Sample records for wall collisions applications

  1. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  2. Wall-collision line broadening of molecular oxygen within nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressuremore » and Doppler broadening.« less

  3. Simulation of Collision of Arbitrary Shape Particles with Wall in a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Udaykumar, H. S.

    2016-11-01

    Collision of finite size arbitrary shape particles with wall in a viscous flow is modeled using immersed boundary method. A potential function indicating the distance from the interface is introduced for the particles and the wall. The potential can be defined by using either an analytical expression or level set method. The collision starts when the indicator potentials of the particle and wall are overlapping based on a minimum cut off. A simplified mass spring model is used in order to apply the collision forces. Instead of using a dashpot in order to damp the energy, the spring stiffness is adjusted during the bounce. The results for the case of collision of a falling sphere with the bottom wall agrees well with the experiments. Moreover, it is shown that the results are independent from the minimum collision cut off distance value. Finally, when the particle's shape is ellipsoidal, the rotation of the particle after the collision becomes important and noticeable: At low Stokes number values, the particle almost adheres to the wall in one side and rotates until it reaches the minimum gravitational potential. At high Stokes numbers, the particle bounces and loses the energy until it reaches a situation with low Stokes number.

  4. Calculation of ground state rotational populations for kinetic gas homonuclear diatomic molecules including electron-impact excitation and wall collisions.

    PubMed

    Farley, David R

    2010-09-07

    A model has been developed to calculate the ground state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with nonequilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  5. The plasma-wall transition layers in the presence of collisions with a magnetic field parallel to the wall

    NASA Astrophysics Data System (ADS)

    Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.

    2018-01-01

    The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.

  6. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    NASA Astrophysics Data System (ADS)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  7. Simulating immersed particle collisions: the Devil's in the details

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  8. Brownian dynamics of wall tethered polymers in shear flow

    NASA Astrophysics Data System (ADS)

    Lin, Tiras Y.; Saadat, Amir; Kushwaha, Amit; Shaqfeh, Eric S. G.

    2017-11-01

    The dynamics of a wall tethered polymer in shear flow is studied using Brownian dynamics. Simulations are performed with bead-spring chains, and the effect of hydrodynamic interactions (HI) is incorporated through Blake's tensor with a finite size bead correction. We characterize the configuration of the polymer as a function of the Weissenberg number by investigating the regions the polymer explores in both the flow-gradient and flow-vorticity planes. The fractional extension in the flow direction, the width in the vorticity direction, and the thickness in the gradient direction are reported as well, and these quantities are found to compare favorably with the experimental data of the literature. The cyclic motion of the polymer is demonstrated through analysis of the mean velocity field of the end bead. We characterize the collision process of each bead with the wall as a Poisson process and extract an average wall collision rate, which in general varies along the backbone of the chain. The inclusion of HI with the wall for a tethered polymer is found to reduce the average wall collision rate. We anticipate that results from this work will be directly applicable to, e.g., the design of polymer brushes or the use of DNA for making nanowires in molecular electronics. T.Y.L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  9. Applications of Green Walls in Urban Design

    NASA Astrophysics Data System (ADS)

    Virtudes, Ana; Manso, Maria

    2016-10-01

    Green walls are a choice towards achieving sustainable urban rehabilitation, due to the lack of free space in the consolidated urban fabric. Nowadays, green walls are considered to be an innovation in the fields of ecology, horticulture or buildings. Nevertheless, in the domain of urban design, they are still surprising and unexpected ideas. Thus, this research aims to reflect on green walls as a feature in urban design and rehabilitation, identifying the advantages of their utilization as an enhancement of the quality of city's image, especially in dense urban areas. It aims to demonstrate some practical applications of green walls in urban design proposals, showing model solutions and their real application in several architectural examples.

  10. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  11. An experimental investigation for external RC shear wall applications

    NASA Astrophysics Data System (ADS)

    Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.

    2010-09-01

    The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  12. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  13. Collision Based Blood Cell Distribution of the Blood Flow

    NASA Astrophysics Data System (ADS)

    Cinar, Yildirim

    2003-11-01

    Introduction: The goal of the study is the determination of the energy transferring process between colliding masses and the application of the results to the distribution of the cell, velocity and kinetic energy in arterial blood flow. Methods: Mathematical methods and models were used to explain the collision between two moving systems, and the distribution of linear momentum, rectilinear velocity, and kinetic energy in a collision. Results: According to decrease of mass of the second system, the velocity and momentum of constant mass of the first system are decreased, and linearly decreasing mass of the second system captures a larger amount of the kinetic energy and the rectilinear velocity of the collision system on a logarithmic scale. Discussion: The cause of concentration of blood cells at the center of blood flow an artery is not explained by Bernoulli principle alone but the kinetic energy and velocity distribution due to collision between the big mass of the arterial wall and the small mass of blood cells must be considered as well.

  14. Analytical Proof That There is no Effect of Confinement or Curvature on the Maxwell-Boltzmann Collision Frequency

    NASA Astrophysics Data System (ADS)

    Carnio, Brett N.; Elliott, Janet A. W.

    2014-08-01

    The number of Maxwell-Boltzmann particles that hit a flat wall in infinite space per unit area per unit time is a well-known result. As new applications are arising in micro and nanotechnologies there are a number of situations in which a rarefied gas interacts with either a flat or curved surface in a small confined geometry. Thus, it is necessary to prove that the Maxwell-Boltzmann collision frequency result holds even if a container's dimensions are on the order of nanometers and also that this result is valid for both a finite container with flat walls (a rectangular container) and a finite container with a curved wall (a cylindrical container). An analytical proof confirms that the Maxwell-Boltzmann collision frequencies for either a finite rectangular container or a finite cylindrical container are both equal to the well-known result obtained for a flat wall in infinite space. A major aspect of this paper is the introduction of a mathematical technique to solve the arising infinite sum of integrals whose integrands depend on the Maxwell-Boltzmann velocity distribution.

  15. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  16. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application.

    PubMed

    Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-11-25

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.

  17. GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application

    PubMed Central

    Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto

    2017-01-01

    The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851

  18. Finite element simulation of lower limb injuries to the driver in minibus frontal collisions.

    PubMed

    Shi, Liang-Liang; Lei, Chen; Li, Kui; Fu, Shuo-Zhen; Wu, Zheng-Wei; Yin, Zhi-Yong

    2016-06-01

    This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions.

  19. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  20. Single-Walled Carbon Nanohorns for Energy Applications

    PubMed Central

    Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao

    2015-01-01

    With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092

  1. Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    PubMed Central

    Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M.

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance. PMID:22319323

  2. Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications.

    PubMed

    Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M

    2010-01-01

    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.

  3. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengkui, E-mail: fengkuizhang@163.com; Kong, Lingyi; Li, Chenliang

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current.more » The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.« less

  4. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  5. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. Copyright © 2013. Published by Elsevier Ltd.

  6. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  7. The concept of collision strength and its applications

    NASA Astrophysics Data System (ADS)

    Chang, Yongbin

    Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equation has a five-fold integral collision term that is complicated. Chandrasekhar and Spitzer's approaches to the linear Fokker-Planck coefficients have several approximations. An effective variable-change technique has been developed in this dissertation as an alternative to scattering angle as the measure of collision strength. By introducing the square of the reduced impulse or its equivalencies as a collision strength variable, many plasma calculations have been simplified. The five-fold linear Boltzmann collision integral and linearized Boltzmann collision integral are simplified to three-fold integrals. The arbitrary order linear Fokker-Planck coefficients are calculated and expressed in a uniform expression. The new theory provides a simple and exact method for describing the equilibrium plasma collision rate, and a precise calculation of the equilibrium relaxation time. It generalizes bimolecular collision reaction rate theory to a reaction rate theory for plasmas. A simple formula of high precision with wide temperature range has been developed for electron impact ionization rates for carbon atoms and ions. The universality of the concept of collision strength is emphasized. This dissertation will show how Arrhenius' chemical reaction rate theory and Thomson's ionization theory can be unified as one single theory under the concept of collision strength, and how many important physical terms in different disciplines, such as activation energy in chemical reaction theory

  8. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  9. Studies of electron-polyatomic-molecule collisions Applications to e-CH4

    NASA Technical Reports Server (NTRS)

    Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1985-01-01

    The first application of the Schwinger multichannel formulation to low-energy electron collisions with a nonlinear polyatomic target is reported. Integral and differential cross sections are obtained for e-CH4 collisions from 3 to 20 eV at the static-plus-exchange interaction level. In these studies, the exchange potential is directly evaluated and not approximated by local models. An interesting feature of the small-angle differential cross section is ascribed to polarization effects and not reproduced at the static-plus-exchange level. These differential cross sections are found to be in reasonable agreement with existing measurements at 7.5 eV and higher energies.

  10. Simulating the universe(s) III: observables for the full bubble collision spacetime

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew C.; Wainwright, Carroll L.; Aguirre, Anthony; Peiris, Hiranya V.

    2016-07-01

    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methods against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating.

  11. Interface collisions

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; Pierre-Louis, O.

    2018-04-01

    We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces considering different short-range interactions between them. Due to their roughness, the collision events spread in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional materials is suggested.

  12. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu

    2015-08-01

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  13. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8; Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  14. Simulating the universe(s) III: observables for the full bubble collision spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew C.; Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5; Wainwright, Carroll L.

    2016-07-14

    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methodsmore » against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating.« less

  15. Investigation into the energy-absorbing properties of multilayered circular thin-walled tube

    NASA Astrophysics Data System (ADS)

    Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun

    2002-05-01

    With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.

  16. Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications

    NASA Astrophysics Data System (ADS)

    Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.

    2017-08-01

    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.

  17. Droplet-Wall/Film Impact in IC Engine Applications

    DTIC Science & Technology

    2017-08-14

    Report: Droplet-Wall/Film Impact in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) The views, opinions and/or findings...in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) Report Term: 0-Other Email: cklaw@princeton.edu Distribution Statement...associated with spraying in internal combustion engines (ICEs). Fuels sprayed inside engines can impact with the internal surfaces and thus not only

  18. Massive collisions in debris disks: possible application to the beta Pic disc

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.

    2014-09-01

    The new LIDT-DD code has been used to study massive collisions in debris discs. This new hybrid model is a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013). It models the full complexity of debris discs' physics such as high velocity collisions, radiation-pressure affected orbits, wide range of grains' dynamical behaviour, etc. LIDT-DD can be used on many possible applications. Our first test case concerns the violent breakup of a massive planetesimal such as the ones happening during the late stages of planetary formation or with the biggest bodies in debris belts. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We find that the breakup of a Ceres-sized body creates an asymmetric dust disc that is homogenized, by the coupled action of collisions and dynamics. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance. As for the asymmetric structures, we derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments, showing that they should be clearly visible and resolved from a 10 pc distance. We explain the observational signature of such impacts and give scaling laws to extrapolate our results to different configurations. These first results confirm that our code can be used to study the massive collision scenario to explain some asymmetries in the Beta-Pic disc.

  19. On the overriding issue of train front end collision in rail vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Li, Qiang; Xiao, Shoune; Wang, Xi

    2018-04-01

    A three-dimensional dynamic model of crashed vehicles coupled with moving tracks is developed to research the dynamic behaviour of the train front end collision on tangent tracks. The three-dimensional dynamic model consists of a crashed vehicle model, moving track models, a simple wheel-rail contact model, a velocity-based coupler model and the model of energy absorption and anti-climbing devices. The vector method dealing with the nonlinear wheel-rail geometry is put forward in the paper. The developed model is applicable in the scope that central collisions occur on tangent tracks at low speeds. The examples of the vehicle impacting with a rigid wall and the train front end collision are carried out to obtain the dynamic responses of vehicles. The overriding issue is studied on the basis of the wheel rise in train collisions. The results show that the second bogie of the first colliding vehicle possesses the maximal wheel rise. The wheel rise increases with the increase of vehicles. However, the number of vehicles has tiny influence on the overriding in train collisions at low speeds. On the contrary, the impact speed has significant influence on the overriding in train collisions. The wheel rise increases rapidly if the impact speed is close to the critical speed of overriding. The large wheel rise is principally generated by the great coupler force related to the rigid impact in the axial direction.

  20. A collision scheme for hybrid fluid-particle simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John

    2006-10-01

    Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).

  1. Application of radar for automotive collision avoidance. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L. (Editor)

    1987-01-01

    The purpose of this project was research and development of an automobile collision avoidance radar system. The major finding was that the application of radar to the automobile collision avoidance problem deserves continued research even though the specific approach investigated in this effort did not perform adequately in its angle measurement capability. Additional findings were that: (1) preliminary performance requirements of a candidate radar system are not unreasonable; (2) the number and severity of traffic accidents could be reduced by using a collision avoidance radar system which observes a fairly wide (at least + or - 10 deg) field of view ahead of the vehicle; (3) the health radiation hazards of a probable radar design are not significant even when a large number of radar-equipped vehicles are considered; (4) effects of inclement weather on radar operation can be accommodated in most cases; (5) the phase monopulse radar technique as implemented demonstrated inferior angle measurement performance which warrants the recommendation of investigating alternative radar techniques; and (6) extended target and multipath effects, which presumably distort the amplitude and phase distribution across the antenna aperture, are responsible for the observed inadequate phase monopulse radar performance.

  2. Driver acceptance of collision warning applications based on heavy-truck V2V technology

    DOT National Transportation Integrated Search

    2016-10-01

    Battelle conducted a series of driver acceptance clinics (DACs) with heavy-truck drivers to gauge their acceptance of collision-warning applications using vehicle-to-vehicle (V2V) communication technology. This report describes the results from Volpe...

  3. Clinical applications of a quantitative analysis of regional lift ventricular wall motion

    NASA Technical Reports Server (NTRS)

    Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.

    1975-01-01

    Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.

  4. Rail passenger equipment collision tests : analysis of structural measurements

    DOT National Transportation Integrated Search

    2000-11-01

    A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...

  5. Outcome regimes of binary raindrop collisions

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.

    2009-11-01

    This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.

  6. Collision tumors in the gastrointestinal tract: a rare case series

    PubMed Central

    Bhattacharya, Aruna; Saha, Rama; Biswas, Jayanta; Biswas, Jhuma; Ghosh, Biswajit

    2012-01-01

    A collision tumor is one where histology shows the presence of two distinct primaries involving the same organ without intermixture of individual cell types, ie, a side by side pattern. Here we present three rare cases of collision tumors involving the stomach and transverse colon. There were two cases of collision tumors involving the stomach, one of which was a combination of adenocarcinoma and low-grade non-Hodgkin’s (mucosa-associated lymphoid tissue) lymphoma, and the other showed the presence of non-Hodgkin’s lymphoma involving the entire stomach wall along with adenocarcinoma infiltrating the muscle layer. The third case comprised a mucinous adenocarcinoma and carcinoid tumor in the large gut. PMID:23754928

  7. Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Everhart, J. L.

    2001-01-01

    This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.

  8. Wall accumulation of bacteria with different motility patterns

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250 μ m , are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  9. Wall accumulation of bacteria with different motility patterns.

    PubMed

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  10. Facility for Heavy Ion Collision Experiment at RAON

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Kim, Do Gyun; Kim, Gi Dong; Kim, Yong Hak; Kim, Young-Jin; Kim, Yong Kyun; Kwon, Young Kwan; Yun, Chong Cheol; Hong, Byungsik; Sei Lee, Kyung; Kim, Eun Joo; Ahn, Jung Keun; Lee, Hyo Sang

    2014-03-01

    The Rare Isotope Science Project (RISP) was established in December 2011 in order to carry out the technical design and the establishment of the accelerator complex (RAON) for the rare isotope science in Korea. The rare isotope accelerator at RAON will provide both stable and rare isotope heavy-ion beams the energy range from a few MeV/nucleon to a few hundreds of MeV/nucleon for researches in fields of basic and applied science. Large Acceptance Multipurpose Spectrometer (LAMPS) at RAON is a heavy-ion collision experimental facility for studying nuclear symmetry energy by using rare isotope beams. Two different experimental setups of LAMPS are designed for covering entire energy range at RAON. One is for low energy (< 18.5 MeV/nucleon) heavy-ion collision experiment for day-1 experiments. This experimental setup consists of an array of ΔE-E Si-CsI detectors, a gamma array to cover backward polar angle, and a forward neutron wall. The other is for completing an event reconstruction by detecting all the particles produced in high energy heavy-ion collisions within a large acceptance angle to measure particle spectrum, yield, ratio and collective flow of pions, protons, neutrons, and intermediate fragments at the same time. The experimental setup consists of a superconducting spectrometer, a dipole spectrometer, and a forward neutron wall. A Time Projection Chamber (TPC) will be placed inside of superconducting solenoid magnet of 0.6 T for charged particle tracking. The dipole spectrometer will be located forward of the superconducting spectrometer and it will be composed of a combination of quadrupole, dipole magnets, focal plane detector, tracking stations, and Time-of-Flight (ToF) detector at the end. The neutron wall will be made of 10 layers of plastic scintillators for neutron tracking. In this presentation, the detail physics and design of LAMPS at RAON will be discussed.

  11. Cosmic bubble and domain wall instabilities III: the role of oscillons in three-dimensional bubble collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J. Richard; Braden, Jonathan; Mersini-Houghton, Laura, E-mail: bond@cita.utoronto.ca, E-mail: j.braden@ucl.ac.uk, E-mail: mersini@physics.unc.edu

    2015-09-01

    We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strongmore » nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.« less

  12. Solid-on-solid contact in a sphere-wall collision in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Birwa, Sumit Kumar; Rajalakshmi, G.; Govindarajan, Rama; Menon, Narayanan

    2018-04-01

    We study experimentally the collision between a sphere falling through a viscous fluid and a solid plate below. It is known that there is a well-defined threshold Stokes number above which the sphere rebounds from such a collision. Our experiment tests for direct contact between the colliding bodies and, contrary to prior theoretical predictions, shows that solid-on-solid contact occurs even for Stokes numbers just above the threshold for rebounding. The dissipation is fluid dominated, though details of the contact mechanics depend on the surface and bulk properties of the solids. Our experiments and a model calculation indicate that mechanical contact between the two colliding objects is generic and will occur for any realistic surface roughness.

  13. Structure of the cell wall of mango after application of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Silva, Josenilda M.; Villar, Heldio P.; Pimentel, Rejane M. M.

    2012-11-01

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane.

  14. Criteria for applicability of the impulse approach to collisions

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh D.; Bakshi, Pradip M.; Sindoni, Joseph M.

    1990-06-01

    Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body t matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body t matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energy and the mass of the incident particle, and criteria discussed for the applicability of IA.

  15. Plasma Inter-Particle and Particle-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Patino, Marlene Idy

    An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials. For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models. This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and

  16. Rotational and translational effects in collisions of electronically excited diatomic hydrides

    NASA Technical Reports Server (NTRS)

    Crosley, David R.

    1988-01-01

    Collisional quenching and vibrational energy proceed competitively with rotational energy transfer for several excited states of the diatomic radicals OH, NH, and CH. This occurs for a wide variety of molecular collision partners. This phenomenon permits the examination of the influence of rotational motion on the collision dynamics of these theoretically tractable species. Measurements can also be made as a function of temperature, i.e., collision velocity. In OH (sup 2 sigma +), both vibrational transfer and quenching are found to decrease with an increase in rotational level, while quenching decreases with increasing temperature. This behavior indicates that for OH, anisotropic attractive forces govern the entrance channel dynamics for these collisions. The quenching of NH (sup 3 pi sub i) by many (although not all) collision partners also decreases with increasing rotational and translational energy, and NH (sup 1 pi) behaves much like OH (sup 2 sigma +). However, the quenching of CH (sup 2 delta) appears to decrease with increasing rotation but increases with increasing temperature, suggesting in this case anisotropic forces involving a barrier or repulsive wall. Such similarities and differences should furnish useful comparisons with both simple and detailed theoretical pictures of the appropriate collision dynamics.

  17. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  18. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  19. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  20. A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forcey, Greg, M.

    compared among species, our model outputs provide a convenient and easy landscape-level tool to quickly screen for siting issues at a high level. The model resolution is suitable for state or multi-county siting but users are cautioned against using these models for micrositing. The U.S. Fish and Wildlife Service recently released voluntary land-based wind energy guidelines for assessing impacts of a wind facility to wildlife using a tiered approach. The tiered approach uses an iterative approach for assessing impacts to wildlife in levels of increasing detail from landscape-level screening to site-specific field studies. Our models presented in this paper would be applicable to be used as tools to conduct screening at the tier 1 level and would not be appropriate to complete smaller scale tier 2 and tier 3 level studies. For smaller scale screening ancillary field studies should be conducted at the site-specific level to validate collision predictions.« less

  1. A self-consistent two-fluid model of a magnetized plasma-wall transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyergyek, T.; Jožef Stefan Institute, Jamova 39, P.O. Box 100, 1000 Ljubljana; Kovačič, J.

    A self-consistent one-dimensional two-fluid model of the magnetized plasma-wall transition is presented. The model includes magnetic field, elastic collisions between ions and electrons, and creation/annihilation of charged particles. Two systems of differential equations are derived. The first system describes the whole magnetized plasma-wall transition region, which consists of the pre-sheath, the magnetized pre-sheath (Chodura layer), and the sheath, which is not neutral, but contains a positive space charge. The second system of equations describes only the neutral part of the plasma-wall transition region—this means only the pre-sheath and the Chodura layer, but not also the sheath. Both systems are solvedmore » numerically. The first system of equations has two singularities. The first occurs when ion velocity in the direction perpendicularly to the wall drops below the ion thermal velocity. The second occurs when the electron velocity in the direction perpendicularly to the wall exceeds the electron thermal velocity. The second system of differential equations only has one singularity, which has also been derived analytically. For finite electron to ion mass ratio, the integration of the second system always breaks down before the Bohm criterion is fulfilled. Some properties of the first system of equations are examined. It is shown that the increased collision frequency demagnetizes the plasma. On the other hand, if the magnetic field is so strong that the ion Larmor radius and the Debye length are comparable, the electron velocity in the direction perpendicularly to the wall reaches the electron thermal velocity before the ion velocity in the direction perpendicularly to the wall reaches the ion sound velocity. In this case, the integration of the model equations breaks down before the Bohm criterion is fulfilled and the sheath is formed.« less

  2. Novel application of internal obturator and semitendinosus muscle flaps for rectal wall repair or reinforcement.

    PubMed

    Riggs, J; Ladlow, J F; Owen, L J; Hall, J L

    2018-01-29

    Internal obturator and/or semitendinosus muscle flaps were used to reinforce primary appositional rectal wall repair in three dogs and one cat in this case series. All three dogs incurred rectal wall compromise during surgical excision of anal sac tumours. The cat sustained bite wounds to the perianal region resulting in abscessation and a rectal tear. Our results indicate that application of an internal obturator and/or semitendinosus muscle flap can reduce the risk of rectal wall dehiscence after primary repair, and consequently the risk of pararectal abscess or rectocutaneous fistula formation. © 2018 British Small Animal Veterinary Association.

