DOT National Transportation Integrated Search
2004-07-01
The test wall was constructed to evaluate the behavior of MSE walls constructed with silty-clay soils through comparison between predicted and field measurements. The primary objectives of the construction of the LTRC reinforced test wall were to mon...
Creep behavior of soil nail walls in high plasticity index (PI) soils : technical report.
DOT National Transportation Integrated Search
2017-04-01
An aspect of particular concern in the Geotechnical Engineering Circular No. 7: Soil Nail Walls (i.e., the soil : nail wall manual and construction guidelines) is the creep behavior of soil nail systems in high-plasticity : clays. This research proje...
Deformation Behaviors of Geosynthetic Reinforced Soil Walls on Shallow Weak Ground
NASA Astrophysics Data System (ADS)
Kim, You-Seong; Won, Myoung-Soo
In this study, the fifteen-month behavior of two geosynthetic reinforced soil walls, which was constructed on the shallow weak ground, was measured and analyzed. The walls were backfilled with clayey soil obtained from the construction site nearby, and the safety factors obtained from general limit equilibrium analysis were less than 1.3 in both wall. To compare with the measured data from the real GRS walls and unreinforced soil mass, a series of finite element method (FEM) analyses on two field GRS walls and unreinforced soil mass were conducted. The FEM analysis results showed that failure plane of unreinforced soil mass was consistent with the Rankine active state, but failure plane did not occur in GRS walls. In addition, maximum horizontal displacements and shear strains in GRS walls were 50% smaller than those found in unreinforced soil mass. Modeling results such as the maximum horizontal displacements, horizontal pressure, and geosynthetic tensile strengths in GRS wall have a god agreement with the measured data. Based on this study, it could be concluded that geosynthetic reinforcement are effective to reduce the displacement of the wall face and/or the deformation of the backfill soil even if the mobilized tensile stress after construction is very small.
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-06-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-01-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Study on the intelligent decision making of soccer robot side-wall behavior
NASA Astrophysics Data System (ADS)
Zhang, Xiaochuan; Shao, Guifang; Tan, Zhi; Li, Zushu
2007-12-01
Side-wall is the static obstacle in soccer robot game, reasonably making use of the Side-wall can improve soccer robot competitive ability. As a kind of artificial life, the Side-wall processing strategy of soccer robot is influenced by many factors, such as game state, field region, attacking and defending situation and so on, each factor also has different influence degree, so, the Side-wall behavior selection is an intelligent selecting process. From the view point of human simulated, based on the idea of Side-wall processing priority[1], this paper builds the priority function for Side-wall processing, constructs the action predicative model for Side-wall obstacle, puts forward the Side-wall processing strategy, and forms the Side-wall behavior selection mechanism. Through the contrasting experiment between the strategy applied and none, proves that this strategy can improve the soccer robot capacity, it is feasible and effective, and has positive meaning for soccer robot stepped study.
Seismic Vulnerability and Performance Level of confined brick walls
NASA Astrophysics Data System (ADS)
Ghalehnovi, M.; Rahdar, H. A.
2008-07-01
There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material. Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide. Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures. In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.
Hilfiker retaining walls with full height cast-in-place panels
DOT National Transportation Integrated Search
1998-02-01
Construction of retaining walls utilizing full height panels introduces a degree of indeterminacy to the structure. The ability to effectively analyze the internal behavior of such systems, and limited field performance, qualifies them as appropriate...
Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.
DOT National Transportation Integrated Search
2015-08-31
Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...
Seismic Vulnerability and Performance Level of confined brick walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghalehnovi, M.; Rahdar, H. A.
2008-07-08
There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iranmore » is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.« less
NASA Astrophysics Data System (ADS)
Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.
2017-10-01
The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.
NASA Astrophysics Data System (ADS)
Librescu, Liviu; Song, Ohseop
1991-11-01
Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.
Compressive behavior of energy-saving fired facing brick composite wall
NASA Astrophysics Data System (ADS)
Guo, Kai; Wu, Cai
2018-03-01
The energy-saving fired facing brick composite wall has a broad development prospects due to its merits of thermal insulation, energy conservation, beautiful, and natural. The construction and characteristics of this wall are introduced and analyzed in this paper. Experimental studies of samples are also conducted to investigate its compressive performance. The results show that the energy-saving fired facing brick composite wall has high compressive capacity. It has considerable application prospect, the study in this paper provides foundation to further studies.
NASA Astrophysics Data System (ADS)
Zhang, Kai
Steel-plate reinforced concrete (SC) composite walls typically consist of thick concrete walls with two exterior steel faceplates. The concrete core is sandwiched between the two steel faceplates, and the faceplates are attached to the concrete core using shear connectors, for example, ASTM A108 steel headed shear studs. The shear connectors and the concrete infill enhance the stability of the steel faceplates, and the faceplates serve as permanent formwork for concrete placement. SC composite walls were first introduced in the 1980's in Japan for nuclear power plant (NPP) structures. They are used in the new generation of nuclear power plants (GIII+) and being considered for small modular reactors (SMR) due to their structural efficiency, economy, safety, and construction speed. Steel faceplates can potentially undergo local buckling at certain locations of NPP structures where compressive forces are significant. The steel faceplates are usually thin (0.25 to 1.50 inches in Customary units, or 6.5 to 38 mm in SI units) to maintain economical and constructional efficiency, the geometric imperfections and locked-in stresses induced during construction make them more vulnerable to local buckling. Accidental thermal loading may also reduce the compressive strength and exacerbate the local buckling potential of SC composite walls. This dissertation presents the results from experimental and numerical investigations of the compressive behavior of SC composite walls at ambient and elevated temperatures. The results are used to establish a slenderness limit to prevent local buckling before yielding of the steel faceplates and to develop a design approach for calculating the compressive strength of SC composite walls with non-slender and slender steel faceplates at ambient and elevated temperatures. Composite action in SC walls is achieved by the embedment of shear connectors into the concrete core. The strength and stiffness of shear connectors govern the level of composite action. This level of partial composite action can influence the behavior and stiffness of SC composite walls. This dissertation presents numerical investigations of the level of partial composite action and its influence on the flexural stiffness of SC walls. The results are used to propose design criteria for steel headed shear studs, such as their size, spacing, and strength.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng
2016-03-02
The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng
2016-01-01
The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls. PMID:28773274
Buckling Of Shells Of Revolution /BOSOR/ with various wall constructions
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Bushnell, D.; Sobel, L. H.
1969-01-01
Computer program, using numerical integration and finite difference techniques, solves almost any buckling problem for shells exhibiting orthotropic behavior. Stability analyses can be performed with reasonable accuracy and without unduly restrictive approximations.
Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya
2015-06-01
The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.
Seismic behavior of outrigger truss-wall shear connections using multiple steel angles
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang
2016-06-01
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.
Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls
T. Ho; T. Dao; S. Aaleti; J. van de Lindt; Douglas Rammer
2016-01-01
Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity....
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-08-19
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-01-01
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170
Computer program analyzes Buckling Of Shells Of Revolution with various wall construction, BOSOR
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Bushnell, D.; Sobel, L. H.
1968-01-01
Computer program performs stability analyses for a wide class of shells without unduly restrictive approximations. The program uses numerical integration, finite difference of finite element techniques to solve with reasonable accuracy almost any buckling problem for shells exhibiting orthotropic behavior.
Performance Theory of Diagonal Conducting Wall MHD Accelerators
NASA Technical Reports Server (NTRS)
Litchford, R. J.
2003-01-01
The theoretical performance of diagonal conducting wall crossed field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm's law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm's law by imposing appropriate configuration and loading constraints. A current dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities lead to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed field accelerator operation.
DNS and modeling of the interaction between turbulent premixed flames and walls
NASA Technical Reports Server (NTRS)
Poinsot, T. J.; Haworth, D. C.
1992-01-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.
Single Wall Carbon Nanotube-Based Structural Health Sensing Materials
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.
2004-01-01
Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.
Lightweight composites for modular panelized construction
NASA Astrophysics Data System (ADS)
Vaidya, Amol S.
Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction site. Keywords: Modular panelized construction, sandwich composites, composite structural insulated panels (CSIPs).
Failure mechanism of shear-wall dominant multi-story buildings
Yuksel, S.B.; Kalkan, E.
2008-01-01
The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.
3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope
NASA Astrophysics Data System (ADS)
Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping
2018-05-01
There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.
Implementing Green Walls in Schools.
McCullough, Michael B; Martin, Michael D; Sajady, Mollika A
2018-01-01
Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.
Performance Theory of Diagonal Conducting Wall Magnetohydrodynamic Accelerators
NASA Technical Reports Server (NTRS)
Litchford, R. J.
2004-01-01
The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material
NASA Astrophysics Data System (ADS)
Halúzová, Dušana
2015-06-01
For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.
Validation of Blockage Interference Corrections in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Walker, Eric L.
2007-01-01
A validation test has recently been constructed for wall interference methods as applied to the National Transonic Facility (NTF). The goal of this study was to begin to address the uncertainty of wall-induced-blockage interference corrections, which will make it possible to address the overall quality of data generated by the facility. The validation test itself is not specific to any particular modeling. For this present effort, the Transonic Wall Interference Correction System (TWICS) as implemented at the NTF is the mathematical model being tested. TWICS uses linear, potential boundary conditions that must first be calibrated. These boundary conditions include three different classical, linear. homogeneous forms that have been historically used to approximate the physical behavior of longitudinally slotted test section walls. Results of the application of the calibrated wall boundary conditions are discussed in the context of the validation test.
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or... constructed of, or covered with, a nonsparking material. (3) Wood frame wall construction. The exterior of... necessary for ventilation. (ii) A fabricated metal roof constructed of 3/16-inch plate steel lined with four...
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or... constructed of, or covered with, a nonsparking material. (3) Wood frame wall construction. The exterior of... necessary for ventilation. (ii) A fabricated metal roof constructed of 3/16-inch plate steel lined with four...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
2017-08-31
Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.
Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit
NASA Technical Reports Server (NTRS)
Reinitzhuber, F.
1945-01-01
When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.
Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian
Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi
2015-01-01
The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head. PMID:26539715
Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.
Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi
2015-01-01
The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.K.; Christian, J.E.
1985-01-01
Eight one-room test buildings, 20 ft (6.1 m) square and 7.5 ft (2.3 m) high, were constructed on a high desert site near Tesuque Pueblo, New Mexico, to study the influence of wall dynamic heat transfer characteristics on building heating requirements (the ''thermal mass effect''). The buildings are nominally identical except for the walls (adobe, concrete and masonry unit, wood-frame, and log) and are constructed so as to isolate the effects of the walls. The amount of mass in the walls varies from 240 lb/ft/sup 2/ (1171 kg/m/sup 2/) for the 2 ft (.61 m) thick adobe wall to 4.3more » lb/ft/sup 2/ (21 kg/m/sup 2/) for the insulated wood-frame wall. The roof, floor, and stem walls are all well insulated and the buildings were constructed with infiltration rates less than 0.4 air change per hour. The site is instrumented to record building component temperatures and heat fluxes, outside weather conditions, and heating energy use. Data were collected for two heating seasons from midwinter to late spring with the buildings in two configurations, with and without windows. Four computer codes were used to simulate the performance of the test buildings without windows, using site weather data. The codes used were DOE-2.1A, DOE-2.1C, BLAST, and DEROB. Each code was run by a different analyst. Simulations were done for midwinter, late winter, and spring. Two of the test cell comparisons are discussed; the insulated frame and an 11-in. (.28 m) adobe. This work presents a quantitative and qualitative critical comparison of the modeling and experimental results. Cumulative heating loads, wall heat fluxes, and air surface temperatures are compared, as well as input assumptions to the models. Explanations of differences and difficulties encountered are reported. The principal findings were that cumulative heating loads and the characteristic influences of wall thermal mass on hourly behavior were reproduced by the models.« less
22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...
22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
The Great Firewall of China: A Critical Analysis
2008-06-01
wall was constructed twenty five foot high, twenty foot wide and over 4,000 miles long when complete ( Asimov , 1998). The wall was constructed... Asimov , I (1998). Construction of the great wall. Retrieved May 20, 2008, from Great Wall Web site: http://www.ccds.charlotte.nc.us/History/China/save
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
2017-06-01
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
Development of a new connection for precast concrete walls subjected to cyclic loading
NASA Astrophysics Data System (ADS)
Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul
2017-01-01
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.
Creep Behavior of Structural Insulated Panels (SIPS): Results from a Pilot Study
Dwight McDonald; Marshall Begel; C. Adam Senalik; Robert Ross; Thomas D. Skaggs; Borjen Yeh; Thomas Williamson
2014-01-01
Structural insulated panels (SIPs) have been recognized as construction materials in the International Residential Code (IRC) since 2009. Although most SIPs are used in wall applications, they can also be used as roof or floor panels that are subjected to long-term transverse loading, for which SIP creep performance may be critical in design. However, limited...
25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...
25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Levine, H.
1975-01-01
The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.
DOT National Transportation Integrated Search
2004-01-01
This report presents the construction and performance evaluation of the LTRC reinforced-soil test wall. The 20 ft. high, 160 ft. long wall was constructed using low quality backfill. Its vertical front facing was constructed with modular blocks. It c...
Sustainable wall construction and exterior insulation retrofit technology process and structure
Vohra, Arun
2000-01-01
A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.
Moisture and Thermal Conductivity of Lightweight Block Walls
NASA Astrophysics Data System (ADS)
Joosep, R.
2015-11-01
This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.
17. DETAIL OF INTERIOR AND EXTERIOR WALL CONSTRUCTION, VIEW TOWARD ...
17. DETAIL OF INTERIOR AND EXTERIOR WALL CONSTRUCTION, VIEW TOWARD NORTHEAST CORNER, THIRD BAY Showing insulated exterior wall at right; asphalt felt on interior separation wall at left; sill beam, stud, and concrete foundation detailing of interior wall. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
Dynamic Echo Information Guides Flight in the Big Brown Bat
Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.
2016-01-01
Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690
Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.
2017-01-01
Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611
Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W
2017-01-01
Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.
9. May 20, 1963 SEED BUILDING FOUNDATION WALLS Under Construction. ...
9. May 20, 1963 SEED BUILDING FOUNDATION WALLS Under Construction. Looking southeast showing north and west walls of Machinery Shed - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Sullivan, Roy M.; Lerch, Bradley A.
2006-01-01
A micromechanics model has been constructed to study the mechanical behavior of spray-on foam insulation (SOFI) for the external tank. The model was constructed using finite elements representing the fundamental repeating unit of the SOFI microstructure. The details of the micromechanics model were based on cell observations and measured average cell dimensions discerned from photomicrographs. The unit cell model is an elongated Kelvin model (fourteen-sided polyhedron with 8 hexagonal and six quadrilateral faces), which will pack to a 100% density. The cell faces and cell edges are modeled using three-dimensional 20-node brick elements. Only one-eighth of the cell is modeled due to symmetry. By exercising the model and correlating the results with the macro-mechanical foam behavior obtained through material characterization testing, the intrinsic stiffness and Poisson s Ratio of the polymeric cell walls and edges are determined as a function of temperature. The model is then exercised to study the unique and complex temperature-dependent mechanical behavior as well as the fracture initiation and propagation at the microscopic unit cell level.
Fire containment in wood construction doesn’t just happen
Robert H. White; Kuma Sumathipala
2007-01-01
Regardless of the type of construction, structures capable of containing a fully developed fire do not just happen. Fire walls or area separation walls play an important role in the building codes in that they allow each portion of a building separated by such walls to be treated as a separate building. Attention to construction details is critical to maximizing the...
Lateral deflection contribution to settlement estimates : [summary].
DOT National Transportation Integrated Search
2014-12-01
The Wisconsin Department of Transportation (WisDOT) occasionally constructs : embankments and retaining walls over compressible materials using staged construction. : Staged construction is a technique used to build an embankment or retaining wall in...
Dodd, C.K.; Barichivich, W.J.; Smith, L.L.
2004-01-01
Because of high numbers of animals killed on Paynes Prairie State Preserve, Alachua County, Florida, the Florida Department of Transportation constructed a barrier wall-culvert system to reduce wildlife mortality yet allow for passage of some animals across the highway. During a one year study following construction, we counted only 158 animals, excluding hylid treefrogs, killed in the same area where 2411 road kills were recorded in the 12 months prior to the construction of the barrier wall-culvert system. Within the survey area lying directly in Paynes Prairie basin, mortality was reduced 65% if hylid treefrogs are included, and 93.5% with hylid treefrogs excluded. Sixty-four percent of the wildlife kills observed along the barrier wall-culvert system occurred at a maintenance road access point and along 300 m of type-A fence bordering private property. The 24 h kill rate during the post-construction survey was 4.9 compared with 13.5 during the pre-construction survey. We counted 1891 dead vertebrates within the entire area surveyed, including the ecotone between the surrounding uplands and prairie basin which did not include the barrier wall and culverts. Approximately 73% of the nonhylid road kills occurred in the 400 m section of road beyond the extent of the barrier wall-culvert system. We detected 51 vertebrate species, including 9 fish, using the 8 culverts after the construction of the barrier wall-culvert system, compared with 28 vertebrate species in the 4 existing culverts prior to construction. Capture success in culverts increased 10-fold from the pre-construction survey to the post-construction survey. Barrier wall trespass was facilitated by overhanging vegetation, maintenance road access, and by the use of the type-A fence. Additional problems resulted from siltation, water holes, and human access. These problems could be corrected using design modifications and by routine, periodic maintenance.
Use of flexible facing for soil nail walls.
DOT National Transportation Integrated Search
2011-11-01
Soil nail walls are a widely used technology for retaining vertical and nearly vertical cuts in soil. A : significant portion of the cost of soil nail wall construction is related to the construction of a reinforced : concrete face. The potential for...
Drywall construction as a dental radiation barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, J.C.; Reid, J.A.; Berthoty, D.
1983-03-01
Six typical forms of drywall construction have been tested as barriers against primary and secondary dental x-radiation. It is concluded that this widely used type of wall construction is generally effective for this purpose, but with a heavy workload two thicknesses of wallboard on each side of the wall are required to provide a sufficient barrier. In general, no lead need be incorporated in the walls.
Drywall construction as a dental radiation barrier.
MacDonald, J C; Reid, J A; Berthoty, D
1983-03-01
Six typical forms of drywall construction have been tested as barriers against primary and secondary dental x-radiation. It is concluded that this widely used type of wall construction is generally effective for this purpose, but with a heavy workload two thicknesses of wallboard on each side of the wall are required to provide a sufficient barrier. In general, no lead need be incorporated in the walls.
Materials for School Construction.
ERIC Educational Resources Information Center
Texas Education Agency, Austin.
As an assist to the superintendent and members of his staff, this booklet has been prepared for obtaining information in the field of building, planning and construction. Topics discussed are--(1) structure, (2) roofs, (3) floor construction, (4) floor finishes, (5) ceilings, (6) exterior wall construction, (7) interior walls and partitions, (8)…
Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers
NASA Astrophysics Data System (ADS)
Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.
2012-01-01
We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.
Vertical regolith shield wall construction for lunar base applications
NASA Technical Reports Server (NTRS)
Kaplicky, Jan; Nixon, David; Wernick, Jane
1992-01-01
Lunar bases located on the lunar surface will require permanent protection from radiation and launch ejecta. This paper outlines a method of providing physical protection using lunar regolith that is constructed in situ as a modular vertical wall using specially devised methods of containment and construction. Deployable compartments, reinforced with corner struts, are elevated and filled by a moving gantry. The compartments interlock to form a stable wall. Different wall heights, thicknesses, and plan configurations are achieved by varying the geometry of the individual compartments, which are made from woven carbon fibers. Conventional terrestrial structural engineering techniques can be modified and used to establish the structural integrity and performance of the wall assembly.
NMRI Measurements of Flow of Granular Mixtures
NASA Technical Reports Server (NTRS)
Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi
1996-01-01
We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.
Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung
2010-01-15
In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.
Skyrmions from Instantons inside Domain Walls
NASA Astrophysics Data System (ADS)
Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David
2005-12-01
Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-Abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the world volume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as domain wall Skyrmions.
18. DETAIL OF EXTERIOR WALL CONSTRUCTION, VIEW TOWARD EAST, THIRD ...
18. DETAIL OF EXTERIOR WALL CONSTRUCTION, VIEW TOWARD EAST, THIRD BAY Showing furring strips, kraft faced cellulose fiber insulation, and asphalt felt applied to interior of exterior wall studs. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W; Persson, Staffan
2013-06-01
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...
27 CFR 555.207 - Construction of type 1 magazines.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Construction of type 1 magazines. A type 1 magazine is a permanent structure: a building, an igloo or “Army-type structure”, a tunnel, or a dugout. It is to be bullet-resistant, fire-resistant, weather-resistant...) Fabricated metal wall construction. Metal wall construction is to consist of sectional sheets of steel or...
NASA Astrophysics Data System (ADS)
Ul Haq, Rizwan; Nadeem, Sohail; Khan, Z. H.; Noor, N. F. M.
2015-01-01
In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT.
NASA Astrophysics Data System (ADS)
de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti
2014-08-01
The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.
Quantum walled Brauer algebra: commuting families, Baxterization, and representations
NASA Astrophysics Data System (ADS)
Semikhatov, A. M.; Tipunin, I. Yu
2017-02-01
For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.
19. DETAIL OF INTERIOR WALL CONSTRUCTION, VIEW TOWARD SOUTH, THIRD ...
19. DETAIL OF INTERIOR WALL CONSTRUCTION, VIEW TOWARD SOUTH, THIRD BAY Showing asphalt felt applied to both sides of interior wall studs beneath wood cladding. Back-nailing of felt indicates sequence of felt and cladding installation. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
DETAIL OF TYPICAL WALL CONSTRUCTION IN COOLING ROOMS; TWO LAYERS ...
DETAIL OF TYPICAL WALL CONSTRUCTION IN COOLING ROOMS; TWO LAYERS OF CORK INSULATION ARE ATTACHED TO REINFORCED CONCRETE WALL WITH WOOD SLEEPERS AND ASPHALT MASTIC; THIN, GLAZED TERRA-COTTA TILES PROTECT THE INSULATION INSIDE THE COOLER - Rath Packing Company, Hog Cutting Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA
6. VIEW OF BUILDING 371 EXTERIOR WALL CONSTRUCTION DETAIL. BUILDING ...
6. VIEW OF BUILDING 371 EXTERIOR WALL CONSTRUCTION DETAIL. BUILDING CONSTRUCTION WAS HARDENED TO WITHSTAND THE FORCES IMPOSED BY A DESIGN-BASIS EARTHQUAKE OR TORNADO. (7/1/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO
Analysis of different techniques to improve sound transmission loss in cylindrical shells
NASA Astrophysics Data System (ADS)
Oliazadeh, Pouria; Farshidianfar, Anooshiravan
2017-02-01
In this study, sound transmission through double- and triple-walled shells is investigated. The structure-acoustic equations based on Donnell's shell theory are presented and transmission losses calculated by this approach are compared with the transmission losses obtained according to Love's theory. An experimental set-up is also constructed to compare natural frequencies obtained from Donnell and Love's theories with experimental results in the high frequency region. Both comparisons show that Donnell's theory predicts the sound transmission characteristics and vibrational behavior better than Love's theory in the high frequency region. The transmission losses of the double- and triple-walled construction are then presented for various radii and thicknesses. Then the effects of air gap size as an important design parameter are studied. Sound transmission characteristics through a circular cylindrical shell are also computed along with consideration of the effects of material damping. Modest absorption is shown to greatly reduce the sound transmission at ring frequency and coincidence frequency. Also the effects of five common gases that are used for filling the gap are investigated.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.
NASA Technical Reports Server (NTRS)
Sakakibara, S.; Miwa, H.; Kayaba, S.; Sato, M.
1986-01-01
Presented is a description of the design construction and performance of the exhaust silencer for the NAL high Reynolds number two-dimensional transonic blow down wind tunnel, which was completed in October 1979. The silencer is a two-storied construction made of reinforced concrete, 40 m. long, 10 m. wide and 19 m. high and entirely enclosed by thick concrete walls. The upstream part of the first story, particularly, is covered with double walls, the thickness of the two walls being 0.3 m. (inner wall) and 0.2 m. (outer wall), respectively. A noise reduction system using three kinds of parallel baffles and two kinds of lined bends is adopted for the wind tunnel exhaust noise.
