22 to -0.33, p < .0001), which persisted in the multivariate linear regression analysis. Subjective walking ability (MSWS-12) was related to MFIS total (r = 0.49, p < 0.0001), as well as to all other subscales of MFIS (r = 0.24-0.63, p < 0.001), showing stronger relationships than objective measures of walking. The physical impact of fatigue is weakly related to objective walking capacity, while general, physical, cognitive and psychosocial fatigue impact are weakly to moderately related to subjective walking ability, when analysed in a large heterogeneous sample of MS patients. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.
2011-01-01
During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually decreased following an initial increase after the onset of support surface motion. DISCUSSION: Resu lts confirmed that walking in discordant conditions not only compromises locomotor stability and the ability to multi-task, but comes at a quantifiable metabolic cost. Importantly, like locomotor stability and multi-tasking ability, metabolic expenditure while walking in discordant sensory conditions improved during adaptation. This confirms that sensorimotor adaptability training can benefit multiple performance parameters central to the successful completion of critical mission tasks.
McDermott, Mary M; Greenland, Philip; Tian, Lu; Kibbe, Melina R; Green, David; Zhao, Lihui; Criqui, Michael H; Guralnik, Jack M; Ferrucci, Luigi; Liu, Kiang; Wilkins, John T; Huffman, Mark D; Shah, Sanjiv J; Liao, Yihua; Lloyd-Jones, Donald M
2015-01-01
Background We determined whether poorer 6-minute walk performance and lower physical activity levels are associated with higher rates of ischemic heart disease (IHD) events in people with lower extremity peripheral artery disease (PAD). Methods and Results Five hundred ten PAD participants were identified from Chicago-area medical centers and followed prospectively for 19.0±9.5 months. At baseline, participants completed the 6-minute walk and reported number of blocks walked during the past week (physical activity). IHD events were systematically adjudicated and consisted of new myocardial infarction, unstable angina, and cardiac death. For 6-minute walk, IHD event rates were 25/170 (14.7%) for the third (poorest) tertile, 10/171 (5.8%%) for the second tertile, and 6/169 (3.5%) for the first (best) tertile (P=0.003). For physical activity, IHD event rates were 21/154 (13.6%) for the third (poorest) tertile, 15/174 (8.6%) for the second tertile, and 5/182 (2.7%) for the first (best) tertile (P=0.001). Adjusting for age, sex, race, smoking, body mass index, comorbidities, and physical activity, participants in the poorest 6-minute walk tertile had a 3.28-fold (95% CI 1.17 to 9.17, P=0.024) higher hazard for IHD events, compared with those in the best tertile. Adjusting for confounders including 6-minute walk, participants in the poorest physical activity tertile had a 3.72-fold (95% CI 1.24 to 11.19, P=0.019) higher hazard for IHD events, compared with the highest tertile. Conclusions Six-minute walk and physical activity predict IHD event rates in PAD. Further study is needed to determine whether interventions that improve 6-minute walk, physical activity, or both can reduce IHD events in PAD. PMID:26219563
Wang, W Y; Chang, J J
1997-08-01
In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.
Nofuji, Yu; Shinkai, Shoji; Taniguchi, Yu; Amano, Hidenori; Nishi, Mariko; Murayama, Hiroshi; Fujiwara, Yoshinori; Suzuki, Takao
2016-02-01
Walking speed, grip strength, and standing balance are key components of physical performance in older people. The present study aimed to evaluate (1) associations of these physical performance measures with cause-specific mortality, (2) independent associations of individual physical performance measures with mortality, and (3) the added value of combined use of the 3 physical performance measures in predicting all-cause and cause-specific mortality. Prospective cohort study with a follow-up of 10.5 years. Tokyo Metropolitan Institute of Gerontology Longitudinal Interdisciplinary Study on Aging (TMIG-LISA), Japan. A total of 1085 initially nondisabled older Japanese aged 65 to 89 years. Usual walking speed, grip strength, and standing balance were measured at baseline survey. During follow-up, 324 deaths occurred (122 of cardiovascular disease, 75 of cancer, 115 of other causes, and 12 of unknown causes). All 3 physical performance measures were significantly associated with all-cause, cardiovascular, and other-cause mortality, but not with cancer mortality, independent of potential confounders. When all 3 physical performance measures were simultaneously entered into the model, each was significantly independently associated with all-cause and cardiovascular mortality. The C statistics for all-cause and cardiovascular mortality were significantly increased by adding grip strength and standing balance to walking speed (P < .01), and the net reclassification improvement for them was estimated at 18.7% and 7.5%, respectively. Slow walking speed, weak grip strength, and poor standing balance predicted all-cause, cardiovascular, and other-cause mortality, but not cancer mortality, independent of covariates. Moreover, these 3 components of physical performance were independently associated with all-cause and cardiovascular mortality and their combined use increased prognostic power. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Use of self-report to predict ability to walk 400 meters in mobility-limited older adults.