  3. Population distributions of time to collision at brake application during car following from naturalistic driving data.

    PubMed

    Kusano, Kristofer D; Chen, Rong; Montgomery, Jade; Gabler, Hampton C

    2015-09-01

    Forward collision warning (FCW) systems are designed to mitigate the effects of rear-end collisions. Driver acceptance of these systems is crucial to their success, as perceived "nuisance" alarms may cause drivers to disable the systems. In order to make customizable FCW thresholds, system designers need to quantify the variation in braking behavior in the driving population. The objective of this study was to quantify the time to collision (TTC) that drivers applied the brakes during car following scenarios from a large scale naturalistic driving study (NDS). Because of the large amount of data generated by NDS, an automated algorithm was developed to identify lead vehicles using radar data recorded as part of the study. Using the search algorithm, all trips from 64 drivers from the 100-Car NDS were analyzed. A comparison of the algorithm to 7135 brake applications where the presence of a lead vehicle was manually identified found that the algorithm agreed with the human review 90.6% of the time. This study examined 72,123 trips that resulted in 2.6 million brake applications. Population distributions of the minimum, 1st, and 10th percentiles were computed for each driver in speed ranges between 3 and 60 mph in 10 mph increments. As speed increased, so did the minimum TTC experience by drivers as well as variance in TTC. Younger drivers (18-30) had lower TTC at brake application compared to older drivers (30-51+), especially at speeds between 40 mph and 60 mph. This is one of the first studies to use large scale NDS data to quantify braking behavior during car following. The results of this study can be used to design and evaluate FCW systems and calibrate traffic simulation models. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  4. Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent

    2018-03-01

    In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

  5. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    DOE PAGES

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-03-21

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account formore » enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. Lastly, we validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.« less

  6. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-07-01

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account for enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. We validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.

  7. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  8. A bee in the corridor: centering and wall-following

    NASA Astrophysics Data System (ADS)

    Serres, Julien R.; Masson, Guillaume P.; Ruffier, Franck; Franceschini, Nicolas

    2008-12-01

    In an attempt to better understand the mechanism underlying lateral collision avoidance in flying insects, we trained honeybees ( Apis mellifera) to fly through a large (95-cm wide) flight tunnel. We found that, depending on the entrance and feeder positions, honeybees would either center along the corridor midline or fly along one wall. Bees kept following one wall even when a major (150-cm long) part of the opposite wall was removed. These findings cannot be accounted for by the “optic flow balance” hypothesis that has been put forward to explain the typical bees’ “centering response” observed in narrower corridors. Both centering and wall-following behaviors are well accounted for, however, by a control scheme called the lateral optic flow regulator, i.e., a feedback system that strives to maintain the unilateral optic flow constant. The power of this control scheme is that it would allow the bee to guide itself visually in a corridor without having to measure its speed or distance from the walls.

  9. Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-05-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  10. Evaluation of an automotive rear-end collision avoidance system

    DOT National Transportation Integrated Search

    2006-04-01

    This report presents the results of an independent evaluation of the Automotive Collision Avoidance System (ACAS). The ACAS integrates forward collision warning (FCW) and adaptive cruise control (ACC) functions for light-vehicle applications. The FCW...

  11. Dynamics of collision of a vortex ring and a planar surface

    NASA Astrophysics Data System (ADS)

    McErlean, Michael; Krane, Michael; Fontaine, Arnold

    2008-11-01

    The dynamics of the impact between a vortex ring and a planar surface is presented. The vortex rings, generated by piston injection of a slug of water into a quiescent water tank, collide with a surface oriented normally to the ring's direction of travel. The time evolution of both the force imparted to a planar surface and the wall pressure are presented. These are supplemented by DPIV measurements of the evolution of ring strength and structure, before and during impact. The relation between changes in ring structure during collision and the waveforms of impact force and wall pressure will be discussed.

  12. Estimating inelastic heavy-particle - hydrogen collision data. II. Simplified model for ionic collisions and application to barium-hydrogen ionic collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-12-01

    Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33

  13. Application of wall-models to discontinuous Galerkin LES

    NASA Astrophysics Data System (ADS)

    Frère, Ariane; Carton de Wiart, Corentin; Hillewaert, Koen; Chatelain, Philippe; Winckelmans, Grégoire

    2017-08-01

    Wall-resolved Large-Eddy Simulations (LES) are still limited to moderate Reynolds number flows due to the high computational cost required to capture the inner part of the boundary layer. Wall-modeled LES (WMLES) provide more affordable LES by modeling the near-wall layer. Wall function-based WMLES solve LES equations up to the wall, where the coarse mesh resolution essentially renders the calculation under-resolved. This makes the accuracy of WMLES very sensitive to the behavior of the numerical method. Therefore, best practice rules regarding the use and implementation of WMLES cannot be directly transferred from one methodology to another regardless of the type of discretization approach. Whilst numerous studies present guidelines on the use of WMLES, there is a lack of knowledge for discontinuous finite-element-like high-order methods. Incidentally, these methods are increasingly used on the account of their high accuracy on unstructured meshes and their strong computational efficiency. The present paper proposes best practice guidelines for the use of WMLES in these methods. The study is based on sensitivity analyses of turbulent channel flow simulations by means of a Discontinuous Galerkin approach. It appears that good results can be obtained without the use of a spatial or temporal averaging. The study confirms the importance of the wall function input data location and suggests to take it at the bottom of the second off-wall element. These data being available through the ghost element, the suggested method prevents the loss of computational scalability experienced in unstructured WMLES. The study also highlights the influence of the polynomial degree used in the wall-adjacent element. It should preferably be of even degree as using polynomials of degree two in the first off-wall element provides, surprisingly, better results than using polynomials of degree three.

  14. Adiabatic Variational Theory for Cold Atom-Molecule Collisions: Application to a Metastable Helium Atom Colliding with ortho- and para-Hydrogen Molecules.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod

    2017-03-16

    We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(2 3 S 1 ) + ortho/para-H 2 → He(1s 2 ) + ortho/para-H 2 + + e - resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.

  15. The applicability of a computer model for predicting head injury incurred during actual motor vehicle collisions.

    PubMed

    Moran, Stephan G; Key, Jason S; McGwin, Gerald; Keeley, Jason W; Davidson, James S; Rue, Loring W

    2004-07-01

    Head injury is a significant cause of both morbidity and mortality. Motor vehicle collisions (MVCs) are the most common source of head injury in the United States. No studies have conclusively determined the applicability of computer models for accurate prediction of head injuries sustained in actual MVCs. This study sought to determine the applicability of such models for predicting head injuries sustained by MVC occupants. The Crash Injury Research and Engineering Network (CIREN) database was queried for restrained drivers who sustained a head injury. These collisions were modeled using occupant dynamic modeling (MADYMO) software, and head injury scores were generated. The computer-generated head injury scores then were evaluated with respect to the actual head injuries sustained by the occupants to determine the applicability of MADYMO computer modeling for predicting head injury. Five occupants meeting the selection criteria for the study were selected from the CIREN database. The head injury scores generated by MADYMO were lower than expected given the actual injuries sustained. In only one case did the computer analysis predict a head injury of a severity similar to that actually sustained by the occupant. Although computer modeling accurately simulates experimental crash tests, it may not be applicable for predicting head injury in actual MVCs. Many complicating factors surrounding actual MVCs make accurate computer modeling difficult. Future modeling efforts should consider variables such as age of the occupant and should account for a wider variety of crash scenarios.

  16. Applications of beam-foil spectroscopy to atomic collisions in solids

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  17. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    NASA Astrophysics Data System (ADS)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  18. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls

    PubMed Central

    Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.

    2014-01-01

    Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791

  19. Organic/hybrid nanoparticles and single-walled carbon nanotubes: preparation methods and chiral applications.

    PubMed

    Alhassen, Haysem; Antony, Vijy; Ghanem, Ashraf; Yajadda, Mir Massoud Aghili; Han, Zhao Jun; Ostrikov, Kostya Ken

    2014-11-01

    Nanoparticles are molecular-sized solids with at least one dimension measuring between 1-100 nm or 10-1000 nm depending on the individual discipline's perspective. They are aggregates of anywhere from a few hundreds to tens of thousands of atoms which render them larger than molecules but smaller than bulk solids. Consequently, they frequently exhibit physical and chemical properties somewhere between. On the other hand, nanocrystals are a special class of nanoparticles which have started gaining attention recently owing to their unique crystalline structures which provide a larger surface area and promising applications including chiral separations. Hybrid nanoparticles are supported by the growing interest of chemists, physicists, and biologists, who are researching to fully exploit them. These materials can be defined as molecular or nano-composites with mixed (organic or bio) and inorganic components, where at least one of the component domain has a dimension ranging from a few Å to several nanometers. Similarly, and due to their extraordinary physical, chemical, and electrical properties, single-walled carbon nanotubes have been the subject of intense research. In this short review, the focus is mainly on the current well-established simple preparation techniques of chiral organic and hybrid nanoparticles as well as single-walled carbon nanotubes and their applications in separation science. Of particular interest, cinchonidine, chitosan, and β-CD-modified gold nanoparticles (GNPs) are discussed as model examples for organic and hybrid nanoparticles. Likewise, the chemical vapor deposition method, used in the preparation of single-walled carbon nanotubes, is discussed. The enantioseparation applications of these model nanomaterials is also presented. © 2014 Wiley Periodicals, Inc.

  20. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    NASA Astrophysics Data System (ADS)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  1. High velocity collisions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  2. Parameterized spectral distributions for meson production in proton-proton collisions

    NASA Technical Reports Server (NTRS)

    Schneider, John P.; Norbury, John W.; Cucinotta, Francis A.

    1995-01-01

    Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.

  3. Exact linearized Coulomb collision operator in the moment expansion

    DOE PAGES

    Ji, Jeong -Young; Held, Eric D.

    2006-10-05

    In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less

  4. Athletic injuries of the lateral abdominal wall: review of anatomy and MR imaging appearance.

    PubMed

    Stensby, J Derek; Baker, Jonathan C; Fox, Michael G

    2016-02-01

    The lateral abdominal wall is comprised of three muscles, each with a different function and orientation. The transversus abdominus, internal oblique, and external oblique muscles span the abdominal cavity between the iliocostalis lumborum and quadratus lumborum posteriorly and the rectus abdominis anteriorly. The lateral abdominal wall is bound superiorly by the lower ribs and costal cartilages and inferiorly by the iliac crest and inguinal ligament. The lateral abdominal wall may be acutely or chronically injured in a variety of athletic endeavors, with occasional acute injuries in the setting of high-energy trauma such as motor vehicle collisions. Injuries to the lateral abdominal wall may result in lumbar hernia formation, unique for its high incarceration rate, and also Spigelian hernias. This article will review the anatomy, the magnetic resonance (MR) imaging approach, and the features and complications of lateral abdominal wall injuries.

  5. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress.

    PubMed

    Joldes, Grand Roman; Miller, Karol; Wittek, Adam; Doyle, Barry

    2016-05-01

    Abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the lower region of the aorta. It is a symptomless condition that if left untreated can expand to the point of rupture. Mechanically-speaking, rupture of an artery occurs when the local wall stress exceeds the local wall strength. It is therefore desirable to be able to non-invasively estimate the AAA wall stress for a given patient, quickly and reliably. In this paper we present an entirely new approach to computing the wall tension (i.e. the stress resultant equal to the integral of the stresses tangent to the wall over the wall thickness) within an AAA that relies on trivial linear elastic finite element computations, which can be performed instantaneously in the clinical environment on the simplest computing hardware. As an input to our calculations we only use information readily available in the clinic: the shape of the aneurysm in-vivo, as seen on a computed tomography (CT) scan, and blood pressure. We demonstrate that tension fields computed with the proposed approach agree well with those obtained using very sophisticated, state-of-the-art non-linear inverse procedures. Using magnetic resonance (MR) images of the same patient, we can approximately measure the local wall thickness and calculate the local wall stress. What is truly exciting about this simple approach is that one does not need any information on material parameters; this supports the development and use of patient-specific modelling (PSM), where uncertainty in material data is recognised as a key limitation. The methods demonstrated in this paper are applicable to other areas of biomechanics where the loads and loaded geometry of the system are known. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Application of Decision Tree on Collision Avoidance System Design and Verification for Quadcopter

    NASA Astrophysics Data System (ADS)

    Chen, C.-W.; Hsieh, P.-H.; Lai, W.-H.

    2017-08-01

    The purpose of the research is to build a collision avoidance system with decision tree algorithm used for quadcopters. While the ultrasonic range finder judges the distance is in collision avoidance interval, the access will be replaced from operator to the system to control the altitude of the UAV. According to the former experiences on operating quadcopters, we can obtain the appropriate pitch angle. The UAS implement the following three motions to avoid collisions. Case1: initial slow avoidance stage, Case2: slow avoidance stage and Case3: Rapid avoidance stage. Then the training data of collision avoidance test will be transmitted to the ground station via wireless transmission module to further analysis. The entire decision tree algorithm of collision avoidance system, transmission data, and ground station have been verified in some flight tests. In the flight test, the quadcopter can implement avoidance motion in real-time and move away from obstacles steadily. In the avoidance area, the authority of the collision avoidance system is higher than the operator and implements the avoidance process. The quadcopter can successfully fly away from the obstacles in 1.92 meter per second and the minimum distance between the quadcopter and the obstacle is 1.05 meters.

  7. Design and fabrication of one piece in-situ ribbed cell walls for application in an advanced AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, D.P.; McDougal, J.R.; Booher, R.A.

    1998-07-01

    Alkali Metal Thermal to Electrical Conversion (AMTEC) technology has been identified as a promising advanced space power technology with a predicted thermal to electrical conversion efficiency of {approximately}20%. The AMTEC technology has been the focus of several research endeavors in recent years and in essence it utilizes sodium and beta-alumina solid electrolyte tubes placed within a metal housing (cell wall) forming an AMTEC cell. The future application of the AMTEC technology, as the basis of an advanced power system for future deep space missions, is dependent on the development of AMTEC cells which will have the appropriate long term physicalmore » and mechanical properties to ensure the successful completion of the mission. The emphasis of this paper is on the design and fabrication of one piece in-situ ribbed cell walls for application in AMTEC cells. Novel machining and laser welding processes were employed which allowed the successful fabrication of the one piece thin walled 0.10mm--0.25mm (0.004--0.010in) cells. In-situ ribbed cell walls have the advantage over other cell wall designs in that the number of piece parts and the total weld area is reduced greatly simplifying fabrication. Test results show that the fabricated one piece cell walls were hermetic (helium leak rates of less than 1 {times} 10{sup {minus}8} cm{sup 3}/s) and had sufficient compression strength to meet mission requirements.« less

  8. Collision-energy-resolved angular distribution of Penning electrons for N 2-He ∗(2 3S)

    NASA Astrophysics Data System (ADS)

    Hanzawa, Yoshinori; Kishimoto, Naoki; Yamazaki, Masakazu; Ohno, Koichi

    2006-07-01

    The collision-energy-resolved angular distributions of Penning electrons for individual ionic state of N 2-He ∗(2 3S) were measured. The angular distributions showed increasing intensity in the backward (rebounding) directions with respect to initial He ∗(2 3S) beam vector because Penning ionization occurs with a collision against repulsive interaction wall followed by the electron emission from 2s orbital of He ∗. We also analyzed internal angular distribution by means of fitting parameters using classical trajectory calculations for N 2-He ∗(2 3S) on the modified interaction potential. These internal angular distributions suggested the electron emission from 2s orbital of He ∗ and they depended on collision energy and electron kinetic energy.

  9. Application of water flowing PVC pipe and EPS foam bead as insulation for wall panel

    NASA Astrophysics Data System (ADS)

    Ali, Umi Nadiah; Nor, Norazman Mohamad; Yusuf, Mohammed Alias; Othman, Maidiana; Yahya, Muhamad Azani

    2018-02-01

    Malaysia located in tropical climate which have a typical temperature range between 21 °C to 36 °C. Due to this, air-conditioning system for buildings become a necessity to provide comfort to occupants. In order to reduce the energy consumption of the air-conditioning system, the transmission of heat from outdoor to indoor space should be kept as minimum as possible. This article discuss about a technology to resist heat transfer through concrete wall panel using a hybrid method. In this research, PVC pipe was embedded at the center of concrete wall panel while the EPS foam beads were added about 1% of the cement content in the concrete mix forming the outer layer of the wall panel. Water is regulated in the PVC pipe from the rainwater harvesting system. The aim of this study is to minimize heat transfer from the external environment into the building. Internal building temperature which indicated in BS EN ISO 7730 or ASHRAE Standard 55 where the comfort indoor thermal is below 25°C during the daytime. Study observed that the internal surface temperature of heat resistance wall panel is up to 3°C lower than control wall panel. Therefore, we can conclude that application of heat resistance wall panel can lead to lower interior building temperature.

  10. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  11. A review of tags anti-collision and localization protocols in RFID networks.

    PubMed

    Ullah, S; Alsalih, W; Alsehaim, A; Alsadhan, N

    2012-12-01

    Radio Frequency IDentification (RFID) has allowed the realization of ubiquitous tracking and monitoring of physical objects wirelessly with minimum human interactions. It plays a key role in a wide range of applications including asset tracking, contactless payment, access control, transportation and logistics, and other industrial applications. On the other side, RFID systems face several technical challenges that need to be overcome in order to achieve their potential benefits; tags collisions and localization of tagged objects are two important challenges. Numerous anti-collision and localization protocols have been proposed to address these challenges. This paper reviews the state-of-art tags' anti-collision and localization protocols, and provides a deep insight into technical issues of these protocols. The probabilistic and deterministic anti-collision protocols are critically studied and compared in terms of different parameters. We further review distance estimation, scene analysis, and proximity localization schemes and provide useful suggestions. We also introduce a new hybrid direction that utilizes power control to spatially partition the interrogation range of a reader for more efficient anti-collision and localization. Finally, we present the applications of RFID systems in healthcare sectors.

  12. Applications of a new wall function to turbulent flow computations

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-01-01

    A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.

  13. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  14. New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Meador, Michael A.

    2003-01-01

    Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing

  15. Estimating inelastic heavy-particle-hydrogen collision data. I. Simplified model and application to potassium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-10-01

    Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147

  16. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  17. Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.

  18. Algorithms for Collision Detection Between a Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Hagen, George

    2016-01-01

    This paper proposes mathematical definitions of functions that can be used to detect future collisions between a point and a moving polygon. The intended application is weather avoidance, where the given point represents an aircraft and bounding polygons are chosen to model regions with bad weather. Other applications could possibly include avoiding other moving obstacles. The motivation for the functions presented here is safety, and therefore they have been proved to be mathematically correct. The functions are being developed for inclusion in NASA's Stratway software tool, which allows low-fidelity air traffic management concepts to be easily prototyped and quickly tested.

  19. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  20. Integrating shotcrete walls into the natural landscape by application of 'Green Walls'

    NASA Astrophysics Data System (ADS)

    Medl, Alexandra; Kikuta, Silvia

    2017-04-01

    Steep slopes resulting from major road infrastructure constructions are increasingly perceived as disagreeable disturbance in the landscape. Thus, a tool to consider landscape aspects and integrate these slopes into the natural environment is required. The challenge is to establish a sustainable vegetation layer despite of adverse circumstances such as inclinations of almost 90⁰, exposed position of slopes near streets and lack of soil and water supply. The objective of this study was to assess the performance of an innovative greening technology for vertical structures (shotcrete wall) in terms of vegetation development on varying plant substrates and geotextiles. The field experiment in Steinach am Brenner, Tyrol, Austria, included testing three plant substrates on basis of nearby rocky excavation material ('Innsbrucker Quarzphyllit', 'Bündnerschiefer' and 'Zentralgneis') combined with compost. Additionally, five geotextiles (geogrid (3x4 mm), geogrid (9x10 mm), coir net, coir mat, geo mat) were applied for evaluation. All test combinations were evaluated regarding vegetation cover and biomass production from 2015 to 2016. Analyses of chemical properties were conducted for all plant substrates. Results showed highest vegetation cover ratio on 'Bündnerschiefer' and 'Innsbrucker Quarzphyllit', which can be explained by the favorable mineral composition (nutrient storage capacity) and chemical properties of compost (lower values of electrical conductivity and C/N ratio). In conclusion, the use of 'Green Walls' filled with 'Bündnerschiefer' or 'Innsbrucker Quarzphyllit' plant substrate in combination with netlike geotextiles proved best, since geo grid and coir net turned out as most successful one year after installation. 'Green Walls' are promising in terms of establishing an optimal vegetation cover on vertical structures and are well suited for integrating shotcrete walls into the landscape. The use of local excavation material for greening purposes can be

  1. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    NASA Astrophysics Data System (ADS)

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  2. Magnitude and correlates of bird collisions at glass bus shelters in an urban landscape.

    PubMed

    Barton, Christine M; Riding, Corey S; Loss, Scott R

    2017-01-01

    Wildlife residing in urban landscapes face many human-related threats to their survival. For birds, collision with glass on manmade structures has been identified as a major hazard, causing hundreds of millions of avian fatalities in North America every year. Although research has investigated factors associated with bird-glass collision mortality at buildings, no prior studies have focused on bird fatalities at glass-walled bus shelters. Our objectives in this study were to describe the magnitude of bird-bus shelter collisions in the city of Stillwater, Oklahoma and assess potential predictors of collision risk, including characteristics of shelters (glass area) and surrounding land cover (e.g., vegetative features). We surveyed for bird carcasses and indirect collision evidence at 18 bus shelters over a five-month period. Linear regression and model selection results revealed that the amount of glass on shelters and the area of lawn within 50 m of shelters were both positively related to fatal bird collisions; glass area was also positively associated with observations of collision evidence on glass surfaces. After accounting for scavenger removal of carcasses, we estimate that a minimum of 34 birds are killed each year between May and September by collision with the 36 bus shelters in the city of Stillwater. While our study provides an initial look at bird fatalities at bus shelters, additional research is needed to generate a large-scale estimate of collision mortality and to assess species composition of fatalities at a national scale. Designing new bus shelters to include less glass and retrofitting existing shelters to increase visibility of glass to birds will likely reduce fatal bird collisions at bus shelters and thus reduce the cumulative magnitude of anthropogenic impacts to birds in cities.