Targeted self-assembly of functionalized carbon nanotubes on tumors
Scheinberg, David A.; McDevitt, Michael R.; Villa, Carlos H.; Mulvey, J. Justin
2018-05-22
Provided herein are methods for delivering a molecule in situ to a cell and for treating a cancer via the in situ delivery. The methods comprise contacting or administering to the cell, as two separate components, a morpholino oligonucleotide comprising a targeting moiety followed by a single wall nanotube construct comprising second morpholino oligonucleotides complementary to the first morpholino oligonucleotides and one or both of a therapeutic or diagnostic payload molecule linked to the single wall nanotube construct. Upon self-assembly of a single wall nanotube complex via hybridization of the first morpholino and second complementary morpholino oligonucleotides at the cell, the payload molecule is delivered. Also provided is the two component self-assembly single wall nanotube system and the single wall nanotube construct comprising the second component.
ERIC Educational Resources Information Center
Huddleston, Elizabeth
2001-01-01
Explores how risk-management strategies can make the difference in climbing wall safety. Wall design, adhering to wall construction standards, limiting wall access, and climber evaluation are discussed. (GR)
Construction and geometric stability of physiological flow rate wall-less stenosis phantoms.
Ramnarine, K V; Anderson, T; Hoskins, P R
2001-02-01
Wall-less flow phantoms are preferred for ultrasound (US) because tissue-mimicking material (TMM) with good acoustical properties can be made and cast to form anatomical models. The construction and geometrical stability of wall-less TMM flow phantoms is described using a novel method of sealing to prevent leakage of the blood-mimicking fluid (BMF). Wall-less stenosis flow models were constructed using a robust agar-based TMM and sealed using reticulated foam at the inlet and outlet tubes. There was no BMF leakage at the highest flow rate of 2.8 L/min in 0%, 35% and 57% diameter reduction stenoses models. Failure of the 75% stenosis model, due to TMM fracture, occurred at maximum flow rate of 2 L/min (mean velocity 10 m/s within the stenosis). No change of stenosis geometry was measured over 4 days. The construction is simple and effective and extends the possibility for high flow rate studies using robust TMM wall-less phantoms.
An experimental study on compressive behavior of rubble stone walls retrofitted with BFRP grids
NASA Astrophysics Data System (ADS)
Huang, Hui; Jia, Bin; Li, Wenjing; Liu, Xiao; Yang, Dan; Deng, Chuanli
2018-03-01
An experimental study was conducted to investigate the compressive behavior of rubble stone walls retrofitted with BFRP grids. The experimental program consisted of four rubble stone walls: one unretrofitted rubble stone wall (reference wall) and three BFRP grids retrofitted rubble stone walls. The main purpose of the tests was to gain a better understanding of the compressive behavior of rubble stone walls retrofitted with different amount of BFRP grids. The experimental results showed that the reference wall failed with out-of-plane collapse due to poor connection between rubble stone blocks and the three BFRP grids retrofitted walls failed with BFRP grids rupture followed by out-of-plane collapse. The measured compressive strength of the BFRP grids retrofitted walls is about 1.4 to 2.5 times of that of the reference wall. Besides, the rubble stone wall retrofitted with the maximum amount of BFRP grids showed the minimum vertical and out-of-plane displacements under the same load.
8. DETAIL OF NOTCHED CONSTRUCTION ELEMENT IN GRILLAGE AT WESTERN ...
8. DETAIL OF NOTCHED CONSTRUCTION ELEMENT IN GRILLAGE AT WESTERN EDGE OF SOUTHEASTERN LEG OF SEA WALL. TIDE APPROACHING. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE
NASA Technical Reports Server (NTRS)
Ford, Donald B. (Inventor)
2004-01-01
A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.
12. Photocopy of photograph (original color slide made in 1974 ...
12. Photocopy of photograph (original color slide made in 1974 by Henry D. Boykin, II, A.I.A., of Camden, South Carolina, and kept in his possession) FULL SECTIONAL VIEW OF SOUTH WALL OF NAVE SHOWING TYPICAL INTERNAL CONSTRUCTION AND MATERIALS OF CHURCH WALLS. BRICK BUTTRESS WITH CREPE COVERING ON LEFT; RAMMED EARTH WALL CORE IN CENTER (ADZE MARKS ARE FROM 1974 REPAIR PROCESS); INTERIOR LATH, PLASTER, AND CORNICE ON RIGHT. NOTE REMAINS OF EMBEDDED WOODEN BRACES (NEAR BUTTRESS) USED TO HOLD WALL FORMS DURING ORIGINAL CONSTRUCTION OF WALLS. - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC
Construction and Performance of a Superconducting Multipole Wiggler
NASA Astrophysics Data System (ADS)
Hwang, C. S.; Wang, B.; Chen, J. Y.; Chang, C. H.; Chen, H. H.; Fan, T. C.; Lin, F. Y.; Huang, M. H.; Chang, C. C.; Hsu, S. N.; Hsiung, G. Y.; Hsu, K. T.; Chen, J.; Chien, Y. C.; Chen, J. R.; Chen, C. T.
2004-05-01
A 3.2 Tesla superconducting multipole wiggler was designed and fabricated as an X-ray source. The magnet assembly, which consists of 32 pairs of racetrack NbTi superconducting coils with a periodic length of 60 mm, provides 28 effective poles. A 1.4056 m long elliptical cold-bore stainless steel beam duct with taper flanges and a wall thickness of 1 mm, was developed and constructed to fit the ultra-high vacuum condition for electron beam. The magnetic field strength was measured in liquid helium using a cryogenic Hall probe, revealing a field behavior very close to behavior consistent with the designed values. A Hall generator and the stretch wire methods are used to determine the transfer function of the peak field, the first and second integrated field distributions, and the good field region of the magnet. The quench protection of the magnet, the control algorithm for automatic filling of liquid helium, and the boil off rate of liquid helium and liquid nitrogen will also be discussed.
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.
Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino
2017-06-01
In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.
NASA Astrophysics Data System (ADS)
Yan, J. W.; Tong, L. H.; Xiang, Ping
2017-12-01
Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.
AISI/DOE Technology Roadmap Program: Development of Cost-effective, Energy-efficient Steel Framing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nader R. Elhajj
2003-01-06
Steel members in wall construction form a thermal bridge that interrupts the insulation layer of a wall. This causes higher rate of heat transfer by conduction through the wall framing than through other parts of the wall. One method to reduce the thermal bridging effect is to provide a break, such as insulating sheathing. A thermally efficient slit-web and stud was developed in this program to mitigate the conductivity of steel. The thermal performance of the slit-web stud was evaluated at Oak Ridge National Laboratory using hotbox testing. The thermal test results showed that the prototype slit-web stud performed 17%more » better than the solid-web stud, using R-13 fiber glass batts with exterior OSB sheathing and interior drywall. The structural behavior of this slit-web stud was evaluated in axial, bending, shear, shearwall, and stub-column tests. Test results indicated that the slitweb stud performed similarly or better than the solid-web stud in most structural performance characteristics investigated. Thus, the prototype slit-web stud has been shown to be thermally efficient, economiexecy viable, structurally sound, easily manufactured and usable in a range of residential installations.« less
Low-cost sustainable wall construction system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, A.; Rosenfeld, A.H.
1998-07-01
Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit wasmore » $3.76 per square foot ($$40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $$275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.« less
An Analysis of Insulated Concrete Forms for use in Sustainable Military Construction
2014-03-27
CONSTRUCTION THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of Engineering and Management...which fit together and are filled with reinforced concrete to construct the exterior wall systems of a building. By design, this material provides a...Forms with Rebar .............................................................. 12 Figure 3. Cut outs of ICF wall systems
Kaushik, Hemant; Bevington, John; Jaiswal, Kishor; Lizundia, Bret; Shrestha, Surya
2016-01-01
The most common building typologies in Nepal are reinforced concrete (RC) frame buildings with masonry infill walls, unreinforced masonry (URM) bearing wall buildings, and wood frame buildings (Figure 5-1). The RC frames with masonry infills are commonly constructed in urban and semi-urban areas. Most of these buildings are three to five stories high, and most privately owned buildings are non-engineered. High rise buildings (up to 17 stories high) are also found in Kathmandu, but their number is limited. Burnt clay bricks are widely used as masonry infill walls; external walls are generally one full brick thick (~ 230 mm), and internal walls are one half brick thick. URM bearing wall buildings are an obvious choice for the population in rural areas and the outskirts of cities, primarily to limit the material expenses. Such buildings are generally two to four stories high and constructed using burnt clay brick masonry or stone masonry with cement, lime, or mud mortar. In some of the older constructions, a different mortar known as Vajra (a mix of lime and brick dust) is also observed. These buildings have either wooden or reinforced concrete flooring. A hybrid type of construction also prevails in semi-urban and rural areas, where wood frames are used in the ground story front façade, and rest of the house is made of unreinforced masonry bearing walls. Wood frame houses (generally two to three stories high) are also observed in rural areas where the material for such construction is easily available.
Green noise wall construction and evaluation.
DOT National Transportation Integrated Search
2011-09-01
This report details the research performed under Phase I of a research study titled Green Noise Wall Construction and Evaluation that looks into the feasibility of using green noise barriers as a noise mitigation option in Ohio. This phase incl...
7. REMAINS OF PLANK WALL WITHIN CANAL CONSTRUCTED TO PROTECT ...
7. REMAINS OF PLANK WALL WITHIN CANAL CONSTRUCTED TO PROTECT OUTSIDE CANAL BANK, LOOKING SOUTHWEST. NOTE CROSS SUPPORT POLES EXTENDING TO HILLSIDE. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO
NASA Astrophysics Data System (ADS)
Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young
2013-11-01
The spin drying, in which a rinsing liquid deposited on a wafer is rapidly dried by wafer spinning, is an essential step in the semiconductor manufacturing process. While the liquid evaporates, its meniscus straddles neighboring submicron-size patterns such as pillars and walls. Then the capillary effects that pull the patterns together may lead to direct contact of the patterns, which is often referred to as pattern leaning. This poses a problem becoming more and more serious as the pattern size shrinks and the aspect ratio of the patterns increases. While the clustering behavior of high-aspect-ratio micro- and nanopillars was investigated before, a technical strategy to prevent such clustering has been pursed in industrial practices without being supported by the recently established theory of elastocapillarity. Here we visualize the clustering behavior of polymer micropatterns with the evaporation of liquid film while varying the sizes and temperature of the micropatterns. We find a critical role of substrate temperature in preventing the leaning of the patterns via changing the evaporation rate and behavior of the liquid film. Also, we construct a regime map that guides us to find a process condition to avoid pattern leaning in semiconductor manufacturing. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).
Hydric characterisation of rammed earth samples for different lime concentrations
NASA Astrophysics Data System (ADS)
Soudani, Lucile; Fabbri, Antonin; Woloszyn, Monika; Grillet, Anne-Cécile; Morel, Jean-Claude
2018-04-01
The rehabilitation of ancient rammed earth houses, as well as the use of earthen materials in modern constructions, are a growing matter of concern, especially in area such as Rhône-Alpes, France, where 40% of old constructions are in rammed earth. A current pathology observed for this type of construction is related to the rising damps, for which the water from the ground is absorbed by the wall. This situation leads to a very saturated state. As it has been proven that the compressive strength is altered by the presence of water in the pores, a better understanding on high relative humidity range is necessary to be able to predict the mechanical behavior of buildings and thus ensure a better risk assessment. The present study describes experimental results of the water uptake experiments and moisture storage at high relative humidities.
Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls
NASA Astrophysics Data System (ADS)
Keshava, Mangala; Raghunath, Seshagiri Rao
2017-12-01
In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.
Moisture Management for High R-Value Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Schumacher, C.; Lukachko, A.
2013-11-01
This report explains the moisture-related concerns for high R-value wall assemblies and discusses past Building America research work that informs this study. In this project, hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones. The modeling program assessed the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage; the report presents results of the study.
2001-04-01
construction, numerous non load- bearing walls, and large windows. Commercial offices and high rise buildings are generally framed with steel girders...Mass buildings are built so exterior walls bear the weight of the structure. The walls of mass structures are usually thick and constructed of...buildings are similar in size to Type 5 office buildings, but with less glass and with load- bearing reinforced concrete walls. They offer greater protection
Friction Angles of Open-Graded Aggregates from Large-Scale Direct Shear Testing : TechBrief
DOT National Transportation Integrated Search
2013-07-08
State and local transportation agencies frequently use opengraded aggregates for wall, roadway, and bridge construction. The primary advantages of using this type of material in wall and abutment applications are ease of constructability, lighter in-...
29 CFR 776.23 - Employment in the construction industry.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Sondeck, 132 F. (2d) 77 (C.A. 5), certiorari denied 318 U.S. 772; Kirschbaum v. Walling, ante; Walling v. McCrady Construction Co., 156 F. (2d) 932. certiorari denied 329 U.S. 785; Mitchell v. Brown Engineering Co., 224 F. (2d) 359 (C.A. 8), certiorari denied 350 U.S. 875; Chambers Construction Co. and L. H...
29 CFR 776.23 - Employment in the construction industry.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Sondeck, 132 F. (2d) 77 (C.A. 5), certiorari denied 318 U.S. 772; Kirschbaum v. Walling, ante; Walling v. McCrady Construction Co., 156 F. (2d) 932. certiorari denied 329 U.S. 785; Mitchell v. Brown Engineering Co., 224 F. (2d) 359 (C.A. 8), certiorari denied 350 U.S. 875; Chambers Construction Co. and L. H...
29 CFR 776.23 - Employment in the construction industry.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Sondeck, 132 F. (2d) 77 (C.A. 5), certiorari denied 318 U.S. 772; Kirschbaum v. Walling, ante; Walling v. McCrady Construction Co., 156 F. (2d) 932. certiorari denied 329 U.S. 785; Mitchell v. Brown Engineering Co., 224 F. (2d) 359 (C.A. 8), certiorari denied 350 U.S. 875; Chambers Construction Co. and L. H...
29 CFR 776.23 - Employment in the construction industry.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Sondeck, 132 F. (2d) 77 (C.A. 5), certiorari denied 318 U.S. 772; Kirschbaum v. Walling, ante; Walling v. McCrady Construction Co., 156 F. (2d) 932. certiorari denied 329 U.S. 785; Mitchell v. Brown Engineering Co., 224 F. (2d) 359 (C.A. 8), certiorari denied 350 U.S. 875; Chambers Construction Co. and L. H...
Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1992-01-01
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.
Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods
NASA Astrophysics Data System (ADS)
Aborn, L.; Jacob, R. W.; Mucelli, A.
2016-12-01
Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most effective method for detecting defects within a soil-bentonite cutoff wall.
Evaluation of corrosion of metallic reinforcements and connections in MSE retaining walls.
DOT National Transportation Integrated Search
2008-05-01
Mechanically Stabilized Earth (MSE) retaining walls have become the dominant retained wall system on ODOT projects. The permanent MSE walls constructed on ODOT projects, in recent years, use metallic reinforcements and facing connections buried direc...
Neudorf, Christina M.; Smith, Nicole; Lepofsky, Dana; Toniello, Ginevra; Lian, Olav B.
2017-01-01
Rock-walled archaeological features are notoriously hard to date, largely because of the absence of suitable organic material for radiocarbon dating. This study demonstrates the efficacy of dating clam garden wall construction using optical dating, and uses optical ages to determine how sedimentation rates in the intertidal zone are affected by clam garden construction. Clam gardens are rock-walled, intertidal terraces that were constructed and maintained by coastal First Nation peoples to increase bivalve habitat and productivity. These features are evidence of ancient shellfish mariculture on the Pacific Northwest and, based on radiocarbon dating, date to at least the late Holocene. Optical dating exploits the luminescence signals of quartz or feldspar minerals to determine the last time the minerals were exposed to sunlight (i.e., their burial age), and thus does not require the presence of organic material. Optical ages were obtained from three clam garden sites on northern Quadra Island, British Columbia, and their reliability was assessed by comparing them to radiocarbon ages derived from shells underneath the clam garden walls, as well as below the terrace sediments. Our optical and radiocarbon ages suggest that construction of these clam garden walls commenced between ~1000 and ~1700 years ago, and our optical ages suggest that construction of the walls was likely incremental and increased sedimentation rates in the intertidal zone by up to fourfold. Results of this study show that when site characteristics are not amenable to radiocarbon dating, optical dating may be the only viable geochronometer. Furthermore, dating rock-walled marine management features and their geomorphic impact can lead to significant advances in our understanding of the intimate relationships that Indigenous peoples worldwide developed with their seascapes. PMID:28182645
Das, Shagnika; Tseng, Li-Chun; Wang, Lan; Hwang, Jiang-Shiou
2017-01-01
The mud shrimp Austinogebia edulis, being abundant in the intertidal zone of western Taiwan, constructs deep burrows (>1 m). This study highlights the potential of mud shrimps to modify sediment characteristics of the tidal flat by its burrowing behavior. We studied the structure of the burrow wall, compared the difference in the sediment composition of the burrow and the background sediment, and compared the organic content inside the burrow wall. This study was carried out from September 2015 to November 2016 in three areas of the western coast of Taiwan, namely Shengang, Hanbow, and Wangong. The present study found significant differences between burrow wall and the burrow lumen. The diameter of the burrow wall was double as wide as the inner burrow lumen at the opening and gradually increased to 10 times of the burrow lumen at 30 cm depth. The burrow wall of A. edulis showed low permeability and increased the sheer strength. Statistically, a significant difference was noticed in the comparison between the sediment composition of the burrow wall and the background (p < 0.05, Student's t-test). An accumulation of 3.63 for fine sand (t = -5.22, p < 0.001, fine sand) and 9 for clay (t = -25.01, p < 0.001, clay) was found in the upper burrow wall of A. edulis. This indicated that they somehow chose finer particles to build burrows. This will gradually change the sediment distribution-vertically and horizontally. The burrow wall consisted of a 24 times higher organic matter content than one individual of mud shrimp. The burrow may provide organic material as a potential food source. The mud shrimp thus transforms the sediment characteristics as an ecological engineer, which is expected to have a significant ecological impact on the ecosystem.
Failure Behavior of Elbows with Local Wall Thinning
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak
Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.
Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio
2016-06-13
During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.
Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio
2016-01-01
During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy. PMID:28773586
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
DOT National Transportation Integrated Search
2009-03-01
The alternate post system offers benefits such as ease of construction, reduced construction time, and : lower wall costs. While this system seems feasible, there are concerns regarding its performance, in : particular the amount of bending in the po...
HEADSTONES OF BERNARD AND MICHAEL JODD, FATHERANDSON CIVILIANS RESPONSIBLE FOR ...
HEADSTONES OF BERNARD AND MICHAEL JODD, FATHER-AND-SON CIVILIANS RESPONSIBLE FOR CONSTRUCTION OF BRICK PERIMETER WALL WHO DIED OF YELLOW FEVER DURING WALL CONSTRUCTION. VIEW TO WEST. - Baton Rouge National Cemetery, 220 North 19th Street, Baton Rouge, East Baton Rouge Parish, LA
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CP640) LOOKING NORTHWEST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CP-640) LOOKING NORTHWEST SHOWING FORMING AND PLACEMENT OF REINFORCING STEEL FOR SOUTH WALLS OF CELLS 1, 3, 4 AND 5 AND WEST WALL FOR CELLS 1 AND 2; CONSTRUCTION 13 PERCENT COMPLETE. INL PHOTO NUMBER NRTS 59-6436. J. Anderson, Photographer, 12/18/1959 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Firoozi, Ali Akbar; Taha, Mohd Raihan; Mir Moammad Hosseini, S M; Firoozi, Ali Asghar
2014-01-01
Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of "Finn" constitutive model in the analysis models. The "Finn" constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation.
Taha, Mohd Raihan; Mir Moammad Hosseini, S. M.
2014-01-01
Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of “Finn” constitutive model in the analysis models. The “Finn” constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation. PMID:25126595
DOT National Transportation Integrated Search
2015-04-01
Road construction projects often require mechanically stabilized earth (MSE), earthwork : construction in which soil is retained by walls and reinforced with wire mesh, metal strips, : and structural geosynthetics (geotextile or geogrid). The fill so...
Interaction between drilled shaft and mechanically stabilized earth (MSE) wall : project summary.
DOT National Transportation Integrated Search
2015-08-31
Drilled shafts are being constructed within the reinforced zone of mechanically stabilized earth (MSE) walls (Figure 1). The drilled shafts may be subjected to horizontal loads and push against the front of the wall. Distress of MSE wall panels has b...
DOT National Transportation Integrated Search
2015-06-01
Ramps leading, for example, to overpasses or bridges are usually constructed using : mechanically stabilized earth (MSE) walls, earthworks retained by concrete walls. Because : MSE walls are reinforced with steel embedded in the fill, their fill is c...
Morning view, brick post detail; view also shows dimensional wallconstruction ...
Morning view, brick post detail; view also shows dimensional wall-construction detail. North wall, with the camera facing northwest. - Beaufort National Cemetery, Wall, 1601 Boundary Street, Beaufort, Beaufort County, SC
Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations.
Gumbart, James C; Beeby, Morgan; Jensen, Grant J; Roux, Benoît
2014-02-01
Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
Modeling of near-wall turbulence
NASA Technical Reports Server (NTRS)
Shih, T. H.; Mansour, N. N.
1990-01-01
An improved k-epsilon model and a second order closure model is presented for low Reynolds number turbulence near a wall. For the k-epsilon model, a modified form of the eddy viscosity having correct asymptotic near wall behavior is suggested, and a model for the pressure diffusion term in the turbulent kinetic energy equation is proposed. For the second order closure model, the existing models are modified for the Reynolds stress equations to have proper near wall behavior. A dissipation rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The calculations are compared with direct numerical simulations. It is shown that the present models, both the k-epsilon model and the second order closure model, perform well in predicting the behavior of the near wall turbulence. Significant improvements over previous models are obtained.
Wall characterization for through-the-wall radar applications
NASA Astrophysics Data System (ADS)
Greneker, Gene; Rausch, E. O.
2008-04-01
There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.
A review of near-wall Reynolds-stress
NASA Technical Reports Server (NTRS)
So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.
1991-01-01
The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data.
Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian
2016-01-01
Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing. PMID:26999174
Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian
2016-03-16
Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing.
The Fluid Mechanics of a Wavy-Wall Bioreactor
NASA Astrophysics Data System (ADS)
Sucosky, Philippe; Bilgen, Bahar; Aleem, Alexander; Neitzel, Paul; Barabino, Gilda
2004-11-01
Bioreactors are devices used for the production of mammalian tissue in vitro. Although mixing has been shown to stimulate the growth of cartilage constructs, high shear-stress levels can damage the cells. In order to enhance mixing while minimizing shear, a wavy-wall bioreactor (WWB) featuring a sinusoidal internal profile has been designed. The turbulent hydrodynamic environment produced in this device is investigated experimentally using particle-image velocimetry. A model bioreactor made of acrylic and filled with an index-matching solution of zinc iodide is used to compensate for the refraction of light at the walls. The flow observed in different planes is shown to be periodic, spatially dependent, and dominated by mean-shear rather than Reynolds stresses in the vicinity of constructs. Finally, a comparison between the mean-shear stresses obtained in the WWB and in a standard spinner flask reveals similar stress levels near the construct walls.
Evaluation of alternatives to sound barrier walls.
DOT National Transportation Integrated Search
2013-06-01
The existing INDOTs noise wall specification was developed primarily on the basis of knowledge of the conventional precast concrete : panel systems. Currently, the constructed cost of conventional noise walls is approximately $2 million per linear...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ALONG EAST WALL, WITH REACTOR PADS BEHIND FRAMED AND SCREENED CAGE, AND PORCELAIN-LINED CABLE DUCTS VISIBLE IN WALL NEAR FLOOR AT REAR - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
Reinforcement mechanism of multi-anchor wall with double wall facing
NASA Astrophysics Data System (ADS)
Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo
2017-10-01
The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
27. A VIEW TOWARD THE FISHING PIER AT THE EAST ...
27. A VIEW TOWARD THE FISHING PIER AT THE EAST END OF THE NORTH TRAINING WALL, SHOWING SIDE WALL CONSTRUCTION. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
Curious chiral cases of caddisfly larvae: handed behavior, asymmetric forms, evolutionary history.
Hinchliffe, Robert; Palmer, A R
2010-10-01
Studies of right-left asymmetries have yielded valuable insights into the mechanisms of both development and evolution. Larvae from several groups of caddisflies (Trichoptera) build portable asymmetrical cases within which they live. In nearly all species that build spiral-walled tubular cases, the direction of wall coiling is random (equal numbers of dextral and sinistral cases within species) whereas in all species that build helicospiral, snail-like cases the direction of coiling is exclusively dextral. Asymmetrical tubes result from handed behavior, and ∼20% of larvae removed from a spiral-walled, tubular case build a replacement case of opposite chirality. So handed behavior (and hence direction of tube-wall spiraling) is likely learned rather than determined genetically. Asymmetrical larval cases appear to have evolved at least seven times in the Trichoptera, five times as spiral-walled tubes and twice as snail-like helicospiral cases. Helicospiral cases may reduce vulnerability to predation by mimicking snail shells, whereas spiral arrangements of vegetation fragments in tube walls may be more robust mechanically than other arrangements, but experimental evidence is lacking. Within one family (Phryganeidae), one or perhaps two species exhibit an excess of sinistral-walled cases, suggesting that genes that bias handed behavior in a particular direction evolved after handed behaviors already existed (genetic assimilation). © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
The Flow in a Model Rotating-Wall Bioreactor.