Sayers, Stephen P; Brach, Jennifer S; Newman, Anne B; Heeren, Tim C; Guralnik, Jack M; Fielding, Roger A
2004-12-01
To determine whether the ability to walk 400 m could be predicted from self-reported walking habits and abilities in older adults and to develop an accurate self-report measure appropriate for observational trials of mobility when functional measures are impractical to collect. Cross-sectional. University-based human physiology laboratory. One hundred fifty community-dwelling older men and women (mean age+/-standard error= 79.8+/-0.3). An 18-item questionnaire assessing walking habits and ability was administered to each participant, followed by a 400-m walk test. Ninety-eight (65%) volunteers were able to complete the 400-m walk; 52 (35%) were unable. Logistic regression was performed using response items from a questionnaire as predictors and 400-m walk as the outcome. Three questions (Do you think you could walk one-quarter of a mile now without sitting down to rest. Because of a health or physical problem, do you have difficulty walking 1 mile? Could you walk up and down every aisle of a grocery store without sitting down to rest or leaning on a cart?) were predictive of 400-m walking ability and were included in the model. If participants answered all three questions compatible with the inability to walk 400 m, there was a 91% probability that they were unable to walk 400 m, with a sensitivity of 46% and a specificity of 97%. A three-item self-report developed in the study was able to accurately predict mobility disability. The utility of this instrument may be in evaluating self-reported mobility in large observational trials on mobility when functional mobility tasks are impractical to collect.
Meijer, Kenneth; Delbressine, Jeannet M.; Willems, Paul J.; Franssen, Frits M. E.; Wouters, Emiel F. M.; Spruit, Martijn A.
2016-01-01
Background The 6-minute walk test (6MWT) in a regular hallway is commonly used to assess functional exercise capacity in patients with chronic obstructive pulmonary disease (COPD). However, treadmill walking might provide additional advantages over overground walking, especially if virtual reality and self-paced treadmill walking are combined. Therefore, this study aimed to assess the reproducibility and validity of the 6MWT using the Gait Real-time Analysis Interactive Lab (GRAIL) in patients with COPD and healthy elderly. Methodology/Results Sixty-one patients with COPD and 48 healthy elderly performed two 6MWTs on the GRAIL. Patients performed two overground 6MWTs and healthy elderly performed one overground test. Differences between consecutive 6MWTs and the test conditions (GRAIL vs. overground) were analysed. Patients walked further in the second overground test (24.8 m, 95% CI 15.2–34.4 m, p<0.001) and in the second GRAIL test (26.8 m, 95% CI 13.9–39.6 m). Healthy elderly improved their second GRAIL test (49.6 m, 95% CI 37.0–62.3 m). The GRAIL 6MWT was reproducible (intra-class coefficients = 0.65–0.80). The best GRAIL 6-minute walk distance (6MWD) in patients was shorter than the best overground 6MWD (-27.3 ± 49.1 m, p<0.001). Healthy elderly walked further on the GRAIL than in the overground condition (23.6 ± 41.4 m, p<0.001). Validity of the GRAIL 6MWT was assessed and intra-class coefficient values ranging from 0.74–0.77 were found. Conclusion The GRAIL is a promising system to assess the 6MWD in patients with COPD and healthy elderly. The GRAIL 6MWD seems to be more comparable to the 6MWDs assessed overground than previous studies on treadmills have reported. Furthermore, good construct validity and reproducibility were established in assessing the 6MWD using the GRAIL in patients with COPD and healthy elderly. PMID:27607426
Marek, W; Marek, E; Friz, Y; Vogel, P; Mückenhoff, K; Kotschy-Lang, N
2010-03-01
AIMS OF THE INVESTIGATION: The repetition of the 6-minutes walk test (6 MWT) in older patients is frequently performed in order to document the maximal walking distance, although it is not recommended in any guidelines on exercise tests and although there is common consent to save clinical resources in terms of time and staff. Therefore, we have examined whether and to what extent the repetition of the walk tests helps patients to get more familiar with this kind of exercise test. Thus the acquired physiological data should reliably describe the physical fitness of the patients at the beginning and at the end of their clinical rehabilitation. 