  3. Ultrasonic probe for inspecting double-wall tube. [Patent application

    DOEpatents

    Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.

    1981-05-29

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  4. Vertical regolith shield wall construction for lunar base applications

    NASA Technical Reports Server (NTRS)

    Kaplicky, Jan; Nixon, David; Wernick, Jane

    1992-01-01

    Lunar bases located on the lunar surface will require permanent protection from radiation and launch ejecta. This paper outlines a method of providing physical protection using lunar regolith that is constructed in situ as a modular vertical wall using specially devised methods of containment and construction. Deployable compartments, reinforced with corner struts, are elevated and filled by a moving gantry. The compartments interlock to form a stable wall. Different wall heights, thicknesses, and plan configurations are achieved by varying the geometry of the individual compartments, which are made from woven carbon fibers. Conventional terrestrial structural engineering techniques can be modified and used to establish the structural integrity and performance of the wall assembly.

  5. Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars

    PubMed Central

    Schiffner, Ingo; Srinivasan, Mandyam V.

    2016-01-01

    We have investigated how birds avoid mid-air collisions during head-on encounters. Trajectories of birds flying towards each other in a tunnel were recorded using high speed video cameras. Analysis and modelling of the data suggest two simple strategies for collision avoidance: (a) each bird veers to its right and (b) each bird changes its altitude relative to the other bird according to a preset preference. Both strategies suggest simple rules by which collisions can be avoided in head-on encounters by two agents, be they animals or machines. The findings are potentially applicable to the design of guidance algorithms for automated collision avoidance on aircraft. PMID:27680488

  6. A Comparison between 3D Model Results Using Two Different Collision Schemes: Forward Scattering vs. Hard Sphere Collision

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.; Johnson, R. E.; Tully, C.

    2016-12-01

    The recent observations of the Martian geomorphology suggest that water has played a critical role in forming the present status of the Martian atmosphere and environment. The inventory of water has been depleted throughout the planet's geologic time via various mechanisms from the surface to the uppermost atmosphere where the Sun-Mars interaction occurs. During the current epoch, dissociative recombination of O2+ is suggested as the main nonthermal mechanism that regulates the escape of atomic O, forming the hot O corona. A nascent hot O atom produced deep in the thermosphere undergoes collisions with the background thermal species, where the particle can lose energy and become thermalized before it reaches the collisionless regime and escape. The major hot O collisions with the background species that contribute to the thermalization of hot O are Ohot-Ocold, Ohot-CO2,cold, Ohot-COcold, and Ohot-N2,cold. In order to describe these collisions, there have been different collisions schemes used by the previous models. One of the most realistic descriptions involves using angular differential cross sections, and the simplest approach is using isotropic collision cross sections. Here, we present a comparison between the 3D model results using two different collision schemes to find equivalent hard sphere collision cross sections that satisfy the effects from using forward scattering cross sections. We adapted the newly calculated angular differential cross sections to the major hot O collisions. The hot O corona is simulated by coupling our Mars application of the 3D Adaptive Mesh Particle Simulator (M-AMPS) [Tenishev et al., 2008, 2013] and the Mars Global Ionosphere-Thermosphere Model (M-GITM) [Bougher et al., 2015].

  7. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  8. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected

  9. Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Heißelmann, D.; Kothe, S.; Weidling, R.; Blum, J.

    2017-07-01

    Context. The experiment results presented apply to the very first stages of planet formation, when small dust aggregates collide in the protoplanetary disc and grow into bigger clusters. In 2011, before flying on the REXUS 12 suborbital rocket in 2012, the Suborbital Particle and Aggregation Experiment (SPACE) performed drop tower flights. We present the results of this first microgravity campaign. Aims: The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. Methods: The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes between 120 μm and 250 μm. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9 s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. Results: We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm s-1 to 20 cm s-1. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm s-1 for aggregates composed of monodisperse dust, with an average value of 2.1 ± 0.9 cm s-1 for reduced masses ranging from 1.2 × 10-6 to 1.8 × 10-3 g with an average value of 2.2+16-2.1 × 10-4 g. The velocities at which bouncing occurred ranged from 1.9 to 11.9 cm s-1 for the same aggregates with an average of 5.9 ± 3.2 cm s-1 for reduced masses ranging from 2.1 × 10-6 to 2.4 × 10-4 with an average of 7.8 ± 2.4 × 10-5 g. The velocities at which fragmentation occurred

  10. Refractory metal joining for first wall applications

    NASA Astrophysics Data System (ADS)

    Cadden, C. H.; Odegard, B. C.

    2000-12-01

    The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  11. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  12. The Underlying Physics in Wetted Particle Collisions

    NASA Astrophysics Data System (ADS)

    Donahue, Carly; Hrenya, Christine; Davis, Robert

    2008-11-01

    Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.

  13. Eternal inflation, bubble collisions, and the disintegration of the persistence of memory

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben; Kleban, Matthew; Nicolis, Alberto; Sigurdson, Kris

    2009-08-01

    We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ~ γ Vf/Vi , where γ is the fastest decay rate of the false vacuum, Vf is its vacuum energy, and Vi is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is NLS ~ (Ωk)1/2N, where Ωk is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic.

  14. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  15. Native backfill materials for mechanically stabilized earth walls.

    DOT National Transportation Integrated Search

    2005-01-01

    Mechanically stabilized earth walls are an attractive alternative to conventional reinforced concrete retaining walls. The economy of these walls for non-critical applications might be improved by using alternative backfills consisting of on-site soi...

  16. Multi-actuators vehicle collision avoidance system - Experimental validation

    NASA Astrophysics Data System (ADS)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  17. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huovinen, Pasi; Molnar, Denes; Physics Department, Purdue University, West Lafayette, Indiana 47907, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973

    2009-01-15

    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2{yields}2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio {eta}/s{approx_equal}const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path {tau}{sub 0}/{lambda}{sub tr,0}more » > or approx. 2. The same accuracy with NS requires three times larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 6. For dynamics driven by a constant cross section, on the other hand, about 50% larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., {radical}(s{sub NN}){approx}100-200 GeV, these limits imply that even the IS approach becomes marginal when {eta}/s > or approx. 0.15. In addition, we find that the 'naive' approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.« less

  18. Ship-bridge collision monitoring system based on flexible quantum tunneling composite with cushioning capability

    NASA Astrophysics Data System (ADS)

    Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping

    2018-07-01

    In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.

  19. Numerical validation of axial plasma momentum lost to a lateral wall induced by neutral depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Yoshinori, E-mail: takao@ynu.ac.jp; Takahashi, Kazunori

    2015-11-15

    Momentum imparted to a lateral wall of a compact inductively coupled plasma thruster is numerically investigated for argon and xenon gases by a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC). Axial plasma momentum lost to a lateral wall is clearly shown when axial depletion of the neutrals is enhanced, which is in qualitative agreement with the result in a recent experiment using a helicon plasma source [Takahashi et al., Phys. Rev. Lett. 114, 195001 (2015)]. The PIC-MCC calculations demonstrate that the neutral depletion causes an axially asymmetric profile of the plasma density and potential, leading to axial ion acceleration andmore » the non-negligible net axial force exerted to the lateral wall in the opposite direction of the thrust.« less

  20. Patterns of bird-window collisions inform mitigation on a university campus

    PubMed Central

    Winton, R. Scott; Wu, Charlene J.; Zambello, Erika; Wittig, Thomas W.; Cagle, Nicolette L.

    2016-01-01

    Bird-window collisions cause an estimated one billion bird deaths annually in the United States. Building characteristics and surrounding habitat affect collision frequency. Given the importance of collisions as an anthropogenic threat to birds, mitigation is essential. Patterned glass and UV-reflective films have been proven to prevent collisions. At Duke University’s West campus in Durham, North Carolina, we set out to identify the buildings and building characteristics associated with the highest frequencies of collisions in order to propose a mitigation strategy. We surveyed six buildings, stratified by size, and measured architectural characteristics and surrounding area variables. During 21 consecutive days in spring and fall 2014, and spring 2015, we conducted carcass surveys to document collisions. In addition, we also collected ad hoc collision data year-round and recorded the data using the app iNaturalist. Consistent with previous studies, we found a positive relationship between glass area and collisions. Fitzpatrick, the building with the most window area, caused the most collisions. Schwartz and the Perk, the two small buildings with small window areas, had the lowest collision frequencies. Penn, the only building with bird deterrent pattern, caused just two collisions, despite being almost completely made out of glass. Unlike many research projects, our data collection led to mitigation action. A resolution supported by the student government, including news stories in the local media, resulted in the application of a bird deterrent film to the building with the most collisions: Fitzpatrick. We present our collision data and mitigation result to inspire other researchers and organizations to prevent bird-window collisions. PMID:26855877

  1. Paths to equilibrium in non-conformal collisions

    NASA Astrophysics Data System (ADS)

    Attems, Maximilian; Bea, Yago; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel

    2018-03-01

    Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable), the EoSization time (when the average pressure approaches its equilibrium value) and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value). We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.

  2. Collision group and renormalization of the Boltzmann collision integral.

    PubMed

    Saveliev, V L; Nanbu, K

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  3. Collision group and renormalization of the Boltzmann collision integral

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  4. Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare.

    PubMed

    Chik, Mazzura Wan; Hussain, Zahid; Zulkefeli, Mohd; Tripathy, Minaketan; Kumar, Sunil; Majeed, Abu Bakar Abdul; Byrappa, K

    2018-03-28

    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.

  5. Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Lutz, Otto

    1950-01-01

    A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.

  6. Energy-Aware RFID Anti-Collision Protocol.

    PubMed

    Arjona, Laura; Simon, Hugo Landaluce; Ruiz, Asier Perallos

    2018-06-11

    The growing interest in mobile devices is transforming wireless identification technologies. Mobile and battery-powered Radio Frequency Identification (RFID) readers, such as hand readers and smart phones, are are becoming increasingly attractive. These RFID readers require energy-efficient anti-collision protocols to minimize the tag collisions and to expand the reader's battery life. Furthermore, there is an increasing interest in RFID sensor networks with a growing number of RFID sensor tags. Thus, RFID application developers must be mindful of tag anti-collision protocols. Energy-efficient protocols involve a low reader energy consumption per tag. This work presents a thorough study of the reader energy consumption per tag and analyzes the main factor that affects this metric: the frame size update strategy. Using the conclusion of this analysis, the anti-collision protocol Energy-Aware Slotted Aloha (EASA) is presented to decrease the energy consumption per tag. The frame size update strategy of EASA is configured to minimize the energy consumption per tag. As a result, EASA presents an energy-aware frame. The performance of the proposed protocol is evaluated and compared with several state of the art Aloha-based anti-collision protocols based on the current RFID standard. Simulation results show that EASA, with an average of 15 mJ consumed per tag identified, achieves a 6% average improvement in the energy consumption per tag in relation to the strategies of the comparison.

  7. An assessment of 'shuffle algorithm' collision mechanics for particle simulations

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Boyd, Iain D.

    1991-01-01

    Among the algorithms for collision mechanics used at present, the 'shuffle algorithm' of Baganoff (McDonald and Baganoff, 1988; Baganoff and McDonald, 1990) not only allows efficient vectorization, but also discretizes the possible outcomes of a collision. To assess the applicability of the shuffle algorithm, a simulation was performed of flows in monoatomic gases and the calculated characteristics of shock waves was compared with those obtained using a commonly employed isotropic scattering law. It is shown that, in general, the shuffle algorithm adequately represents the collision mechanics in cases when the goal of calculations are mean profiles of density and temperature.

  8. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  9. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  10. FLEXWAL: A computer program for predicting the wall modifications for two-dimensional, solid, adaptive-wall tunnels

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1983-01-01

    A program called FLEXWAL for calculating wall modifications for solid, adaptive-wall wind tunnels is presented. The method used is the iterative technique of NASA TP-2081 and is applicable to subsonic and transonic test conditions. The program usage, program listing, and a sample case are given.

  11. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots.

    PubMed

    Jayaram, Kaushik; Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S; Full, Robert J

    2018-02-01

    Exceptional performance is often considered to be elegant and free of 'errors' or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the 'Haldane limit'. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. © 2018 The Authors.

  12. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots

    PubMed Central

    Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S.; Full, Robert J.

    2018-01-01

    Exceptional performance is often considered to be elegant and free of ‘errors’ or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the ‘Haldane limit’. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. PMID:29445036

  13. The effects of Coulomb collisions on O+, H+, and He+ plasmas for topside incoherent scatter radar applications at Jicamarca

    NASA Astrophysics Data System (ADS)

    Milla, M. A.; Kudeki, E.; Chau, J. L.

    2012-12-01

    Coulomb collision effects on incoherent scatter radar signals become important when radar beams are pointed perpendicular to the Earth's magnetic field (B). To study these effects, Milla and Kudeki [2011] developed a procedure to estimate the spectrum of plasma density fluctuations (also known as incoherent scatter spectrum) based on simulations of collisional particle trajectories in single-ion component plasmas. In these simulations, collision effects on the particle motion are modeled using the standard Fokker-Planck model of Rosenbluth et al. [1957]. We have recently generalized the procedure of Milla and Kudeki to consider the case of multiple ion components in order to study the characteristics of the incoherent scatter spectrum in O+, H+, and He+ ionospheric plasmas, which is needed for the analysis of topside perpendicular-to-B observations at the Jicamarca Radio Observatory. In this presentation, we will report on the development of this new approach and on the characteristics of the spectrum models that were developed. The simulation results show that the ion collision process can be fairly well approximated as a Gaussian motion process, a model that has been previously studied in the literature by different authors. However, in the case of electron collisions, the process is not Gaussian having a complicated dependence on plasma parameters. As it will be discussed, electron collisions have a significant impact on the shape of the incoherent scatter spectrum. The ultimate application of the models that were developed is the simultaneous estimation of plasma drifts, densities, and temperatures of the topside equatorial ionosphere in perpendicular-to-B experiments at Jicamarca. This experimental evaluation will have a broader impact since the accuracy of the Fokker-Planck collision model will be tested. References: Milla, M. A., and E. Kudeki (2011), Incoherent scatter spectral theories-Part II: Modeling the spectrum for modes propagating perpendicular to B

  14. Automobile Collisions, Kinematics and Related Injury Patterns

    PubMed Central

    Siegel, A. W.

    1972-01-01

    It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661

  15. Modelling of a collision between two smartphones

    NASA Astrophysics Data System (ADS)

    de Jesus, V. L. B.; Sasaki, D. G. G.

    2016-09-01

    In the predominant approach in physics textbooks, the collision between particles is treated as a black box, where no physical quantity can be measured. This approach becomes even more evident in experimental classes where collisions are the simplest and most common way of applying the theorem of conservation of linear momentum in the asymptotic behavior. In this paper we develop and analyse an experiment on collisions using only two smartphones. The experimental setup is amazingly simple; the two devices are aligned on a horizontal table of lacquered wood, in order to slide more easily. At the edge of one of them a piece of common sponge is glued using double-sided tape. By using a free smartphone application, the values generated by the accelerometer of the two devices in full motion are measured and tabulated. Through numerical iteration, the speed graphs of the smartphones before, during, and after the collision are obtained. The main conclusions were: (i) the demonstration of the feasibility of using smartphones as an alternative to air tracks and electronic sensors employed in a teaching lab, (ii) the possibility of investigating the collision itself, its characteristics and effects; this is the great advantage of the use of smartphones over traditional experiments, (iii) the compatibility of the results with the impulse-momentum theorem, within the margin of uncertainty.

  16. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.

    PubMed

    Zhang, Linshuai; Guo, Shuxiang; Yu, Huadong; Song, Yu; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori

    2018-02-23

    The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.

  17. DBD Actuated Flow Control of Wall-Jet and Cross-Flow Interaction for Film Cooling Applications

    NASA Astrophysics Data System (ADS)

    Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva

    2014-11-01

    In this work, we use surface DBD actuators to control the interaction between a wall jet and mainstream flow in film cooling applications. The intention of the study is to improve the contact of the jet with the wall and enhance the convective heat transfer coefficient downstream of the jet exit. A 2D wall jet (10 mm height) is injected into the mainstream flow at an angle of 30°. With an injected jet velocity (Ui) of 5 m/s, two blowing ratios M (=ρi Ui / ρ∞U∞) of 1.0 and 0.5 are studied corresponding to the mainstream flow velocity (U∞) of 5 m/s and 10 m/s respectively. Different configurations of the DBD actuator are studied, positioned both inside the jet and on the downstream side. PIV measurements are conducted to investigate the flow field of the interaction between the jet and cross flow. Streamwise velocity profiles at different downstream locations are compared to analyze the efficacy of the plasma actuator in improving the contact between the injected jet stream and the wall surface. Reynolds shear stress measurements are also conducted to study the mixing regions in the plasma-jet-mainstream flow interaction. Work was partially funded by the French government program ``Investissements d'avenir'' (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

  18. Chirality in molecular collision dynamics

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  19. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  20. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters inmore » two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.« less

  1. Silicon carbide at nanoscale: Finite single-walled to "infinite" multi-walled tubes

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil

    A systematic ab initio study of silicon carbide (SiC) nanostructures, especially finite single-walled, infinite double- and multi-walled nanotubes and nanocones is presented. Electronic and structural properties of all these nanostructures have been calculated using hybrid density functionals (B3LYP and PBE0) as implemented in the GAUSSIAN 03/09 suite of software. The unusual dependence of band gap of silicon carbide nanotubes (SiCNT) has been explained as a direct consequence of curvature effect on the ionicity of the bonds. The study of fullerene hemisphere capped, finite SiC nanotubes indicates that the carbon-capped SiC nanotubes are energetically more preferred than silicon-capped finite or hydrogen terminated infinite nanotubes. Capping a nanotube by fullerene hemisphere reduces its band gap. SiC nanocones have also been investigated as possible cap structures of nanotubes. Electronic properties of the nanocones are found to be strongly dependent upon their tip and edge structures, with possible interesting applications in surface science. Three types of double-walled SiCNTs (n, n)@(m, m) (3 ≤ n ≤ 6 ; 7 ≤ m ≤ 12) have been studied using the finite cluster approximation. The stabilities of these nanotubes are of the same order as those of the single-walled SiC nanotubes and it should be experimentally possible to synthesize both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes and their types. A study of binding energies, Mulliken charges, density of states and HOMO-LUMO gaps has been performed for all nanotubes from (n, n)@(n+3,n+3) to (n, n)@(n+6, n+6) (n=3-6). Evolution of band gaps of the SiCNTs with increase in the number of walls has also been investigated. The nature of interaction between transition metal atoms and silicon carbide nanotubes with different

  2. Flat-walled multilayered anechoic linings: Optimization and application

    NASA Astrophysics Data System (ADS)

    Xu, Jingfeng; Buchholz, Jörg M.; Fricke, Fergus R.

    2005-11-01

    The concept of flat-walled multilayered absorbent linings for anechoic rooms was proposed three decades ago. Flat-walled linings have the advantage of being less complicated and, hence, less costly to manufacture and install than the individual units such as wedges. However, there are difficulties in optimizing the design of such absorbent linings. In the present work, the design of a flat-walled multilayered anechoic lining that targeted a 250 Hz cut-off frequency and a 300 mm maximum lining thickness was first optimized using an evolutionary algorithm. Sixteen of the most commonly used commercial fibrous building insulation materials available in Australia were investigated and fourteen design options (i.e., material combinations) were found by the evolutionary algorithm. These options were then evaluated in accordance with their costs and measured acoustic absorption performances. Finally, the completed anechoic room, where the optimized design was applied, was qualified and the results showed that a large percentage (75%-85%) of the distance between the sound source and the room boundaries, on the traverses made, were anechoic.

  3. Collision Models for Particle Orbit Code on SSX

    NASA Astrophysics Data System (ADS)

    Fisher, M. W.; Dandurand, D.; Gray, T.; Brown, M. R.; Lukin, V. S.

    2011-10-01

    Coulomb collision models are being developed and incorporated into the Hamiltonian particle pushing code (PPC) for applications to the Swarthmore Spheromak eXperiment (SSX). A Monte Carlo model based on that of Takizuka and Abe [JCP 25, 205 (1977)] performs binary collisions between test particles and thermal plasma field particles randomly drawn from a stationary Maxwellian distribution. A field-based electrostatic fluctuation model scatters particles from a spatially uniform random distribution of positive and negative spherical potentials generated throughout the plasma volume. The number, radii, and amplitude of these potentials are chosen to mimic the correct particle diffusion statistics without the use of random particle draws or collision frequencies. An electromagnetic fluctuating field model will be presented, if available. These numerical collision models will be benchmarked against known analytical solutions, including beam diffusion rates and Spitzer resistivity, as well as each other. The resulting collisional particle orbit models will be used to simulate particle collection with electrostatic probes in the SSX wind tunnel, as well as particle confinement in typical SSX fields. This work has been supported by US DOE, NSF and ONR.

  4. Amplitude modulation of alpha-band rhythm caused by mimic collision: MEG study.

    PubMed

    Yokosawa, Koichi; Watanabe, Tatsuya; Kikuzawa, Daichi; Aoyama, Gakuto; Takahashi, Makoto; Kuriki, Shinya

    2013-01-01

    Detection of a collision risk and avoiding the collision are important for survival. We have been investigating neural responses when humans anticipate a collision or intend to take evasive action by applying collision-simulating images in a predictable manner. Collision-simulating images and control images were presented in random order to 9 healthy male volunteers. A cue signal was also given visually two seconds before each stimulus to enable each participant to anticipate the upcoming stimulus. Magnetoencephalograms (MEG) were recorded with a 76-ch helmet system. The amplitude of alpha band (8-13 Hz) rhythm when anticipating the upcoming collision-simulating image was significantly smaller than that when anticipating control images even just after the cue signal. This result demonstrates that anticipating a negative (dangerous) event induced event-related desynchronization (ERD) of alpha band activity, probably caused by attention. The results suggest the feasibility of detecting endogenous brain activities by monitoring alpha band rhythm and its possible applications to engineering systems, such as an automatic collision evasion system for automobiles.