NASA Astrophysics Data System (ADS)
Smith, Marc K.; Neitzel, G. Paul
1997-11-01
Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).
Determination of the Airborne Sound Insulation of a Straw Bale Partition Wall
NASA Astrophysics Data System (ADS)
Teslík, Jiří; Fabian, Radek; Hrubá, Barbora
2017-06-01
This paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.
Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawab, Jamshaid; Lim, Ing; Mo, Yi-Lung
Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments andmore » mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear containment structures to resist lateral forces induced by severe earthquakes and heavy winds. SC modules have good potential for SMR because of their cost-effectiveness and reduced construction time. However, the minimum shear reinforcement (i.e. cross tie) ratio needs to be determined for the steel plate-UHPC (S-UHPC) beams to exhibit a ductile failure mode. In this project, S-UHPC beams were designed and constructed. The beams were tested to evaluate structural capacity and identify the minimum cross ties ratios. In addition, as the bond between UHPC and steel plate is essential for ensuring structural integrity under shear and flexure, it was measured and examined in this project through digital image correlation system and smart piezoelectric aggregate sensors. Large-scale testing and finite element simulation were also performed on S-UHPC wall panels. New bond slip-based constitutive models of steel plate were developed for S-UHPC, which were used in finite element analysis program to predict S-UHPC behavior under shear. The results were well validated through experimental data. The long-term durability of UHPC were established in this project. UHPC specimens were tested under free shrinkage, restrained shrinkage, elevated temperature, water permeation, chloride diffusion, corrosion, and alkali silica reaction. UHPC has demonstrated significantly improved durability compared with control concrete specimens. This research led to a new generation of steel plate-UHPC modules for SMR that can provide large benefits to the electric power industry. Taking advantage of the high strength and durability of UHPC, their modularity and ease of assembly can address the high cost barriers of typical nuclear power plants.« less
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Mikulas, Martin M., Jr.
2009-01-01
Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.
Corrosion evaluation of mechanically stabilized earth walls.
DOT National Transportation Integrated Search
2005-09-01
Numerous reinforced walls and slopes have been built over the past four decades in Kentucky, the United States, as well as worldwide. Tensile elements used in constructing low-cost reinforcing walls and slopes consist of metal polymer strips or grids...
Study on construction technology of metro tunnel under a glass curtain wall
NASA Astrophysics Data System (ADS)
Zhang, Jian; Yu, Deqiang
2018-03-01
To ensure the safety of the glass curtain wall building above loess tunnel and get an optimal scheme, an elastic-plastic FEM model is established to simulate three reinforcement schemes based on a tunnel section in Xi’an Metro Line 3. The results show that the settlement value of the optimal scheme is reduced by 69.89% compared with the drainage measures, and the uneven settlement value is reduced by 57.5%. The construction points, technical processes and technical indexes of the optimal scheme are introduced. According to the actual project, the cumulative settlement of the building under construction is 16mm, which meets the control standards. According to the actual project, the cumulative settlement of the glass curtain wall building is 16mm, which meets the control standards. The reinforcement scheme can provide some reference for the design and construction of the metro in loess area.
An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation
NASA Technical Reports Server (NTRS)
Shih, T. H.
1990-01-01
An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained.
Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, Joseph; Baker, Peter
This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.
Damage during the 6-24 February 2017 Ayvacık (Çanakkale) earthquake swarm
NASA Astrophysics Data System (ADS)
Livaoğlu, Ramazan; Ömer Timurağaoğlu, Mehmet; Serhatoğlu, Cavit; Sami Döven, Mahmud
2018-03-01
On 6 February 2017 an earthquake swarm began at the western end of Turkey. This was the first recorded swarm in the Çanakkale region since continuous seismic monitoring began in 1970. The number of earthquakes located increased during the following 10 days. This paper describes the output of a survey carried out in the earthquake-prone towns in the area of Ayvacık, Çanakkale, Turkey, in February 2017 after the earthquakes. Observations of traditional buildings were made on site at the rural area of Ayvacık. A description of the main structural features and their effects on the most frequently viewed damage modes were made according to in-plane, out-of-plane behavior of the wall regarding construction practice, connection type, etc. It was found that there were no convenient connections like cavity ties or sufficient mortar strength resulting in decreased and/or lack of lateral load bearing capacity of the wall. Furthermore, distribution maps of damaged/undamaged buildings according to villages, damage ratios, structures and damage levels are generated. Distribution maps showed that damage ratio of structures is higher in villages close to epicenter and decrease away from epicenter except Gülpınar, where past experiences and development level affect the construction quality.
Takanari, Keisuke; Hashizume, Ryotaro; Hong, Yi; Amoroso, Nicholas J; Yoshizumi, Tomo; Gharaibeh, Burhan; Yoshida, Osamu; Nonaka, Kazuhiro; Sato, Hideyoshi; Huard, Johnny; Wagner, William R
2017-01-01
A variety of techniques have been applied to generate tissue engineered constructs, where cells are combined with degradable scaffolds followed by a period of in vitro culture or direct implantation. In the current study, a cellularized scaffold was generated by concurrent deposition of electrospun biodegradable elastomer (poly(ester urethane)urea, PEUU) and electrosprayed culture medium + skeletal muscle-derived stem cells (MDSCs) or electrosprayed culture medium alone as a control. MDSCs were obtained from green fluorescent protein (GFP) transgenic rats. The created scaffolds were implanted into allogenic strain-matched rats to replace a full thickness abdominal wall defect. Both control and MDSC-integrated scaffolds showed extensive cellular infiltration at 4 and 8 wk. The number of blood vessels was higher, the area of residual scaffold was lower, number of multinucleated giant cells was lower and area of connective tissue was lower in MDSC-integrated scaffolds (p < 0.05). GFP + cells co-stained positive for VEGF. Bi-axial mechanical properties of the MDSC-microintegrated constructs better approximated the anisotropic behavior of the native abdominal wall. GFP + cells were observed throughout the scaffold at ∼5% of the cell population at 4 and 8 wk. RNA expression at 4 wk showed higher expression of early myogenic marker Pax7, and b-FGF in the MDSC group. Also, higher expression of myogenin and VEGF were seen in the MDSC group at both 4 and 8 wk time points. The paracrine effect of donor cells on host cells likely contributed to the differences found in vivo between the groups. This approach for the rapid creation of highly-cellularized constructs with soft tissue like mechanics offers an attractive methodology to impart cell-derived bioactivity into scaffolds providing mechanical support during the healing process and might find application in a variety of settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2015-12-01
Mechanically stabilized earth (MSE) walls have been commonly used in highway construction. AASHTO (2007) has : detailed design procedures for such a wall system. In the current AASHTO design, only primary reinforcements are used in : relatively large...
Compound Walls For Vacuum Chambers
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1988-01-01
Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.
DOT National Transportation Integrated Search
2015-12-01
Mechanically stabilized earth (MSE) walls have been commonly used in highway : construction. AASHTO (2007) has detailed design procedures for such a wall system. : In the current AASHTO design, only primary reinforcements are used in relatively : lar...
Evaluation of the Lateral Performance of Roof Truss-to-Wall Connections in Light-Frame Wood Systems
Andrew DeRenzis; Vladimir Kochkin; Xiping Wang
2012-01-01
This testing program was designed to benchmark the performance of traditional roof systems and incrementally improved roof-to-wall systems with the goal of developing connection solutions that are optimized for performance and constructability. Nine full-size roof systems were constructed and tested with various levels and types of heel detailing to measure the lateral...
Full-scale shear wall tests for force transfer around openings
Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker
2010-01-01
Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...
50. Photograph of an original construction drawing, dated August 1927, ...
50. Photograph of an original construction drawing, dated August 1927, in the possession of Facilities Planning Office, Iowa State University, Ames, Iowa. EXTERIOR DETAILS DETAIL ELEVATION, PLAN, AND WALL CROSS SECTION AT FRONT ENTRANCE PORTICO; EXTERIOR WALL AND OPENING DETAILS; AND OTHER EXTERIOR DETAILS; SHEET NO. 8 OF 10 - Dairy Industry Building, Iowa State University campus, Ames, Story County, IA
Columbia County Habitat for Humanity Passive Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi
2016-03-18
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-04-01
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
NASA Astrophysics Data System (ADS)
Engel, M.; Klasen, N.; Brückner, H.; Eichmann, R.; Hausleiter, A.; Al-Najem, M. H.; Al-Said, S. F.; Schneider, P. I.
2009-04-01
Since 2004 tremendous progress has been achieved in deciphering the cultural genesis of the Tayma oasis (NW Saudi Arabia), due to the joint investigations of the German Archaeological Institute Berlin (DAI), the General Commission for Tourism and Antiquities, Kingdom of Saudi Arabia, and the Department of Archaeology and Epigraphy, King Saud University Riyadh. Nevertheless, archaeological research is still suffering from a lacking locally-based absolute chronology of buildings. The pattern of ancient constructions at Tayma is dominated by a prominent city wall system surrounding the ancient town center (Qraya) and stretching 15 km around the oasis. Its internal structure indicates several building periods, i.e. phases of wall modification or extension of the entire system. So far, according to silex and carnelian fragments included in the mud bricks and a previous 14C age of charcoal remains from the central excavation district (wall section at Area A), an initial construction date of the wall between the late 3rd and the early 2nd millennium BC seemed likely. At the excavated western outer city wall a new systematic dating approach - combining the optically stimulated luminescence (OSL) and 14C methods - has been applied to generate a reliable age for the oldest branch of the wall system which nowadays is covered by aeolian sand. The dune deposit is genetically related to the existence of the wall and, therefore, dating its accumulation provides termini ante quem for the construction of the wall. Five OSL dates were generated from the dune deposit providing ages between 4,900 and 3,500 yrs. Two radiocarbon ages support the dating sequence and also contribute to its consistency. By combining the results with geomorphologic evidence we draw the following conclusions: Initial settlement activities at Qraya were accompanied by a regulation of wadi dynamics and the construction of the outer city wall, indicated by the abrupt boundary between the pre-settlement alluvial silt and the overlying wall-related dune deposit. According to the OSL and 14C dating results from this deposit, the wall section at C1 (western part of the ancient settlement, north of Area A) dates back to the middle of the 3rd millennium BC or even earlier. Furthermore, the burying of the still existing remains of the city wall at C1 by sand was already completed at the beginning of the 2nd millennium BC.
Decker, Karie L.; Niklison, Alina M.; Martin, Thomas E.
2007-01-01
We provide the first description of the nest, eggs, and breeding behavior of the Mérida Tapaculo (Scytalopus meridanus). Data are from one pair in the moist cloud forest of Yacambu National Park, Venezuela during April–May 2004. Two nests, constructed by the same pair, were globular in structure and consisted of mossy material placed in a rock crevice of a muddy rock wall. The eggs were cream colored with an average mass of 4.19 g. Clutch sizes were one in the first nest and two in the second. The species showed bi-parental care in nest building and incubation. Nest attentiveness (percent time spent on the nest incubating) averaged 83.4 ± 14% (SD). Average on and off bouts were 33.24 and 6.34 min, respectively.
NASA Astrophysics Data System (ADS)
Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.
2018-02-01
As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.
NASA Astrophysics Data System (ADS)
Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María
2015-04-01
This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Martínez-Garrido and M. Gomez-Heras are funded by Moncloa Campus of International Excellence (UPM-UCM, CSIC) PICATA fellowships.
Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi
2015-02-01
In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.
MHD Electrode and wall constructions
Way, Stewart; Lempert, Joseph
1984-01-01
Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.J.
1998-12-31
Stick system curtain wall leak problems are frequently caused by water entry at the splice joints of the curtain wall frame and failure of the internal metal joinery seals. Remedial solutions involving occupied buildings inevitably face the multiple constraints of existing construction and business operations not present during the original curtain wall construction. In most cases, even partial disassembly of the curtain wall for internal seal repairs is not feasible. Remedial solutions which must be executed from the exterior of the curtain wall often involve wet-applied or preformed sealant tape bridge joints. However, some of the more complex joints cannotmore » be repaired effectively or economically with the conventional bridge joint. Fortunately, custom fabricated three-dimensional preformed sealant boots are becoming available to address these situations. This paper discusses the design considerations and the selective use of three-dimensional preformed boots in sealing complex joint geometry that would not be effective with the conventional two-dimensional bridge joint.« less
A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall
Huang, Shiping; Hu, Mengyu; Cui, Nannan; Wang, Weifeng
2018-01-01
The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry. PMID:29673176
A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.
Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng
2018-04-17
The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide
2008-07-08
For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed andmore » named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.« less
Helicoidal pattern in secondary cell walls and possible role of xylans in their construction.
Reis, Danièle; Vian, Brigitte
2004-01-01
The helicoidal organization of secondary cell walls is overviewed from several examples. Both the plywood texture and the occurrence of characteristic defects strongly suggest that the wall ordering is relevant of a cholesteric liquid-crystal assembly that is rapidly and strongly consolidated by lignification. A preferential localization of glucuronoxylans, major matrix components, and in vitro re-association experiments emphasize their preeminent role: (1) during the construction of the composite as directing the cellulose microfibrils in a helicoidal array; (2) during the lignification of the composite as a host structure for lignin precursors.
Das, Shagnika; Tseng, Li-Chun; Wang, Lan
2017-01-01
The mud shrimp Austinogebia edulis, being abundant in the intertidal zone of western Taiwan, constructs deep burrows (>1 m). This study highlights the potential of mud shrimps to modify sediment characteristics of the tidal flat by its burrowing behavior. We studied the structure of the burrow wall, compared the difference in the sediment composition of the burrow and the background sediment, and compared the organic content inside the burrow wall. This study was carried out from September 2015 to November 2016 in three areas of the western coast of Taiwan, namely Shengang, Hanbow, and Wangong. The present study found significant differences between burrow wall and the burrow lumen. The diameter of the burrow wall was double as wide as the inner burrow lumen at the opening and gradually increased to 10 times of the burrow lumen at 30 cm depth. The burrow wall of A. edulis showed low permeability and increased the sheer strength. Statistically, a significant difference was noticed in the comparison between the sediment composition of the burrow wall and the background (p < 0.05, Student’s t-test). An accumulation of 3.63 for fine sand (t = -5.22, p < 0.001, fine sand) and 9 for clay (t = -25.01, p < 0.001, clay) was found in the upper burrow wall of A. edulis. This indicated that they somehow chose finer particles to build burrows. This will gradually change the sediment distribution—vertically and horizontally. The burrow wall consisted of a 24 times higher organic matter content than one individual of mud shrimp. The burrow may provide organic material as a potential food source. The mud shrimp thus transforms the sediment characteristics as an ecological engineer, which is expected to have a significant ecological impact on the ecosystem. PMID:29236717
Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage
NASA Astrophysics Data System (ADS)
Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki
The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.
Method and apparatus for constructing an underground barrier wall structure
Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.
2002-01-01
A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.
The Berlin Wall: A Simulation for the Social Studies Classroom
ERIC Educational Resources Information Center
Russell, William B., III
2010-01-01
November 9, 2009, marked the twentieth anniversary of the opening of the Berlin Wall. The Wall, a symbol of the Cold War, separated the German people for 28 years (1961-1989), keeping those on the East side isolated. Although the construction and dismantling of the Berlin Wall is a significant part of history, the topic is little covered in the…
A&M. TAN607. Construction view, facing southwest. At upper left of ...
A&M. TAN-607. Construction view, facing southwest. At upper left of view, north-wall equipment and operating galleries take shape on hot shop. Pumice-block side of storage pool section in center left of view. Water filter building (TAN-608) next to north wall of pool. Hot liquid waste building (TAN-616) at right of view. Note concrete construction of TAN-608 and 616. Date: January 18, 1954. INEEL negative no. 9604 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
PBF Cooling Tower under construction. Cold water basin is five ...
PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Behavior of sandwich panels in a fire
NASA Astrophysics Data System (ADS)
Chelekova, Eugenia
2018-03-01
For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.
Wall Finishes; Carpentry: 901895.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, D. M., E-mail: d.burn@imperial.ac.uk; Atkinson, D.
2014-10-28
Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetizationmore » change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.« less
Second-order near-wall turbulence closures - A review
NASA Technical Reports Server (NTRS)
So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.
1991-01-01
Advances in second-order near-wall turbulence closures are summarized. All closures under consideration are based on high-Reynolds-number models. Most near-wall closures proposed to date attempt to modify the high-Reynolds-number models for the dissipation function and the pressure redistribution term so that the resultant models are applicable all the way to the wall. The asymptotic behavior of the near-wall closures is examined and compared with the proper near-wall behavior of the exact Reynolds-stress equations. It is found that three second-order near-wall closures give the best correlations with simulated turbulence statistics. However, their predictions of near-wall Reynolds-stress budgets are considered to be incorrect. A proposed modification to the dissipitation-rate equation remedies part of those predictions. It is concluded that further improvements are required if a complete replication of all the turbulence properties and Reynolds-stress budgets by a statistical model of turbulence is desirable.
The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures
NASA Astrophysics Data System (ADS)
Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian
2015-05-01
To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.
Near-wall modelling of compressible turbulent flows
NASA Technical Reports Server (NTRS)
So, Ronald M. C.
1990-01-01
Work was carried out to extend the near-wall models formulated for the incompressible Reynolds stress equations to compressible flows. The idea of splitting the compressible dissipation function into a solenoidal part that is not sensitive to changes of compressibility indicators and a compressible part that is directly affected by these changes is adopted. This means that all models involving the dissipation rate could be expressed in terms of the solenoidal dissipation rate and an equation governing its transport could be formulated to close the set of compressible Reynolds stress equations. The near-wall modelling of the dissipation rate equation is investigated and its behavior near a wall is studied in detail using k-epsilon closure. It is found that all existing modelled equations give the wrong behavior for the dissipation rate near a wall. Improvements are suggested and the resultant behavior is found to be in good agreement with near-wall data. Furthermore, the present modified k-epsilon closure is used too calculate a flat plate boundary layer and the results are compared with four existing k-epsilon closures. These comparisons show that all closures tested give essentially the same flow properties, except in a region very close to the wall. In this region, the present k-epsilon closure calculations are in better agreement with measurements and direct simulation data; in particular, the behavior of the dissipation rate.
NASA Astrophysics Data System (ADS)
Ohtsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji
2018-07-01
A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in inlet sodium bulk flow was set at 0.07 wt ppm in the calculation.
NASA Astrophysics Data System (ADS)
Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir
2018-03-01
A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.
NASA Astrophysics Data System (ADS)
Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng
2017-07-01
A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.
Experimental study on lateral strength of wall-slab joint subjected to lateral cyclic load
NASA Astrophysics Data System (ADS)
Masrom, Mohd Asha'ari; Mohamad, Mohd Elfie; Hamid, Nor Hayati Abdul; Yusuff, Amer
2017-10-01
Tunnel form building has been utilised in building construction since 1960 in Malaysia. This method of construction has been applied extensively in the construction of high rise residential house (multistory building) such as condominium and apartment. Most of the tunnel form buildings have been designed according to British standard (BS) whereby there is no provision for seismic loading. The high-rise tunnel form buildings are vulnerable to seismic loading. The connections between slab and shear walls in the tunnel-form building constitute an essential link in the lateral load resisting mechanism. Malaysia is undergoing a shifting process from BS code to Eurocode (EC) for building construction since the country has realised the safety threats of earthquake. Hence, this study is intended to compare the performance of the interior wall slab joint for a tunnel form structure designed based on Euro and British codes. The experiment included a full scale test of the wall slab joint sub-assemblages under reversible lateral cyclic loading. Two sub-assemblage specimens of the wall slab joint were designed and constructed based on both codes. Each specimen was tested using lateral displacement control (drift control). The specimen designed by using Eurocode was found could survive up to 3.0% drift while BS specimen could last to 1.5% drift. The analysis results indicated that the BS specimen was governed by brittle failure modes with Ductility Class Low (DCL) while the EC specimen behaved in a ductile manner with Ductility Class Medium (DCM). The low ductility recorded in BS specimen was resulted from insufficient reinforcement provided in the BS code specimen. Consequently, the BS specimen could not absorb energy efficiently (low energy dissipation) and further sustain under inelastic deformation.
Electrical resisitivity of mechancially stablized earth wall backfill
NASA Astrophysics Data System (ADS)
Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston
2017-06-01
Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized as construction quality assurance for thoroughness of compaction in MSE construction; however more data are needed at this time.
ERIC Educational Resources Information Center
Jones, Don
Like the narrator of Robert Frost's poem "Mending Wall," instructors need to ask what is being walled in and walled out of their composition programs when categories such as process vs. product, expressive, epistemic, current traditionalism, and social constructionism are constructed. When divisive categories prevent theorists from…
15. Photocopy of color photograph (Photographer unknown, 1974) SACRISTY ATTIC, ...
15. Photocopy of color photograph (Photographer unknown, 1974) SACRISTY ATTIC, LOOKING SOUTHWEST. NOTE RAMMED EARTH WALL (NORTH WALL OF CHANCEL) AT LEFT; HOLES WERE LEFT BY WOODEN BRACES USED TO HOLD WALL FORMS DURING CONSTRUCTION - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC
18. Detail view, greenhouse, north wall (Note the type of ...
18. Detail view, greenhouse, north wall (Note the type of stone used in the wall construction, the degradation of the interior stucco, and one of the pockets for a former floor joist). - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA
Tribe, Geoff; Tautz, Jürgen; Sternberg, Karin; Cullinan, Jenny
2017-04-01
The Cape bee is endemic to the winter rainfall region of South Africa where fires are an integral part of the ecology of the fynbos (heathland) vegetation. Of the 37 wild nests in pristine Peninsula Sandstone Fynbos in the Cape Point section of Table Mountain National Park that have been analyzed so far, only 22 could be accessed sufficiently to determine the existence of a propolis wall of which 68% had propolis walls which entirely enclosed their openings. The analysis of the 37 wild nests revealed that 78% occurred under boulders or in clefts within rocks, 11% in the ground, 8% in tree cavities, and 3% within shrubs. The analysis of 17 of these nests following a fire within the park revealed that the propolis walls materially protected the nests and retarded the fire with all the colonies surviving. The bees responded to the smoke by imbibing honey and retreating to the furthest recess of their nest cavity. The bees were required to utilize this honey for about 3 weeks after which fire-loving plants appeared and began flowering. Considerable resources were utilized in the construction of the propolis walls, which ranged in thickness from 1.5 to 40 mm (mean 5 mm). Its physical environment determines the nesting behavior of the Cape bee. The prolific use of propolis serves to insulate the nest from extremes of temperature and humidity, restricts entry, camouflages the nest, and acts as an effective fire barrier protecting nests established mostly under rocks in vegetation subjected to periodic fires.
NASA Astrophysics Data System (ADS)
Tribe, Geoff; Tautz, Jürgen; Sternberg, Karin; Cullinan, Jenny
2017-04-01
The Cape bee is endemic to the winter rainfall region of South Africa where fires are an integral part of the ecology of the fynbos (heathland) vegetation. Of the 37 wild nests in pristine Peninsula Sandstone Fynbos in the Cape Point section of Table Mountain National Park that have been analyzed so far, only 22 could be accessed sufficiently to determine the existence of a propolis wall of which 68% had propolis walls which entirely enclosed their openings. The analysis of the 37 wild nests revealed that 78% occurred under boulders or in clefts within rocks, 11% in the ground, 8% in tree cavities, and 3% within shrubs. The analysis of 17 of these nests following a fire within the park revealed that the propolis walls materially protected the nests and retarded the fire with all the colonies surviving. The bees responded to the smoke by imbibing honey and retreating to the furthest recess of their nest cavity. The bees were required to utilize this honey for about 3 weeks after which fire-loving plants appeared and began flowering. Considerable resources were utilized in the construction of the propolis walls, which ranged in thickness from 1.5 to 40 mm (mean 5 mm). Its physical environment determines the nesting behavior of the Cape bee. The prolific use of propolis serves to insulate the nest from extremes of temperature and humidity, restricts entry, camouflages the nest, and acts as an effective fire barrier protecting nests established mostly under rocks in vegetation subjected to periodic fires.
Acoustical and thermal performance of exterior residential walls, doors, and windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine, H.J.; Lacher, M.B.; Flynn, D.R.