35 patients performed their walk tests before and after 3 - 4 weeks of clinical rehabilitation. Each test has been repeated after one hour of recovery. The patients were instructed to walk during 6 minutes as fast as possible. They were equipped with a mobile pulse oximeter for recording oxygen saturation and heart rate. The distance, S, and the heart rate, fc, were measured. Measurements were performed every 30 seconds and recorded. The efficiency, E (E = S/6/fc), was calculated as the ratio of distance per minute and the mean heart rate during the test. In the first test the patients walked 416 +/- 63 m at a heart rate of 104.7 +/- 15.7 beats/min, in the first repeated test 454 +/- 71 m at a heart of 106.3 +/- 17.4 beats/min. In the second test, after clinical therapy, they walked 438 +/- 58 m at a heart rate of 106.3 +/- 17.4 beats/min, in the second repeated test 473 +/- 56 m at 108.6 +/- 13.2/min. The difference of the walking distances of the tests at the entrance were found to be 38.4 +/- 26.2 m (+ 9.3 +/- 6.2%), at the end of clinical rehabilitation 35 +/- 26 m (+ 8.4 +/- 6.4%). Both differences are found to be independent from the distance of the first test. They are not significantly different. The efficiency was not significantly different in the initial and final test (0.673 +/- 0.129 and 0.689 +/- 0.085 m/beat, respectively). The difference in efficiency, when repeating the tests at the beginning, was: 0.053 +/- 0.062 m/beat; at the end of the rehabilitation: 0.042 +/- 0.047 m/beat. They are found to be similar. The distances the patients walked in the repeated tests at the entrance and at the end of their clinical rehabilitation were, besides the calculated efficiency, E, significantly increased. However, the increases in distance and efficiency are identical on both occasions, therefore the repetition delivers no further information. The test should be performed without repetitions in clinical routine investigations. The patient's performance in the second walk test with an unchanged distance at a lower heart rate reveals an improved physical fitness. This is solely described by an increase of efficiency, E. Therefore the introduction of E is a suitable measure of the quantified effect of exercise training, even if the patient is not cooperative during the tests. E is proved to be a suitable estimation for the assessment of physical fitness as a benefit of clinical rehabilitation. Georg Thieme Verlag KG Stuttgart, New York.
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Quantification of gait changes in subjects with visual height intolerance when exposed to heights
Schniepp, Roman; Kugler, Günter; Wuehr, Max; Eckl, Maria; Huppert, Doreen; Huth, Sabrina; Pradhan, Cauchy; Jahn, Klaus; Brandt, Thomas
2014-01-01
Introduction: Visual height intolerance (vHI) manifests as instability at heights with apprehension of losing balance or falling. We investigated contributions of visual feedback and attention on gait performance of subjects with vHI. Materials and Methods: Sixteen subjects with vHI walked over a gait mat (GAITRite®) on a 15-m-high balcony and at ground-level. Subjects walked at different speeds (slow, preferred, fast), during changes of the visual input (gaze straight/up/down; eyes open/closed), and while doing a cognitive task. An rmANOVA with the factors “height situation” and “gait condition” was performed. Subjects were also asked to estimate the height of the balcony over ground level. The individual estimates were used for correlations with the gait parameters. Results: Study participants walked slower at heights, with reduced cadence and stride length. The double support phases were increased (all p < 0.01), which correlated with the estimated height of the balcony (R2 = 0.453, p < 0.05). These changes were still present when walking with upward gaze or closure of the eyes. Under the conditions walking and looking down to the floor of the balcony, during dual-task and fast walking, there were no differences between the gait performance on the balcony and at ground-level. Discussion: The found gait changes are features of a cautious gait control. Internal, cognitive models with anxiety play an important role for vHI; gait was similarly affected when the visual perception of the depth was prevented. Improvement by dual task at heights may be associated by a reduction of the anxiety level. Conclusion: It is conceivable that mental distraction by dual task or increasing the walking speed might be useful recommendations to reduce the imbalance during locomotion in subjects susceptible to vHI. PMID:25538595
Peeler, Jason; Ripat, Jacquie
2018-01-01