  5. Monitoring wildlife-vehicle collisions in the information age: how smartphones can improve data collection.

    PubMed

    Olson, Daniel D; Bissonette, John A; Cramer, Patricia C; Green, Ashley D; Davis, Scott T; Jackson, Patrick J; Coster, Daniel C

    2014-01-01

    Currently there is a critical need for accurate and standardized wildlife-vehicle collision data, because it is the underpinning of mitigation projects that protect both drivers and wildlife. Gathering data can be challenging because wildlife-vehicle collisions occur over broad areas, during all seasons of the year, and in large numbers. Collecting data of this magnitude requires an efficient data collection system. Presently there is no widely adopted system that is both efficient and accurate. Our objective was to develop and test an integrated smartphone-based system for reporting wildlife-vehicle collision data. The WVC Reporter system we developed consisted of a mobile web application for data collection, a database for centralized storage of data, and a desktop web application for viewing data. The smartphones that we tested for use with the application produced accurate locations (median error = 4.6-5.2 m), and reduced location error 99% versus reporting only the highway/marker. Additionally, mean times for data entry using the mobile web application (22.0-26.5 s) were substantially shorter than using the pen/paper method (52 s). We also found the pen/paper method had a data entry error rate of 10% and those errors were virtually eliminated using the mobile web application. During the first year of use, 6,822 animal carcasses were reported using WVC Reporter. The desktop web application improved access to WVC data and allowed users to easily visualize wildlife-vehicle collision patterns at multiple scales. The WVC Reporter integrated several modern technologies into a seamless method for collecting, managing, and using WVC data. As a result, the system increased efficiency in reporting, improved accuracy, and enhanced visualization of data. The development costs for the system were minor relative to the potential benefits of having spatially accurate and temporally current wildlife-vehicle collision data.

  6. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  7. Conservative bin-to-bin fractional collisions

    NASA Astrophysics Data System (ADS)

    Martin, Robert

    2016-11-01

    Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the

  8. Chest wall abscesses due to continuous application of silicone gel sheets for keloid management

    PubMed Central

    Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S

    2015-01-01

    A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. PMID:25920733

  9. Chest wall abscesses due to continuous application of silicone gel sheets for keloid management.

    PubMed

    Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S

    2015-04-28

    A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. 2015 BMJ Publishing Group Ltd.

  10. Production of Pions in pA-collisions

    NASA Technical Reports Server (NTRS)

    Moskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Accurate knowledge of pion production cross section in PA-collisions is of interest for astrophysics, CR physics, and space radiation studies. Meanwhile, pion production in pA-reactions is often accounted for by simple scaling of that for pp-collisions, which is not enough for many real applications. We evaluate the quality of existing parameterizations using the data and simulations with the Los Alamos version of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  11. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  12. Processes in continental collision zones: Preface

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhang, Lifei; McClelland, William C.; Cuthbert, Simon

    2012-04-01

    Formation and exhumation of high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in continental subduction zones are the two fundamental geodynamic aspects of collisional orogensis. This volume is based on the Session 08c titled "Geochemical processes in continental collision zones" at Goldschmidt 2010 in Knoxville, USA. It focuses on micro- to macro-scale processes that are temporally and spatially linked to different depths of crustal subduction/exhumation and associated mineralogical changes. They are a key to understanding a wide spectrum of phenomena, involving HP/UHP metamorphism and syn-/post-collisional magmatism. Papers in this volume report progresses in petrological, geochronological and geochemical studies of UHP metamorphic rocks and their derivatives in China, with tectonic settings varying from arc-continent collision to continent-continent collision. Microbeam in-situ analyses of metamorphic and magmatic minerals are successfully utilized to solve various problems in the study of continental deep subduction and UHP metamorphism. In addition to their geochronological applications to dating of HP to UHP metamorphic events during continental collision, microbeam techniques have also served as an efficient means to recognize different generations of mineral growth during continental subduction-zone metamorphism. Furthermore, metamorphic dehydration and partial melting of UHP metamorphic rocks during subduction and exhumation are highlighted with respect to their effects on fluid action and element mobilization. These have provided new insights into chemical geodynamics in continental subduction zones.

  13. Wall roughness induces asymptotic ultimate turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  14. Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1992-01-01

    The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.

  15. Positron production in heavy-ion collisions. II. Application of the formalism to the case of the U+U collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomoda, T.

    1982-07-01

    The method developed in the preceding paper is applied to the calculation of the spectra of positrons produced in the U + U collision. Matrix elements of the radial derivative operator between adiabatic basis states are calculated in the monopole approximation, with the finite nuclear size taken into account. These matrix elements are then modified for the supercritical case with the use of the analytical method presented in paper I of this series. The coupled differential equations for the occupation amplitudes of the basis states are solved and the positron spectra are obtained for the U + U collision. Itmore » is shown that the decomposition of the production probability into a spontaneous and an induced part depends on the definition of the resonance state and cannot be given unambiguously. The results are compared with those obtained by Reinhardt et al.« less

  16. Are There Frame-Distortion Contributions to Collision-Induced Absorption and Collision-Induced Light Scattering?

    NASA Astrophysics Data System (ADS)

    Hohm, Uwe

    2007-12-01

    Collision-induced spectroscopy, such as collision-induced absorption (CIA) and collision-induced light scattering (CILS), can give valuable information on permanent electric moments, polarizabilities and intermolecular-interaction potentials. In general the collision-induced spectra of the pure rare-gases and their binary mixtures are understood fairly well. However if at least one of the collision partners is a molecule then in some cases the spectra show features which can hardly be explained by current theories which deal with the case of undistorted molecules. Here we discuss the possibility of collision-induced frame distortion as an additional effect to be considered in collision-induced spectroscopy.

  17. Effects of the magnetic field gradient on the wall power deposition of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Zhang, Xu; Wei, Liqiu; Sun, Hezhi; Peng, Wuji; Yu, Daren

    2017-04-01

    The effect of the magnetic field gradient in the discharge channel of a Hall thruster on the ionization of the neutral gas and power deposition on the wall is studied through adopting the 2D-3V particle-in-cell (PIC) and Monte Carlo collisions (MCC) model. The research shows that by gradually increasing the magnetic field gradient while keeping the maximum magnetic intensity at the channel exit and the anode position unchanged, the ionization region moves towards the channel exit and then a second ionization region appears near the anode region. Meanwhile, power deposition on the walls decreases initially and then increases. To avoid power deposition on the walls produced by electrons and ions which are ionized in the second ionization region, the anode position is moved towards the channel exit as the magnetic field gradient is increased; when the anode position remains at the zero magnetic field position, power deposition on the walls decreases, which can effectively reduce the temperature and thermal load of the discharge channel.

  18. Topological domain walls in helimagnets

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  19. High-speed schlieren videography of vortex-ring impact on a wall

    NASA Astrophysics Data System (ADS)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  20. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  1. Wind Tunnel Wall Interference Assessment and Correction, 1983

    NASA Technical Reports Server (NTRS)

    Newman, P. A. (Editor); Barnwell, R. W. (Editor)

    1984-01-01

    Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.

  2. Research and Development of Heavy Wall DNV485FDU Pipeline Plate for 3500M Deep Water Pipe Applications at Shougang

    NASA Astrophysics Data System (ADS)

    Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai

    In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.

  3. Inelastic collapse and near-wall localization of randomly accelerated particles.

    PubMed

    Belan, S; Chernykh, A; Lebedev, V; Falkovich, G

    2016-05-01

    Inelastic collapse of stochastic trajectories of a randomly accelerated particle moving in half-space z>0 has been discovered by McKean [J. Math. Kyoto Univ. 2, 227 (1963)] and then independently rediscovered by Cornell et al. [Phys. Rev. Lett. 81, 1142 (1998)PRLTAO0031-900710.1103/PhysRevLett.81.1142]. The essence of this phenomenon is that the particle arrives at the wall at z=0 with zero velocity after an infinite number of inelastic collisions if the restitution coefficient β of particle velocity is smaller than the critical value β_{c}=exp(-π/sqrt[3]). We demonstrate that inelastic collapse takes place also in a wide class of models with spatially inhomogeneous random forcing and, what is more, that the critical value β_{c} is universal. That class includes an important case of inertial particles in wall-bounded random flows. To establish how inelastic collapse influences the particle distribution, we derive the exact equilibrium probability density function ρ(z,v) for the particle position and velocity. The equilibrium distribution exists only at β<β_{c} and indicates that inelastic collapse does not necessarily imply near-wall localization.

  4. Multi-level Monte Carlo Methods for Efficient Simulation of Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2013-10-01

    We discuss the use of multi-level Monte Carlo (MLMC) schemes--originally introduced by Giles for financial applications--for the efficient simulation of Coulomb collisions in the Fokker-Planck limit. The scheme is based on a Langevin treatment of collisions, and reduces the computational cost of achieving a RMS error scaling as ɛ from O (ɛ-3) --for standard Langevin methods and binary collision algorithms--to the theoretically optimal scaling O (ɛ-2) for the Milstein discretization, and to O (ɛ-2 (logɛ)2) with the simpler Euler-Maruyama discretization. In practice, this speeds up simulation by factors up to 100. We summarize standard MLMC schemes, describe some tricks for achieving the optimal scaling, present results from a test problem, and discuss the method's range of applicability. This work was performed under the auspices of the U.S. DOE by the University of California, Los Angeles, under grant DE-FG02-05ER25710, and by LLNL under contract DE-AC52-07NA27344.

  5. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S; Cook, K; Fasenfest, B

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellitemore » collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.« less

  6. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  7. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  8. Centrality and multiparticle production in ultrarelativistic nuclear collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drozhzhova, T. A.; Kovalenko, V. N.; Seryakov, A. Yu.

    2016-09-15

    A critical analysis of methods for selecting central events in high-energy proton–nucleus (pA) and nucleus–nucleus (AA) collisions is presented. A sample of event classes in which background fluctuations associated with the dispersion of the impact parameter of each event or the number of participant nucleons are minimal is examined. At the SPS and LHC energies, the numbers of nucleon–nucleon collisions are estimated with the aid of the Monte Carlo event generators HIJING and AMPT, which take into account energy–momentum conservation, and on the basis of a non-Glauber model involving string fusion and a modified Glauber model. The results obtained inmore » this way demonstrate the need for revising the extensively used application of the Glauber model in normalizing multiplicity yields in experimental data on pA and AA collisions in the soft region of the spectrum.« less

  9. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.

    PubMed

    Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young

    2017-01-01

    This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p < 0.05). The experiments show that virtual wall-based haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.

  10. InChIKey collision resistance: an experimental testing

    PubMed Central

    2012-01-01

    InChIKey is a 27-character compacted (hashed) version of InChI which is intended for Internet and database searching/indexing and is based on an SHA-256 hash of the InChI character string. The first block of InChIKey encodes molecular skeleton while the second block represents various kinds of isomerism (stereo, tautomeric, etc.). InChIKey is designed to be a nearly unique substitute for the parent InChI. However, a single InChIKey may occasionally map to two or more InChI strings (collision). The appearance of collision itself does not compromise the signature as collision-free hashing is impossible; the only viable approach is to set and keep a reasonable level of collision resistance which is sufficient for typical applications. We tested, in computational experiments, how well the real-life InChIKey collision resistance corresponds to the theoretical estimates expected by design. For this purpose, we analyzed the statistical characteristics of InChIKey for datasets of variable size in comparison to the theoretical statistical frequencies. For the relatively short second block, an exhaustive direct testing was performed. We computed and compared to theory the numbers of collisions for the stereoisomers of Spongistatin I (using the whole set of 67,108,864 isomers and its subsets). For the longer first block, we generated, using custom-made software, InChIKeys for more than 3 × 1010 chemical structures. The statistical behavior of this block was tested by comparison of experimental and theoretical frequencies for the various four-letter sequences which may appear in the first block body. From the results of our computational experiments we conclude that the observed characteristics of InChIKey collision resistance are in good agreement with theoretical expectations. PMID:23256896

  11. InChIKey collision resistance: an experimental testing.

    PubMed

    Pletnev, Igor; Erin, Andrey; McNaught, Alan; Blinov, Kirill; Tchekhovskoi, Dmitrii; Heller, Steve

    2012-12-20

    InChIKey is a 27-character compacted (hashed) version of InChI which is intended for Internet and database searching/indexing and is based on an SHA-256 hash of the InChI character string. The first block of InChIKey encodes molecular skeleton while the second block represents various kinds of isomerism (stereo, tautomeric, etc.). InChIKey is designed to be a nearly unique substitute for the parent InChI. However, a single InChIKey may occasionally map to two or more InChI strings (collision). The appearance of collision itself does not compromise the signature as collision-free hashing is impossible; the only viable approach is to set and keep a reasonable level of collision resistance which is sufficient for typical applications.We tested, in computational experiments, how well the real-life InChIKey collision resistance corresponds to the theoretical estimates expected by design. For this purpose, we analyzed the statistical characteristics of InChIKey for datasets of variable size in comparison to the theoretical statistical frequencies. For the relatively short second block, an exhaustive direct testing was performed. We computed and compared to theory the numbers of collisions for the stereoisomers of Spongistatin I (using the whole set of 67,108,864 isomers and its subsets). For the longer first block, we generated, using custom-made software, InChIKeys for more than 3 × 1010 chemical structures. The statistical behavior of this block was tested by comparison of experimental and theoretical frequencies for the various four-letter sequences which may appear in the first block body.From the results of our computational experiments we conclude that the observed characteristics of InChIKey collision resistance are in good agreement with theoretical expectations.

  12. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  13. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.

    2016-02-15

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less

  14. Application of JAERI quantum molecular dynamics model for collisions of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Hashimoto, Shintaro; Sato, Tatsuhiko; Niita, Koji

    2016-06-01

    The quantum molecular dynamics (QMD) model incorporated into the general-purpose radiation transport code PHITS was revised for accurate prediction of fragment yields in peripheral collisions. For more accurate simulation of peripheral collisions, stability of the nuclei at their ground state was improved and the algorithm to reject invalid events was modified. In-medium correction on nucleon-nucleon cross sections was also considered. To clarify the effect of this improvement on fragmentation of heavy nuclei, the new QMD model coupled with a statistical decay model was used to calculate fragment production cross sections of Ag and Au targets and compared with the data of earlier measurement. It is shown that the revised version can predict cross section more accurately.

  15. Fuselage mounted anti-collision lights utilizing high power LEDs

    NASA Astrophysics Data System (ADS)

    Lundberg, John; Machi, Nicolo; Mangum, Scott; Singer, Jeffrey

    2005-09-01

    As LEDs continue to improve in efficacy and total light output, they are increasingly finding their way in to new applications in the aviation industry as well as adjacent markets. One function that is particularly challenging and may reap substantial benefits from this new technology is the fuselage mounted anti-collision light. Anti-collision lights provide conspicuity for the aircraft by periodically emitting bright flashes of light. The color, light distribution and intensity levels for these lights are all closely regulated through Federal Aviation Regulation (FAR) documents. These lighting requirements, along with thermal, environmental and aerodynamic requirements, drive the overall design. In this paper, we will discuss the existing technologies used in anti-collision lights and the advantages and challenges associated with an LED solution. Particular attention will be given to the optical, thermal, electrical and aerodynamic aspects associated with an LED approach. A specific case study will be presented along with some of the challenges that have arisen during the design process. These challenges include the addition of an integrated covert anti-collision lighting.

  16. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  17. Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Lee, Jungil; Choi, Haecheon

    2012-11-01

    The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.

  18. Evaluation of the Prince William County collision countermeasure system.

    DOT National Transportation Integrated Search

    2001-02-01

    The Collision Countermeasure System (CCS) is an ITS application intended to reduce side-impact accident potential at rural, limited sight-distance intersections. It consists of activated warning signs and pavement loop detectors designed to enhance d...

  19. [A Case of Collision Tumor of Gastric Malignant Lymphoma and Gastric Cancer].

    PubMed

    Inoue, Keisuke; Fujiwara, Yoshiyuki; Kogata, Shuhei; Kanaizumi, Hirofumi; Fukuda, Shuichi; Takeyama, Hiroshi; Kitani, Kotaro; Tsujie, Masanori; Yukawa, Masao; Wakasa, Tomoko; Ohta, Yoshio; Inoue, Masatoshi

    2016-11-01

    A 71-year-old man with anemia, weight loss, and loss of appetite was admitted. Ultrasound examination found thickening of the wall of the stomach. A type 3 gastric tumor was detected in the greater curvature of the gastric corpus via upper gastrointestinal endoscopy. Total gastrectomy, transverse colon resection, and Roux-en-Y anastomosis reconstruction was performed. In the postoperative pathological results, adenocarcinoma, tub2, and diffuse large B cell lymphoma collision was found. The patient underwent chemotherapy for malignant lymphoma and although it was a relatively advanced neoplasia, he is alive without a recurrence.

  20. Monitoring Wildlife-Vehicle Collisions in the Information Age: How Smartphones Can Improve Data Collection

    PubMed Central

    Olson, Daniel D.; Bissonette, John A.; Cramer, Patricia C.; Green, Ashley D.; Davis, Scott T.; Jackson, Patrick J.; Coster, Daniel C.

    2014-01-01

    Background Currently there is a critical need for accurate and standardized wildlife-vehicle collision data, because it is the underpinning of mitigation projects that protect both drivers and wildlife. Gathering data can be challenging because wildlife-vehicle collisions occur over broad areas, during all seasons of the year, and in large numbers. Collecting data of this magnitude requires an efficient data collection system. Presently there is no widely adopted system that is both efficient and accurate. Methodology/Principal Findings Our objective was to develop and test an integrated smartphone-based system for reporting wildlife-vehicle collision data. The WVC Reporter system we developed consisted of a mobile web application for data collection, a database for centralized storage of data, and a desktop web application for viewing data. The smartphones that we tested for use with the application produced accurate locations (median error = 4.6–5.2 m), and reduced location error 99% versus reporting only the highway/marker. Additionally, mean times for data entry using the mobile web application (22.0–26.5 s) were substantially shorter than using the pen/paper method (52 s). We also found the pen/paper method had a data entry error rate of 10% and those errors were virtually eliminated using the mobile web application. During the first year of use, 6,822 animal carcasses were reported using WVC Reporter. The desktop web application improved access to WVC data and allowed users to easily visualize wildlife-vehicle collision patterns at multiple scales. Conclusions/Significance The WVC Reporter integrated several modern technologies into a seamless method for collecting, managing, and using WVC data. As a result, the system increased efficiency in reporting, improved accuracy, and enhanced visualization of data. The development costs for the system were minor relative to the potential benefits of having spatially accurate and temporally current wildlife

  1. The formation of a Spitzer bubble RCW 79 triggered by a cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Ohama, Akio; Kohno, Mikito; Hasegawa, Keisuke; Torii, Kazufumi; Nishimura, Atsushi; Hattori, Yusuke; Hayakawa, Takahiro; Inoue, Tsuyoshi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo

    2018-05-01

    Understanding the mechanism of O-star formation is one of the most important current issues in astrophysics. Also an issue of keen interest is how O stars affect their surroundings and trigger secondary star formation. An H II region RCW 79 is one of the typical Spitzer bubbles alongside RCW 120. New observations of CO J = 1-0 emission with Mopra and NANTEN2 revealed that molecular clouds are associated with RCW 79 in four velocity components over a velocity range of 20 km s-1. We hypothesize that two of the clouds collided with each other and the collision triggered the formation of 12 O stars inside the bubble and the formation of 54 low-mass young stellar objects along the bubble wall. The collision is supported by observational signatures of bridges connecting different velocity components in the colliding clouds. The whole collision process happened over a timescale of ˜3 Myr. RCW 79 has a larger size by a factor of 30 in the projected area than RCW 120 with a single O star, and the large size favored formation of the 12 O stars due to the greater accumulated gas in the collisional shock compression.

  2. Improving Animal-Vehicle Collision Data for the Strategic Application of Mitigation

    DOT National Transportation Integrated Search

    2017-12-01

    Virginia is consistently among the 10 states with the highest number of deer-vehicle collisions (DVCs), with more than 61,000 reported for the year ending June 30, 2016. Whereas DVCs represented 1 in 11 of the vehicle insurance claims nationwide in 2...

  3. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.

    PubMed

    Gunson, Kari E; Mountrakis, Giorgos; Quackenbush, Lindi J

    2011-04-01

    In addition to posing a serious risk to motorist safety, vehicle collisions with wildlife are a significant threat for many species. Previous spatial modeling has concluded that wildlife-vehicle collisions (WVCs) exhibit clustering on roads, which is attributed to specific landscape and road-related factors. We reviewed twenty-four published manuscripts that used generalized linear models to statistically determine the influence that numerous explanatory predictors have on the location of WVCs. Our motivation was to summarize empirical WVC findings to facilitate application of this knowledge to planning, and design of mitigation strategies on roads. In addition, commonalities between studies were discussed and recommendations for future model design were made. We summarized the type and measurement of each significant predictor and whether they potentially increased or decreased the occurrence of collisions with ungulates, carnivores, small-medium vertebrates, birds, and amphibians and reptiles. WVCs commonly occurred when roads bisect favorable cover, foraging, or breeding habitat for specific species or groups of species. WVCs were generally highest on road sections with high traffic volumes, or low motorist visibility, and when roads cut through drainage movement corridors, or level terrain. Ungulates, birds, small-medium vertebrates, and carnivore collision locations were associated with road-side vegetation and other features such as salt pools. In several cases, results were spurious due to confounding and interacting predictors within the same model. For example, WVCs were less likely to occur when a road bisected steep slopes; however, steep slopes may be located along specific road-types and habitat that also influence the occurrence of WVCs. In conclusion, this review showed that much of the current literature has gleaned the obvious, broad-scale relationships between WVCs and predictors from available data sets, and localized studies can provide unique

  4. Analyzing collision processes with the smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2014-02-01

    It has been illustrated several times how the built-in acceleration sensors of smartphones can be used gainfully for quantitative experiments in school and university settings (see the overview in Ref. 1). The physical issues in that case are manifold and apply, for example, to free fall,2 radial acceleration,3 several pendula, or the exploitation of everyday contexts.6 This paper supplements these applications and presents an experiment to study elastic and inelastic collisions. In addition to the masses of the two impact partners, their velocities before and after the collision are of importance, and these velocities can be determined by numerical integration of the measured acceleration profile.

  5. Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices

    NASA Astrophysics Data System (ADS)

    Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.

    2013-09-01

    Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.

  6. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  7. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  8. An NPARC Turbulence Module with Wall Functions

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1997-01-01

    The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.

  9. Will Allis Prize for the Study of Ionized Gases: Electron Collisions - Experiment, Theory, and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-09-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  10. 6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields.

    PubMed

    Hongyi Xu; Barbic, Jernej

    2017-01-01

    We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in computer animation, haptics, and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field. We suggest using an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to resolve continuous collisions between point clouds organized into a tree hierarchy and a signed distance field, enabling rendering of contact between rigid objects with complex geometry. We investigate and compare two 6-DoF haptic rendering methods now applicable to point-versus-distance field contact for the first time: continuous integration of penalty forces, and a constraint-based method. An experimental comparison to discrete collision detection demonstrates that the continuous method is more robust and can correctly resolve collisions even under high velocities and during complex contact.