1975-11-01
Laboratory tests of sound transmission loss, thermal transmittance, and rate of air leakage were conducted on full scale (9 feet high x 14 feet wide; 2.7 x 4.3 meters) specimens of typical residential exterior wall constructions, either unbroken or penetrated by a door or window. The walls were of wood frame construction with gypsum board drywall interior finish and exterior finishes of wood siding, stucco, or brick veneer. Additional accoustical tests were run on a number of individual doors and windows. A total of 109 acoustical tests and 48 thermal tests are reported. The resultant data are compared with literaturemore » data on similar constructions. Correlations developed among the several quantities measured will assist more rational design where both energy conservation and noise isolation must be considered. (130 references) (auth)« less
Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.
Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias
2018-06-01
Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-01-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-03-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.
NASA Technical Reports Server (NTRS)
Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)
2016-01-01
A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.
NASA Technical Reports Server (NTRS)
Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)
2018-01-01
A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.
30 CFR 18.38 - Leads through common walls.
Code of Federal Regulations, 2014 CFR
2014-07-01
... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...
30 CFR 18.38 - Leads through common walls.
Code of Federal Regulations, 2013 CFR
2013-07-01
... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...
30 CFR 18.38 - Leads through common walls.
Code of Federal Regulations, 2011 CFR
2011-07-01
... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...
30 CFR 18.38 - Leads through common walls.
Code of Federal Regulations, 2012 CFR
2012-07-01
... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...
NASA Astrophysics Data System (ADS)
Golova, T. A.; Magerramova, I. A.; Ivanov, S. A.
2018-05-01
Calculation of multilayered plates and covers does not consider anisotropic properties of a construction. Calculation comes down to uniform isotropic covers and definition of one of intense and deformation conditions of constructions. The existing techniques consider work of multilayered designs by means of various coefficients. The article describes the optimized algorithm of operations when designing multilayered plates and covers with filler of various types on the basis of the conducted researches. It is dealt with a development engineering algorithm of calculation of multi-layer constructions of walls. Software is created which allows one to carry out assessment of intense and deformation conditions of constructions of walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less
Constructing a High Density Cell Culture System
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor)
1996-01-01
An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.
NASA Astrophysics Data System (ADS)
Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup
2018-02-01
Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.
Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup
2018-02-23
Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young's modulus and hardness of the SNPs were calculated. The Young's modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp 2 /sp 3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp 2 /sp 3 ratio.
An experimental study of near wall flow parameters in the blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, Rakesh K.; Raj, Rishi S.
1989-01-01
The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly in the close vicinity of the corner line. The maximum value of the wall shear stress and its location from the corner line, on both the surfaces forming the corner region, were observed to change along the corner. These observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the stretching and attenuation of the horseshoe vortex. The wall shear stress vectors in the blade end-wall corner region were observed to be more skewed on the end-wall surface as compared to that on the blade surface. The differences in the wall shear stress directions obtained with the Preston tube and flow visualization method were within the range in which the Preston tube was found to be insensitive to the yaw angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahidi, R.; Chakroun, W.; Al-Fahed, S.
2005-11-01
Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-frictionmore » coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.« less
Investigation on Wall Panel Sandwiched With Lightweight Concrete
NASA Astrophysics Data System (ADS)
Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.
2017-08-01
The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.
Mental constructs and the cognitive reconstruction of the Berlin wall.
Tijus, C A; Santolini, A
1996-07-01
In this study of how to change people's conceptions of certain facts (i.e., the position of the Berlin Wall), a surprising psychological phenomenon was discovered. In the trial test, instead of designing a wall to enclose West Berlin, most people described and drew a short and straight wall that divided the city from north to south. Two methods were created, based on two general information-processing components involved in problem solving, to study how people might repair their misconceptions by themselves. The do-it-yourself method consisted of providing people with the task of thinking about how to build the wall and then drawing it, instead of just asking them to draw it. The distance-to-goal evaluation method consisted of asking the participants how the wall they had drawn would actually prevent passage from East Germany to West Berlin. The results showed that both methods had important effects in repairing misconceptions, but improvement in performance with the distance-to-goal method was less significant for those participants who were first provided the task of thinking about how to build the wall. These findings are consistent with the hypothesis that awareness of functional properties plays an important role in structuring and restructuring mental constructs.
Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, D.
2011-01-01
Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framingmore » properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.« less
Life Behind the Wall: Palestinian Students Online
ERIC Educational Resources Information Center
Hart, Doug
2007-01-01
In this article, the author discusses an online youth magazine that his Palestinian students developed. In April of 2006, they launched the inaugural edition of their teen e-zine, "Behind the Wall." With the help of his brother-in-law, students, along with a computer programmer, the "Behind the Wall" website was constructed.…
Air pressures in wood frame walls
Anton TenWolde; Charles G. Carll; Vyto Malinauskas
1998-01-01
Wind pressures can play an important role in the wetting of exterior walls (driving rain). In response, the rain screen concept, including compartmentalization and air spaces, has been developed to provide pressure equalization and limit water entry into the wall. However, conventional construction such as wood lap siding has not been evaluated as to its ability to...
Validation and Design of Sheet Retrofits
2010-10-31
enough to allow for rotation of the top of the wall without development of an axial force. Obviously, these walls are not load bearing . This type...structures are commonly constructed using CMU blocks to infill non- load bearing walls (Hammons, 1999). Many of these structures were built in a... axial loads within the sheet. 3 Figure 1. Infill Masonry Wall Retrofit Concept 2.1. Objective The objective of the research documented in
Technology Solutions Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
Moisture problems within the building shell can be caused by a number of factors including excess interior moisture that is transported into the wall through air leakage and vapor drive, bulk water intrusion from leaks and wind-driven rain, capillary action from concrete to wood connections, and through wetted building materials such as siding wetted from rain splash back. With the increasing thickness of walls, moisture issues could increase. Several builders have successfully used “double-wall” systems to more practically achieve higher R-values in thicker framed walls. A double wall typically consists of a load-bearing external frame wall constructed with 2 ×more » 4 framing at 16 in. on center using conventional methods. After the building is enclosed, an additional frame wall is constructed several inches inside the load-bearing wall. Several researchers have used moisture modeling software to conduct extensive analysis of these assemblies; however, little field research has been conducted to validate the results. In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the accu¬racy of moisture modeling and make recommendations to ensure durable and efficient assemblies.« less
A&M. TAN607. Detail of fuel storage pool under construction. Camera ...
A&M. TAN-607. Detail of fuel storage pool under construction. Camera is on berm and facing northwest. Note depth of excavation. Formwork underway for floor and concrete walls of pool; wall between pool and vestibule. At center left of view, foundation for liquid waste treatment plant is poured. Date: August 25, 1953. INEEL negative no. 8541 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Mahan, Shannon; Donlan, Rebecca A.; Kardos, Barbara Maat
2015-01-01
The Snake Nest Wall site and the Crestone Stone Huts are in the northern San Luis Valley, Colorado, and provide a unique opportunity to date high-altitude archeological sites of unknown age and origin using optically stimulated luminescence (OSL). We sampled sediment underlying foundation stones of these structures to establish a chronological framework for each site's construction. OSL dating of the quartz grains directly under the Snake Nest Wall suggest that the stones and, therefore, the structure was most recently emplaced between 1855 and 1890 A.D. Dating of the sediment beneath the Crestone Stone Huts suggests the construction time of these huts is between 1860 and 1890 A.D. Analysis of the equivalent dose (DE) dispersion of the OSL samples at Snake Nest Wall and the Crestone Huts shows that the majority of sediments were fully bleached prior to deposition and the low scatter suggests that short-term or shallow alluvial processes were the dominant transport for sediments. In both cases, the OSL ages show that the construction was during very recent historical times, although it is likely that the Snake Nest Wall was rebuilt in the late 19th century. Further study is warranted at the Snake Nest Wall since it shows signs of greater antiquity and a continued presence of human use. The Crestone Huts are shown to be a product of railroad building during the boomtown days of Lucky and Crestone.
A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls
Chabriac, Pierre-Antoine; Fabbri, Antonin; Morel, Jean-Claude; Laurent, Jean-Paul; Blanc-Gonnet, Joachim
2014-01-01
Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR) principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior. PMID:28788603
NASA Astrophysics Data System (ADS)
Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence
2016-11-01
More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.
Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart
2014-11-19
A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.
Moisture Management for High R-Value Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Schumacher, C.; Lukachko, A.
2013-11-01
The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on threemore » primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.« less
Moisture Management of High-R Walls (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-12-01
The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on threemore » primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.« less
Lattice Boltzmann method simulations of Stokes number effects on particle motion in a channel flow
NASA Astrophysics Data System (ADS)
Zhang, Lenan; Jebakumar, Anand Samuel; Abraham, John
2016-06-01
In a recent experimental study by Lau and Nathan ["Influence of Stokes number on the velocity and concentration distributions in particle-laden jets," J. Fluid Mech. 757, 432 (2014)], it was found that particles in a turbulent pipe flow tend to migrate preferentially toward the wall or the axis depending on their Stokes number (St). Particles with a higher St (>10) are concentrated near the axis while those with lower St (<1) move toward the walls. Jebakumar et al. ["Lattice Boltzmann method simulations of Stokes number effects on particle trajectories in a wall-bounded flow," Comput. Fluids 124, 208 (2016)] have carried out simulations of a particle in a laminar channel flow to investigate this behavior. In their work, they report a similar behavior where particles with low St migrate toward the wall and oscillate about a mean position near the wall while those with high St oscillate about the channel center plane. They have explained this behavior in terms of the Saffman lift, Magnus lift, and wall repulsion forces acting on the particle. The present work extends the previous work done by Jebakumar et al. and aims to study the behavior of particles at intermediate St ranging from 10 to 20. It is in this range where the equilibrium position of the particle changes from near the wall to the axis and the particle starts oscillating about the axis. The Lattice Boltzmann method is employed to carry out this study. It is shown that the change in mean equilibrium position is related to increasing oscillations of the particle with mean position near the wall which results in the particle moving past the center plane to the opposite side. The responsible mechanisms are explained in detail.
Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko
2016-01-01
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Textural break foundation wall construction modules
Phillips, Steven J.
1990-01-01
Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.
Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall
NASA Astrophysics Data System (ADS)
Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru
2018-07-01
We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.
An improved k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Shih, T. H.; Hsu, Andrew T.
1991-01-01
An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. In the first part of this work, the near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation are analyzed. Based on these analyses, a modified eddy viscosity model with the correct near-wall behavior is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated, and a boundary condition for the dissipation rate is suggested. In the second part of the work, one of the deficiencies of the existing k-epsilon models, namely, the wall distance dependency of the equations and the damping functions, is examined. An improved model that does not depend on any wall distance is introduced. Fully developed turbulent channel flows and turbulent boundary layers over a flat plate are studied as validations for the proposed new models. Numerical results obtained from the present and other previous k-epsilon models are compared with data from direct numerical simulation. The results show that the present k-epsilon model, with added robustness, performs as well as or better than other existing models in predicting the behavior of near-wall turbulence.
Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation.
Watanabe, Yoichiro; Schneider, Rene; Barkwill, Sarah; Gonzales-Vigil, Eliana; Hill, Joseph L; Samuels, A Lacey; Persson, Staffan; Mansfield, Shawn D
2018-06-05
In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs. Copyright © 2018 the Author(s). Published by PNAS.
26. GARAGE AND RETAINING WALLS NEAR SAR3. NOTE SEVEN OAKS ...
26. GARAGE AND RETAINING WALLS NEAR SAR-3. NOTE SEVEN OAKS DAM ROAD CONSTRUCTION SCAR ON MOUNTAINSIDE IN DISTANCE. VIEW TO NORTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA
19. WINDOW DETAIL, NORTH WALL OF GARAGE ADDITION. VIEW SHOWS ...
19. WINDOW DETAIL, NORTH WALL OF GARAGE ADDITION. VIEW SHOWS CONCRETE BLOCK CONSTRUCTION OF ADDITION. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA
Use of Precast Concrete Walls for Blast Protection of Steel Stud Construction Preprint
2007-11-01
Side Elevation Front Elevation Front Elevation Side Elevation a) Sandwich Wall b) Solid Wall I I---6’-10" " 11.. Exterior Face - Form finish 2------C...damage to the interior drywall was visible. The instnunentation consisted of three external reflected pressure gages at the front face of the test
Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, Joseph; Baker, Peter
This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various designmore » elements.« less
Schematic construction of flanged nanobearings from double-walled carbon nanotubes.
Shenai, Prathamesh Mahesh; Zhao, Yang
2010-08-01
The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.
Characterization of frictional interference in closely-spaced reinforcements in MSE walls.
DOT National Transportation Integrated Search
2014-09-01
This research addresses one of several knowledge gaps in the understanding of tall MSE wall behavior: prediction of reinforcement loads impacted by frictional interference of closely-spaced reinforcements associated with tall walls.
1992-01-01
3 are severely deteriorated. The concrete deck and supporting wood -pile structure are nearing the end of their life cycle. Both piers are to be...PROPOSED CONSTRUCTION One-story building with concrete foundation walls, load bearing masonry walls, and concrete floors; roof with wood truss framing...concrete building addition; concrete foundation and slab on grade; wood truss roof; 750 KVA. 3 phase transformer; utilities; concrete and storm drain. 11
Pros and cons of multistory RC tunnel-form (box-type) buildings
Kalkan, E.; Yuksel, S.B.
2008-01-01
Tunnel-form structural systems (i.e., box systems), having a load-carrying mechanism composed of reinforced concrete (RC) shear walls and slabs only, have been prevailingly utilized in the construction of multistory residential units. The superiority of tunnel-form buildings over their conventional counterparts stems from the enhanced earthquake resistance they provide, and the considerable speed and economy of their construction. During recent earthquakes in Turkey, they exhibited better seismic performance in contrast to the damaged condition of a number of RC frames and dual systems (i.e., RC frames with shear wall configurations). Thus the tunnel-form system has become a primary construction technique in many seismically active regions. In this paper, the strengths and weaknesses of tunnel-form buildings are addressed in terms of design considerations and construction applications. The impacts of shear wall reinforcement ratio and its detailing on system ductility, loadcarrying capacity and failure mechanism under seismic forces are evaluated at section and global system levels. Influences of tension/compression coupling and wall openings on the response are also discussed. Three-dimensional nonlinear finite element models, verified through comparisons with experimental results, were used for numerical assessments. Findings from this projection provide useful information on adequate vertical reinforcement ratio and boundary reinforcement to achieve enhanced performance of tunnel-form buildings under seismic actions. Copyright ?? 2007 John Wiley & Sons, Ltd.
Comparison of Current and Field Driven Domain Wall Motion in Beaded Permalloy Nanowires
NASA Astrophysics Data System (ADS)
Lage, Enno; Dutta, Sumit; Ross, Caroline A.
2015-03-01
Domain wall based devices are promising candidates for non-volatile memory devices with no static power consumption. A common approach is the use of (field assisted) current driven domain wall motion in magnetic nanowires. In such systems local variations in linewidth act as obstacles for propagating domain walls. In this study we compare simulated field driven and current driven domain wall motion in permalloy nanowires with anti-notches. The simulations were obtained using the Object Oriented MicroMagnetics Framework (OOMMF). The wires with a constant thickness of 8 nm exhibit linewidths ranging from 40 nm to 300 nm. Circular shaped anti-notches extend the linewidth locally by 10% to 30% and raise information about the domain wall propagation in such beaded nanowires. The results are interpreted in terms of the observed propagation behavior and summarized in maps indicating ranges of different ability to overcome the pinning caused by anti-notches of different sizes. Furthermore, regimes of favored domain wall type (transverse walls or vortex walls) and complex propagation effects like walker breakdown behavior or dynamic change between domain wall structures are identified The authors thank the German Academic Exchange Service (DAAD) for funding.
Domain wall conductivity in KTiOPO4 crystals
NASA Astrophysics Data System (ADS)
Lindgren, G.; Canalias, C.
2017-07-01
We study the local ionic conductivity of ferroelectric domain walls and domains in KTiOPO4 single-crystals. We show a fourfold increase in conductivity at the domain walls, compared to that of the domains, attributed to an increased concentration of defects. Our current-voltage measurements reveal memristive-like behavior associated with topographic changes and permanent charge displacement. This behavior is observed for all the voltage sweep-rates at the domain walls, while it only occurs for low frequencies at the domains. We attribute these findings to the redistribution of ions due to the applied bias and their effect on the tip-sample barrier.
2011-09-01
Interior Wall Finishes Element: Walls Type: CMU Block, Drywall , Other Criteria: Green, Amber, Red Section Name: Administrative Space This linkage...1 EA C20 Staircases C2010 Stair Construction Stairwells Landings and Treads N/A 50 SF C30 Interior Finishes C3010 Wall Finishes Admin...Areas N/A N/A 100 SF C30 Interior Finishes C3010 Wall Finishes Corridors N/A N/A 100 SF C30 Interior Finishes C3010 Wall Finishes Lobby N/A N/A
Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, Lois B.
High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and doormore » flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super-insulated homes. The information is applicable to both new construction and gut-rehabilitation projects in Climate Zones 5 and higher.« less
In-situ diagnosis of stone monuments; the Ruin Garden in Székesfehérvár
NASA Astrophysics Data System (ADS)
Theodoridou, Magdalini; Török, Ákos
2014-05-01
Székesfehérvár is a city in central Hungary, located around 65 km southwest of Budapest. In the Middle Ages (11th and 12th centuries), the city was a Royal residence and until the Turkish occupation in 1543, one of the most important cities of Hungary. The Ruin Garden of Székesfehérvár is a unique assemblage of monuments belonging to the cultural heritage of Hungary due to its important role in the Middle Ages as the coronation church for the kings of the Hungarian Christian Kingdom and the burial place for fifteen kings and other members of the royal families and the high nobility. It was also the home of the royal treasury and relics. It is comprised of a provostal church dedicated to Virgin Mary, so called today "Royal Basilica", royal tombs and related ecclesial and lay buildings. Since it has been nominated for "National Memorial Place", its present and future protection is required. Its several reconstructions and expansions throughout Hungarian history introduce another aspect of the importance of the historical site. By a quick overview of the current state of the monument, the presence of several lithotypes could be found among the remained building and decorative stones. Therefore, the research related to the materials in order to understand their composition, structure, origin and behavior was crucial not only for the conservation of that specific monument but also for a series of other historic structures in the Hungarian territory. In order to help the study of the Ruin Garden in Székesfehérvár, a series of maps was created based on in-situ investigations. Five wall sections were selected for the sake of the different lithotypes distribution and the different construction periods were the ruins belong to. The total mapped area covers about 30 m2 of the existing walls surfaces. Three different kinds of maps were designed for each wall section. The first series of maps depicts the different construction periods of the selected section of the walls. The second series of maps shows the distribution of the different lithotypes over the wall which helps both to better evaluate the use of different stone types over the different construction periods and to correlate the different stone types to the various identified weathering forms. The last series of maps represent the visible weathering forms on the building materials. The new maps have proven to be very useful also for the further identification of the site, the documentation of in-situ measured results(Schmidt hammer, moisture content and micro-drilling)and their ensuing interpretation in relation with the existing climatic conditions.
Adam and Bessie Arnet Residence, interior detail of jacal wall ...
Adam and Bessie Arnet Residence, interior detail of jacal wall construction in west jacal room - Adam & Bessie Arnet Homestead, Adam & Bessie Arnet Residence, 18 feet west of Generator House, Model, Las Animas County, CO
Influence of cantilevered sheet pile deflection on adjacent roadways.
DOT National Transportation Integrated Search
2009-06-01
Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...
6. REMAINS OF PLANK WALL NAILED TO POSTS WITHIN CANAL ...
6. REMAINS OF PLANK WALL NAILED TO POSTS WITHIN CANAL CONSTRUCTED TO PROTECT OUTSIDE CANAL BANK. VIEW IS TO THE WEST. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO
Vascular anatomy of the stomach related to resection procedures strategy.
Prudius, V; Procházka, V; Pavlovský, Z; Prudius, D; Kala, Z
2017-04-01
This study is focused on the vascular anatomy of the stomach in relation to the gastric pull-up construction. The vascular anatomy was studied on forty-one human specimens. We find out the differences in blood supplement between anterior and posterior wall. It was maked an review of the main trunk arteries of the stomach. To display the vessels of the stomach we used diaphanoscopy, digital shooting in special mode and micro preparation of the vessels. We find out that left gastric artery gives more branches to the posterior wall and right gastroepiploic artery (RGEA) gives more branches to the anterior wall. But brunches of RGEA are longer on the posterior wall than on the anterior. Also we are offering the new classification of the RGEA related to gastric pull-up construction. This classification based not only on the anatomical shapes of RGEA but on the properties of the flow dynamics through the artery.
SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls
Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross
2015-01-01
Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...
Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Kenneth W; Stovall, Therese K; Biswas, Kaushik
2013-01-01
A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential systemmore » performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.« less
NASA Astrophysics Data System (ADS)
Kaczmarek, Anna
2017-10-01
Contemporary single-family houses in Poland are often built during 3 quarters of a year (spring to autumn) are usually settled in a winter season. It is a special case when exploitation humidity coincides with technological one, causing unfavourable humidity conditions during the first years of exploitation. In consequence, thermal parameters of partitions differ from those assumed in the project. In construction stage the humidity state of a wall stabilizes as a result of water: associated with storage, entered technologically during wall construction and plastering, coming from rainfall. Thermo-insulation materials are built-in at dry state. During erection and exploitation of a building their thermal conductivity is changing depending on humidity conditions. According to building rules, construction humidity should be removed from a partition before the building transfer to usage, because it lowers the thermal partition insulation ability and increases air humidity of building interior. Walls are plastered and insulated in condition of simultaneous presence of atmospheric and technological humidity which cause special humidity condition during first years of exploitation. As a consequence, heating costs are substantially higher. In this article the results of simulation are shown performed with WUFI ®PRO 5 software, which was intended to define the time necessary for reaching the stabilised humidity in selected solutions of two-layer walls applied in a heated building. In the research performed, the partition orientation along geographic directions, short and long wave radiation, and environment humidity (air humidity, driving rain) coincidence with technological humidity in assumed wall solutions were taken into account.
Ventilation for an enclosure of a gas turbine and related method
Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony
2002-01-01
A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.
Steel Shear Walls, Behavior, Modeling and Design
NASA Astrophysics Data System (ADS)
Astaneh-Asl, Abolhassan
2008-07-01
In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of overturning moments and any normal forces that might act on the steel shear wall.
NASA Astrophysics Data System (ADS)
Sudan Acharya, Madhu
2010-05-01
The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms of deformation and failure and provides benchmarks useful for verification of numerical models. In this case this test is mainly carried out to verify the stability analysis and deformation characteristics of a bamboo crib wall. Models of crib wall of dimensions 37x13x10 cm and 37x13x14cm were placed inside a Plexiglas box of internal dimensions of 42.5x42.5x30 cm and slope was formed leaving a space about 10 cm in the front. The model crib wall tests were all performed at 40-70 times earth's gravity. This means that the 5 mm diameters bamboo rods in model used represents a prototype diameter of 20-35 cm. The horizontal and vertical displacements were measured with the help of three displacements sensor fixed horizontally and one sensor fixed vertically at the top of the model crib wall. All together nine tests were carried out with varying model parameters. Standard medium sand and coarse sand were used as fill material in the testing. Two wall heights variations and three slopes variations were used in the testing. The test model was constructed either compacted or uncompacted. The compaction in the model was carried out by hand to about 90% of the Proctor density. Three slopes inclinations were used. For flat slope the slope angle was less than 25° , and for steep slope it was 25° -35° and for extremely steep slope it was > 35° . The test results and conclusions are presented in this paper.
24 CFR 3280.302 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...
24 CFR 3280.302 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...
24 CFR 3280.302 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...
24 CFR 3280.302 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements.... Loads: (1) Dead load: means the weight of all permanent construction including walls, floors, roof... occupancy of the manufactured home, including wind load and snow load, but not including dead load. (3) Wind...
30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.
Code of Federal Regulations, 2011 CFR
2011-07-01
...— (1) Have steel walls of a minimum 3/16-inch thickness, or walls made of other metal of a thickness that provides equivalent strength; (2) Be protected from corrosion; (3) Be of seamless construction or...
30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.
Code of Federal Regulations, 2014 CFR
2014-07-01
...— (1) Have steel walls of a minimum 3/16-inch thickness, or walls made of other metal of a thickness that provides equivalent strength; (2) Be protected from corrosion; (3) Be of seamless construction or...
30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.
Code of Federal Regulations, 2012 CFR
2012-07-01
...— (1) Have steel walls of a minimum 3/16-inch thickness, or walls made of other metal of a thickness that provides equivalent strength; (2) Be protected from corrosion; (3) Be of seamless construction or...
30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.
Code of Federal Regulations, 2013 CFR
2013-07-01
...— (1) Have steel walls of a minimum 3/16-inch thickness, or walls made of other metal of a thickness that provides equivalent strength; (2) Be protected from corrosion; (3) Be of seamless construction or...