Knee osteoarthritis has a lifetime risk of nearly one in two, with obese individuals being most susceptible. While exercise is universally recognized as a critical component for management, unsafe or ineffective exercise frequently leads to exacerbation of joint symptoms. Evaluate the effect of a 12week lower body positive pressure (LBPP) supported low-load treadmill walking program on knee pain, joint function, and performance of daily activities in patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community based, multidisciplinary musculoskeletal medicine clinic. Thirty-one patients, aged 50-75, with a BMI ≥25kg/m 2 and radiographic confirmed mild to moderate knee OA. Twelve week LBPP treadmill walking exercise regimen. The Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Canadian Occupational Performance Measure (COPM) were used to quantify joint symptoms and patient function; isokinetic thigh muscle strength was evaluated; and a 10-point VAS was used to quantify acute knee pain while walking. Baseline and follow-up data were compared in order to examine the effect of the 12week exercise intervention. There was a significant difference between baseline and follow-up data: KOOS and COPM scores both improved; thigh muscle strength increased; and acute knee pain during full weight bearing walking diminished significantly. Participation in a 12week LBPP supported treadmill walking exercise regimen significantly enhanced patient function and quality of life, as well as the ability to perform activities of daily living that patient's self-identified as being important, yet difficult to perform. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of Pilates Exercise in Multiple Sclerosis: A Randomized Controlled Trial.
Duff, Whitney R D; Andrushko, Justin W; Renshaw, Doug W; Chilibeck, Philip D; Farthing, Jonathan P; Danielson, Jana; Evans, Charity D
2018-01-01
Pilates is a series of exercises based on whole-body movement and may improve mobility in people with multiple sclerosis (MS). The purpose of this study was to determine the effect of Pilates on walking performance in people with MS. 30 individuals with MS who were not restricted to a wheelchair or scooter (Patient-Determined Disease Steps scale score <7) were randomized to receive Pilates (twice weekly) and massage therapy (once weekly) or once-weekly massage therapy only (control group). The Pilates was delivered in a group setting (five to ten participants per session). The primary outcome was change in walking performance (6-Minute Walk Test) after 12 weeks. Secondary outcomes included functional ability (Timed Up and Go test), balance (Fullerton Advanced Balance Scale), flexibility (sit and reach test), body composition (dual-energy X-ray absorptiometry), core endurance (plank-hold test), and muscle strength and voluntary activation (quadriceps). Intention-to-treat analysis was performed using a two-factor repeated-measures analysis of variance. Walking distance increased by a mean (SD) of 52.4 (40.2) m in the Pilates group versus 15.0 (34.1) m in the control group (group × time, P = .01). Mean (SD) time to complete the Timed Up and Go test decreased by 1.5 (2.8) seconds in the Pilates group versus an increase of 0.3 (0.9) seconds in the control group (group × time, P = .03). There were no other significant differences between groups over time. Pilates improved walking performance and functional ability in persons with MS and is a viable exercise option to help manage the disease.
Laboratory review: the role of gait analysis in seniors' mobility and fall prevention.
Bridenbaugh, Stephanie A; Kressig, Reto W
2011-01-01
Walking is a complex motor task generally performed automatically by healthy adults. Yet, by the elderly, walking is often no longer performed automatically. Older adults require more attention for motor control while walking than younger adults. Falls, often with serious consequences, can be the result. Gait impairments are one of the biggest risk factors for falls. Several studies have identified changes in certain gait parameters as independent predictors of fall risk. Such gait changes are often too discrete to be detected by clinical observation alone. At the Basel Mobility Center, we employ the GAITRite electronic walkway system for spatial-temporal gait analysis. Although we have a large range of indications for gait analyses and several areas of clinical research, our focus is on the association between gait and cognition. Gait analysis with walking as a single-task condition alone is often insufficient to reveal underlying gait disorders present during normal, everyday activities. We use a dual-task paradigm, walking while simultaneously performing a second cognitive task, to assess the effects of divided attention on motor performance and gait control. Objective quantification of such clinically relevant gait changes is necessary to determine fall risk. Early detection of gait disorders and fall risk permits early intervention and, in the best-case scenario, fall prevention. We and others have shown that rhythmic movement training such as Jaques-Dalcroze eurhythmics, tai chi and social dancing can improve gait regularity and automaticity, thus increasing gait safety and reducing fall risk. Copyright © 2010 S. Karger AG, Basel.