  11. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  12. The COLA Collision Avoidance Method

    NASA Astrophysics Data System (ADS)

    Assmann, K.; Berger, J.; Grothkopp, S.

    2009-03-01

    In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.

  13. Implementing Green Walls in Schools.

    PubMed

    McCullough, Michael B; Martin, Michael D; Sajady, Mollika A

    2018-01-01

    Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  14. Application of small panel damping measurements to larger walls

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  15. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  16. [APPLICATION OF PEDICLED LATISSIMUS DORSI KISS FLAP TO REPAIR CHEST WALL SKIN DEFECTS AFTER TUMOR RESECTION].

    PubMed

    Lü, Chunliu; Li, Zan; Zhou, Xiao; Song, Dajiang; Peng, Xiaowei; Zhou, Bo; Yang, Lichang

    2016-12-08

    To investigate the clinical value of pedicled latissimus dorsi Kiss flap in repairing chest wall large skin defect after tumor operation. A retrospective analysis was made on the clinical data from 15 cases of chest wall tumors treated between December 2010 and December 2015. There were 2 males and 13 females with an average age of 51.8 years (range, 43-60 years); there were 11 cases of locally advanced breast cancer, 3 cases of fibrosarcoma in chest wall, and 1 case of chest wall radiation ulcer with a median disease duration of 24.1 months (range, 6 months to 8 years). The area of skin defects was 17 cm×12 cm to 20 cm×18 cm after primary tumor resection; the pedicled latissimus dorsi Kiss flap was designed to repair wounds. The flap was a two-lobed flap at a certain angle on the surface of latissimus dorsi based on the thoracodorsal artery, with a size of 17 cm×6 cm to 20 cm×9 cm for each lobe. The donor site was sutured directly. Fourteen flaps survived with primary healing of wound; delayed healing was observed in 1 flap because of distal necrosis; and healing by first intention was obtained at the donor sites. The follow-up time was from 6 months to 3 years (mean, 21.6 months). The flap had good appearance with no bloated pedicle. The shoulder joint activities were normal. No local recurrence occurred, but distant metastasis in 2 cases. No obvious scar was found at donor sites. The application of pedicled latissimus dorsi Kiss flap to repair chest wall skin defects after tumor resection has important clinical value, because of the advatages of simple operation, minor donor site damage and rapid postoperative recovery, especially for late stage cancer patients.

  17. An assessment for the erosion rate of DEMO first wall

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.

    2018-01-01

    In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.

  18. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  19. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.

    PubMed

    Li, Guanglai; Tang, Jay X

    2009-08-14

    In this Letter we propose a kinematic model to explain how collisions with a surface and rotational Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming between two walls.

  20. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  1. Application of dynamic slip wall modeling to a turbine nozzle guide vane

    NASA Astrophysics Data System (ADS)

    Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi

    2015-11-01

    Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).

  2. Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance

    NASA Astrophysics Data System (ADS)

    Dogan, Mesut; Yesilyurt, Omer; Turhan-Sayan, Gonul

    2018-04-01

    Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a challenging problem in general. Use of A-scan, B-scan and C-scan GPR data in combination provides valuable information for target recognition in such applications. In this paper, we study the problem of target detection for potentially explosive objects embedded inside a wall. GPR data is numerically simulated by using an FDTD-based numerical computation tool when dielectric targets and targets with low metal content are inserted into different types of walls. A small size plastic bottle filled with trinitrotoluene (TNT) is used as the target with and without a metal fuse in it. The targets are buried into two different types of wall; a homogeneous brick wall and an inhomogeneous wall constructed by bricks having periodically located air holes in it. Effects of using an inhomogeneous wall structure with internal boundaries are investigated as a challenging scenario, paying special attention to preprocessing.

  3. Evaluation of cell sheet application on one wall bone defect in Macaca nemestrina through periostin expression

    NASA Astrophysics Data System (ADS)

    Tamin, R. Y.; Soeroso, Y.; Amir, L.; Idrus, E.

    2017-08-01

    Chronic periodontitis is an oral disease in which the destruction of periodontal tissue leads to tooth loss. Regenerative therapy for attachment cannot be applied to one wall bone defects owing to the minimal existing healthy bone. Tissue engineering in the form of cell sheets has been developed to overcome this limitation. In a previous study, cell sheet application to a one wall bone defect in Macaca nemestrina showed good clinical results. To evaluate the effectiveness of cell sheet application histologically, the level of periostin expression in the gingival crevicular fluid (GCF) of M. nemestrina was determined. Periostin is a 90-kDa protein that regulates coordination and interaction for regeneration and tissue repair. A laboratory observation study was performed to see the differences in periostin levels in samples collected from M. nemestrina’s GCF, where a cell sheet was applied to the bone defect. Gel electrophoresis with SDS-PAGE was performed to detect periostin expression based on its molecular weight and to compare the expression band between the cell sheet and the control at 1, 2, and 3 weeks after treatment. The gel electrophoresis result shows different thicknesses of the protein band around the molecular weight of periostin between the cell sheet groups.

  4. Shannon information entropy in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  5. POROUS WALL, HOLLOW GLASS MICROSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, W.

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell wasmore » issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order

  6. Colliding wall-jets on a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Tesař, Václav; Peszynski, Kazimierz

    2015-05-01

    Paper discusses aerodynamics and potential engineering applications of an unusual and in literature practically unknown fluid flow configuration, with two wall-jets attached to a cylindrical surface so that they collide head-on and by mutual conjunction generate a single jet directed away from the wall. Applications are envisaged in pneumatic sensors, particularly those operating at low Reynolds numbers. Performed experimental investigation, combined with numerical flowfield computations, revealed several interesting aspects. The most interesting among them is the discovery of symmetry-breaking existence of three different stable flow regimes. This opens a possibility for fluidic tristable amplifiers and systems operating with ternary logic.

  7. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  8. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  9. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  10. Progress with the COGENT Edge Kinetic Code: Collision operator options

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Compton, J. C.; ...

    2012-06-27

    In this study, COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of the fourth order conservative discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in v∥-μ (parallel velocity – magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson equation for the calculation of a self-consistent electric potential. In the present manuscript we report on the implementation and initial testing of a succession of increasingly detailed collision operator options, including a simple drag-diffusion operatormore » in the parallel velocity space, Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and energy (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  11. Motorcyclists safety system to avoid rear end collisions based on acoustic signatures

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.

  12. Charge-dependent azimuthal correlations in pPb collisions with CMS experiment

    NASA Astrophysics Data System (ADS)

    Tu, Zhoudunming; CMS Collaboration

    2017-11-01

    Charge-dependent azimuthal correlations relative to the event plane in AA collisions have been suggested as providing evidence for the chiral magnetic effect (CME) caused by local strong parity violation. However, the observation of the CME remains inconclusive because of several possible sources of background correlations that may account for part or all of the observed signals. This talk will present the first application of three-particle, charge-dependent azimuthal correlation analysis in proton-nucleus collisions, using pPb data collected with the CMS experiment at the LHC at √{sNN} = 5.02 TeV. The differences found in comparing same and opposite sign correlations are studied as a function of event multiplicity and the pseudorapidity gap between two of the particles detected in the CMS tracker detector. After selecting events with comparable charge-particle multiplicities, the results for pPb collisions are found to be similar to those for PbPb collisions collected at the same collision energy. With a reduced magnetic field strength and a random field orientation in high multiplicity pPb events, the CME contribution to any charge separation signal is expected to be much smaller than found in peripheral PbPb events. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  13. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data.

    PubMed

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-02-28

    In road traffic accidents, the analysis of a vehicle's collision angle plays a key role in identifying a traffic accident's form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke's law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  14. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  15. Analytical Wave Functions for Ultracold Collisions.

    NASA Astrophysics Data System (ADS)

    Cavagnero, M. J.

    1998-05-01

    Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.

  16. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  17. Conservative Bin-to-Bin Fractional Collisions

    DTIC Science & Technology

    2016-06-28

    BIN FRACTIONAL COLLISIONS Robert Martin ERC INC., SPACECRAFT PROPULSION BRANCH AIR FORCE RESEARCH LABORATORY EDWARDS AIR FORCE BASE, CA USA 30th...IMPORTANCE OF COLLISION PHYSICS Important Collisions in Spacecraft Propulsion : Discharge and Breakdown in FRC Collisional Radiative Cooling/Ionization...UNLIMITED; PA #16326 3 / 18 IMPORTANCE OF COLLISION PHYSICS Important Collisions in Spacecraft Propulsion : Discharge and Breakdown in FRC Collisional

  18. DEM study of granular flow around blocks attached to inclined walls

    NASA Astrophysics Data System (ADS)

    Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng

    2017-06-01

    Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  19. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  20. Radar-based collision avoidance for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  1. Elastic and inelastic collisions of swarms

    NASA Astrophysics Data System (ADS)

    Armbruster, Dieter; Martin, Stephan; Thatcher, Andrea

    2017-04-01

    Scattering interactions of swarms in potentials that are generated by an attraction-repulsion model are studied. In free space, swarms in this model form a well-defined steady state describing the translation of a stable formation of the particles whose shape depends on the interaction potential. Thus, the collision between a swarm and a boundary or between two swarms can be treated as (quasi)-particle scattering. Such scattering experiments result in internal excitations of the swarm or in bound states, respectively. In addition, varying a parameter linked to the relative importance of damping and potential forces drives transitions between elastic and inelastic scattering of the particles. By tracking the swarm's center of mass, a refraction rule is derived via simulations relating the incoming and outgoing directions of a swarm hitting the wall. Iterating the map derived from the refraction law allows us to predict and understand the dynamics and bifurcations of swarms in square boxes and in channels.

  2. Second-order near-wall turbulence closures - A review

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.

    1991-01-01

    Advances in second-order near-wall turbulence closures are summarized. All closures under consideration are based on high-Reynolds-number models. Most near-wall closures proposed to date attempt to modify the high-Reynolds-number models for the dissipation function and the pressure redistribution term so that the resultant models are applicable all the way to the wall. The asymptotic behavior of the near-wall closures is examined and compared with the proper near-wall behavior of the exact Reynolds-stress equations. It is found that three second-order near-wall closures give the best correlations with simulated turbulence statistics. However, their predictions of near-wall Reynolds-stress budgets are considered to be incorrect. A proposed modification to the dissipitation-rate equation remedies part of those predictions. It is concluded that further improvements are required if a complete replication of all the turbulence properties and Reynolds-stress budgets by a statistical model of turbulence is desirable.

  3. Strategy Guideline: Modeling Enclosure Design in Above-Grade Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, J.; Ueno, K.; Musunuru, S.

    2016-02-24

    The Strategy Guideline describes how to model and interpret results of models for above grade walls. The Measure Guideline analyzes the failure thresholds and criteria for above grade walls. A library of above-grade walls with historically successful performance was used to calibrate WUFI (Warme Und Feuchte Instationar) software models. The information is generalized for application to a broad population of houses within the limits of existing experience.

  4. Ultrasound wall-sign in pulmonary echinococcosis (new application).

    PubMed

    El Fortia, M; El Gatit, A; Bendaoud, M

    2006-12-01

    We report our experience in diagnosing pulmonary cystic echinococcosis using an ultrasound sign related to the cystic wall. 40 patients with 46 cysts, suspected of pulmonary echinococcosis, based on plain chest radiographs and clinical findings, were examined by ultrasound over a 9-year period (1996 - 2004), and followed up until discharge. We applied our long experience with echinococcal cysts utilising the wall sign (WS) to diagnose pulmonary hydatid disease. All cysts were subject to surgical removal, and postoperative histopathology was the gold standard. There were 34 (74 %) unilocular and 12 (26 %) multivesicular echinococcal cysts. In the univesicular cysts, the WS was found in 20 cases (66.7 %) while it was present in all multivesicular cysts (100 %). Following surgical removal, echinococcosis was confirmed by histopathology in all cases. We conclude that a double layered border in univesicular and double layered internal septum in multivesicular pulmonary echinococcal cysts is a reliable indicator of pulmonary echinococcosis, with a specificity of 66 % and 100 %, respectively.

  5. Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip

    NASA Astrophysics Data System (ADS)

    Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar

    2018-04-01

    Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.

  6. Small Collision Systems at RHIC

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert

    2018-02-01

    The observation of long range correlations in highly asymmetric systems, as in p+Pb and d+Au collisions, suggests a creation of a medium with collective behavior. It is still an open question if the quark-gluon plasma is formed in these collision. Hence, the RHIC collider invested time to study the small systems in different collision systems and energies. Here we discuss the recent results from the PHENIX and STAR collaborations in four different collision systems p+Al, p+Au, d+Au and 3He+Au at = 200 GeV, and also for the energy scan in d+Au collisions between = 19.6 - 200 GeV.

  7. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  8. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  9. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  10. Collision-induced rotation in an arc-continent collision: Constrained by continuous GPS observations in Mindoro, Philippines

    NASA Astrophysics Data System (ADS)

    Rau, R.; Hung, H.; Yang, C.; Tsai, M.; Ching, K.; Bacolcol, T.; Solidum, R.; Chang, W.

    2012-12-01

    The Mindoro Island, situated at the southern end of the Manila trench, is a modern arc-continent collision. Seismic activity in Mindoro concentrates mainly in the northern segment of the island as part of the Manila subduction processes; in contrast, seismicity in the middle and the southern parts of the island is rather diffuse. Although the Mindoro Island has been experiencing intense seismic activities and is a type example of arc-continent collision, the modern mode of deformation of the Mindoro collision remains unclear. We have installed eight dual-frequency continuous GPS stations in the island since May 2010. The questions we want to address by using continuous GPS observations are (1) if there are still compressions within the Mindoro collision? Have they ceased as seen by the diffuse seismicity, or are the thrust faults locked? (2) What is the mode of deformation in the Mindoro collision and what are the roles of thrust and strike-slip faults playing in the collision? (3) How does the Mindoro collision compare with the other collision, such as the Taiwan orogen? Do they share similar characteristics for the subduction-collision transition zone? For the results of the first two years GPS measurements, if we take the Sablayan site near the southern end of the Manila trench as the reference station, a large counterclockwise rotation from south to north, with horizontal velocities of 1.9-31.1 mm/yr from 165 to 277 degrees, are found in the island. The deformation of the Mindoro is similar to the pattern of the transition zone from collision to subduction in northeastern Taiwan. This result suggests that collision-induced rotation is occurring in the Mindoro Island and the Mindoro arc-continent collision is still active.

  11. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  12. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  13. A review of near-wall Reynolds-stress

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.

    1991-01-01

    The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data.

  14. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  15. On the quantum Landau collision operator and electron collisions in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck formmore » of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.« less

  16. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  17. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    PubMed Central

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-01-01

    In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials. PMID:28264517

  18. Centrality categorization for Rp (d)+A in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ikeda, Y.; Imai, K.; Inaba, M.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Means, N.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zhou, S.; Phenix Collaboration

    2014-09-01

    High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p (d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d +Au collisions at √sNN =200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors Rp (d)+A, for which there is a bias in the measured centrality-dependent yields owing to auto correlations between the process of interest and the backward-rapidity multiplicity. We determine the bias-correction factors within this framework. This method is further tested using the hijing Monte Carlo generator. We find that for d +Au collisions at √sNN =200 GeV, these bias corrections are small and vary by less than 5% (10%) up to pT=10 (20) GeV/c. In contrast, for p +Pb collisions at √sNN =5.02 TeV we find that these bias factors are an order of magnitude larger and strongly pT dependent, likely attributable to the larger effect of multiparton interactions.

  19. Building a plant cell wall at a glance.

    PubMed

    Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan

    2018-01-29

    Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.

  20. Ion imaging studies of product rotational alignment in collisions of NO ( X2Π1/2, j=0.5) with Ar

    NASA Astrophysics Data System (ADS)

    Wade, Elisabeth A.; Thomas Lorenz, K.; Chandler, David W.; Barr, James W.; Barnes, George L.; Cline, Joseph I.

    2004-06-01

    The collision-induced rotational alignment of NO ( X2Π1/2, v=0, j=4.5 , 8.5, 11.5, 12.5, and 15.5) is measured for rotationally inelastic scattering of NO ( X2Π1/2, v=0, j=0.5) with Ar at 520 ± 70 cm -1 of center-of-mass collision energy. The experiments are performed by velocity-mapped ion imaging with polarized 1+1 ' REMPI of the scattered NO product. Differential cross-sections (DCSs), corrected for alignment effects, are also reported. While the alignment correction is important, it does not change the positions of the observed rotational rainbows. The alignment moments and DCSs are compared with calculations using Alexander's CCSD(T) PESs. The theoretical and experimental DCSs show excellent agreement, as do the theoretical and experimental alignment moments for low Δ j. For high Δ j collisions and back-scattered trajectories, which sample the hard wall of the PES, the theoretical and experimental alignment moments show less agreement.

  1. Collinear collision chemistry. II. Energy disposition in reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, B.H.

    1974-06-01

    A model describing the mechanics of collinear atom-diatom collisions and previously reported by the author is extended to describe reactive collisions. The model indicates the effects of such factors as the mass distribution and potential energy barriers and wells on the reaction probability and on the distribution of energy among the modes of motion of the products. Simple geometry and trigonometry are sufficient to solve the model.

  2. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia

    2004-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.

  3. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    PubMed

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, J.T.; Louge, M.Y.

    We consider a flow of colliding spheres that interacts with a flat, frictional wall and calculate the flux of fluctuation energy in two limits. In the first limit, all spheres slide upon contact with the wall. Here, we refine the calculations of Jenkins [J. Appl. Mech. {bold 59}, 120 (1992)] and show that a correlation between two orthogonal components of the fluctuation velocity of the point of contact of the grains with the wall provides a substantial correction to the flux originally predicted. In the other limit, the granular material is agitated but the mean velocity of the contact pointsmore » with respect to the wall is zero and Jenkins{close_quote} earlier calculation is improved by distinguishing between those contacts that slide in a collision and those that stick. The new expressions for the flux agree well with the computer simulations of Louge [Phys. Fluids {bold 6}, 2253 (1994)]. Finally, we extend the expression for zero mean sliding to incorporate small sliding and obtain an approximate expression for the flux between the two limits. {copyright} {ital 1997 American Institute of Physics.}« less

  5. Synchronous Double Malignant Tumors Consisting of Stomach and Hodgkin's Lymphoma with Collision between Gastric Adenocarcinoma and Hodgkin's Lymphoma in the Stomach.

    PubMed

    Yanagawa, Naoki; Ogata, Shin-Ya; Fukushima, Norimasa; Maeda, Kunihiko; Tamura, Gen

    2012-09-01

    We report the rare case of a 72-year-old man with double cancers (gastric adenocarcinoma and Hodgkin's lymphoma) with collision between gastric adenocarcinoma and Hodgkin's lymphoma. Abdominal computed tomography showed increased wall thickness in the fundus region of the stomach and multiple lymph node swellings in the lesser curvature, periceliac and left cardial regions. Upper gastrointestinal endoscopy showed an ulcer approximately 5 cm in diameter with a malignant appearance in the fundus region of the stomach. On histopathologic examination, two completely different tumors were recognized in the stomach. One tumor was a poorly differentiated adenocarcinoma characterized by poorly developed tubular structures associated with prominent lymphoid infiltration of the stroma. The other tumor was found to have proliferated in the wall of the stomach, with diffuse granulomatous lesions and bordering the adenocarcinoma. Large atypical lymphoid cells with prominent nucleoli and enlarged mononuclei or multinuclei were seen in the latter tumor. Hodgkin's lymphoma was also found in the swollen lesser curvature lymph nodes. As a result, gastric adenocarcinoma and metastasis of Hodgkin's lymphoma were collided in the stomach. In conclusion, this case might be helpful in exploring the occurrence mechanism of tumor collision between lymphoma and carcinoma.

  6. Collision of Dual Aggregates (CODA): Experimental observations of low-velocity collisions

    NASA Astrophysics Data System (ADS)

    Jorges, Jeffery; Dove, Adrienne; Colwell, Josh E.

    2016-10-01

    Low-velocity collisions are one of the driving factors that determine the particle size distribution and particle size evolution in planetary ring systems and in the early stages of planet formation. Collisions of sub-micron to decimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of parameter space . We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. We track the particles to determine impactor speeds before and after collision, the impact parameter, and the collisional outcome. In the case of the mantled impactors, we can assess how much rotation is generated by the collision and estimate how much powder is released (i.e. how much mass is lost) due to the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. With impact velocities ranging from about 20-100 cm/s we observe that mantling of particles significantly reduces their coefficients of restitution, but we see basically no dependence of the coefficient of restitution on the impact velocity, impact parameter, or system mass. The results of this study will contribute to a better empirical model of collisional outcomes that will be refined with numerical simulation of the

  7. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  8. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  9. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  10. Collision Index and Stability of Elliptic Relative Equilibria in Planar {n}-body Problem

    NASA Astrophysics Data System (ADS)

    Hu, Xijun; Ou, Yuwei

    2016-12-01

    It is well known that a planar central configuration of the {n}-body problem gives rise to solutions where each particle moves on a specific Keplerian orbit while the totality of the particles move on a homographic motion. When the eccentricity {e} of the Keplerian orbit belongs in {[0,1)}, following Meyer and Schmidt, we call such solutions elliptic relative equilibria (shortly, ERE). In order to study the linear stability of ERE in the near-collision case, namely when {1-e} is small enough, we introduce the collision index for planar central configurations. The collision index is a Maslov-type index for heteroclinic orbits and orbits parametrised by half-lines that, according to the definition given by Hu and Portaluri (An index theory for unbounded motions of Hamiltonian systems, Hu and Portaluri (2015, preprint)), we shall refer to as half-clinic orbits and whose definition in this context, is essentially based on a blow up technique in the case {e=1}. We get the fundamental properties of collision index and approximation theorems. As applications, we give some new hyperbolic criteria and prove that, generically, the ERE of minimal central configurations are hyperbolic in the near-collision case, and we give a detailed analysis of Euler collinear orbits in the near-collision case.

  11. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  12. Analysis of a dusty wall jet

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin; Roberts, Leonard

    1991-01-01

    An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.

  13. Droplet-air collision dynamics: Evolution of the film thickness

    NASA Astrophysics Data System (ADS)

    Opfer, L.; Roisman, I. V.; Venzmer, J.; Klostermann, M.; Tropea, C.