Zhang, Hui-ming; Talbot, Mark J.; McCurdy, David W.; Patrick, John W.; Offler, Christina E.
2015-01-01
Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca2+ levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane–microtubule inter-relationship is discussed. PMID:26136268
NASA Astrophysics Data System (ADS)
Baďurová, Silvia; Ponechal, Radoslav; Ďurica, Pavol
2013-11-01
The term "passive house" refers to rigorous and voluntary standards for energy efficiency in a building, reducing its ecological footprint. There are many ways how to build a passive house successfully. These designs as well as construction techniques vary from ordinary timber constructions using packs of straw or constructions of clay. This paper aims to quantify environmental quality of external walls in a passive house, which are made of a timber frame, lightweight concrete blocks and sand-lime bricks in order to determine whether this constructional form provides improved environmental performance. Furthermore, this paper assesses potential benefit of energy savings at heating of houses in which their external walls are made of these three material alternatives. A two storey residential passive house, with floorage of 170.6 m2, was evaluated. Some measurements of air and surface temperatures were done as a calibration etalon for a method of simulation.
NASA Astrophysics Data System (ADS)
Eberhardt, Oliver; Wallmersperger, Thomas
2018-03-01
The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.
Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C
2016-10-28
The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential between the wall atoms, but increases when the attractive part of the potential between wall atoms and confined molecules is made larger.
Construction and test of flexible walls for the throat of the ILR high-speed wind tunnel
NASA Technical Reports Server (NTRS)
Igeta, Y.
1983-01-01
Aerodynamic tests in wind tunnels are jeopardized by the lateral limitations of the throat. This influence expands with increasing size of the model in proportion to the cross-section of the throat. Wall interference of this type can be avoided by giving the wall the form of a stream surface that would be identical to the one observed during free flight. To solve this problem, flexible walls that can adapt to every contour of surface flow are needed.
1985-03-01
aluminum outer walls by a matrix of studs screwed into blind holes in the inner wall plates and extending through the outer walls. Thermoelectric cooling...studied. The problem of the uncooled sample ports might have been dealt with, however the failure of several sections of thermoelectric cooling...encountered with the Proto I chamber. It should be kept in mind that the basic cooled wall design consists of thermoelectric cooling modules (TEM’s
Li, Junfeng; Wan, Xiaoxia; Bu, Yajing; Li, Chan; Liang, Jinxing; Liu, Qiang
2016-11-01
Noninvasive examination methods of chemical composition and particle size are presented here based on visible spectroscopy to achieve the identification and recording of mineral pigments used on ancient wall paintings. The normalized spectral curve, slope and curvature extracted from visible spectral reflectance are combined with adjustable weighting coefficients to construct the identification feature space, and Euclid distances between spectral reflectance from wall paintings and a reference database are calculated in the feature space as the discriminant criterion to identify the chemical composition of mineral pigments. A parametric relationship between the integral quantity of spectral reflectance and logarithm of mean particle size is established using a quadratic polynomial to accomplish the noninvasive prediction of mineral pigment particle size used on ancient wall paintings. The feasibility of the proposed methods is validated by the in situ nondestructive identification of the wall paintings in the Mogao Grottoes at Dunhuang. Chinese painting styles and historical evolution are then analyzed according to the identification results of 16 different grottoes constructed from the Sixteen Kingdoms to the Yuan Dynasty. © The Author(s) 2016.
The role of endoxyloglucan transferase in the organization of plant cell walls.
Nishitani, K
1997-01-01
The plant cell wall plays a central role in morphogenesis as well as responsiveness to environmental signals. Xyloglucans are the principal component of the plant cell wall matrix and serve as cross-links between cellulose microfibrils to form the cellulose-xyloglucan framework. Endoxyloglucan transferase (EXGT), which was isolated and characterized in 1992, is an enzyme that mediates molecular grafting reaction between xyloglucan molecules. Structural studies on cDNAs encoding EXGT and its related proteins have disclosed the ubiquitous presence in the plant kingdom of a large multigene family of xyloglucan-related proteins (XRPs). Each XRP functions as either hydrolase or transferase acting on xyloglucans and is considered to be responsible for rearrangement of the cellulose-xyloglucan framework, the processes essential for the construction, modification, and degradation of plant cell walls. Different XRP genes exhibit potentially different expression profiles with respect to tissue specificity and responsiveness to hormonal and mechanical signals. The molecular approach to individual XRP genes will open a new path for exploring the controlling mechanisms by which the plant cell wall is constructed and reformed during plant growth and development.
McGrath, Michael J; Burns, Adrian; Dishongh, Terry
2007-01-01
Using five different commercially available class one and class two Bluetooth dongles a total of seven homes which represented a cross section of typical Irish homes were surveyed to determine the effect of construction methods, house size, sensor placement, host placement, antenna design and RF interference had on the link quality of Bluetooth enabled sensors. The results obtained indicates there is high variability in the link quality which is determined by the quality of the BT radio, placement of the antenna on both the master and slave, the number of walls which must be penetrated and the construction materials used in the wall. The placement of the sensor was the single biggest factor in determining the link quality. The type of construction used in the interior walls has significant influence also. The final factor of significant influence was the type of antenna used on the Bluetooth dongle. The use of an external antenna gave significantly better range performance than an internal antenna.
609th Iraqi National Guard Battalion Garrison, Thi Qar Governorate, Iraq
2006-07-25
views of structural members (reinforced concrete footers, columns , beams , floor, and roof slabs). Mechanical drawings included plumbing plans and...well as reinforced concrete columns and beams . The exterior walls were constructed with sand lime block. Although the assessment team did not...foundation support for the perimeter wall included reinforced concrete footers to support the columns and a reinforced concrete tie beam under the wall
Effect of cladding systems on moisture performance of wood-framed walls in a mixed-humid climate
S. Craig Drumheller; Charles G. Carll
2010-01-01
A 22-month field investigation of nine different north-and south-oriented wood-framed wall assemblies was conducted to determine the moisture performance of various wall construction types, most of which incorporated absorptive cladding. The study was conducted on the campus of the National Association of Home Builders (NAHB) Research Center, in Upper Marlboro, MD, 20...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-10
A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The Building America research team Home Innovation Research Labs featured this system in a new construction test house.
Expansin polynucleotides, related polypeptides and methods of use
Cosgrove, Daniel J.; Wu, Yajun
2006-02-21
The present invention relates to beta expansin polypeptides, nucleotide sequences encoding the same and regulatory elements and their use in altering cell wall structure in plants. Nucleic acid constructs comprising a beta expansin sequence operably linked to a promoter, or other regulatory sequence are disclosed as well as vectors, plant cells, plants, and transformed seeds containing such constructs are provided. Methods for the use of such constructs in repressing or inducing expression of a beta expansin sequences in a plant are also provided as well as methods for harvesting transgenic expansin proteins. In addition, methods are provided for inhibiting or improving cell wall structure in plants by repression or induction of expansin sequences in plants.
Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes.
Takeuchi, Ryosuke; Suzuki, Arato; Sakai, Kento; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji
2018-04-03
A photo-driven bioanode was constructed using the thylakoid membrane from spinach, carbon nanotubes, and an artificial mediator. By considering a linear free-energy relationship in the electron transfer from the thylakoid membrane to the mediators, and the oxygen resistance of the reduced mediators, 1,2-naphthoquinone was selected as the most suitable mediator for the photo-driven bioanode. Water-dispersed multi-walled carbon nanotubes served as scaffolds to hold the thylakoid membrane on a porous electrode. The constructed photo-driven bioanode exhibited a photocurrent density of over 100μAcm -2 at a photon flux density of 1500μmolm -2 s -1 . Copyright © 2018. Published by Elsevier B.V.
Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams
NASA Technical Reports Server (NTRS)
Song, O.; Librescu, L.; Rogers, C. A.
1992-01-01
The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.
Cellulose-hemicellulose interaction in wood secondary cell-wall
NASA Astrophysics Data System (ADS)
Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping
2015-12-01
The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.
Strength of unbonded post-tensioned walls.
DOT National Transportation Integrated Search
2014-08-01
Post-tensioned masonry wall (PT-MW) is an ideal candidate for accelerating the construction of sound barriers in highways. PT-MWs : have been in use for a while in buildings; however, there has been no rigorous single-study in the U. S. about in-plan...
Interaction between drilled shaft and mechanically stabilized earth (MSE) wall : technical report.
DOT National Transportation Integrated Search
2017-04-01
Drilled shafts are being constructed within the reinforced zone of mechanically stabilized earth (MSE) walls especially in the case of overpass bridges where the drilled shafts carry the bridge deck or traffic signs. The interaction between the drill...
DOE Office of Scientific and Technical Information (OSTI.GOV)
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, Lois B.
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang
2013-01-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei
2013-02-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.
10. June 25, 1963 SEED BUILDING UNDER CONSTRUCTION Looking northeast ...
10. June 25, 1963 SEED BUILDING UNDER CONSTRUCTION Looking northeast showing west wall of Machinery Shed - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ
Malaria vector abundance is associated with house structures in Baringo County, Kenya.
Ondiba, Isabella M; Oyieke, Florence A; Ong'amo, George O; Olumula, Macrae M; Nyamongo, Isaac K; Estambale, Benson B A
2018-01-01
Malaria, a major cause of morbidity and mortality, is the most prevalent vector borne disease in Baringo County; a region which has varied house designs in arid and semi-arid areas. This study investigated the association between house structures and indoor-malaria vector abundance in Baringo County. The density of malaria vectors in houses with open eaves was higher than that for houses with closed eaves. Grass thatched roof houses had higher density of malaria vectors than corrugated iron sheet roofs. Similarly, mud walled houses had higher vector density than other wall types. Houses in the riverine zone were significantly associated with malaria vector abundance (p<0.000) possibly due to more varied house structures. In Kamnarok village within riverine zone, a house made of grass thatched roof and mud wall but raised on stilts with domestic animals (sheep/goats) kept at the lower level had lower mosquito density (5.8 per collection) than ordinary houses made of same materials but at ground level (30.5 mosquitoes per collection), suggestive of a change in behavior of mosquito feeding and resting. House modifications such as screening of eaves, improvement of construction material and building stilted houses can be incorporated in the integrated vector management (IVM) strategy to complement insecticide treated bed nets and indoor residual spray to reduce indoor malaria vector density.
NASA Astrophysics Data System (ADS)
Köktan, Utku; Demir, Gökhan; Kerem Ertek, M.
2017-04-01
The earthquake behavior of retaining walls is commonly calculated with pseudo static approaches based on Mononobe-Okabe method. The seismic ground pressure acting on the retaining wall by the Mononobe-Okabe method does not give a definite idea of the distribution of the seismic ground pressure because it is obtained by balancing the forces acting on the active wedge behind the wall. With this method, wave propagation effects and soil-structure interaction are neglected. The purpose of this study is to examine the earthquake behavior of a retaining wall taking into account the soil-structure interaction. For this purpose, time history seismic analysis of the soil-structure interaction system using finite element method has been carried out considering 3 different soil conditions. Seismic analysis of the soil-structure model was performed according to the earthquake record of "1971, San Fernando Pacoima Dam, 196 degree" existing in the library of MIDAS GTS NX software. The results obtained from the analyses show that the soil-structure interaction is very important for the seismic design of a retaining wall. Keywords: Soil-structure interaction, Finite element model, Retaining wall
Zhang, Hui-ming; Talbot, Mark J; McCurdy, David W; Patrick, John W; Offler, Christina E
2015-09-01
Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca(2+) levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane-microtubule inter-relationship is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Cheema, Taqi Ahmad; Park, Cheol Woo
2013-08-01
Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.
Behavior of braced excavation in sand under a seismic condition: experimental and numerical studies
NASA Astrophysics Data System (ADS)
Konai, Sanku; Sengupta, Aniruddha; Deb, Kousik
2018-04-01
The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper. A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth, acceleration amplitude and wall stiffness. Numerical analyses using FLAC 2D were also performed considering one level of bracing. The strut forces, lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results. The study showed that in a post-seismic condition, when other factors were constant, lateral displacement, bending moment, strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration. The study also showed that as wall stiffness decreased, the lateral displacement of the wall and ground surface displacement increased, but the bending moment of the wall and strut forces decreased. The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude, but did not change significantly with wall stiffness. Strut force was the least affected parameter when compared with others under a seismic condition.
NASA Astrophysics Data System (ADS)
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
2010-02-01
approximately 3.0-acre site. The facility would include retail gasoline sales through the installation of three 20,000-gallon double -walled tanks; 16 multi...construction activities; soil erosion control methods and best management practices would reduce potential for effects; additional impervious surfaces...through the installation of three 20,000-gallon, double -walled tanks; 16 multi- product dispensers with 32 fuel dispenser nozzles; a canopy roofing
Use Hardwoods for Building Components
Glenn A. Cooper; William W. Rice
1968-01-01
Describes a system for prefabricating structural units from hardwoods for use in floors, roofs, and walls of a-frame or post-and-beam type construction. The interior face of the unit is decorative paneling; the exterior face is sheathing. Use of the system could reduce prefabricated house construction costs compared to conventional construction costs.
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHEAST ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHEAST SHOWING OVERALL BLOCK EXTERIOR WALLS; CONSTRUCTION 65 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-4976. Holmes, Photographer, 9/26/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Disciplinary Convergence and Interdisciplinary Curricula for Students in an Information Society
ERIC Educational Resources Information Center
Brooks, Catherine Francis
2017-01-01
In this essay, disciplinary "convergence" is offered as a construct that references the blurring of disciplinary walls, academic borders and institutional divisions, a construct that can frame conversations about the role of disciplines in addressing today's student needs in higher education. Convergence as a construct allows for a…
Building Construction Estimating, Carpentry: 901897.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The curriculum guide outlines a course for grades 11 and 12 in carpentry designed to provide instructions in mathematics and its application to determining construction costs. Students completing the course will be expected to have the skills and knowledge of building construction plans, concrete forms, walls, roofs, doors and stairs, in addition…
Using Frozen Barriers for Containment of Contaminants
2017-09-21
barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based
8. Detail view, greenhouse, south wall (Note the fragments of ...
8. Detail view, greenhouse, south wall (Note the fragments of carved frieze and the construction seam running across the upper-right-hand corner of the photograph. The south wall was extended eastward and upward in the nineteenth century in order to accommodate the a new all-encompassing roof for the four adjacent units). - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA
Investigation of the seismic resistance of interior building partitions, phase 1
NASA Astrophysics Data System (ADS)
Anderson, R. W.; Yee, Y. C.; Savulian, G.; Barclay, B.; Lee, G.
1981-02-01
The effective participation of wood-framed interior shear wall partitions when determining the ultimate resistance capacity of two- and three-story masonry apartment buildings to seismic loading was investigated. Load vs. deflection tests were performed on 8 ft by 8 ft wall panel specimens constructed of four different facing materials, including wood lath and plaster, gypsum lath and plaster, and gypsum wallboard with joints placed either horizontally or vertically. The wood lath and plaster construction is found to be significantly stronger and stiffer than the other three specimens. Analyses of the test panels using finite element methods to predict their static resistance characteristics indicates that the facing material acts as the primary shear-resisting structural element. Resistance of shear wall partitions to lateral loads was assessed.
New Whole-House Solutions Case Study: Shaw Construction, Aspen, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This builder worked with Building Science Corporation to design affordable HERS-54 townhouses with central solar radiator space heating, PV, R-28 closed-cell spray foam under slab and R-26 in advanced framed walls, and rigid polyiso on inside of basement walls
DOT National Transportation Integrated Search
2011-12-01
This report discusses the application of Tensar geogrids as the reinforcement elements in the : construction of mechanically stabilized earth (MSE) walls on the Route 22 over Conrail and Liberty : Avenue bridge replacement project in Hillside, NJ. As...
Administering Safety: Challenge Courses and Climbing Walls.
ERIC Educational Resources Information Center
Evans, Will
1996-01-01
A camp that is establishing a challenge course or climbing wall must ensure program safety. Discusses financial planning, selecting a contractor, adhering to standards for construction, inspections, staff training, screening of participants, and the administrative challenge of implementing and documenting proper actions. Sidebar discusses a study…
NASA Astrophysics Data System (ADS)
Panasenko, N. N.; Sinelschikov, A. V.
2017-11-01
One of the main stages in the analysis of complex 3D structures and engineering constructions made of thin-walled open bars using FEM is a stiffness matrix developing. Taking into account middle surface shear deformation caused by the work of tangential stresses in the formula to calculate a potential energy of thin-walled open bars, the authors obtain an important correction at calculation of the bar deformation and fundamental frequencies. The results of the analysis of the free end buckling of a cantilever H-bar under plane bending differ from exact solution by 0.53%. In the course of comparison of the obtained results with the cantilever bar buckling regardless the middle surface shear deformation, an increase made 16.6%. The stiffness matrix of a thin-walled open bar developed in the present work can be integrated into any software suite using FEM for the analysis of complex 3-D structures and engineering constructions with n-freedoms.
Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra1[W][OA
Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola; Jørgensen, Bodil; Borkhardt, Bernhard; Petersen, Bent Larsen; Ulvskov, Peter
2011-01-01
Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure. PMID:21075961
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
Cross-stream distribution of red blood cells in sickle-cell disease
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Lam, Wilbur; Graham, Michael
2017-11-01
Experiments revealed that in blood flow, red blood cells (RBCs) tend to migrate away from the vessel walls, leaving a cell-free layer near the walls, while leukocytes and platelets tend to marginate towards the vessel walls. This segregation behavior of different cellular components in blood flow can be driven by their differences in stiffness and shape. An alteration of this segregation behavior may explain endothelial dysfunction and pain crisis associated with sickle-cell disease (SCD). It is hypothesized that the sickle RBCs, which are considerably stiffer than the healthy RBCs, may marginate towards the vessel walls and exert repeated damage to the endothelial cells. Direct simulations are performed to study the flowing suspensions of deformable biconcave discoids and stiff sickles representing healthy and sickle cells, respectively. It is observed that the sickles exhibit a strong margination towards the walls. The biconcave discoids in flowing suspensions undergo a so-called tank-treading motion, while the sickles behave as rigid bodies and undergo a tumbling motion. The margination behavior and tumbling motion of the sickles may help substantiate the aforementioned hypothesis of the mechanism for the SCD complications and shed some light on the design of novel therapies.
Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.
Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin
2016-01-01
The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.
A drift chamber constructed of aluminized mylar tubes
NASA Astrophysics Data System (ADS)
Baringer, P.; Jung, C.; Ogren, H. O.; Rust, D. R.
1987-03-01
A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls.
Built-up outer wall and roofing sections for double walled envelope homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodhead, B.
1980-01-01
A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.
Pumera, Martin; Smíd, Bretislav
2007-10-01
Double wall carbon nanotubes are noncovalently functionalized with redox protein and such assembly is used for construction of electrochemical binder-less glucose biosensor. Redox protein glucose oxidase performs as biorecognition element and double wall carbon nanotubes act both as immobilization platform for redox enzyme and as signal transducer. The double carbon nanotubes are characterized by cyclic voltammetry and specific surface area measurements; the redox protein noncovalently functionalized double wall carbon nanotubes are characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, amperometry, and transmission electron microscopy.
Improved interior wall detection using designated dictionaries in compressive urban sensing problems
NASA Astrophysics Data System (ADS)
Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse
2013-05-01
In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.
First Exploratory Study on the Ageing of Rammed Earth Material.
Bui, Quoc-Bao; Morel, Jean-Claude
2014-12-23
Rammed earth (RE) is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable building. In this study, the ageing effects on RE material are studied on the walls which have been constructed and exposed for 22 years to natural weathering. First, mechanical characteristics of the "old" walls were determined by two approaches: in-situ dynamic measurements on the walls; laboratory tests on specimens which had been cut from the walls. Then, the walls' soil was recycled and reused for manufacturing of new specimens which represented the initial state. Comparison between the compressive strength, the Young modulus of the walls after 22 years on site and that of the initial state enables to assess the ageing of the studied walls.
NASA Technical Reports Server (NTRS)
Carden, H. D.
1979-01-01
Mechanical excitation was used, and measurements of acceleration response, natural frequencies, and nodal patterns were performed. Results indicate that the wall sections and the complete wall did not act as a unit in responding to sinusoidal vibration inputs. Calculated frequencies of the components that account for this independent behavior of the studs and face sheets agreed resonably well with experimental frequencies. Experimental vibrations of the plate glass window agreed with the calculated behavior, and responses of the window exposed to airplane flyover noise were readily correlated with the test results.
NASA Astrophysics Data System (ADS)
Krause, O.; Bouchiat, V.; Bonnot, A. M.
2007-03-01
Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.
El-Naggar, Hesham M
2010-01-01
The main activity in Siwa Oasis society is the agriculture, it depends on the groundwater. The agricultural drainage water and the unused saline water of naturally flowing springs are poured into four main salty lakes. This leads to an increase in the surface area of the saltwater lakes, marshes and rise in water table levels. to investigate some environmental engineering interventions to control the expansion of saltwater surface area in Siwa Oasis. Field visits, observation sheets and questionnaire survey with farmers were carried out to find out the main environmental problems in the Oasis. Environmental survey was carried out to collect different rocks and stones samples as natural construction materials from the desert that surrounds Siwa Oasis. Physical analyses, chemical composition and principal mechanical parameters were conducted on the collected samples. After the analysis, the safa rocks were the best natural construction materials in the Siwa Oasis. So, it could be used to build a construction wall around the salty lakes and marshes. Walls could convert the lakes into basins. The water will be evaporated at high rate during summer season by solar energy. After evaporation, the remaining salty rock named "karshef" can be easily collected from the lakes to be used as a low cost construction material for traditional building houses in Siwa Oasis. Therefore, the water level of lakes will be reduced to dryness and land could be reused as agricultural land. Among different rocks, safa rocks proved to be the best natural construction materials to construct a defense wall around the lakes and marshes. They will save about 80% of the concrete cost. The formed karshef rocks from the lakes will be used in the construction of the traditional building houses which will save about 90% of the concrete buildings. This intervention will save energy as it exchanges fuel consuming man-made material such as cement with naturally made material. This can reduce the green house gases generated from the cement industry. Economical feasibility study should be carried out to estimate the capital cost for the retaining wall.
A geogrid reinforced soil wall for landslide correction on the Oregon coast : final report.
DOT National Transportation Integrated Search
1985-06-01
In June and July 1983, the Oregon State Highway Division constructed a geogrid-retained soil wall to stabilize a landslide on the Oregon coast. The project was an FHWA Experimental Features Project. The experimental aspects of the project were to ass...
30 CFR 18.38 - Leads through common walls.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Leads through common walls. 18.38 Section 18.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design...
2. VIEW OF WEST WALL SHOWING MAIN ENTRANCE INTO SOUTH ...
2. VIEW OF WEST WALL SHOWING MAIN ENTRANCE INTO SOUTH LOBBY AND ALUMINUM VESTIBULE ADDED IN RECENT YEARS. ELEVATOR WILL BE CONSTRUCTED TO THE RIGHT OF THE DOORWAY IN THE NORTHWEST CORNER OF THE LOBBY. - Tillamook County Courthouse, 201 Laurel Avenue, Tillamook, Tillamook County, OR
Experimental Study on Tsunami Risk Reduction on Coastal Building Fronted by Sea Wall
Khan, M. T. R.; Shirazi, S. M.
2014-01-01
This experimental study was conducted to idealize the efficacy of sea wall in controlling the tsunami forces on onshore structures. Different types of sea walls were placed in front of the building model. The tsunami forces and the wave heights were measured with and without the sea wall conditions. Types of sea wall, wall height, and wall positions were varied simultaneously to quantify the force reductions. Maximum of 41% forces was reduced by higher sea wall, positioned closer proximity to the model whereas this reduction was about 27% when the wall height was half of the high wall. Experimental investigations revealed that wall with adequate height and placed closer to the structures enables a satisfactory predictor of the force reduction on onshore structures. Another set of tests were performed with perforated wall placing near the building model. Less construction cost makes the provision of perforated sea wall interesting. The overall results showed that the efficacy of perforated wall is almost similar to solid wall. Hence, it can be efficiently used instead of solid wall. Moreover, overtopped water that is stuck behind the wall is readily gone back to the sea through perforations releasing additional forces on the nearby structures. PMID:24790578
The Impact of a Deepwater Wave on a Wall with Finite Vertical Extent
NASA Astrophysics Data System (ADS)
Wang, An; Duncan, James H.
2016-11-01
The impact of a dispersively focused 2D plunging breaker (average wave frequency 1.15 Hz) on a 2D wall that is 45 cm high and 30 cm thick is studied experimentally. The temporal evolution of the water surface profile upstream of the wall is measured with a cinematic LIF technique using frame rates up to 4,500 Hz. Impact pressures on the wall are measured simultaneously at sample rates up to 900 kHz. The wall is located horizontally 6.41 m from the wave maker in all cases and the submergence of the bottom surface of the wall is varied. It is found that the impact behavior varies dramatically with the wall submergence. When the bottom is submerged by 13.3 cm, a flip-through impact occurs. In this case, the impact evolves without wave breaking and a vertical jet is formed. When the wall is submerged by less than 4.5 cm, small-amplitude components in the wave packet interact with the bottom of the wall before the main crest arrives. Ripples reflected during this interaction modify the behavior of the incoming breaker significantly. When the bottom of the wall is located sufficiently high above the mean water level, the first interaction occurs when the undisturbed wave crest collides with the wall. The highest pressures are observed in this case. The support of the Office of Naval Research is gratefully acknowledged.
Concrete airship sheds at Orly, France. Part II
NASA Technical Reports Server (NTRS)
FREYSSINET
1925-01-01
This report deals mainly with the methods of construction employed when after the plan had been approved. The foundation, side walls, doors and roof are all discussed and the economic savings resulting from this method of construction.
Reinforced soil structures. Volume I. Design and construction guidelines
DOT National Transportation Integrated Search
1990-11-01
This report presents comprehensive guidelines for evaluating and using soil reinforcement techniques in the construction of retaining walls, embankment slopes, and natural or cut slopes. A variety of available systems for reinforced soil including in...
Reinforced soil structures. Volume I, Design and construction guidelines
DOT National Transportation Integrated Search
1990-11-01
This report presents comprehensive guidelines for evaluating and using soil reinforcement techniques in the construction of retaining walls, embankment slopes, and natural or cut slopes. A variety of available systems for reinforced soil including in...
Evaluation of Durisol Sound Wall
DOT National Transportation Integrated Search
2000-08-01
The purpose of this final report is to evaluate the durability of Durisol noise barriers constructed in Lehigh County, Lancaster County, and Delaware County. The noise barriers constructed in each of the three counties were manufactured by one of thr...
17. The south wall of the dining room has an ...
17. The south wall of the dining room has an original wood wainscot similar to the one present on the north wall. However, in lieu of windows it appears to have been constructed with mirrors, which are no longer in place. The electrical boxes are nonoriginal elements. Simulated panel bevels are readily apparent in this view. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ
Near-wall turbulence alteration through thin streamwise riblets
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.; Lazos, Barry S.
1987-01-01
The possibility of improving the level of drag reduction associated with near-wall riblets is considered. The methodology involves the use of a hot-wire anemometer to study various surface geometries on small, easily constructed models. These models consist of small, adjacent rectangular channels on the wall aligned in the streamwise direction. The VITA technique is modified and applied to thin-element-array and smooth flat-plate data and the results are indicated schematically.
Nuclear reactor construction with bottom supported reactor vessel
Sharbaugh, John E.
1987-01-01
An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.
Airborne sound transmission loss characteristics of woodframe construction
Fred F. Rudder
1985-01-01
This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHWEST, ...
CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHWEST, SHOWING FORMING FOR NORTH WALLS OF CELLS 1, 4 AND 5; CONSTRUCTION 21 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-1874. Holmes, Photographer, 4/21/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire
NASA Astrophysics Data System (ADS)
Moreno, R.; Carvalho-Santos, V. L.; Espejo, A. P.; Laroze, D.; Chubykalo-Fesenko, O.; Altbir, D.
2017-11-01
Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes, in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same frequency. These results open the possibility of new oscillation-based applications.
Static in-plane shear behaviour of prefabricated wood-wool panel wallettes
NASA Astrophysics Data System (ADS)
Noh, M. S. Md; Ahmad, Z.; Ibrahim, A.; Kamarudin, A. F.; Mokhatar, S. N.
2018-04-01
The green construction material and technique are the current issue toward improving sustainability in the construction industry in Malaysia. The use of construction material that produced from renewable resources is a part of the effort for greening this industry. WWCP (Wood-wool cement panel) is a wood based product available to the construction industry to be used as a structural building wall element. This renewable material has the potential to replace the less eco-friendly materials such as bricks and other masonry element. However, the behaviour of wall subjected to the different load conditions is not well established and therefore, this study aimed to investigate the structural behaviour of the small scale wall (wallettes) subjected to in-plane lateral load. As a comparison, two types of fabrication technique of wallettes with dimension of 1200 mm × 1200 mm (± 30 mm) were considered. The conventional vertical stacking technique was denoted as W1 and new propose techniques (cross laminated) was denoted as W2. Three replicates of each type were fabricated and tested under in-plane lateral load until failure. The test results revealed that, the wallettes fabricated using the new fabrication technique significantly increased two times in load carrying capacity compared to wallettes with conventional technique.
DOT National Transportation Integrated Search
1993-12-01
Finite Difference Methods (FDM) and Finite Element Methods (FEM) studies are reported studying the soil nail wall construction at the Swift Delta I-5 Interchange bridge reconstruction in North Portland, Oregon. Five layers of soil nails were installe...
Using "The Wall Street Journal" To Stimulate Critical Thinking.
ERIC Educational Resources Information Center
Roever, Carol
1998-01-01
Describes an assignment in a business-communication class in which student teams construct portfolios with articles from "The Wall Street Journal," explaining and clearly expressing how these articles relate to class concepts. Argues that the assignment encourages critical-thinking skills, focuses on writing skills, and develops an…
NASA Astrophysics Data System (ADS)
Ikemoto, Toshikazu; Mori, Masashi; Miyajima, Masakatsu; Hashimoto, Takao; Murata, Akira
There are many earthquake damages of kenchi block masonry wall. So, we carried out experimental studies on the collapse mechanism of kenchi block masonry wall during earthquake. From these experimental data, i.e. acceleration response magnification, displacement and soil pressure were found to destroy the central wall vibrations caused by the subsidence of the embankment.
Yamamoto, H; Kojima, Y; Okuyama, T; Abasolo, W P; Gril, J
2002-08-01
In this study, a basic model is introduced to describe the biomechanical properties of the wood from the viewpoint of the composite structure of its cell wall. First, the mechanical interaction between the cellulose microfibril (CMF) as a bundle framework and the lignin-hemicellulose as a matrix (MT) skeleton in the secondary wall is formulated based on "the two phase approximation." Thereafter, the origins of (1) tree growth stress, (2) shrinkage or swelling anisotropy of the wood, and (3) moisture dependency of the Young's modulus of wood along the grain were simulated using the newly introduced model. Through the model formulation; (1) the behavior of the cellulose microfibril (CMF) and the matrix substance (MT) during cell wall maturation was estimated; (2) the moisture reactivity of each cell wall constituent was investigated; and (3) a realistic model of the fine composite structure of the matured cell wall was proposed. Thus, it is expected that the fine structure and internal property of each cell wall constituent can be estimated through the analyses of the macroscopic behaviors of wood based on the two phase approximation.
ERIC Educational Resources Information Center
South Australian Science Teachers Journal, 1973
1973-01-01
Presents ideas from readers on techniques and equipment that might be useful in teaching secondary school science. Suggests how to construct cheap wall charts, modify a vacuum cleaner into a blower, construct a stereo microscope lamp holder, and outlines simple physics laboratory experiments. (JR)
Structural pounding of concrete frame structure with masonry infill wall under seismic loading
NASA Astrophysics Data System (ADS)
Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis
2017-10-01
Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.
Speiser, M; Hager, F; Foster, R; Solberg, T
2012-06-01
To design and quantify the shielding efficacy of an inner Borated Polyethylene (BPE)wall for a 15 MV linac in a low energy vault. A Varian TrueBeam linac with a maximum photon energy of 15 MV was installed in asmaller, preexisting vault. This vault originally housed a low-energy machine and did not havesufficient maze length recommended for neutron attenuation. Effective dose rate calculationswere performed using the Modified Kersey's Method as detailed in NCRP Report No. 151 andfound to be unacceptably high. An initial survey following the machine installation confirmedthese calculations. Rather than restrict the linac beam energy to 10 MV, BPE was investigatedas a neutron moderating addition. An inner wall and door were planned and constructed using4'×8'×1″ thick 5% BPE sheets. The resulting door and wall had 2″ of BPE; conduits and ductwork were also redesigned and shielded. A survey was conducted following construction of thewall. The vault modification reduced the expected effective dose at the vault door from 36.23to 0.010 mSv/week. As specific guidelines for vault modification are lacking, this project quantitativelydemonstrates the potential use of BPE for vault modification. Such modifications may provide alow-cost shielding solution to allow for the use of high energy modes in smaller treatment vaults. © 2012 American Association of Physicists in Medicine.
Application of CFD (Fluent) to LNG spills into geometrically complex environments.
Gavelli, Filippo; Bullister, Edward; Kytomaa, Harri
2008-11-15
Recent discussions on the fate of LNG spills into impoundments have suggested that the commonly used combination of SOURCE5 and DEGADIS to predict the flammable vapor dispersion distances is not accurate, as it does not account for vapor entrainment by wind. SOURCE5 assumes the vapor layer to grow upward uniformly in the form of a quiescent saturated gas cloud that ultimately spills over impoundment walls. The rate of spillage is then used as the source term for DEGADIS. A more rigorous approach to predict the flammable vapor dispersion distance is to use a computational fluid dynamics (CFD) model. CFD codes can take into account the physical phenomena that govern the fate of LNG spills into impoundments, such as the mixing between air and the evaporated gas. Before a CFD code can be proposed as an alternate method for the prediction of flammable vapor cloud distances, it has to be validated with proper experimental data. This paper describes the use of Fluent, a widely-used commercial CFD code, to simulate one of the tests in the "Falcon" series of LNG spill tests. The "Falcon" test series was the only series that specifically addressed the effects of impoundment walls and construction obstructions on the behavior and dispersion of the vapor cloud. Most other tests, such as the Coyote and the Burro series, involved spills onto water and relatively flat ground. The paper discusses the critical parameters necessary for a CFD model to accurately predict the behavior of a cryogenic spill in a geometrically complex domain, and presents comparisons between the gas concentrations measured during the Falcon-1 test and those predicted using Fluent. Finally, the paper discusses the effect vapor barriers have in containing part of the spill thereby shortening the ignitable vapor cloud and therefore the required hazard area. This issue was addressed by comparing the Falcon-1 simulation (spill into the impoundment) with the simulation of an identical spill without any impoundment walls, or obstacles within the impoundment area.
Prediction Model for Impulsive Noise on Structures
2012-09-01
construction usually have an interior wall finish of: a) gypsum wallboard (also called plasterboard or drywall), b) plaster or c) wood paneling... Gypsum Plaster , Wall Board 11,67 0.04 NA For simply-supported beams vibrating in their fundamental mode, the value of KS is needed for...Dev of log10(f0) for wood panel interior to be average for wood walls with plaster or gypsum board interior. (8) L(w) based on estimated standard
Tested R-value for straw bale walls and performance modeling for straw bale homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Commins, T.R.; Stone, N.I.
1998-07-01
Since the late 1800's, houses have been built of straw. Contrary to nursery rhymes, these houses have proved sturdy and comfortable and not at all easy to blow down. In the last several years, as people have experimented with new and old building materials and looked for ways to halt rice field stubble burning, there has been a resurgence of homes built with straw. Unfortunately, there has been very little testing to determine the thermal performance of straw bale walls or to discover how these walls affect a home's heating and cooling energy consumption. Reported R-values for straw bale wallsmore » range from R-17 to R-54, depending on the test procedure, the type of straw used and the type of straw bale wall system. This paper reports on a test set-up by the California Energy Commission (Commission) and conducted in a nationally accredited lab, Architectural Testing Inc. (ATI) in Fresno, California. The paper describes the tested straw bale wall assemblies, the testing process, and problems encountered in the construction and testing of the walls. The paper also gives a reasonable R-value to use in calculating thermal performance of straw bale houses and presents findings that show that straw bale construction can decrease the heating and cooling energy usage of a typical house by up to a third over conventional practice.« less
A seismic analysis for masonry constructions: The different schematization methods of masonry walls
NASA Astrophysics Data System (ADS)
Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo
2017-11-01
Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.
Monostatic ultra-wideband GPR antenna for through wall detection
NASA Astrophysics Data System (ADS)
Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor
2017-11-01
The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2013-01-01
Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.
Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel
NASA Astrophysics Data System (ADS)
Qun, Xie; Shuai, Wang; Chun, Liu
2018-03-01
A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.
1987-11-24
of the assortment of manufactured parts for partial and complete frames, as well as abutments , support walls, and bridgehead construction...Uniform Series II Generation based on anticipated spans; and • Increased effectiveness of prefabrication for steel and masonry bridge construction...support structures and abutments . Parallel to and on an equal par with standard primary construction trades already cited, the scientific-technical
First Exploratory Study on the Ageing of Rammed Earth Material
Bui, Quoc-Bao; Morel, Jean-Claude
2014-01-01
Rammed earth (RE) is attracting renewed interest throughout the world thanks to its “green” characteristics in the context of sustainable building. In this study, the ageing effects on RE material are studied on the walls which have been constructed and exposed for 22 years to natural weathering. First, mechanical characteristics of the “old” walls were determined by two approaches: in-situ dynamic measurements on the walls; laboratory tests on specimens which had been cut from the walls. Then, the walls’ soil was recycled and reused for manufacturing of new specimens which represented the initial state. Comparison between the compressive strength, the Young modulus of the walls after 22 years on site and that of the initial state enables to assess the ageing of the studied walls. PMID:28787920
Behaviour of Masonry Walls under Horizontal Shear in Mining Areas
NASA Astrophysics Data System (ADS)
Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan
2017-12-01
The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio
2014-10-01
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet's mechanism. The results obtained are compared with those provided by the numerical model.
Extended plate and beam demonstration home
Patricia Gunderson; Vladimir Kochkin; Xiping Wang
2018-01-01
An extended plate and beam (EP&B) design was developed at Home Innovation Research Labs (Upper Marlboro, Maryland) in an effort to provide traditional light-frame wall construction details that are compatible with continuous insulating sheathing. This would encourage wide-spread adoption of high-R walls and promote greater energy efficiency in new houses. The...
4. November 1986. INTERIOR OF BUILDING FROM DOOR. (Note unfinished ...
4. November 1986. INTERIOR OF BUILDING FROM DOOR. (Note unfinished rammed earth walls; square holes are from joists used to hold wall forms together during construction. Stairs in view at left go to storage room below.) - Borough House, Dry Well Shelter, State Route 261 & Garners Ferry Road, Stateburg, Sumter County, SC
DETAIL VIEW, WEST WALL OF THE WESTERN STOREROOM. THE MASONRY ...
DETAIL VIEW, WEST WALL OF THE WESTERN STOREROOM. THE MASONRY HEARTH SUPPORT AND RELIEVING ARCH FOR A CHIMNEY MASS PROBABLY NEVER FUNCTIONED AS ENVISIONED, RATHER THEY ARE LIKELY A REMNANT OF A BUILDING SCHEME ABANDONED DURING THE HOUSES INITIAL CONSTRUCTION - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA
Cosarinsky, Marcela I
2011-01-01
The nests of Cornitermes cumulans K. (Isoptera: Termitidae), a very common termite in South American grasslands, display notable morphological transformations during the development of the colony. Young colonies inhabit small subterranean nests that develop into large, conspicuous, epigean mounds, inhabited by very populous colonies. Those macromorphological transformations are accompanied by micromorphological changes occurring gradually in the nest walls. The micromorphological changes during nest development described in the present study expand on previous macromorphological descriptions by explaining the re-organization of the soil components during nest growth. In subterranean nests, walls are composed of piles of lensshaped aggregates of soil material, each one surrounded by a thin organic coating. As the nest grows, mound walls are constructed by disassembling this first lenticular structure and rearranging the materials in a new fabric, where sand grains are loosely distributed among soil microaggregates of organic matter and clay. This is also a temporary construction, because the walls of large nests are composed of a porous mass of sands densely cemented with organic matter and clay in the mound, and a compact mass of the same components in the floor.
Wall shear stress in intracranial aneurysms and adjacent arteries☆
Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Wu, Chen; Zhang, Xiaojun
2013-01-01
Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries. PMID:25206394
NASA Astrophysics Data System (ADS)
Longhi, Pietro
In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for computing generating functions of 2d-4d BPS spectra, based on the topological data of an ideal triangulation of the Riemann surface defining the theory. We provide a set of building blocks and corresponding rules, from which the 2d-4d spectra of a vast class of theories can be algorithmically recovered. Finally, we present previously unpublished exact results on the BPS spectrum of the SU(2) N = 2* theory, and briefly comment on its wall crossing.
1961-09-29
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 29, 1961, shows the progress of the concrete walls for the stand’s foundation. Some of the walls have been poured and some of the concrete forms have been removed.
1961-09-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 22, 1961, shows the progress of the concrete walls for the stand’s foundation. Some of the walls have been poured and some of the concrete forms have been removed.
Willem van de Wall: Organizer and Innovator in Music Education and Music Therapy.
ERIC Educational Resources Information Center
Clair, Alicia Ann; Heller, George N.
1989-01-01
Examines Willem van de Wall's historically significant contributions to seminal literature on music therapy and the influence of music on behavior. Reviews van de Wall's early writings, at his work on music for children, and on music in institutions. Cites his "Music in Hospitals" as the culmination of his work in music therapy, music…
A computational fluid dynamics modeling study of guide walls for downstream fish passage
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2017-01-01
A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.
Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G.; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír
2015-01-01
Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 μm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‐modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702
NASA Astrophysics Data System (ADS)
Wang, Duozhi; Dai, Junwu; Qu, Zhe; Ning, Xiaoqing
2016-06-01
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M s7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior.
Determination of the method of construction of 1650 B.C. wall paintings.
Papaodysseus, Constantin; Fragoulis, Dimitrios K; Panagopoulos, Mihalis; Panagopoulos, Thanasis; Rousopoulos, Panayiotis; Exarhos, Mihalis; Skembris, Angelos
2006-09-01
In this paper, a methodology of general applicability is presented for answering the question if an artist used a number of archetypes to draw a painting or if he drew it freehand. In fact, the contour line parts of the drawn objects that potentially correspond to archetypes are initially spotted. Subsequently, the exact form of these archetypes and their appearance throughout the painting is determined. The method has been applied to celebrated Thera Late Bronze Age wall paintings with full success. It has been demonstrated that the artist or group of artists has used seven geometrical archetypes and seven corresponding well-constructed stencils (four hyperbolae, two ellipses, and one Archimedes' spiral) to draw the wall painting "Gathering of Crocus" in 1650 B.C. This method of drawing seems to be unique in the history of arts and of great importance for archaeology, and the history of mathematics and sciences, as well.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, Roger B.; Dusek, Joseph T.
1984-01-01
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, R.B.; Dusek, J.T.
1983-10-12
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.
Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae
Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.
2004-01-01
The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
Another First at NSLS-II Construction Site
None
2017-12-09
Workers at the NSLS-II ring building construction site recently completed the first complicated concrete pour for the approximately 19-ft.-tall walls of the Utility Tunnel. The continuous pour was the first of its kind, as previous pours have been for foo
7 CFR 3555.101 - Loan purposes.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-wall carpeting, ovens, ranges, refrigerators, washing machines, clothes dryers, heating and cooling... the loan amount to be guaranteed. (c) Combination construction and permanent loan. Loan funds may be used and Rural Development will guarantee a “combination construction and permanent loan” as defined at...
13. Removal of slide material and construction of stone retaining ...
13. Removal of slide material and construction of stone retaining wall to protect highway. Zion NP negative no. 2084. Photographer: Russell K. Grater, 1941. - Floor of the Valley Road, Between Zion-Mt. Carmel Highway & Temple of Sinawava, Springdale, Washington County, UT
The yield and post-yield behavior of high-density polyethylene
NASA Technical Reports Server (NTRS)
Semeliss, M. A.; Wong, R.; Tuttle, M. E.
1990-01-01
An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.
Technical - Economic Research for Passive Buildings
NASA Astrophysics Data System (ADS)
Miniotaite, Ruta
2017-10-01
A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.
Shima, Fumiaki; Narita, Hirokazu; Hiura, Ayami; Shimoda, Hiroshi; Akashi, Mitsuru
2017-03-01
There is considerable global demand for three-dimensional (3D) functional tissues which mimic our native organs and tissues for use as in vitro drug screening systems and in regenerative medicine. In particular, there has been an increasing number of patients who suffer from arterial diseases such as arteriosclerosis. As such, in vitro 3D arterial wall models that can evaluate the effects of novel medicines and a novel artificial graft for the treatment are required. In our previous study, we reported the rapid construction of 3D tissues by employing a layer-by-layer (LbL) technique and revealed their potential applications in the pharmaceutical fields and tissue engineering. In this study, we successfully constructed a 3D arterial wall model containing vasa vasorum by employing a LbL technique for the first time. The cells were coated with extracellular matrix nanofilms and seeded into a culture insert using a cell accumulation method. This model had a three-layered hierarchical structure: a fibroblast layer, a smooth muscle layer, and an endothelial layer, which resembled the native arterial wall. Our method could introduce vasa vasorum into a fibroblast layer in vitro and the 3D arterial wall model showed barrier function which was evaluated by immunostaining and transendothelial electrical resistance measurement. Furthermore, electron microscopy observations revealed that the vasa vasorum was composed of single-layered endothelial cells, and the endothelial tubes were surrounded by the basal lamina, which are known to promote maturation and stabilization in native blood capillaries. These models should be useful for tissue engineering, regenerative medicine, and pharmaceutical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 814-823, 2017. © 2016 Wiley Periodicals, Inc.
Pierson, Daniel; Edick, Jacob; Tauscher, Aaron; Pokorney, Ellen; Bowen, Patrick; Gelbaugh, Jesse; Stinson, Jon; Getty, Heather; Lee, Chee Huei; Drelich, Jaroslaw; Goldman, Jeremy
2012-01-01
Metal stents are commonly used to revascularize occluded arteries. A bioabsorbable metal stent that harmlessly erodes away over time may minimize the normal chronic risks associated with permanent implants. However, there is no simple, low-cost method of introducing candidate materials into the arterial environment. Here, we developed a novel experimental model where a biomaterial wire is implanted into a rat artery lumen (simulating bioabsorbable stent blood contact) or artery wall (simulating bioabsorbable stent matrix contact). We use this model to clarify the corrosion mechanism of iron (≥99.5 wt %), which is a candidate bioabsorbable stent material due to its biocompatibility and mechanical strength. We found that iron wire encapsulation within the arterial wall extracellular matrix resulted in substantial biocorrosion by 22 days, with a voluminous corrosion product retained within the vessel wall at 9 months. In contrast, the blood-contacting luminal implant experienced minimal biocorrosion at 9 months. The importance of arterial blood versus arterial wall contact for regulating biocorrosion was confirmed with magnesium wires. We found that magnesium was highly corroded when placed in the arterial wall but was not corroded when exposed to blood in the arterial lumen for 3 weeks. The results demonstrate the capability of the vascular implantation model to conduct rapid in vivo assessments of vascular biomaterial corrosion behavior and to predict long-term biocorrosion behavior from material analyses. The results also highlight the critical role of the arterial environment (blood vs. matrix contact) in directing the corrosion behavior of biodegradable metals. Copyright © 2011 Wiley Periodicals, Inc.
Spray Foam Exterior Insulation with Stand-Off Furring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herk, Anastasia; Baker, Richard; Prahl, Duncan
IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizesmore » physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.« less
Spray Foam Exterior Insulation with Stand-Off Furring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herk, Anatasia; Baker, Richard; Prahl, Duncan
IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizesmore » physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.« less
Propagation behavior of the stress wave in a hollow Hopkinson transmission bar
NASA Astrophysics Data System (ADS)
Zou, G.; Shen, X.; Guo, C.; Vecchio, K. S.; Jiang, F.
2018-03-01
In order to investigate the stress wave propagation behavior through a hollow elastic bar that is used in a Hopkinson-bar-loaded fracture testing system, three-point bending fracture experiments were performed in such a system. The effects of sample span and diameter and wall thickness of the hollow elastic bar on the stress wave propagation behavior were studied numerically using the software of ANSYS/LS-DYNA. The experimental results demonstrated that the incident, reflected, and transmitted pulses calculated by the finite element method are coincident with those obtained from the Hopkinson-bar-loaded fracture tests. Compared to the solid transmission bar, the amplitude of the transmitted pulse is relatively larger in the hollow transmission bar under the same loading conditions and decreases with increasing wall thickness. On the other hand, when the inside diameter is fixed, the effect of the wall thickness on the stress wave characteristics is more obvious.
NASA Astrophysics Data System (ADS)
Xie, Qi
Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.
Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction
NASA Astrophysics Data System (ADS)
Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.