    2014-01-01

    This study is devoted to the experimental and theoretical investigation of aerodynamic drop breakup phenomena. We show that the phenomena of drop impact onto a rigid wall, drop binary collisions, and aerodynamic drop deformation are similar if the correct scaling is applied. Then we use observations of the deforming drop to estimate the evolution of the film thickness of the bag, the value that determines the size of the fine child drops produced by bag breakup. This prediction of film thickness, based on film kinematics, is validated for the initial stage by direct drop thickness measurements and at the latest stage by the data obtained from the velocity of hole expansion in the film. It is shown that the film thickness correlates well with the dimensionless position of the bag apex.

  14. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    NASA Astrophysics Data System (ADS)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  15. Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2012-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes

  16. Collision avoidance in TV white spaces: a cross-layer design approach for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Foukalas, Fotis; Karetsos, George T.

    2015-07-01

    One of the most promising applications of cognitive radio networks (CRNs) is the efficient exploitation of TV white spaces (TVWSs) for enhancing the performance of wireless networks. In this paper, we propose a cross-layer design (CLD) of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism at the medium access control (MAC) layer with spectrum sensing (SpSe) at the physical layer, for identifying the occupancy status of TV bands. The proposed CLD relies on a Markov chain model with a state pair containing both the SpSe and the CSMA/CA from which we derive the collision probability and the achievable throughput. Analytical and simulation results are obtained for different collision avoidance and SpSe implementation scenarios by varying the contention window, back off stage and probability of detection. The obtained results depict the achievable throughput under different collision avoidance and SpSe implementation scenarios indicating thereby the performance of collision avoidance in TVWSs-based CRNs.

  17. Making a meaningful impact: modelling simultaneous frictional collisions in spatial multibody systems

    PubMed Central

    Uchida, Thomas K.; Sherman, Michael A.; Delp, Scott L.

    2015-01-01

    Impacts are instantaneous, computationally efficient approximations of collisions. Current impact models sacrifice important physical principles to achieve that efficiency, yielding qualitative and quantitative errors when applied to simultaneous impacts in spatial multibody systems. We present a new impact model that produces behaviour similar to that of a detailed compliant contact model, while retaining the efficiency of an instantaneous method. In our model, time and configuration are fixed, but the impact is resolved into distinct compression and expansion phases, themselves comprising sliding and rolling intervals. A constrained optimization problem is solved for each interval to compute incremental impulses while respecting physical laws and principles of contact mechanics. We present the mathematical model, algorithms for its practical implementation, and examples that demonstrate its effectiveness. In collisions involving materials of various stiffnesses, our model can be more than 20 times faster than integrating through the collision using a compliant contact model. This work extends the use of instantaneous impact models to scientific and engineering applications with strict accuracy requirements, where compliant contact models would otherwise be required. An open-source implementation is available in Simbody, a C++ multibody dynamics library widely used in biomechanical and robotic applications. PMID:27547093

  18. Idaho traffic collisions, 2004

    DOT National Transportation Integrated Search

    2004-01-01

    Idaho Traffic Collisions 2004 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  19. Idaho traffic collisions, 2006

    DOT National Transportation Integrated Search

    2006-01-01

    Idaho Traffic Collisions 2006 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  20. Idaho traffic collisions, 2002

    DOT National Transportation Integrated Search

    2002-01-01

    Idaho Traffic Collisions 2002 provides an annual description of motor vehicle collision characteristics for : Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies : charged with the responsibilit...

  1. Idaho traffic collisions, 2003

    DOT National Transportation Integrated Search

    2003-01-01

    Idaho Traffic Collisions 2003 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  2. Exclusive measurements of light fragment production at forward angles in NePb and NeNaF collisions at {E}/{A} = 400 MeV and 800 MeV

    NASA Astrophysics Data System (ADS)

    Bastid, N.; Alard, J. P.; Arnold, J.; Augerat, J.; Babinet, R.; Biagi, F.; Brochard, F.; Crouau, M.; Charmensat, P.; Dupieux, P.; Fodor, Z.; Fraysse, L.; Girard, J.; Gorodetzky, P.; Gosset, J.; Laspalles, C.; Lemaire, M. C.; Le Merdy, A.; L'hôte, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Qassoud, D.; Racca, C.; Rahmani, A.; Schimmerling, W.; Terrien, Y.; Valette, O.

    1990-01-01

    Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.

  3. Exclusive measurements of light fragment production at forward angles in Ne-Pb and Ne-NaF collisions at E/A=400 MeV and 800 MeV

    NASA Technical Reports Server (NTRS)

    Bastid, N.; Alard, J. P.; Arnold, J.; Augerat, J.; Babinet, R.; Biagi, F.; Brochard, F.; Crouau, M.; Charmensat, P.; Dupieux, P.; hide

    1990-01-01

    Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.

  4. Cold Collisions in a Molecular Synchrotron

    NASA Astrophysics Data System (ADS)

    van der Poel, Aernout P. P.; Zieger, Peter C.; van de Meerakker, Sebastiaan Y. T.; Loreau, Jérôme; van der Avoird, Ad; Bethlem, Hendrick L.

    2018-01-01

    We study collisions between neutral, deuterated ammonia molecules (ND3 ) stored in a 50 cm diameter synchrotron and argon atoms in copropagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) the collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross section for ND3+Ar collisions in the energy range of 40 - 140 cm-1 , with a resolution of 5 - 10 cm-1 and an uncertainty of 7%-15%. Our measurements are in good agreement with theoretical scattering calculations.

  5. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  6. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  7. Testing hydrodynamic descriptions of p+p collisions at $$\\sqrt{s}=7$$ TeV

    DOE PAGES

    Habich, M.; Miller, G. A.; Romatschke, Paul; ...

    2016-07-19

    In high-energy collisions of heavy ions, experimental findings of collective flow are customarily associated with the presence of a thermalized medium expanding according to the laws of hydrodynamics. Recently, the ATLAS, CMS, and ALICE experiments found signals of the same type and magnitude in ultrarelativistic proton-proton collisions. In this study, the state-of-the-art hydrodynamic model SONIC is used to simulate the systems created in p+p collisions. By varying the size of the second-order transport coefficients, the range of applicability of hydrodynamics itself to the systems created in p+p collisions is quantified. It is found that hydrodynamics can give quantitatively reliable resultsmore » for the particle spectra and the elliptic momentum anisotropy coefficient v 2. As a result, using a simple geometric model of the proton based on the elastic form factor leads to results of similar type and magnitude to those found in experiment when allowing for a small bulk viscosity coefficient.« less

  8. Idaho traffic collisions, 2000

    DOT National Transportation Integrated Search

    2000-01-01

    Idaho Traffic Collisions 2000 provides an annual description of collision characteristics for Idaho. This : document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibility of coping wi...

  9. Idaho traffic collisions, 2005

    DOT National Transportation Integrated Search

    2005-01-01

    Idaho Traffic Collisions 2005 provides an annual description of motor vehicle collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of...

  10. Idaho traffic collisions, 2001

    DOT National Transportation Integrated Search

    2001-01-01

    Idaho Traffic Collisions 2001 provides an annual description of collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of coping with t...

  11. Microfluidics with fluid walls.

    PubMed

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  12. Translational Entanglement and Teleportation of Matter Wavepackets by Collisions and Half-Collisions

    NASA Astrophysics Data System (ADS)

    Fisch, L.; Tal, A.; Kurizki, G.

    To date, the translationally-entangled state originally proposed by Einstein, Podolsky and Rosen (EPR) in 1935 has not been experimentally realized for massive particles. Opatrný and Kurizki [Phys. Rev. Lett. 86, 3180 (2000)] have suggested the creation of a position- and momentum-correlated, i.e., translationally-entangled, pair of particles approximating the EPR state by dissociation of cold diatomic molecules, and further manipulation of the EPR pair effecting matter-wave teleportation. Here we aim at setting the principles of and quantifying translational entanglement by collisions and half-collisions. In collisions, the resonance width s and the initial phase-space distributions are shown to determine the degree of post-collisional momentum entanglement. Half-collisions (dissociation) are shown to yield different types of approximate EPR states. We analyse a feasible realization of translational EPR entanglement and teleportation via cold-molecule Raman dissociation and subsequent collisions, resolving both practical and conceptual difficulties it has faced so far: How to avoid entanglement loss due to the wavepacket spreading of the dissociation fragments? How to measure both position and momentum correlations of the dissociation fragments with sufficient accuracy to verify their EPR correlations? How to reliably perform two-particle (Bell) position and momentum measurements on one of the fragments and the wavepacket to be teleported?

  13. Heavy truck casualty collisions, 2001-2005

    DOT National Transportation Integrated Search

    2010-04-01

    This document reviews casualty collisions (fatalities and injuries) involving heavy trucks in Canada : from 2001 to 2005. Collisions involving heavy trucks include all vehicles in these collisions, such as : passenger cars, light trucks and vans, hea...

  14. Intraperitoneal Injection Is Not a Suitable Administration Route for Single-Walled Carbon Nanotubes in Biomedical Applications.

    PubMed

    Liu, Xudong; Guo, Qing; Zhang, Yuchao; Li, Jinquan; Li, Rui; Wu, Yang; Ma, Ping; Yang, Xu

    2016-01-01

    Given the extensive application of carbon nanotubes (CNTs) in biomedical fields, there is increasing concern regarding unintentional health impacts. Research into safe usage is therefore increasingly necessary. This study investigated the responses of the mouse brain to single-walled CNTs (SWCNTs) delivered via intraperitoneal (IP) injection and compared these results with the previous study where SWCNTs were delivered via intravenous (IV) injection so as to explore which administration route is potentially better for SWCNTs application. This study suggests SWCNTs delivered via IP injection can have negative effects on the mouse brain through oxidative stress and inflammation at high concentration exposure, but these responses were not consistent and showed no dose-dependent effect. In a previous study, the results showed that IV-delivered SWCNTs induced a more consistent and dose-dependent effect. The comparison of the 2 studies suggested that using SWCNTs at a safe dosage delivered via IV injection may be a better administration route for SWCNTs in biomedical applications.

  15. Analysis of variances of quasirapidities in collisions of gold nuclei with track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2012-08-15

    A new method of an analysis of variances was developed for studying n-particle correlations of quasirapidities in nucleus-nucleus collisions for a large constant number n of particles. Formulas that generalize the results of the respective analysis to various values of n were derived. Calculations on the basis of simple models indicate that the method is applicable, at least for n {>=} 100. Quasirapidity correlations statistically significant at a level of 36 standard deviations were discovered in collisions between gold nuclei and track-emulsion nuclei at an energy of 10.6 GeV per nucleon. The experimental data obtained in our present study aremore » contrasted against the theory of nucleus-nucleus collisions.« less

  16. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  17. Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1990-01-01

    A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  18. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  19. Low-cost sustainable wall construction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit wasmore » $3.76 per square foot ($$40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $$275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.« less

  20. A wall interference assessment/correction system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Ulbrich, N.; Sickles, W. L.; Qian, Cathy X.

    1992-01-01

    A Wall Signature method, the Hackett method, has been selected to be adapted for the 12-ft Wind Tunnel wall interference assessment/correction (WIAC) system in the present phase. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating wall interferences at the model location. The Wall Signature method will be formulated for application to the unique geometry of the 12-ft Tunnel. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method-Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free-air simulation. Each set of wind tunnel/test article numerical simulations provides data to validate the WIAC method. A numerical wind tunnel test simulation is initiated to validate the WIAC methods developed in the project. In the present reported period, the blockage correction has been developed and implemented for a rectangular tunnel as well as the 12-ft Pressure Tunnel. An improved wall interference assessment and correction method for three-dimensional wind tunnel testing is presented in the appendix.

  1. Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency

    NASA Astrophysics Data System (ADS)

    Aikens, Kurt; Craft, Kyle; Redman, Andrew

    2015-11-01

    The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  2. Steel Shear Walls, Behavior, Modeling and Design

    NASA Astrophysics Data System (ADS)

    Astaneh-Asl, Abolhassan

    2008-07-01

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  3. Strategy Guideline. Modeling Enclosure Design in Above-Grade Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Lstiburek; Ueno, K.; Musunuru, S.

    2016-02-01

    The Strategy Guideline, written by the U.S. Department of Energy's research team Building Science Corporation, 1) describes how to model and interpret results of models for above-grade walls, and 2) analyzes the failure thresholds and criteria for above-grade walls. A library of above-grade walls with historically successful performance was used to calibrate WUFI (Wärme und Feuchte instationär) software models. The information is generalized for application to a broad population of houses within the limits of existing experience.

  4. Modified parton branching model for multi-particle production in hadronic collisions: Application to SUSY particle branching

    NASA Astrophysics Data System (ADS)

    Yuanyuan, Zhang

    The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.

  5. Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications.

    PubMed

    Yuen, Po Ki; DeRosa, Michael E

    2011-10-07

    This article presents a simple, low-cost method of fabrication and the applications of flexible polystyrene microfluidic devices with three-dimensional (3D) interconnected microporous walls based on treatment using a solvent/non-solvent mixture at room temperature. The complete fabrication process from device design concept to working device can be completed in less than an hour in a regular laboratory setting, without the need for expensive equipment. Microfluidic devices were used to demonstrate gas generation and absorption reactions by acidifying water with carbon dioxide (CO(2)) gas. By selectively treating the microporous structures with oxygen plasma, acidification of water by acetic acid (distilled white vinegar) perfusion was also demonstrated with the same device design.

  6. Gyrokinetics with Advanced Collision Operators

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2014-10-01

    For gyrokinetic studies in the pedestal region, collisions are expected to play a more critical role than in the core and there is concern that more advanced collision operators, as well as numerical methods optimized for the strong collisionality regime, are needed. For this purpose, a new gyrokinetic solver CGYRO has been developed for precise studies of high collisionality regimes. Building on GYRO and NEO, CGYRO uses the NEO pitch angle and energy velocity-space coordinate system to optimize the accuracy of the collision dynamics, particularly for multi-species collisions and including energy diffusion. With implementation of the reduced Hirshman-Sigmar collision operator with full cross-species coupling, CGYRO recovers linear ITG growth rates and the collisional GAM test at moderate collision frequency. Methods to improve the behavior in the collisionless regime, particularly for the trapped/passing particle boundary physics for kinetic electrons, are studied. Extensions to advanced model operators with finite-k⊥ corrections, e.g., the Sugama operator, and the impact of high collisionality on linear gyrokinetic stability in the edge are explored. Work supported by the US DOE under DE-FG02-95ER54309.

  7. Nanodust released in interplanetary collisions

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.

    2018-07-01

    The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.

  8. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Astrophysics Data System (ADS)

    Frigm, R.; Johnson, L.

    The Probability of Collision (Pc) has become a universal metric and statement of on-orbit collision risk. Although several flavors of the computation exist and are well-documented in the literature, the basic calculation requires the same input: estimates for the position, position uncertainty, and sizes of the two objects involved. The Pc is used operationally to make decisions on whether a given conjunction poses significant collision risk to the primary object (or space asset of concern). It is also used to determine necessity and degree of mitigative action (typically in the form of an orbital maneuver) to be performed. The predicted post-maneuver Pc also informs the maneuver planning process into regarding the timing, direction, and magnitude of the maneuver needed to mitigate the collision risk. Although the data sources, techniques, decision calculus, and workflows vary for different agencies and organizations, they all have a common thread. The standard conjunction assessment and collision risk concept of operations (CONOPS) predicts conjunctions, assesses the collision risk (typically, via the Pc), and plans and executes avoidance activities for conjunctions as a discrete events. As the space debris environment continues to increase and improvements are made to remote sensing capabilities and sensitivities to detect, track, and predict smaller debris objects, the number of conjunctions will in turn continue to increase. The expected order-of-magnitude increase in the number of predicted conjunctions will challenge the paradigm of treating each conjunction as a discrete event. The challenge will not be limited to workload issues, such as manpower and computing performance, but also the ability for satellite owner/operators to successfully execute their mission while also managing on-orbit collision risk. Executing a propulsive maneuver occasionally can easily be absorbed into the mission planning and operations tempo; whereas, continuously planning evasive

  9. The role of particle collisions in pneumatic transport

    NASA Technical Reports Server (NTRS)

    Mastorakos, E.; Louge, M.; Jenkins, J. T.

    1989-01-01

    A model of dilute gas-solid flow in vertical risers is developed in which the particle phase is treated as a granular material, the balance equations for rapid granular flow are modified to incorporate the drag force from the gas, and boundary conditions, based on collisional exchanges of momentum and energy at the wall, are employed. In this model, it is assumed that the particle fluctuations are determined by inter-particle collisions only and that the turbulence of the gas is unaffected by the presence of the particles. The model is developed in the context of, but not limited to, steady, fully developed flow. A numerical solution of the resulting governing equations provides concentration profiles generally observed in dilute pneumatic flow, velocity profiles in good agreement with the measurements of Tsuji, et al. (1984), and an explanation for the enhancement of turbulence that they observed.

  10. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    PubMed

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  11. 2002 Alaska traffic collisions

    DOT National Transportation Integrated Search

    2004-09-01

    Traffic collisions injured 6370 and killed 89 Alaskans during 2002. There were, on average, : 36.5 crashes per day and 1.5 crashes per hour. One person died on Alaska highways every : 4.1 days. : There were 272 traffic collisions per 100 million ...

  12. Collision attack against Tav-128 hash function

    NASA Astrophysics Data System (ADS)

    Hariyanto, Fajar; Hayat Susanti, Bety

    2017-10-01

    Tav-128 is a hash function which is designed for Radio Frequency Identification (RFID) authentication protocol. Tav-128 is expected to be a cryptographically secure hash function which meets collision resistance properties. In this research, a collision attack is done to prove whether Tav-128 is a collision resistant hash function. The results show that collisions can be obtained in Tav-128 hash function which means in other word, Tav-128 is not a collision resistant hash function.

  13. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  14. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    PubMed

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.

  15. Nonlinear fracture mechanics-based analysis of thin wall cylinders

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.

    1994-01-01

    This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.

  16. Increased Rail Transit Vehicle Crashworthiness in Head-On Collisions. Volume II. Primary Collision.

    DOT National Transportation Integrated Search

    1980-06-01

    A specific goal of safety is to reduce the number of injuries that may result from the collision of two trains. In Volume II, an analytical model in two dimensions, longitudinal and vertical, of the primary collision of two impacting urban railcar co...

  17. O2-O2 and O2-N2 collision-induced absorption mechanisms unravelled

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; Koenis, Mark A. J.; Banerjee, Agniva; Parker, David H.; Gordon, Iouli E.; van der Avoird, Ad; van der Zande, Wim J.; Groenenboom, Gerrit C.

    2018-05-01

    Collision-induced absorption is the phenomenon in which interactions between colliding molecules lead to absorption of light, even for transitions that are forbidden for the isolated molecules. Collision-induced absorption contributes to the atmospheric heat balance and is important for the electronic excitations of O2 that are used for remote sensing. Here, we present a theoretical study of five vibronic transitions in O2-O2 and O2-N2, using analytical models and numerical quantum scattering calculations. We unambiguously identify the underlying absorption mechanism, which is shown to depend explicitly on the collision partner—contrary to textbook knowledge. This explains experimentally observed qualitative differences between O2-O2 and O2-N2 collisions in the overall intensity, line shape and vibrational dependence of the absorption spectrum. It is shown that these results can be used to discriminate between conflicting experimental data and even to identify unphysical results, thus impacting future experimental studies and atmospheric applications.

  18. LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure

    NASA Technical Reports Server (NTRS)

    Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang

    2012-01-01

    We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.

  19. Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method

    NASA Astrophysics Data System (ADS)

    Kong, Linghan; Wang, Weizong; Murphy, Anthony B.; Xia, Guangqing

    2017-04-01

    Microdischarges are an important type of plasma discharge that possess several unique characteristics, such as the presence of a stable glow discharge, high plasma density and intense excimer radiation, leading to several potential applications. The intense and controllable gas heating within the extremely small dimensions of microdischarges has been exploited in micro-thruster technologies by incorporating a micro-nozzle to generate the thrust. This kind of micro-thruster has a significantly improved specific impulse performance compared to conventional cold gas thrusters, and can meet the requirements arising from the emerging development and application of micro-spacecraft. In this paper, we performed a self-consistent 2D particle-in-cell simulation, with a Monte Carlo collision model, of a microdischarge operating in a prototype micro-plasma thruster with a hollow cylinder geometry and a divergent micro-nozzle. The model takes into account the thermionic electron emission including the Schottky effect, the secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform argon background gas density in the cathode-anode gap. Results in the high-pressure (several hundreds of Torr), high-current (mA) operating regime showing the behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and anode are presented and discussed. In addition, the results of simulations showing the effect of different argon gas pressures, cathode material work function and discharge voltage on the operation of the microdischarge thruster are presented. Our calculated properties are compared with experimental data under similar conditions and qualitative and quantitative agreements are reached.

  20. The second life of Kowloon Walled City: Crime, media and cultural memory

    PubMed Central

    Fraser, Alistair; Li, Eva Cheuk-Yin

    2017-01-01

    Kowloon Walled City (hereafter KWC or Walled City), Hong Kong has been described as ‘one of history’s great anomalies’. The territory remained under Chinese rule throughout the period of British colonialism, with neither jurisdiction wishing to take active responsibility for its administration. In the postwar period, the area became notorious for vice, drugs and unsanitary living conditions, yet also attracted the attention of artists, photographers and writers, who viewed it as an instance of anarchic urbanism. Despite its demolition in 1993, KWC has continued to capture the imaginations of successive generations across Asia. Drawing on data from an oral and visual history project on the enclave, alongside images, interviews and observations regarding the ‘second life’ of KWC, this article will trace the unique flow of meanings and reimaginings that KWC has inspired. The article will locate the peculiar collisions of crime and consumerism prompted by KWC within the broader contexts in which they are embedded, seeking out a new interdisciplinary perspective that attends to the internecine spaces of crime, media and culture in contemporary Asian societies. PMID:29278247

  1. The second life of Kowloon Walled City: Crime, media and cultural memory.

    PubMed

    Fraser, Alistair; Li, Eva Cheuk-Yin

    2017-08-01

    Kowloon Walled City (hereafter KWC or Walled City), Hong Kong has been described as 'one of history's great anomalies'. The territory remained under Chinese rule throughout the period of British colonialism, with neither jurisdiction wishing to take active responsibility for its administration. In the postwar period, the area became notorious for vice, drugs and unsanitary living conditions, yet also attracted the attention of artists, photographers and writers, who viewed it as an instance of anarchic urbanism. Despite its demolition in 1993, KWC has continued to capture the imaginations of successive generations across Asia. Drawing on data from an oral and visual history project on the enclave, alongside images, interviews and observations regarding the 'second life' of KWC, this article will trace the unique flow of meanings and reimaginings that KWC has inspired. The article will locate the peculiar collisions of crime and consumerism prompted by KWC within the broader contexts in which they are embedded, seeking out a new interdisciplinary perspective that attends to the internecine spaces of crime, media and culture in contemporary Asian societies.