2014-12-01
This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.
NASA Astrophysics Data System (ADS)
Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong
2018-01-01
Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.
Ammana Market Renovation Majjasim, Iraq. Sustainment Assessment
2009-07-30
compaction, and placement of 65 meter (m) x 45m x 15 centimeter (cm) concrete pads construction of four steel market stall roofs construction of a 1,771...framing and roofing construction of six benches construction of a security wall, including: reinforced concrete posts and cross beams with...performed only an expedited assessment of the areas available; a complete review of all work completed was not possible. Concrete Pad The SOW required
A study of the acoustic-optic effect in nematics
NASA Astrophysics Data System (ADS)
Hayes, C. F.
1980-12-01
The program of this contract has been to study the acousto-optic effect which occurs in nematic liquid crystals when excited by acoustic waves. Both theory and practical application are presented. Hydrodynamic equations were solved which govern the streaming and obtained a solution for the magnitude of the fluid speed and flow pattern for a small disc shaped liquid crystal. A sample, doped with grains, was used to test the solution experimentally. A series of cells was constructed and tested which, in fact, showed that an acoustic wavefront pattern can be visualized with this technique. During the second year of the contract we developed and tested a mathematical model which prescribes how a cell should be constructed in terms of: the densities of the cell walls, liquid crystal, and surrounding fluids; the thickness of the cell walls and liquid crystal layer; the acoustic speeds in cell wall (shear and longitudinal), liquid crystal, and surrounding fluids; acoustic frequency; and the incident acoustic bean angle. Cells were also constructed and tested in which an electric field could be applied simultaneously with the acoustic wave in such a way that the sensitivity of the cell to the acoustic field could be adjusted.
Testing reflective insulation for improvement of buildings energy efficiency
NASA Astrophysics Data System (ADS)
Vrachopoulos, Michalis Gr.; Koukou, Maria K.; Stavlas, Dimitris G.; Stamatopoulos, Vasilis N.; Gonidis, Achilleas F.; Kravvaritis, Eleftherios D.
2012-03-01
Reflective insulation stands as an alternative to common building materials used to reduce a building's heating and cooling loads. In this work, an experimental prototype chamber facility has been designed and constructed at the campus of the Technological Educational Institution of Halkida, located in an area of climatic zone B in Greece, aiming to the evaluation of reflective insulation's performance. Reflective insulation is a part of the test room wall construction, specifically, heat insulation material of the vertical wall construction all directions (North, South, East, West), and temperature and water proofing element of the roof. Measurements were obtained for both winter and summer periods. Results indicate that the existence of reflective insulation during summer period averts the overheating at the interior of the experimental chamber, while during winter the heat is retained in the chamber.
Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki
2010-01-01
Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1988-01-01
The first documented wind tunnel employing a flexible walled test section for the purpose of eliminating wall interference was constructed in England by the National Physical Laboratory (NPL) during the late 1930's. The tunnel was transonic and designed for two-dimensional testing. In an attempt to eliminate the top and bottom wall interference effects on the model NPL developed a strategy to adjust two flexible walls to streamlined shapes. This report covers an evaluation of the NPL wall adjustment strategy in a modern wind tunnel, e.g., the Transonic Self-Streamlining Wind Tunnel (TSWT) at the University of Southampton, England. The evaluation took the form of performance comparisons with other modern strategies which have been developed for use in, and proven in, the TSWT.
Photographic reproduction of original construction drawing, ca. 1930: " Section ...
Photographic reproduction of original construction drawing, ca. 1930: " Section rear wall drill hall" and "Front elevation" original drawing in possession of the Wyoming Army National Guard, Cheyenne, Wyoming - Torrington Armory, West of intersection of U.S. Routes 85 & 26, Torrington, Goshen County, WY
A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch
He, Fan; Hua, Lu; Gao, Li-jian
2015-01-01
Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors. PMID:27019580
Skyrmion domain wall collision and domain wall-gated skyrmion logic
NASA Astrophysics Data System (ADS)
Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan
2016-08-01
Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.
Xeno-Racism and Discursive Construction of "Us" vs. "Them": Cosa Nostra, Wall Street, and Immigrants
ERIC Educational Resources Information Center
Catalano, Theresa
2011-01-01
In this dissertation, the denaturalization of migrants in the US and Italy as represented in newspaper crime reports was identified and compared to the opposing naturalization of Italian crime organizations in Italy and Wall Street/corporate criminals in the US. This was accomplished through careful, multidisciplinary, scientific analysis of over…
Modelling Force Transfer Around Openings of Full-Scale Shear Walls
Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker
2011-01-01
Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...
Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta
2015-01-01
Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...
Extended Plate and Beam Wall System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunderson, Patti
Home Innovation Research Labs studied the extended plate and beam wall (EP&B) system during a two-year period from mid-2015 to mid-2017 to determine the wall’s structural performance, moisture durability, constructability, and costeffectiveness for use as a high-R enclosure system for energy code minimum and above-code performance in climate zones 4–8.
Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S
2012-04-13
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
Friction Stir Welding of Line-Pipe Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, Samuel; Mahoney, Murray; Feng, Zhili
Friction stir welding (FSW) offers both economic and technical advantages over conventional fusion welding practices for welding line-pipe. For offshore line-pipe construction, the economic savings has been shown to be considerable, approaching a calculated 25%. Offshore pipe is relatively small diameter but heavy wall compared to onshore pipe. One concern is the ability to achieve consistent full weld penetration in an on-site offshore FSW operation, e.g., on a lay-barge. In addition, depending on the size and morphology of the unwelded zone, lack of penetration at the weld root can be difficult if not impossible to detect by conventional NDE methods.more » Thus, an approach to assure consistent full penetration via process control is required for offshore line-pipe construction using FSW. For offshore construction, an internal structural mandrel can be used offering the opportunity to use a sacrificial anvil FSW approach. With this approach, a small volume of sacrificial material can be inserted into the structural anvil. The FSW tool penetrates into the sacrificial anvil, beyond the inner diameter of the pipe wall, thus assuring full penetration. The sacrificial material is subsequently removed from the pipe inner wall. In the work presented herein, FSW studies were completed on both 6 mm and 12 mm wall thickness line-pipe. Lastly, post-FSW evaluations including radiography, root-bend tests, and metallography demonstrated the merits of the sacrificial anvil approach to achieve consistent full penetration.« less
Intermittent nature of acceleration in near wall turbulence.
Lee, Changhoon; Yeo, Kyongmin; Choi, Jung-Il
2004-04-09
Using direct numerical simulation of a fully developed turbulent channel flow, we investigate the behavior of acceleration near a solid wall. We find that acceleration near the wall is highly intermittent and the intermittency is in large part associated with the near wall organized coherent turbulence structures. We also find that acceleration of large magnitude is mostly directed towards the rotation axis of the coherent vortical structures, indicating that the source of the intermittent acceleration is the rotational motion associated with the vortices that causes centripetal acceleration.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.
2013-01-01
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.
Bound eigenstate dynamics under a sudden shift of the well's wall
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2010-03-01
We investigate the dynamics of the eigenstate of an infinite well under an abrupt shift of the well’s wall. It is shown that when the shift is small compared to the initial well’s dimensions, the short-time behavior changes from the well-known t3/2 behavior to t1/2. It is also shown that the complete dynamical picture converges to a universal function, which has fractal structure with dimensionality D=1.25.
Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level
NASA Astrophysics Data System (ADS)
Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki
2017-10-01
Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.
NASA Astrophysics Data System (ADS)
Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein
2018-05-01
The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.
NASA Astrophysics Data System (ADS)
Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein
2018-04-01
The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.
Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows
NASA Astrophysics Data System (ADS)
Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki
2017-06-01
Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.
Importance of Tensile Strength on the Shear Behavior of Discontinuities
NASA Astrophysics Data System (ADS)
Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.
2012-05-01
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.
Vascular mechanics of the coronary artery
NASA Technical Reports Server (NTRS)
Veress, A. I.; Vince, D. G.; Anderson, P. M.; Cornhill, J. F.; Herderick, E. E.; Klingensmith, J. D.; Kuban, B. D.; Greenberg, N. L.; Thomas, J. D.
2000-01-01
This paper describes our research into the vascular mechanics of the coronary artery and plaque. The three sections describe the determination of arterial mechanical properties using intravascular ultrasound (IVUS), a constitutive relation for the arterial wall, and finite element method (FEM) models of the arterial wall and atheroma. METHODS: Inflation testing of porcine left anterior descending coronary arteries was conducted. The changes in the vessel geometry were monitored using IVUS, and intracoronary pressure was recorded using a pressure transducer. The creep and quasistatic stress/strain responses were determined. A Standard Linear Solid (SLS) was modified to reproduce the non-linear elastic behavior of the arterial wall. This Standard Non-linear Solid (SNS) was implemented into an axisymetric thick-walled cylinder numerical model. Finite element analysis models were created for five age groups and four levels of stenosis using the Pathobiological Determinants of Atherosclerosis Youth (PDAY) database. RESULTS: The arteries exhibited non-linear elastic behavior. The total tissue creep strain was epsilon creep = 0.082 +/- 0.018 mm/mm. The numerical model could reproduce both the non-linearity of the porcine data and time dependent behavior of the arterial wall found in the literature with a correlation coefficient of 0.985. Increasing age had a strong positive correlation with the shoulder stress level, (r = 0.95). The 30% stenosis had the highest shoulder stress due to the combination of a fully formed lipid pool and a thin cap. CONCLUSIONS: Studying the solid mechanics of the arterial wall and the atheroma provide important insights into the mechanisms involved in plaque rupture.
DOT National Transportation Integrated Search
2010-12-01
As part of a national experiment sponsored by the FHWA under the Innovative Bridge Research and Construction (IBRC) : program, CDOT used self-consolidating concrete (SCC) to construct abutments, piers, and retaining walls on a bridge : replacement pr...
29 CFR 1926.704 - Requirements for precast concrete.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural framing...
8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CASTINPLACE ...
8. VIEW OF NEW CONSTRUCTION ON LAUNCH DECK WITH CAST-IN-PLACE CONCRETE WALLS AND STEEL STRUCTURE FOR NEW SOUTH-FACING FLAME DEFLECTOR; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Modeling and analysis to quantify MSE wall behavior and performance.
DOT National Transportation Integrated Search
2009-08-01
To better understand potential sources of adverse performance of mechanically stabilized earth (MSE) walls, a suite of analytical models was studied using the computer program FLAC, a numerical modeling computer program widely used in geotechnical en...
Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberatore, Laura; Tocci, Cesare; Masiani, Renato
2008-07-08
In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building inmore » which the r.c. internal frames are replaced with masonry walls.« less
Determining building interior structures using compressive sensing
NASA Astrophysics Data System (ADS)
Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse
2013-04-01
We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.
Experience of light thin-walled structures improvement in construction
NASA Astrophysics Data System (ADS)
Frolovskaia, A. V.; Deordiev, S. V.; Falk, A.; Klinduh, N. Y.; Terehova, I. I.
2018-05-01
The authors on the basis of practical experience have analyzed low-rise construction with the use of energy-saving technologies. Characteristic features of possible variants of frame construction are looked at and described. The relevance of the paper consists in the improvement of the building frame design solution based on the analysis and elimination of disadvantages taking into account consumers’ point of view.
Interaction between a laminar starting immersed micro-jet and a parallel wall
NASA Astrophysics Data System (ADS)
Cabaleiro, Juan Martin; Laborde, Cecilia; Artana, Guillermo
2015-01-01
In the present work, we study the starting transient of an immersed micro-jet in close vicinity to a solid wall parallel to its axis. The experiments concern laminar jets (Re < 200) issuing from a 100 μm internal tip diameter glass micro-pipette. The effect of the confinement was studied placing the micro-pipette at different distances from the wall. The characterization of the jet was carried out by visualizations on which the morphology of the vortex head and trajectories was analyzed. Numerical simulations were used as a complementary tool for the analysis. The jet remains stable for very long distances away from the tip allowing for a similarity analysis. The self-similar behavior of the starting jet has been studied in terms of the frontline position with time. A symmetric and a wall dominated regime could be identified. The starting jet in the wall type regime, and in the symmetric regime as well, develops a self-similar behavior that has a relative rapid loss of memory of the preceding condition of the flow. Scaling for both regimes are those that correspond to viscous dominated flows.
Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination
NASA Astrophysics Data System (ADS)
Tonon, D.; Moers, E. M. T.; Hirschberg, A.
2013-04-01
Well known examples of acoustical dampers are the aero-engine liners, the IC-engine exhaust mufflers, and the liners in combustion chambers. These devices comprise wall perforations, responsible for their sound absorbing features. Understanding the effect of the flow on the acoustic properties of a perforation is essential for the design of acoustic dampers. In the present work the effect of a grazing-bias flow combination on the impedance of slit shaped wall perforations is experimentally investigated by means of a multi-microphone impedance tube. Measurements are carried out for perforation geometries relevant for in technical applications. The focus of the experiments is on the low Strouhal number (quasi-steady) behavior. Analytical models of the steady flow and of the low frequency aeroacoustic behavior of a two-dimensional wall perforation are proposed for the case of a bias flow directed from the grazing flow towards the opposite side of the perforated wall. These theoretical results compare favorably with the experiments, when a semi-empirical correction is used to obtain the correct limit for pure bias flow.
Behavior of Steel-Sheathed Shear Walls Subjected to Seismic and Fire Loads.
Hoehler, Matthew S; Smith, Christopher M; Hutchinson, Tara C; Wang, Xiang; Meacham, Brian J; Kamath, Praveen
2017-07-01
A series of tests was conducted on six 2.7 m × 3.7 m shear wall specimens consisting of cold-formed steel framing sheathed on one side with sheet steel adhered to gypsum board and on the opposite side with plain gypsum board. The specimens were subjected to various sequences of simulated seismic shear deformation and fire exposure to study the influence of multi-hazard interactions on the lateral load resistance of the walls. The test program was designed to complement a parallel effort at the University of California, San Diego to investigate a six-story building subjected to earthquakes and fires. The test results reported here indicate that the fire exposure caused a shift in the failure mode of the walls from local buckling of the sheet steel in cases without fire exposure, to global buckling of the sheet steel with an accompanying 35 % reduction in lateral load capacity after the wall had been exposed to fire. This behavior appears to be predictable, which is encouraging from the standpoint of residual lateral load capacity under these severe multi-hazard actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, Gabriele, E-mail: milani@stru.polimi.it; Olivito, Renato S.; Tralli, Antonio
2014-10-06
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim ofmore » both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.« less
Wall-collision line broadening of molecular oxygen within nanoporous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan
2011-10-15
Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressuremore » and Doppler broadening.« less
AERIAL VIEW, LOOKING NORTH. THE STRUCTURES WITHIN THE WALLED PRECINCT ...
AERIAL VIEW, LOOKING NORTH. THE STRUCTURES WITHIN THE WALLED PRECINCT ONE BLOCK TO THE NORTH OF THE PENITENTIARY (ALONG THE TOP OF THE PHOTOGRAPH) COMPRISE GIRARD COLLEGE. ESTABLISHED IN 1833 UPON THE DEATH OF STEPHEN GIRARD, THE PRECINCT WALL AND ORIGINAL BUILDINGS WERE CONSTRUCTED BETWEEN 1833 AND 1848 ON DESIGNS BY WILLIAM STRICKLAND, WHICH WERE CONCEIVED WITHIN PARAMETERS SET BY GIRARDS WILL. THE SCHOOL IS STILL USED FOR ITS INTENDED EDUCATIONAL FUNCTION. SEE HABS NO. PA-1731 FOR ADDITIONAL INFORMATION. - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA
Solar energy thermalization and storage device
McClelland, John F.
1981-09-01
A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.
Sahoo, B K; Sapra, B K; Gaware, J J; Kanse, S D; Mayya, Y S
2011-06-01
In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on ²²⁶Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. Copyright © 2011 Elsevier B.V. All rights reserved.
Microbial specialists in below-grade foundation walls in Scandinavia.
Nunez, M; Hammer, H
2014-10-01
Below-grade foundation walls are often exposed to excessive moisture by water infiltration, condensation, leakage, or lack of ventilation. Microbial growth in these structures depends largely on environmental factors, elapsed time, and the type of building materials and construction setup. The ecological preferences of Actinomycetes (Actinobacteria) and the molds Ascotricha chartarum, Myxotrichum chartarum (Ascomycota), Geomyces pannorum, and Monocillium sp. (Hyphomycetes) have been addressed based on analyses of 1764 samples collected in below-grade spaces during the period of 2001-2012. Our results show a significant correlation between these taxa and moist foundation walls as ecological niches. Substrate preference was the strongest predictor of taxa distribution within the wall, but the taxa's physiological needs, together with gradients of abiotic factors within the wall structure, also played a role. Our study describes for the first time how the wall environment affects microbial growth. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Partial Insulation of Aerated Concrete Wall in its Thermal Bridge Regions
NASA Astrophysics Data System (ADS)
Li, Baochang; Guo, Lirong; Li, Yubao; Zhang, Tiantian; Tan, Yufei
2018-01-01
As a self-insulating building material which can meet the 65 percent energy-efficiency requirements in cold region of China, aerated concrete blocks often go moldy, frost heaving, or cause plaster layer hollowing at thermal bridge parts in the extremely cold regions due to the restrictions of environmental climate and construction technique. In this paper, partial insulation measures of the thermal-bridge position of these parts of aerated concrete walls are designed to weaken or even eliminate thermal bridge effect and improve the temperature of thermal-bridge position. A heat transfer calculation model for L-shaped wall and T-shaped wall is developed. Based on the simulation result, the influence of the thickness on the temperature field is analyzed. Consequently, the condensation inside self-thermal-insulating wall and frost heaving caused by condensation and low temperature will be reduced, avoiding damage to the wall body from condensation..
Walls, Towers, and Sphinxes: Multicultural Concept Construction and Group Inquiry
ERIC Educational Resources Information Center
Bisland, Beverly Milner
2005-01-01
One can easily identify the United States of America by the Statue of Liberty, France by the Eiffel Tower, Egypt by its Great Sphinx, and China by its Great Wall. What do these landmarks tell people about these places? What are the characteristics of the place and culture that are symbolized by these landmarks? These questions can serve as the…
USDA-ARS?s Scientific Manuscript database
An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...
8. BUILDING NO. 611. INTERIOR OF ARMOR PLATELINED TESTING CHAMBER. ...
8. BUILDING NO. 611. INTERIOR OF ARMOR PLATE-LINED TESTING CHAMBER. 1/2' THICK ARMOR PLATING BOLTED TO WALLS, FLOOR AND CEILING. WALLS CONSTRUCTED OF 24' THICK REINFORCED CONCRETE. VENTS IN CEILING EXHAUST SMOKE FROM EXPLOSIONS. SMALLEST WHEELED VEHICLES HOLD DUDS. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
USDA-ARS?s Scientific Manuscript database
Lmof2365_2117 is a Listeria monocytogenes putative cell wall surface anchor protein with a conserved domain found in collagen binding proteins. We constructed a deletion mutation in lmof2365_2117 in serotype 4b strain F2365, evaluated its virulence, and determined its ability to adhere and invade co...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... landward of the existing seawall face and result in a net setback of the wall from its existing location. The majority of seawall construction would occur behind a temporary steel sheet pile containment wall... installed in upland areas are not expected to result in the take of marine mammals because sound levels...
11. Photocopy of photograph (original color slide made in 1974 ...
11. Photocopy of photograph (original color slide made in 1974 by Henry D. Boykin, II, A.I.A., of Camden, South Carolina, and kept in his possession) OBLIQUE VIEW, SECTION OF SOUTH WALL OF NAVE SHOWING INTERNAL CONSTRUCTION OF ORIGINAL BRICK BUTTRESS AND RAMMED EARTH WALL. - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC
Cosarinsky, Marcela I.
2011-01-01
The nests of Cornitermes cumulans K. (Isoptera: Termitidae), a very common termite in South American grasslands, display notable morphological transformations during the development of the colony. Young colonies inhabit small subterranean nests that develop into large, conspicuous, epigean mounds, inhabited by very populous colonies. Those macromorphological transformations are accompanied by micromorphological changes occurring gradually in the nest walls. The micromorphological changes during nest development described in the present study expand on previous macromorphological descriptions by explaining the re-organization of the soil components during nest growth. In subterranean nests, walls are composed of piles of lensshaped aggregates of soil material, each one surrounded by a thin organic coating. As the nest grows, mound walls are constructed by disassembling this first lenticular structure and rearranging the materials in a new fabric, where sand grains are loosely distributed among soil microaggregates of organic matter and clay. This is also a temporary construction, because the walls of large nests are composed of a porous mass of sands densely cemented with organic matter and clay in the mound, and a compact mass of the same components in the floor. PMID:22224433
Architectural Drafting, Drafting 2: 9255.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course covers the basic fundamentals of architectural drafting and is not intended to delve into the more advanced phases of architecture. The student is presented with standards and procedures, and will become proficient in layout of floor plans, electrical plans, roof construction, foundation plans, typical wall construction, plot plans, and…
4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF ...
4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF CONTROL BUNKER (TRANSFORMER, HYDRAULIC TANK, PUMP, MOTOR). SHOWS UNLINED CORRUGATED METAL WALL. CAMERA FACING EAST. INEL PHOTO NUMBER 65-5433, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
EFFECTIVENESS OF RADON CONTROL FEATURES IN NEW HOUSE CONSTRUCTION - SOUTH CENTRAL FLORIDA
The report gives results of a study to evaluate the effectiveness of two slab types (monolithic and slab-in-stem wall) in retarding radon entry in new homes built in accordance with the State of Florida's proposed radon standard for new construction over high radon potential soil...
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT ...
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT OF MTR BUILDING, TRA-603. WOOD PLANKS REST ON CANAL WALL OBSERVABLE IN FOREGROUND. INL NEGATIVE NO. 11745. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2014 CFR
2014-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2012 CFR
2012-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2013 CFR
2013-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
9 CFR 354.222 - Floors, walls, ceilings, etc.
Code of Federal Regulations, 2011 CFR
2011-01-01
... prepared or handled shall be constructed of or finished with materials impervious to moisture, so they can... prepared or handled shall be smooth and constructed of materials impervious to moisture to a height of 6... finished with moisture-resistant material. (c) Ceilings. Ceilings must be moisture-resistant in rooms where...
Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.
DOT National Transportation Integrated Search
2011-12-01
We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...
A numerical evaluation of the dynamical systems approach to wall layer turbulence
NASA Technical Reports Server (NTRS)
Berkooz, Gal
1990-01-01
This work attempts to test predictions based on the Dynamical Systems approach to Wall Layer Turbulence. We analyze the Dynamical Systems model for the nonlinear interaction mechanisms between the coherent structures and deduce qualitative behavior as expected. We then test for this behavior in data sets from D.N.S. The agreement is good, given the suboptimal conditions for the test. We discuss implications of this test and work to be done to deepen the understanding of control of turbulent boundary layers.
Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure
NASA Astrophysics Data System (ADS)
Zhang, Zhuangnan; Zhang, Yan
2018-03-01
With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.
Green Construction in Building Renovation
NASA Astrophysics Data System (ADS)
Ksit, Barbara; Majcherek, Michał
2016-06-01
Modern materials and construction solutions draw more and more attention to ecology and building certification. Among the criteria appearing in revitalization, an important element is bringing plants back into heavily urbanized areas. In its natural form, this is not possible to carry out everywhere, often requiring large amounts of space. Nowadays, however, there are a number of green roofs and green wall systems, allowing "greener" construction without making significant changes in the urban environment. The article includes a presentation and analysis of selected solutions of biological surfaces known as green roofs and green walls, specifying various solutions and their most important features. The case study focuses primarily on material and design solutions, as well as the potential benefits, risks and limitations in their use. Plants structures on the surfaces of vertical and horizontal partitions continue to be a very interesting alternative to take into account when applying for grants, such as LEED or BREEAM certificates.
Mechanical properties on geopolymer brick: A review
NASA Astrophysics Data System (ADS)
Deraman, L. M.; Abdullah, M. M. A.; Ming, L. Y.; Ibrahim, W. M. W.; Tahir, M. F. M.
2017-09-01
Bricks has stand for many years as durable construction substantial, especially in the area of civil engineering to construct buildings. Brick commonly used in the structure of buildings as a construction wall, cladding, facing perimeter, paving, garden wall and flooring. The contribution of ordinary Portland cement (OPC) in cement bricks production worldwide to greenhouse gas emissions. Due to this issue, some researchers have done their study with other materials to produce bricks, especially as a by-product material. Researchers take effort in this regard to synthesizing from by-product materials such as fly ash, bottom ash and kaolin that are rich in silicon and aluminium in the development of inorganic alumina-silicate polymer, called geopolymer Geopolymer is a polymerization reaction between various aluminosilicate oxides with silicates solution or alkali hydroxide solution forming polymerized Si-O-Al-O bonds. This paper summarized some research finding of mechanical properties of geopolymer brick using by-product materials.
Study of radial die-wall pressure changes during pharmaceutical powder compaction.
Abdel-Hamid, Sameh; Betz, Gabriele
2011-04-01
In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P < 0.0001) increased for all materials, with increasing precompaction RDP decreased for plastic materials (P < 0.05), whereas with increasing speed MDP decreased for all materials (P < 0.05). During decompression, microcrystalline cellulose and pre-gelatinized starch showed higher axial relaxation, whereas mannitol and lactose showed higher radial relaxation, calcium hydrogen phosphate showed high axial and radial relaxations. Plastic and brittle materials showed increased tendencies for friction because of high radial relaxation. Die-wall monitoring is suggested as a valuable tool for characterizing compaction behavior of materials and detecting friction phenomena in the early stage of development.
Optimal feedback control of turbulent channel flow
NASA Technical Reports Server (NTRS)
Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz
1993-01-01
Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.
Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Morgan, Daniel G.; Lee, George
1986-01-01
The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.
Engineering fabrics in transportation construction
NASA Astrophysics Data System (ADS)
Herman, S. C.
1983-11-01
The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Schultz, Marc R.
2012-01-01
A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.
Van der Waals model for phase transitions in thermoresponsive surface films.
McCoy, John D; Curro, John G
2009-05-21
Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.
NASA Technical Reports Server (NTRS)
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.
Bandura, A V; Evarestov, R A; Lukyanov, S I
2014-07-28
A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.
NASA Astrophysics Data System (ADS)
Simonson, Scott; Hua, Peng; Luobin, Yan; Zhi, Chen
2016-04-01
Important to the evolution of Danxia landforms is how the rock cliffs are in large part shaped by rock collapse events, ranging from small break offs to large collapses. Quantitative research of Danxia landform evolution is still relatively young. In 2013-2014, Chinese and Slovak researchers conducted joint research to measure deformation of two large rock walls. In situ measurements of one rock wall found it to be stable, and Ps-InSAR measurements of the other were too few to be validated. Research conducted this year by Chinese researchers modeled the stress states of a stone pillar at Mt. Langshan, in Hunan Province, that toppled over in 2009. The model was able to demonstrate how stress states within the pillar changed as the soft basal layer retreated, but was not able to show the stress states at the point of complete collapse. According to field observations, the back side of the pillar fell away from the entire cliff mass before the complete collapse, and no models have been able to demonstrate the mechanisms behind this behavior. A further understanding of the mechanisms controlling rockfall events in Danxia landforms is extremely important because these stunning sceneries draw millions of tourists each year. Protecting the tourists and the infrastructure constructed to accommodate tourism is of utmost concern. This research will employ a UAV to as universally as possible photograph a stone pillar at Mt. Langshan that stands next to where the stone pillar collapsed in 2009. Using the recently developed structure-from-motion technique, a 3D model of the pillar will be constructed in order to extract geometrical data of the entire slope and its structural fabric. Also in situ measurements will be taken of the slope's toe during the field work exercises. These data are essential to constructing a realistic discrete element model using the 3DEC code and perform a kinematic analysis of the rock mass. Intact rock behavior will be based on the Mohr Coulomb Plasticity Model. Physical and mechanical parameters of the continuum and discontinuum elements will be gathered from laboratory experiments and used as constitutive criteria parameters within the 3DEC model. This research hopes to show how easily and relatively cheaply previously unaccessible Danxia landform geometrical data can be obtained using readily available photographic and software technologies. Also, obtaining a clearer quantitative understanding of the mechanisms controlling slope failure in Danxia landscapes will help future land planners appropriately take advantage of these outstanding scenic sites.
Research Advances on Fabricated Shear Wall System
NASA Astrophysics Data System (ADS)
Liu, Xudong; Wang, Donghui; Wang, Sheng; Zhai, Yu
2018-03-01
With the rapid development of the construction industry, building energy consumption has been increasing, has become a problem that can not be ignored. It is imperative to develop energy-saving buildings. A new type of prefabricated shear wall is assembled and partially assembled by prefabricated parts, and some concrete is spliced together. The new structure has good integrity, seismic resistance and excellent energy saving and environmental protection performance. It reduces building energy consumption to a great extent. Therefore, the design method, manufacturing process, site assembly process and key technical problems of the system are discussed. For the construction industry gradually entered the energy conservation, environmental protection, safety and durability of sustainable development laid the foundation.
Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.
2005-01-01
In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.
CFD-DEM study of effect of bed thickness for bubbling fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul
2011-10-01
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less
Methane storage in nanoporous material at supercritical temperature over a wide range of pressures
Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu
2016-01-01
The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747
Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete
NASA Astrophysics Data System (ADS)
Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor
2018-03-01
High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.
Salt attack in parking garage in block of flats
NASA Astrophysics Data System (ADS)
Beran, Pavel; Frankeová, Dita; Pavlík, Zbyšek
2017-07-01
In recent years many new block of flats with parking garages placed inside the buildings were constructed. This tendency brings beyond question benefits for residents and also for city planning, but it requires new design and structural approaches and advanced material and construction solutions. The analysis of plaster damage on partition wall in parking garage in one of these buildings is presented in the paper. The damage of studied plaster is caused by the salts which are transported together with snow on cars undercarriage into garage area during winter. The snow melts and water with dissolved salts is transported by the capillary suction from concrete floor into the rendered partition wall. Based on the interior temperature, adsorbed water with dissolved chlorides evaporates and from the over saturated pore solution are formed salt crystals that damages the surface plaster layers. This damage would not occur if the partition wall was correctly isolated from the floor finish layer in the parking garage.
A rule-based expert system applied to moisture durability of building envelopes
Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.; ...
2018-01-09
The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less
A rule-based expert system applied to moisture durability of building envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.
The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less
NASA Technical Reports Server (NTRS)
Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)
2002-01-01
The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. Copyright 2002 Wiley Periodicals, Inc.
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, construction workers survey the last outside wall of the Propellants North Administrative and Maintenance Facility. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
a 3d GIS Method Applied to Cataloging and Restoring: the Case of Aurelian Walls at Rome
NASA Astrophysics Data System (ADS)
Canciani, M.; Ceniccola, V.; Messi, M.; Saccone, M.; Zampilli, M.
2013-07-01
The project involves architecture, archaeology, restoration, graphic documentation and computer imaging. The objective is development of a method for documentation of an architectural feature, based on a three-dimensional model obtained through laser scanning technologies, linked to a database developed in GIS environment. The case study concerns a short section of Rome's Aurelian walls, including the Porta Latina. The city walls are Rome's largest single architectural monument, subject to continuous deterioration, modification and maintenance since their original construction beginning in 271 AD. The documentation system provides a flexible, precise and easily-applied instrument for recording the full appearance, materials, stratification palimpsest and conservation status, in order to identify restoration criteria and intervention priorities, and to monitor and control the use and conservation of the walls over time. The project began with an analysis and documentation campaign integrating direct, traditional recording methods with indirect, topographic instrument and 3D laser scanning recording. These recording systems permitted development of a geographic information system based on three-dimensional modelling of separate, individual elements, linked to a database and related to the various stratigraphic horizons, the construction techniques, the component materials and their state of degradation. The investigations of the extant wall fabric were further compared to historic documentation, from both graphic and descriptive sources. The resulting model constitutes the core of the GIS system for this specific monument. The methodology is notable for its low cost, precision, practicality and thoroughness, and can be applied to the entire Aurelian wall and to other monuments.
A new concept of precast concrete retaining wall: from laboratory model to the in-situ tests
NASA Astrophysics Data System (ADS)
Bui, T. T.; Tran, H. V.; Limam, A.; Bost, M.; Bui, Q. B.; Robit, P.
2018-04-01
A new concept for the soil nail walls is here proposed and validated through experimental and numerical approaches. This process, based on the use of precast elements that are easier to install, is cheaper and more aesthetic than the classical methods, but the main advantage is reducing the cement consumption which conducts to divided carbon footprint by three. In order to characterize the structural capacity of this new process, this article present an investigation on two in-situ representative walls, one in shotcrete which is the old way of construction, and the other, consisting the precast reinforced concrete slabs, which is the new process. We thus have a demonstrator on a real scale, and perfectly representative, since the constructive modes, as well as the mechanical, thermal, and hydric loadings are the real ones associated with the environment in situ. Substantial instrumentation has been realized over a long period (nearly 2 years), enabling to follow the evolution of the displacements of each wall and the efforts in the anchor nails. To determine the bearing capacity of the constituent element of the precast nail wall, an experimental study coupled with a numerical simulation has been conducted in the laboratory on a single precast slab. This study allows the evaluation of the load associated to crack initiation and the bearing capacity associated to the ultimate state, at the scale of the constituent elements. Finally, in order to evaluate the behaviour of the two concepts of nail walls in the case of extreme solicitation, a dynamic loading induced by an explosion has been conducted on the site.
Kamenskiy, Alexey V.; Pipinos, Iraklis I.; MacTaggart, Jason N.; Jaffar Kazmi, Syed A.; Dzenis, Yuris A.
2011-01-01
Patch angioplasty is the most common technique used for the performance of carotid endarterectomy. A large number of patching materials are available for use while new materials are being continuously developed. Surprisingly little is known about the mechanical properties of these materials and how these properties compare with those of the carotid artery wall. Mismatch of the mechanical properties can produce mechanical and hemodynamic effects that may compromise the long-term patency of the endarterectomized arterial segment. The aim of this paper was to systematically evaluate and compare the biaxial mechanical behavior of the most commonly used patching materials. We compared PTFE (n = 1), Dacron (n = 2), bovine pericardium (n = 10), autogenous greater saphenous vein (n = 10), and autogenous external jugular vein (n = 9) with the wall of the common carotid artery (n = 18). All patching materials were found to be significantly stiffer than the carotid wall in both the longitudinal and circumferential directions. Synthetic patches demonstrated the most mismatch in stiffness values and vein patches the least mismatch in stiffness values compared to those of the native carotid artery. All biological materials, including the carotid artery, demonstrated substantial nonlinearity, anisotropy, and variability; however, the behavior of biological and biologically-derived patches was both qualitatively and quantitatively different from the behavior of the carotid wall. The majority of carotid arteries tested were stiffer in the circumferential direction, while the opposite anisotropy was observed for all types of vein patches and bovine pericardium. The rates of increase in the nonlinear stiffness over the physiological stress range were also different for the carotid and patching materials. Several carotid wall samples exhibited reverse anisotropy compared to the average behavior of the carotid tissue. A similar characteristic was observed for two of 19 vein patches. The obtained results quantify, for the first time, significant mechanical dissimilarity of the currently available patching materials and the carotid artery. The results can be used as guidance for designing more efficient patches with mechanical properties resembling those of the carotid wall. The presented systematic comparative mechanical analysis of the existing patching materials provides valuable information for patch selection in the daily practice of carotid surgery and can be used in future clinical studies comparing the efficacy of different patches in the performance of carotid endarterectomy. PMID:22168740
Pidgeon, Sean E; Pires, Marcos M
2017-07-21
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Construction Progress of the S-IC Test Stand-Steel Reinforcements
NASA Technical Reports Server (NTRS)
1961-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.
1961-09-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the forms for the concrete foundation walls as of September 7, 1961.
ERIC Educational Resources Information Center
Mioduser, David; Levy, Sharona T.
2010-01-01
This study explores young children's ability to construct and explain adaptive behaviors of a behaving artifact, an autonomous mobile robot with sensors. A central component of the behavior construction environment is the RoboGan software that supports children's construction of spatiotemporal events with an a-temporal rule structure. Six…
Molecular regulation of plant cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1998-01-01
Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.
The post-buckling behavior of a beam constrained by springy walls
NASA Astrophysics Data System (ADS)
Katz, Shmuel; Givli, Sefi
2015-05-01
The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.
#TrumpenMéxico. Transnational Connective Action in Twitter and the Dispute on the Border Wall
ERIC Educational Resources Information Center
Meneses, María-Elena; Martín-del-Campo, Alejandro; Rueda-Zárate, Héctor
2018-01-01
This article aims to identify how digital public opinion was articulated on Twitter during the visit of the Republican presidential candidate Donald Trump to Mexico City in 2016 by invitation from the Mexican government, which was preceded by the threat to construct a border wall that Mexico would pay for. Using a mixed methodology made up of…
24. Photcopied August 1978. SECTION I LOOKING EAST, AUGUST 25, ...
24. Photcopied August 1978. SECTION I LOOKING EAST, AUGUST 25, 1901. POWER COMPANY CREWS ARE AT WORK CONSTRUCTING A MASONRY WALL ON THE LEFT SIDE WHERE THE ROCK FALLS WELL BELOW THE PROJECTED WATER LINE. ALREADY COMPLETED MASONRY RETAINING WALLS ARE VISIBLE ALONG THE RIGHT BANK OF THE CANAL. (172) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.
1999-01-01
The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
NASA Astrophysics Data System (ADS)
Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming
2015-01-01
A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.
Shahrokhian, Saeed; Rastgar, Shokoufeh
2012-06-07
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.
López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario
2014-04-29
The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.
Shaping effects on toroidal magnetohydrodynamic modes in the presence of plasma and wall resistivity
NASA Astrophysics Data System (ADS)
Rhodes, Dov J.; Cole, A. J.; Brennan, D. P.; Finn, J. M.; Li, M.; Fitzpatrick, R.; Mauel, M. E.; Navratil, G. A.
2018-01-01
This study explores the effects of plasma shaping on magnetohydrodynamic mode stability and rotational stabilization in a tokamak, including both plasma and wall resistivity. Depending upon the plasma shape, safety factor, and distance from the wall, the β-limit for rotational stabilization is given by either the resistive-plasma ideal-wall (tearing mode) limit or the ideal-plasma resistive-wall (resistive wall mode) limit. In order to explore this broad parameter space, a sharp-boundary model is developed with a realistic geometry, resonant tearing surfaces, and a resistive wall. The β-limit achievable in the presence of stabilization by rigid plasma rotation, or by an equivalent feedback control with imaginary normal-field gain, is shown to peak at specific values of elongation and triangularity. It is shown that the optimal shaping with rotation typically coincides with transitions between tearing-dominated and wall-dominated mode behavior.
Developing Autonomy for Unmanned Surface Vehicles by Using Virtual Environments
2010-10-11
successfully evolved for a wide variety of behaviors as obstacle avoidance (Barate and Manzanera 2007; Nehmzow 2002), wall-following ( Dain 1998...Advances in unmanned marine vehicles pp 311-328 Dain R (1998) Developing mobile robot wall-following algorithms using ge- netic programming. Applied
Ajori, S; Ansari, R; Darvizeh, M
2016-03-01
The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.
Double-walled silicon nanotubes: an ab initio investigation
NASA Astrophysics Data System (ADS)
Lima, Matheus P.
2018-02-01
The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.
Chapter 10: Enclosure--Building enclosure design for cross-laminated timber construction
Samuel V. Glass; Jieying Wang; Steve Easley; Graham Finch
2013-01-01
 Note: Clicking on the \\'View\\' option to download the PDF copy of the publication will redirect you to the web site www.masstimber.com where you will need to register prior to downloading.Cross-laminated timber #CLT# was developed in Europe for the prefabricated construction of wall, roof, and...
Stair Types and Mathematics, Carpentry: 901896.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The curriculum guide outlines a course for grades 11 and 12 designed to provide instruction in the layout and construction of various types of stairs. Students completing the course will be expected to have skills and knowledge of building construction plans, concrete forms, walls, roofs and doors, in addition to a basic knowledge of mathematics…
7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE ...
7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE BUNKER. SHOWS OPENING TO CABLE CHASE, FOUR PULLEY DEVICES, POWER OUTLET, CONDUIT, AND EAST END WALL OF BUNKER. INEL PHOTO NUMBER 65-5441, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
DOT National Transportation Integrated Search
2017-09-01
In 2013, GDOT constructed more than 42,000 LF of concrete barrier utilizing a Class A concrete mixture design (3000 psi). There may be potential for the beneficial utilization of recycled tire chips in concrete barrier applications which can possibly...
ERIC Educational Resources Information Center
Bair, Howard V.; Leland, Henry
To investigate the appropriate design and utilization of physical facilities being constructed as a rehabilitation center, a variety of centers was examined. Conclusions were that flexibility in construction of the physical plant, including nonpermanent walls and fixtures was necessary; program planning should be included in architectural…
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL ...
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL HOLES IN GRANITE AT RIGHT EDGE. US GEOLOGICAL SURVEY BENCHMARK AT BOTTOM CORNER OF SIDEWALK - 4,621 FEET. SLOT IN FAR WALL FOR SEMAPHORE OF OBSOLETE CARBON MONOXIDE WARNING SYSTEM. - Wawona Tunnel, Wawona Road through Turtleback Dome, Yosemite Village, Mariposa County, CA
Finishing: Construction Industry Series: Preparation Level: Student Manual and Instructor's Guide.
ERIC Educational Resources Information Center
Texas Education Agency, Austin. Dept. of Occupational Education and Technology.
The guide is an outline of training experiences designed to lead a student to at least entry-level job proficiency in the finishing trades within the construction industry. Teaching units cover insulating, drywall, painting and wall covering, glass and glazing, floor covering, and landscaping. Each unit has several overall objectives which are…
Possible astronomical references in two megalithic building of ancient Latium
NASA Astrophysics Data System (ADS)
Magli, G.
In the wide area of the ancient Latium Vetus - roughly enclosed within the coast and the Apennines between Rome and Terracina, in Central Italy - there are several examples of town's walls and buildings constructed with the spectacular megalithic technique called polygonal, in which enormous blocks are cut in irregular shapes and perfectly fit together without mortar. In many cases, for instance in Alatri, Arpino, Circei, Norba and Segni, the megalithic size of the blocks and the ingenuity in construction reach the same magnificence and impression of power and pride which characterize the worldwide famous Mycenaean towns of Tiryns and Mycenae, constructed around the XIII century BC. In Italy however, all polygonal walls are currently attributed to the Romans, and dated to the first centuries of the Roman republic (V-III century BC), although for most of these constructions no reliable stratigraphy is available. In the present work, which is part of an ongoing project aiming at a complete study of these buildings, we investigate the possible astronomical references in the planning of two among the most imposing of them, namely the so called Acropolis of Alatri and Circei.
Vijayaraj, Kathiresan; Dinakaran, Thirumalai; Lee, Yujeong; Kim, Suhkmann; Kim, Hyung Sik; Lee, Jaewon; Chang, Seung-Cheol
2017-12-09
We developed a new strategy for construction of a biosensor for the neurotransmitter dopamine. The biosensor was constructed by one-step electrochemical deposition of a nanocomposite in aqueous solution at pH 7.0, consisting of molybdenum disulfide, multi-walled carbon nanotubes, and polypyrrole. A series of analytical methods was performed to investigate the surface characteristics and the improved electrocatalytic effect of the nanocomposite, including cyclic voltammetry, electrochemical impedance spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. The constructed biosensor showed high sensitivity (1.130 μAμM -1 cm -2 ) with a dynamic linearity range of 25-1000 nM and a detection limit of 10 nM. Additionally, the designed sensor exhibited strong anti-interference ability and satisfactory reproducibility. The practical application of the sensor was manifested for the ex vivo determination of dopamine neurotransmitters using brain tissue samples of a mouse Parkinson's disease model. Copyright © 2017 Elsevier Inc. All rights reserved.
Behavior of tunnel form buildings under quasi-static cyclic lateral loading
Yuksel, S.B.; Kalkan, E.
2007-01-01
In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.
Wave propagation of carbon nanotubes embedded in an elastic medium
NASA Astrophysics Data System (ADS)
Natsuki, Toshiaki; Hayashi, Takuya; Endo, Morinobu
2005-02-01
This paper presents analytical models of wave propagation in single- and double-walled carbon nanotubes, as well as nanotubes embedded in an elastic matrix. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The double-walled nanotubes are coupled together through the van der Waals force between the inner and outer nanotubes. For carbon nanotubes embedded in an elastic matrix, the surrounding elastic medium can be described by a Winkler model. Tube wave propagation of both symmetrical and asymmetrical modes can be analyzed based on the present elastic continuum model. It is found that the asymmetrical wave behavior of single- and double-walled nanotubes is significantly different. The behavior is also different from that in the surrounding elastic medium.
The Classification of Universes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjorken, J
2004-04-09
We define a universe as the contents of a spacetime box with comoving walls, large enough to contain essentially all phenomena that can be conceivably measured. The initial time is taken as the epoch when the lowest CMB modes undergo horizon crossing, and the final time taken when the wavelengths of CMB photons are comparable with the Hubble scale, i.e. with the nominal size of the universe. This allows the definition of a local ensemble of similarly constructed universes, using only modest extrapolations of the observed behavior of the cosmos. We then assume that further out in spacetime, similar universesmore » can be constructed but containing different standard model parameters. Within this multiverse ensemble, it is assumed that the standard model parameters are strongly correlated with size, i.e. with the value of the inverse Hubble parameter at the final time, in a manner as previously suggested. This allows an estimate of the range of sizes which allow life as we know it, and invites a speculation regarding the most natural distribution of sizes. If small sizes are favored, this in turn allows some understanding of the hierarchy problems of particle physics. Subsequent sections of the paper explore other possible implications. In all cases, the approach is as bottoms up and as phenomenological as possible, and suggests that theories of the multiverse so constructed may in fact lay some claim of being scientific.« less
Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid
Li, G. -J.; Karimi, A.
2015-01-01
We numerically study the effect of solid boundaries on the swimming behavior of a motile microorganism in viscoelastic media. Understanding the swimmer-wall hydrodynamic interactions is crucial to elucidate the adhesion of bacterial cells to nearby substrates which is precursor to the formation of the microbial biofilms. The microorganism is simulated using a squirmer model that captures the major swimming mechanisms of potential, extensile, and contractile types of swimmers, while neglecting the biological complexities. A Giesekus constitutive equation is utilized to describe both viscoelasticity and shear-thinning behavior of the background fluid. We found that the viscoelasticity strongly affects the near-wall motion of a squirmer by generating an opposing polymeric torque which impedes the rotation of the swimmer away from the wall. In particular, the time a neutral squirmer spends at the close proximity of the wall is shown to increase with polymer relaxation time and reaches a maximum at Weissenberg number of unity. The shear-thinning effect is found to weaken the solvent stress and therefore, increases the swimmer-wall contact time. For a puller swimmer, the polymer stretching mainly occurs around its lateral sides, leading to reduced elastic resistance against its locomotion. The neutral and puller swimmers eventually escape the wall attraction effect due to a releasing force generated by the Newtonian viscous stress. In contrast, the pusher is found to be perpetually trapped near the wall as a result of the formation of a highly stretched region behind its body. It is shown that the shear-thinning property of the fluid weakens the wall-trapping effect for the pusher squirmer. PMID:26855446
Evaluation of Terrestrial Laser Scanner Accuracy in the Control of Hydrotechnical Structures
NASA Astrophysics Data System (ADS)
Muszyński, Zbigniew; Rybak, Jarosław
2017-12-01
In many cases of monitoring or load testing of hydrotechnical structures, the measurement results obtained from dial gauges may be affected by random or systematic errors resulting from the instability of the reference beam. For example, the measurement of wall displacement or pile settlement may be increased (or decreased) by displacements of the reference beam due to ground movement. The application of surveying methods such as high-precision levelling, motorized tacheometry or even terrestrial laser scanning makes it possible to provide an independent reference measurement free from systematic errors. It is very important in the case of walls and piles embedded in the rivers, where the construction of reference structure is even more difficult than usually. Construction of an independent reference system is also complicated when horizontal testing of sheet piles or diaphragm walls are considered. In this case, any underestimation of the horizontal displacement of an anchored or strutted construction leads to an understated value of the strut's load. These measurements are even more important during modernization works and repairs of the hydrotechnical structures. The purpose of this paper is to discuss the possibilities of using modern measurement methods for monitoring of horizontal displacements of an excavation wall. The methods under scrutiny (motorized tacheometry and terrestrial laser scanning) have been compared to classical techniques and described in the context of their practical use on the example hydrotechnical structure. This structure was a temporary cofferdam made from sheet pile wall. The research continuously conducted at Wroclaw University of Science and Technology made it possible to collect and summarize measurement results and practical experience. This paper identifies advantages and disadvantages of both analysed methods and presents a comparison of obtained measurement results of horizontal displacements. In conclusion, some recommendations have been formulated, which are relevant from the point of view of engineering practice.
Solar energy thermalization and storage device
McClelland, J.F.
A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.
High density cell culture system
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor)
1994-01-01
An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.
Novel nano bearings constructed by physical adsorption
Zhang, Yongbin
2015-01-01
The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488