  2. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  3. A new look at the near-wall turbulence structure

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So

    An experiment was carried out in the BMT environmental wind tunnel (4.8 m x 2.4 m x 15 m) in order to study the near-wall structure of the turbulent boundary layer, particular attention being given to the dynamics of the 'near-wall bursts'. Conditional sampling of the wall-shear stress fluctuations was extensively used along with a simultaneous application of flow visualization using a streak-smoke wire and a sheet of laser light. The results suggested that a 'near-wall burst' was taking place between a pair of smoke tubes, which was interpreted as a pair of stretched legs of neighboring hairpin loops. The spanwise spacing of the 'near-wall bursts' determined from a conditional space correlation of skin-friction signals was found to be a function of the threshold value used in burst detection.

  4. Conduction at domain walls in oxide multiferroics

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  5. Conduction at domain walls in oxide multiferroics.

    PubMed

    Seidel, J; Martin, L W; He, Q; Zhan, Q; Chu, Y-H; Rother, A; Hawkridge, M E; Maksymovych, P; Yu, P; Gajek, M; Balke, N; Kalinin, S V; Gemming, S; Wang, F; Catalan, G; Scott, J F; Spaldin, N A; Orenstein, J; Ramesh, R

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  6. The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes.

    PubMed

    Gabbett, Tim J

    2010-10-01

    Limited information exists on the training dose-response relationship in elite collision sport athletes. In addition, no study has developed an injury prediction model for collision sport athletes. The purpose of this study was to develop an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. Ninety-one professional rugby league players participated in this 4-year prospective study. This study was conducted in 2 phases. Firstly, training load and injury data were prospectively recorded over 2 competitive seasons in elite collision sport athletes. Training load and injury data were modeled using a logistic regression model with a binomial distribution (injury vs. no injury) and logit link function. Secondly, training load and injury data were prospectively recorded over a further 2 competitive seasons in the same cohort of elite collision sport athletes. An injury prediction model based on planned and actual training loads was developed and implemented to determine if noncontact, soft-tissue injuries could be predicted and therefore prevented in elite collision sport athletes. Players were 50-80% likely to sustain a preseason injury within the training load range of 3,000-5,000 units. These training load 'thresholds' were considerably reduced (1,700-3,000 units) in the late-competition phase of the season. A total of 159 noncontact, soft-tissue injuries were sustained over the latter 2 seasons. The percentage of true positive predictions was 62.3% (n = 121), whereas the total number of false positive and false negative predictions was 20 and 18, respectively. Players that exceeded the training load threshold were 70 times more likely to test positive for noncontact, soft-tissue injury, whereas players that did not exceed the training load threshold were injured 1/10 as often. These findings provide information on the training dose-response relationship and a scientific method of monitoring and regulating training load in

  7. Power mobility with collision avoidance for older adults: user, caregiver, and prescriber perspectives.

    PubMed

    Wang, Rosalie H; Korotchenko, Alexandra; Hurd Clarke, Laura; Mortenson, W Ben; Mihailidis, Alex

    2013-01-01

    Collision avoidance technology has the capacity to facilitate safer mobility among older power mobility users with physical, sensory, and cognitive impairments, thus enabling independence for more users. Little is known about consumers' perceptions of collision avoidance. This article draws on interviews (29 users, 5 caregivers, and 10 prescribers) to examine views on design and utilization of this technology. Data analysis identified three themes: "useful situations or contexts," "technology design issues and real-life application," and "appropriateness of collision avoidance technology for a variety of users." Findings support ongoing development of collision avoidance for older adult users. The majority of participants supported the technology and felt that it might benefit current users and users with visual impairments, but might be unsuitable for people with significant cognitive impairments. Some participants voiced concerns regarding the risk for injury with power mobility use and some identified situations where collision avoidance might be beneficial (driving backward, avoiding dynamic obstacles, negotiating outdoor barriers, and learning power mobility use). Design issues include the need for context awareness, reliability, and user interface specifications. User desire to maintain driving autonomy supports development of collaboratively controlled systems. This research lays the groundwork for future development by illustrating consumer requirements for this technology.

  8. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  9. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  10. Compressive behavior of energy-saving fired facing brick composite wall

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Wu, Cai

    2018-03-01

    The energy-saving fired facing brick composite wall has a broad development prospects due to its merits of thermal insulation, energy conservation, beautiful, and natural. The construction and characteristics of this wall are introduced and analyzed in this paper. Experimental studies of samples are also conducted to investigate its compressive performance. The results show that the energy-saving fired facing brick composite wall has high compressive capacity. It has considerable application prospect, the study in this paper provides foundation to further studies.

  11. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  12. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Extended Multiscale Image Segmentation for Castellated Wall Management

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Tsuguchi, M.; Chhatkuli, S.; Satoh, T.

    2018-05-01

    Castellated walls are positioned as tangible cultural heritage, which require regular maintenance to preserve their original state. For the demolition and repair work of the castellated wall, it is necessary to identify the individual stones constituting the wall. However, conventional approaches using laser scanning or integrated circuits (IC) tags were very time-consuming and cumbersome. Therefore, we herein propose an efficient approach for castellated wall management based on an extended multiscale image segmentation technique. In this approach, individual stone polygons are extracted from the castellated wall image and are associated with a stone management database. First, to improve the performance of the extraction of individual stone polygons having a convex shape, we developed a new shape criterion named convex hull fitness in the image segmentation process and confirmed its effectiveness. Next, we discussed the stone management database and its beneficial utilization in the repair work of castellated walls. Subsequently, we proposed irregular-shape indexes that are helpful for evaluating the stone shape and the stability of the stone arrangement state in castellated walls. Finally, we demonstrated an application of the proposed method for a typical castellated wall in Japan. Consequently, we confirmed that the stone polygons can be extracted with an acceptable level. Further, the condition of the shapes and the layout of the stones could be visually judged with the proposed irregular-shape indexes.

  14. Catching Collisions in the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruguiele, Claudia; Hirschauer, Jim

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  15. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2018-01-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  16. Symmetrical collision of multiple vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e <1 03 based on both the self-induced velocity and diameter of the ring. The case of three rings produces secondary vortical structures formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  17. Functional Single-Walled Carbon Nanotubes and Nanoengineered Networks for Organic- and Perovskite-Solar-Cell Applications.

    PubMed

    Barbero, David R; Stranks, Samuel D

    2016-11-01

    Carbon nanotubes have a variety of remarkable electronic and mechanical properties that, in principle, lend them to promising optoelectronic applications. However, the field has been plagued by heterogeneity in the distributions of synthesized tubes and uncontrolled bundling, both of which have prevented nanotubes from reaching their full potential. Here, a variety of recently demonstrated solution-processing avenues is presented, which may combat these challenges through manipulation of nanoscale structures. Recent advances in polymer-wrapping of single-walled carbon nanotubes (SWNTs) are shown, along with how the resulting nanostructures can selectively disperse tubes while also exploiting the favorable properties of the polymer, such as light-harvesting ability. New methods to controllably form nanoengineered SWNT networks with controlled nanotube placement are discussed. These nanoengineered networks decrease bundling, lower the percolation threshold, and enable a strong enhancement in charge conductivity compared to random networks, making them potentially attractive for optoelectronic applications. Finally, SWNT applications, to date, in organic and perovskite photovoltaics are reviewed, and insights as to how the aforementioned recent advancements can lead to improved device performance provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Residual interference assessment in adaptive wall wind tunnels

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1989-01-01

    A two-variable method is presented which is suitable for on-line calculation of residual interference in airfoil testing in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-M TCT). The method applies the Cauchy's integral formula to the closed contour formed by the contoured top and bottom walls, and the upstream and downstream ends. The measured top and bottom wall pressures and position are used to calculate the correction to the test Mach number and the airfoil angle of attack. Application to specific data obtained in the 0.3-M TCT adaptive wall test section demonstrates the need to assess residual interference to ensure that the desired level of wall streamlining is achieved. A FORTRAN computer program was developed for on-line calculation of the residual corrections during airfoil tests in the 0.3-M TCT.

  19. Improved interior wall detection using designated dictionaries in compressive urban sensing problems

    NASA Astrophysics Data System (ADS)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-05-01

    In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.

  20. Automatic Collision Avoidance Technology (ACAT)

    NASA Technical Reports Server (NTRS)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  1. The effect of collision avoidance for autonomous robot team formation

    NASA Astrophysics Data System (ADS)

    Seidman, Mark H.; Yang, Shanchieh J.

    2007-04-01

    As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.

  2. About the Collision Repair Campaign

    EPA Pesticide Factsheets

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  3. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  4. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  5. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles

    NASA Astrophysics Data System (ADS)

    Volino, Ralph J.; Schultz, Michael P.

    2018-03-01

    An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.

  6. Sixteenth International Conference on the physics of electronic and atomic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  7. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.

  8. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less

  9. Application of ECT inspection to the first wall of a fusion reactor with wavelet analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.; Yoshida, Y.; Miya, K.

    1994-12-31

    The first wall of a fusion reactor will be subjected to intensive loads during fusion operations. Since these loads may cause defects in the first wall, nondestructive evaluation techniques of the first wall should be developed. In this paper, we try to apply eddy current testing (ECT) technique to the inspection of the first wall. A method based on current vector potential and wavelet analysis is proposed. Owing to the use of wavelet analysis, a new theory developed recently, the accuracy of the present method is shown to be better than a conventional one.

  10. Using Piezoelectric Devices to Transmit Power through Walls

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi

    2008-01-01

    A method denoted wireless acoustic-electric feed-through (WAEF) has been conceived for transmitting power and/or data signals through walls or other solid objects made of a variety of elastic materials that could be electrically conductive or nonconductive. WAEF would make it unnecessary to use wires, optical fibers, tubes, or other discrete wall-penetrating signal-transmitting components, thereby eliminating the potential for structural weakening or leakage at such penetrations. Avoidance of such penetrations could be essential in some applications in which maintenance of pressure, vacuum, or chemical or biological isolation is required. In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall would be driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall would convert the vibrations back to an ultrasonic AC electric signal, which would then be detected and otherwise processed in a manner that would depend on the modulation (if any) applied to the signal and whether the signal was used to transmit power, data, or both. An electromechanical-network model has been derived as a computationally efficient means of analyzing and designing a WAEF system. This model is a variant of a prior model, known in the piezoelectric-transducer art as Mason's equivalent-circuit model, in which the electrical and mechanical dynamics, including electromechanical couplings, are expressed as electrical circuit elements that can include inductors, capacitors, and lumped-parameter complex impedances. The real parts of the complex impedances are used to account for dielectric, mechanical, and coupling losses in all components (including all piezoelectric-transducer, wall, and intermediate material layers). In an application to a three-layer piezoelectric structure, this model was shown to yield the same results as do solutions of the wave equations of piezoelectricity and acoustic

  11. Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds.

    PubMed

    Kobras, Carolin Martina; Mascher, Thorsten; Gebhard, Susanne

    2017-01-01

    Whole-cell biosensors, based on the visualization of a reporter strain's response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, i.e., the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. We here describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances. The system is based on the well-characterized promoter P liaI , which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple "spot-on-lawn" assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

  12. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a collision....2 meters (40 feet) in length and operates on partially protected waters; or (4) Is constructed of...

  13. Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions

    NASA Astrophysics Data System (ADS)

    Khan, S. D.; Flower, M. F. J.; Sultan, M. I.; Sandvol, E.

    2006-05-01

    The TETHYS GIS database is being developed as a way to integrate relevant geologic, geophysical, geochemical, geochronologic, and remote sensing data bearing on Tethyan continental plate collisions. The project is predicated on a need for actualistic model 'templates' for interpreting the Earth's geologic record. Because of their time-transgressive character, Tethyan collisions offer 'actualistic' models for features such as continental 'escape', collision-induced upper mantle flow magmatism, and marginal basin opening, associated with modern convergent plate margins. Large integrated geochemical and geophysical databases allow for such models to be tested against the geologic record, leading to a better understanding of continental accretion throughout Earth history. The TETHYS database combines digital topographic and geologic information, remote sensing images, sample-based geochemical, geochronologic, and isotopic data (for pre- and post-collision igneous activity), and data for seismic tomography, shear-wave splitting, space geodesy, and information for plate tectonic reconstructions. Here, we report progress on developing such a database and the tools for manipulating and visualizing integrated 2-, 3-, and 4-d data sets with examples of research applications in progress. Based on an Oracle database system, linked with ArcIMS via ArcSDE, the TETHYS project is an evolving resource for researchers, educators, and others interested in studying the role of plate collisions in the process of continental accretion, and will be accessible as a node of the national Geosciences Cyberinfrastructure Network—GEON via the World-Wide Web and ultra-high speed internet2. Interim partial access to the data and metadata is available at: http://geoinfo.geosc.uh.edu/Tethys/ and http://www.esrs.wmich.edu/tethys.htm. We demonstrate the utility of the TETHYS database in building a framework for lithospheric interactions in continental collision and accretion.

  14. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  15. Collision-induced absorption with exchange effects and anisotropic interactions: theory and application to H2 - H2.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  16. 2009 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2009-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2009 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  17. 2005 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2005-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2005 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  18. 2004 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2004-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2004 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  19. 2008 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2008-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2008 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  20. 2002 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2002-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2002 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised statutes 189.635, every law enforcement agency whose officers investigate :...

  1. 2003 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2003-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2003 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  2. 2001 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2001-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2001 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  3. 2007 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2007-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2007 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  4. 2006 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2006-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2006 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  5. 2000 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2000-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2000 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised statutes 189.635, every law enforcement agency whose officers investigate :...

  6. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  7. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.

    PubMed

    Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo

    2018-01-01

    The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.

  8. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-06-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.

  9. Resonant inelastic collisions of electrons with diatomic molecules

    NASA Astrophysics Data System (ADS)

    Houfek, Karel

    2012-05-01

    In this contribution we give a review of applications of the nonlocal resonance theory which has been successfully used for treating the nuclear dynamics of low-energy electron collisions with diatomic molecules over several decades. We give examples and brief explanations of various structures observed in the cross sections of vibrational excitation and dissociative electron attachment to diatomic molecules such as threshold peaks, boomerang oscillations below the dissociative attachment threshold, or outer-well resonances.

  10. Kentucky Traffic Collision Facts 2016

    DOT National Transportation Integrated Search

    2016-09-26

    KENTUCKYS TRAFFIC COLLISION FACTS report is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate a vehicle ac...

  11. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  12. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2017-11-18

    Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.

  13. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi

    PubMed Central

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2017-01-01

    Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579

  14. 2005 annual state highway collision data summary

    DOT National Transportation Integrated Search

    2006-01-01

    This report covers collisions on all State Highways in Washington State for the year 2005. Tables and charts will be used to show frequency and rate of : collisions, multi-year trends, collision types, contributing circumstances and other factors. : ...

  15. 2004 annual state highway collision data summary

    DOT National Transportation Integrated Search

    2006-01-01

    This report covers collisions on all State Highways in Washington State for the year 2004. Tables and charts will be used to show frequency and rate of : collisions, multi-year trends, collision types, contributing circumstances and other factors. : ...

  16. Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.

  17. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures: Task 3, Volume 1

    DOT National Transportation Integrated Search

    1995-08-23

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity oi these crashes. This report describes the findings of the...

  18. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 3 - Volume 2

    DOT National Transportation Integrated Search

    1995-08-23

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report describes the findings of t...

  19. Relativistic collisions as Yang-Baxter maps

    NASA Astrophysics Data System (ADS)

    Kouloukas, Theodoros E.

    2017-10-01

    We prove that one-dimensional elastic relativistic collisions satisfy the set-theoretical Yang-Baxter equation. The corresponding collision maps are symplectic and admit a Lax representation. Furthermore, they can be considered as reductions of a higher dimensional integrable Yang-Baxter map on an invariant manifold. In this framework, we study the integrability of transfer maps that represent particular periodic sequences of collisions.

  20. Kentucky traffic collision facts 2015.

    DOT National Transportation Integrated Search

    2016-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2015 is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate a v...

  1. 2010 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2010-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2010 is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate a v...

  2. The relationship between continental collision process and metamorphic pattern in the Himalayan collision belts

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Whan

    2015-04-01

    Both UHP and HP eclogites are reported from the Kaghan Valley and Tso Morari Massif in the western part of the Himalayan collision belt (Ghazanfar and Chaudhry, 1987; Thakur, 1983). UHP eclogites in the Kaghan record peak metamorphic conditions of 770 °C and 30 kbar (O'Brien et al., 2001) and was retrograded into the epidote-amphibolite or blueschist (580-610 °C, 10-13 kbar; Lombardo and Rolfo, 2000). Sensitive high-resolution ion microprobe dating of zircon reveals that the UHP eclogite formed at ca. 46 Ma (Kaneko et al., 2003; Parrish et al., 2006). The Tso Morari UHP eclogite had formed at 750 °C, > 39 kbar (Mukheerjee et al., 2003; Bundy, 1980) and underwent amphibolite facies retro-grade metamorphism (580 °C, 11 kbar) during uplift (Guillot et al., 2008). Peak metamorphism of the Tso Morari Massif was dated at ca. 53-55 Ma (Leech et al., 2005). Only HP eclogites have been reported from the mid-eastern part of the Himalayan collision belt (Lombardo and Rolfo, 2000; Corrie et al., 2010). The HP eclogite in the mid-eastern part may have formed at ca. > 780 °C and 20 kbar and was overprinted by high-pressure granulite facies metamorphism (780-750°C, 12-10 kbar) at ca. 30 Ma (Groppo et al. 2007; Corrie et al., 2010). HP granulite (890 °C, 17-18 kbar) is reported from the NBS, at the eastern terminus of the Himalayan collision belt; the granulite was subjected to retrograde metamorphism to produce lower-pressure granulite (875-850°C, 10-5 kbar), representing near-isothermal decompression (Liu and Zhong, 1997). The HP granulite metamorphism may have occurred at ca. 22-25 Ma. Along the Himalayan collision belt, peak metamorphism changes eastward from UHP eclogite facies through HP eclogite facies to high-pressure granulite facies, indicating a progressive eastwards decrease in the depth of subduction of continental crust and an eastwards increase in the geothermal gradient. The peak metamorphic ages also decrease from 53-46 Ma in the west to 22-25 Ma in the

  3. Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Carvalho-Santos, V. L.; Espejo, A. P.; Laroze, D.; Chubykalo-Fesenko, O.; Altbir, D.

    2017-11-01

    Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes, in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same frequency. These results open the possibility of new oscillation-based applications.

  4. Seismic structure and stratigraphy of northern edge of Bahaman-Cuban collision zone

    USGS Publications Warehouse

    Ball, M.M.; Martin, R.G.; Bock, W.D.; Sylwester, R.E.; Bowles, R.M.; Taylor, D.; Coward, E.L.; Dodd, J.E.; Gilbert, L.

    1985-01-01

    Common-depth-point (CDP) seismic reflection data in the southwestern Bahamas reveal the northern edge of the tectonized zone that resulted from the late Mesozoic-early Cenozoic collision of Cuba and the Bahamas. Two seismic facies are present. A 10-km broad anticline occurs at the south end of Santaren Channel. Platform carbonates in the core of this structure overlie Early Cretaceous and older basinal carbonate deposits and are onlapped by Late Cretaceous and Cenozoic basinal facies. The structure is inferred to be a hanging-wall anticline at the northern limit of the Cuban fold-thrust belt formed in the Late Cretaceous. A deeper water embayment extended northward into the Straits of Florida, around northern Cay Sal Bank, and back into Santaren Channel during the Early Cretaceous.

  5. Nuclear quantum many-body dynamics. From collective vibrations to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Simenel, Cédric

    2012-11-01

    A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-ion collisions are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-ion collisions leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the collision partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic collisions, and quasi-fission) are investigated. Finally, studies of actinide collisions forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.

  6. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  7. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  8. Making inference from wildlife collision data: inferring predator absence from prey strikes

    PubMed Central

    Hosack, Geoffrey R.; Barry, Simon C.

    2017-01-01

    Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application. PMID:28243534

  9. Theory of Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2004-03-01

    Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be ∝[(j_s/j_s^cr)^2-1]^1/2. In the case of thin wall, driven by a force ∝ ρw j, the critical current density is given by j^cr∝ V_0/ρ_w. In nanocontacts, this is estimated to be ˜ 10^7[A/m^2]. This small critical current would be advantageous for device application. [1] G.Tatara and H.Kohno, cond-mat/0308464

  10. Retrodeforming the Arabia-Eurasia collision zone : Age of collision and magnitude of continental subduction

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; van Hinsbergen, D. J. J.

    2012-04-01

    When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental

  11. Wind tunnels with adapted walls for reducing wall interference

    NASA Technical Reports Server (NTRS)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  12. Low velocity collisions of porous planetesimals in the early solar system

    NASA Astrophysics Data System (ADS)

    de Niem, D.; Kührt, E.; Hviid, S.; Davidsson, B.

    2018-02-01

    projectile at 100-500 m/s create a rimless cylindrical shaft with vertical walls, up to 50 m wide and 70 m deep. These shafts bear some resemblance with the pits on 67P, particularly if the depth-to-width ratio is reduced by nucleus erosion. Collisions between similarly-sized nuclei above 100 m/s lead to complete disintegration, and even small fragments suffer different degrees of compaction. Thus, we strongly doubt that 67P has been subjected to high-velocity collisions by projectiles larger than those that might have formed the pits, or is the fragment of a larger parent body. We suggest that the observed properties of 67P are more consistent with primordial accretion.

  13. Quantal diffusion description of multinucleon transfers in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ayik, S.; Yilmaz, B.; Yilmaz, O.; Umar, A. S.

    2018-05-01

    Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations. As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the mean-field properties. This powerful description does not involve any adjustable parameter, includes the effects of shell structure, and is consistent with the fluctuation-dissipation theorem of the nonequilibrium statistical mechanics. As a first application of the approach, we analyze the fragment mass distribution in 48Ca+ 238U collisions at the center-of-mass energy Ec.m.=193 MeV and compare the calculations with the experimental data.

  14. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  15. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  16. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 417.231..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that...

  17. Onset of radial flow in p + p collisions

    DOE PAGES

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; ...

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7more » TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra m T scaling was also observed at LHC from a model independent test.« less

  18. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  19. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  20. In-Orbit Collision Analysis for VEGA Second Flight

    NASA Astrophysics Data System (ADS)

    Volpi, M.; Fossati, T.; Battie, F.

    2013-08-01

    ELV, as prime contractor of the VEGA launcher, which operates in the protected LEO zone (up to 2000 km altitude), has to demonstrate that it abides by ESA debris mitigation rules, as well as by those imposed by the French Law on Space Operations (LOS). After the full success of VEGA qualification flight, the second flight(VV02) will extend the qualification domain of the launcher to multi-payload missions, with the release of two satellites (Proba-V and VNRedSat-1) and one Cubesat (ESTCube-1) on different SSO orbits The multi-payload adapter, VESPA, also separates its upper part before the second payload release. This paper will present the results of the long-term analyses on inorbit collision between these different bodies. Typical duration of propagation requested by ELV customer is around 50 orbits, requiring a state-of-the-art simulator able to compute efficiently orbits disturbs, usually neglected in launcher trajectory optimization itself. To address the issue of in-orbit collision, ELV has therefore developed its own simulator, POLPO [1], a FORTRAN code which performs the long-term propagation of the released objects trajectories and computes the mutual distance between them. The first part of the paper shall introduce the simulator itself, explaining the computation method chosen and briefly discussing the perturbing effects and their models taken into account in the tool, namely: - gravity field modeling (zonal and tesseral harmonics) - atmospheric model - solar pressure - third-body interaction A second part will describe the application of the in-orbit collision analysis to the second flight mission. Main characteristics of the second flight will be introduced, as well as the dispersions considered for the Monte-Carlo analysis performed. The results of the long-term collision analysis between all the separated bodies will then be presented and discussed.

  1. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  2. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  3. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  4. Regional cardiac wall motion from gated myocardial perfusion SPECT studies

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.

    1999-06-01

    A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.

  5. Comparison of collision operators for the geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Li, Yang; Gao, Zhe

    2015-04-01

    The collisional damping rate and real frequency of the geodesic acoustic mode (GAM) are solved from a drift kinetic model with different collision operators. As the ion collision rate increases, the damping rate increases at low collision rate but decays at high ion collision rate. Different collision operators do not change the overall trend but influence the magnitude of the damping rate. The collision damping is much overestimated with the number-conserving-only Krook operator; on the other hand, using the Lorentz operator with a constant collision rate, the damping is overestimated at low collision rate but underestimated at high collision rate. The results from the Krook operator with both number and energy conservation terms, the Lorentz operator with an energy-dependent collision rate and the full Hirshman-Sigmar-Clarke collision operator are very close. Meanwhile, as the ion collision rate increases, the GAM frequency decreases from the collisionless value, \\sqrt {7/4+τ} {vti}/R , to \\sqrt {1+τ} {vti}/R for the number-conserving-only Krook operator, but to \\sqrt {5/3+τ} {vti}/R for the other four operators, which conserve both number and energy, where τ, vti and R are the ratio of electron temperature to ion temperature, the ion thermal velocity and the major radius, respectively. The results imply that the property of energy conservation of the collision operator is important to the dynamics of the GAM as well as that of number conservation, which may provide guidance in choosing collision operators in further study of the zonal flow (ZF) dynamics, such as the nonlinear simulation of the ZF-turbulence system.

  6. Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls

    NASA Astrophysics Data System (ADS)

    Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak

    The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.

  7. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  8. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 437.65... analysis. (a) For a permitted flight with a planned maximum altitude greater than 150 kilometers, a permittee must obtain a collision avoidance analysis from United States Strategic Command. (b) The collision...

  9. National Transonic Facility Wall Pressure Calibration Using Modern Design of Experiments (Invited)

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Everhart, Joel L.; DeLoach, Richard

    2001-01-01

    The Modern Design of Experiments (MDOE) has been applied to wind tunnel testing at NASA Langley Research Center for several years. At Langley, MDOE has proven to be a useful and robust approach to aerodynamic testing that yields significant reductions in the cost and duration of experiments while still providing for the highest quality research results. This paper extends its application to include empty tunnel wall pressure calibrations. These calibrations are performed in support of wall interference corrections. This paper will present the experimental objectives, and the theoretical design process. To validate the tunnel-empty-calibration experiment design, preliminary response surface models calculated from previously acquired data are also presented. Finally, lessons learned and future wall interference applications of MDOE are discussed.

  10. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    PubMed Central

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-01-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species. PMID:27302853

  11. An Approach Toward Understanding Wildlife-Vehicle Collisions

    NASA Astrophysics Data System (ADS)

    Litvaitis, John A.; Tash, Jeffrey P.

    2008-10-01

    Among the most conspicuous environmental effects of roads are vehicle-related mortalities of wildlife. Research to understand the factors that contribute to wildlife-vehicle collisions can be partitioned into several major themes, including (i) characteristics associated with roadkill hot spots, (ii) identification of road-density thresholds that limit wildlife populations, and (iii) species-specific models of vehicle collision rates that incorporate information on roads (e.g., proximity, width, and traffic volume) and animal movements. We suggest that collision models offer substantial opportunities to understand the effects of roads on a diverse suite of species. We conducted simulations using collision models and information on Blanding’s turtles ( Emydoidea blandingii), bobcats ( Lynx rufus), and moose ( Alces alces), species endemic to the northeastern United States that are of particular concern relative to collisions with vehicles. Results revealed important species-specific differences, with traffic volume and rate of movement by candidate species having the greatest influence on collision rates. We recommend that future efforts to reduce wildlife-vehicle collisions be more proactive and suggest the following protocol. For species that pose hazards to drivers (e.g., ungulates), identify collision hot spots and implement suitable mitigation to redirect animal movements (e.g., underpasses, fencing, and habitat modification), reduce populations of problematic game species via hunting, or modify driver behavior (e.g., dynamic signage that warns drivers when animals are near roads). Next, identify those species that are likely to experience additive (as opposed to compensatory) mortality from vehicle collisions and rank them according to vulnerability to extirpation. Then combine information on the distribution of at-risk species with information on existing road networks to identify areas where immediate actions are warranted.

  12. A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1988-01-01

    A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  13. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it

  14. Suppressing wall turbulence by means of a transverse traveling wave

    PubMed

    Du; Karniadakis

    2000-05-19

    Direct numerical simulations of wall-bounded flow reveal that turbulence production can be suppressed by a transverse traveling wave. Flow visualizations show that the near-wall streaks are eliminated, in contrast to other turbulence-control techniques, leading to a large shear stress reduction. The traveling wave can be induced by a spanwise force that is confined within the viscous sublayer; it has its maximum at the wall and decays exponentially away from it. We demonstrate the application of this approach in salt water, using arrays of electromagnetic tiles that produce the required traveling wave excitation at a high efficiency.

  15. PREFACE: XXV International Conference on Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Becker, Uwe; Moshammer, Robert; Mokler, Paul; Ullrich, Joachim

    2007-07-01

    The XXVth ICPEAC in Freiburg marked a notable anniversary in collision physics: half a century ago the first conference in the series of International Conferences on the Physics of Electronic and Atomic Collisions (ICPEAC) was held in New York (1958). Since then, the development of electronic and atomic collision physics has seen tremendous progress. Starting during a time, when this field was regarded as somehow out-of-date, certainly not being in the main stream compared to particle and high-energy physics, it has expanded in a rather exceptional and unforeseen way. Over the years the original scope on electronic, atomic and heavy-ion collision physics was extended substantially to include upcoming expanding fields like synchrotron-radiation and strong-field laser-based atomic and molecular physics giving rise to a change of name to 'Photonic', Electronic and Atomic Collisions (ICPEAC) being used for the first time for the ICPEAC in Santa Fee in 2001. Nowadays, the ICPEAC has opened its agenda even more widely to other fields of atomic and molecular physics, such as interactions with clusters, bio-molecules and surfaces, to cold collisions, coherent control, femto- and attosecond physics and, with the Freiburg conference, to the application of free-electron lasers in the vacuum ultraviolet and soft x-ray regime, a field of potentially huge future impact in essentially all areas of science. In this larger context the XXVth ICPEAC in Freiburg with more than 800 participants set new standards. Representatives from all fields of Atomic, Molecular and Photon-based science came together and had very fruitful, inter-disciplinary discussions. This new forum of collision-based AMP physics will serve as a showcase example of future conferences, bridging not only the gap between different fields of collision physics but also, equally important, between different continents and cultures. The next ICPEAC is going to take place in Kalamazoo in North America, the one after that

  16. Progress Towards an LES Wall Model Including Unresolved Roughness

    NASA Astrophysics Data System (ADS)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  17. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  18. Investigation of Ferroelectric Domain Walls by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stone, Gregory A.

    Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman

  19. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  20. Analysis of bus collision and non-collision incidents using transit ITS and other archived operations data.

    DOT National Transportation Integrated Search

    2010-11-01

    This report analyzes factors contributing to bus operations safety incidents at TriMet, the transit provider for the Portland Oregon metropolitan : region. The analysis focuses on 4,631 collision and non-collision incidents that occurred between 2006...

  1. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  2. Ultra-relativistic Au+Au and d+Au collisions:

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  3. A novel VLES model accounting for near-wall turbulence: physical rationale and applications

    NASA Astrophysics Data System (ADS)

    Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron

    2014-11-01

    A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.

  4. Use of adaptive walls in 2D tests

    NASA Technical Reports Server (NTRS)

    Archambaud, J. P.; Chevallier, J. P.

    1984-01-01

    A new method for computing the wall effects gives precise answers to some questions arising in adaptive wall concept applications: length of adapted regions, fairings with up and downstream regions, residual misadjustments effects, reference conditions. The acceleration of the iterative process convergence and the development of an efficient technology used in CERT T2 wind tunnels give in a single run the required test conditions. Samples taken from CAST 7 tests demonstrate the efficiency of the whole process to obtain significant results with considerations of tridimensional case extension.

  5. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then

  6. Planetesimal Collisions as a Chondrule Forming Event

    NASA Astrophysics Data System (ADS)

    Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi; Hasegawa, Yasuhiro

    2017-01-01

    Chondritic meteorites contain unique spherical materials named chondrules: sub-mm sized silicate grains once melted in a high temperature condition in the solar nebula. We numerically explore one of the chondrule forming processes—planetesimal collisions. Previous studies have found that impact jetting via protoplanet-planetesimal collisions can make chondrules with 1% of the impactors’ mass, when the impact velocity exceeds 2.5 km s-1. Based on the mineralogical data of chondrules, undifferentiated planetesimals would be more suitable for chondrule-forming collisions than potentially differentiated protoplanets. We examine planetesimal-planetesimal collisions using a shock physics code and find two things: one is that planetesimal-planetesimal collisions produce nearly the same amount of chondrules as protoplanet-planetesimal collisions (˜1%). The other is that the amount of produced chondrules becomes larger as the impact velocity increases when two planetesimals collide with each other. We also find that progenitors of chondrules can originate from deeper regions of large targets (planetesimals or protoplanets) than small impactors (planetesimals). The composition of targets is therefore important, to fully account for the mineralogical data of currently sampled chondrules.

  7. 2010 Washington State collision data summary

    DOT National Transportation Integrated Search

    2011-07-08

    The Washington State Department of Transportations (WSDOT) Statewide Travel and Collision Data Office (STCDO) is responsible for : collecting, processing, analyzing and disseminating traffic, roadway and collision data pertaining to all public roa...

  8. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PERTAINING TO SPECIFIC VESSEL TYPES Hopper Dredges With Working Freeboard Assignments Design § 174.340 Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than 5...

  9. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PERTAINING TO SPECIFIC VESSEL TYPES Hopper Dredges With Working Freeboard Assignments Design § 174.340 Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than 5...

  10. Collisions between quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.

    1991-01-01

    The collision between pairs of quasi-parallel shocks is examined using hybrid numerical simulations. In the interaction, the two shocks are transmitted through each other leaving behind a hot plasma with a population of particles with energies in excess of 40 E0, where E0 is the kinetic energy of particles in the shock frame prior to the collision. The energization is more efficient for quasi-parallel shocks than parallel shocks. Collisions between shocks of equal strengths are more efficient than those that are unequal. The results are of importance for phenomena during the impulsive phase of solar flares, in the distant solar wind and at planetary bow shocks.

  11. Collision Processes in Methyl Chloride

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.

    Time-resolved, double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter -wave probe radiation (IRMMDR) has been used to study rotational and vibrational collision processes in CH_3 ^{35}Cl and CH_3 ^{37}Cl. A collisional energy transfer model using only five parameters for rotational processes plus those needed for vibrational processes accurately models over 500 IRMMDR time responses for 105 pump-probe combinations, using three pump coincidences and a wide range of probed rotational states. Previous studies in this laboratory revealed that J- and K-changing rotational energy transfer (RET) have vastly different characteristics in CH_3 F. As was found for CH_3F, J-changing rotational collision rates in CH_3 Cl are modeled accurately by both the Statistical Power Gap law and the Infinite Order Sudden approximation using a power law expression for the basis rates. However, in contrast to CH_3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH_3 Cl states populated by K-changing collisions contain an additional early-time feature (ETF) that varies with pump and probe state. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH_3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH_3F, the temperature is found to be a function of time for CH_3 Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH_3Cl. As was observed in CH_3F, the principal vibrational collision processes are the near -resonant V-swap process, in which two colliding molecules exchange a quantum of vibrational energy, and a

  12. 19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ELECTRICAL JUNCTION BOXES, BUILT-IN WALL CABINETRY, AND ELECTRICAL WALL HEATER. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  13. Numerical simulation of liquid jet impact on a rigid wall

    NASA Astrophysics Data System (ADS)

    Aganin, A. A.; Guseva, T. S.

    2016-11-01

    Basic points of a numerical technique for computing high-speed liquid jet impact on a rigid wall are presented. In the technique the flows of the liquid and the surrounding gas are governed by the equations of gas dynamics in the density, velocity, and pressure, which are integrated by the CIP-CUP method on dynamically adaptive grids without explicitly tracking the gas-liquid interface. The efficiency of the technique is demonstrated by the results of computing the problems of impact of the liquid cone and the liquid wedge on a wall in the mode with the shockwave touching the wall by its edge. Numerical solutions of these problems are compared with the analytical solution of the problem of impact of the plane liquid flow on a wall. Applicability of the technique to the problems of the high-speed liquid jet impact on a wall is illustrated by the results of computing a problem of impact of a cylindrical liquid jet with the hemispherical end on a wall covered by a layer of the same liquid.

  14. Sound propagation in a duct of periodic wall structure. [numerical analysis

    NASA Technical Reports Server (NTRS)

    Kurze, U.

    1978-01-01

    A boundary condition, which accounts for the coupling in the sections behind the duct boundary, is given for the sound-absorbing duct with a periodic structure of the wall lining and using regular partition walls. The soundfield in the duct is suitably described by the method of differences. For locally active walls this renders an explicit approximate solution for the propagation constant. Coupling may be accounted for by the method of differences in a clear manner. Numerical results agree with measurements and yield information which has technical applications.

  15. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.

    PubMed

    Lubbe, Nils

    2017-06-01

    Forward Collision Warning (FCW) can be effective in directing driver attention towards a conflict and thereby aid in preventing or mitigating collisions. FCW systems aiming at pedestrian protection have been introduced onto the market, yet an assessment of their safety benefits depends on the accurate modeling of driver reactions when the system is activated. This study contributes by quantifying brake reaction time and brake behavior (deceleration levels and jerk) to compare the effectiveness of an audio-visual warning only, an added haptic brake pulse warning, and an added Head-Up Display in reducing the frequency of collisions with pedestrians. Further, this study provides a detailed data set suited for the design of assessment methods for car-to-pedestrian FCW systems. Brake response characteristics were measured for heavily distracted drivers who were subjected to a single FCW event in a high-fidelity driving simulator. The drivers maintained a self-regulated speed of 30km/h in an urban area, with gaze direction diverted from the forward roadway by a secondary task. Collision rates and brake reaction times differed significantly across FCW settings. Brake pulse warnings resulted in the lowest number of collisions and the shortest brake reaction times (mean 0.8s, SD 0.29s). Brake jerk and deceleration were independent of warning type. Ninety percent of drivers exceeded a maximum deceleration of 3.6m/s 2 and a jerk of 5.3m/s 3 . Brake pulse warning was the most effective FCW interface for preventing collisions. In addition, this study presents the data required for driver modeling for car-to-pedestrian FCW similar to Euro NCAP's 2015 car-to-car FCW assessment. Practical applications: Vehicle manufacturers should consider the introduction of brake pulse warnings to their FCW systems. Euro NCAP could introduce an assessment that quantifies the safety benefits of pedestrian FCW systems and thereby aid the proliferation of effective systems. Copyright © 2017

  16. High energy collisions on tandem time-of-flight mass spectrometers†

    PubMed Central

    Cotter, Robert J.

    2013-01-01

    Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928

  17. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  18. 2006 Washington State collision data summary : highways only

    DOT National Transportation Integrated Search

    2007-01-01

    This report covers collisions on all State Highways (includes Interstates and State Highways only) in Washington State for the year 2006. : Tables and charts show frequency and rate of collisions, multi-year trends, collision types, contributing circ...

  19. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  20. Collision prediction software for radiotherapy treatments.

    PubMed

    Padilla, Laura; Pearson, Erik A; Pelizzari, Charles A

    2015-11-01

    This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient's treatment position and allow for its modification if necessary. A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the skanect software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0°, while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in pinnacle, and this information was exported to AlignRT (VisionRT, London, UK)--a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation -1.2°). The accuracy study for

  1. A gyrokinetic collision operator for magnetized Lorentz plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chang; Ma Chenhao; Yu Xiongjie

    2011-03-15

    A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field.more » The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates.« less

  2. Azimuthal anisotropy in U+U collisions at STAR

    DOE PAGES

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v 2 (v 2{2} and v 2{4}) from U+U collisions at √ sNN = 193 GeV and Au+Au collisions at √ sNN = 200 GeV for inclusive charged hadrons will bemore » presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v 2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v 2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)« less

  3. Modeling of near wall turbulence and modeling of bypass transition

    NASA Technical Reports Server (NTRS)

    Yang, Z.

    1992-01-01

    The objectives for this project are as follows: (1) Modeling of the near wall turbulence: We aim to develop a second order closure for the near wall turbulence. As a first step of this project, we try to develop a kappa-epsilon model for near wall turbulence. We require the resulting model to be able to handle both near wall turbulence and turbulent flows away from the wall, computationally robust, and applicable for complex flow situations, flow with separation, for example, and (2) Modeling of the bypass transition: We aim to develop a bypass transition model which contains the effect of intermittency. Thus, the model can be used for both the transitional boundary layers and the turbulent boundary layers. We require the resulting model to give a good prediction of momentum and heat transfer within the transitional boundary and a good prediction of the effect of freestream turbulence on transitional boundary layers.

  4. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  5. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    PubMed

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  6. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  7. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 3, Volume 2, Final Report

    DOT National Transportation Integrated Search

    1995-08-01

    INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...

  8. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arena, Lois B.

    High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and doormore » flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects

  9. Car-to-pedestrian collision reconstruction with injury as an evaluation index.

    PubMed

    Weng, Yiliu; Jin, Xianlong; Zhao, Zhijie; Zhang, Xiaoyun

    2010-07-01

    Reconstruction of accidents is currently considered as a useful means in the analysis of accidents. By multi-body dynamics and numerical methods, and by adopting vehicle and pedestrian models, the scenario of the crash can often be simulated. When reconstructing the collisions, questions often arise regarding the criteria for the evaluation of simulation results. This paper proposes a reconstruction method for car-to-pedestrian collisions based on injuries of the pedestrians. In this method, pedestrian injury becomes a critical index in judging the correctness of the reconstruction result and guiding the simulation process. Application of this method to a real accident case is also presented in this paper. The study showed a good agreement between injuries obtained by numerical simulation and that by forensic identification. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish

    PubMed Central

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314

  11. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    PubMed

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  12. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  13. The dynamics of milk droplet-droplet collisions

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  14. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues

  15. Heavy truck casualty collisions, 1994-1998

    DOT National Transportation Integrated Search

    2001-12-01

    This document reviews the number of collisions, vehicles involved, and casualties (fatalities and injuries) resulting from heavy truck collisions for each of straight trucks (greater than 4.536 kg) and tractor-trailers. The report also presents table...

  16. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures - Task 4, Volume 2: RORSIM Manual

    DOT National Transportation Integrated Search

    1995-09-05

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report documents the RORSIM comput...

  17. 5. Detail of bin wall, showing the thinner exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail of bin wall, showing the thinner exterior wall next to the inner wall with its alternating courses of channel tile and hollow tile. - Saint Anthony Elevator No. 3, 620 Malcom Avenue, Southeast, Minneapolis, Hennepin County, MN

  18. Composite quantum collision models

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  19. A comprehensive assessment of collision likelihood in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oltrogge, D. L.; Alfano, S.; Law, C.; Cacioni, A.; Kelso, T. S.

    2018-06-01

    Knowing the likelihood of collision for satellites operating in Geosynchronous Earth Orbit (GEO) is of extreme importance and interest to the global community and the operators of GEO spacecraft. Yet for all of its importance, a comprehensive assessment of GEO collision likelihood is difficult to do and has never been done. In this paper, we employ six independent and diverse assessment methods to estimate GEO collision likelihood. Taken in aggregate, this comprehensive assessment offer new insights into GEO collision likelihood that are within a factor of 3.5 of each other. These results are then compared to four collision and seven encounter rate estimates previously published. Collectively, these new findings indicate that collision likelihood in GEO is as much as four orders of magnitude higher than previously published by other researchers. Results indicate that a collision is likely to occur every 4 years for one satellite out of the entire GEO active satellite population against a 1 cm RSO catalogue, and every 50 years against a 20 cm RSO catalogue. Further, previous assertions that collision relative velocities are low (i.e., <1 km/s) in GEO are disproven, with some GEO relative velocities as high as 4 km/s identified. These new findings indicate that unless operators successfully mitigate this collision risk, the GEO orbital arc is and will remain at high risk of collision, with the potential for serious follow-on collision threats from post-collision debris when a substantial GEO collision occurs.

  20. Weak values in collision theory

    NASA Astrophysics Data System (ADS)

    de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus

    2018-05-01

    Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.

  1. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 1 Vol. 1 Technical Findings

    DOT National Transportation Integrated Search

    1994-10-28

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report describes and documents the a...

  2. Redox-controlled molecular permeability of composite-wall microcapsules

    NASA Astrophysics Data System (ADS)

    Ma, Yujie; Dong, Wen-Fei; Hempenius, Mark A.; Möhwald, Helmuth; Julius Vancso, G.

    2006-09-01

    Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control governed by variations in the environmental conditions. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS-) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.

  3. Cell wall of pathogenic yeasts and implications for antimycotic therapy.

    PubMed

    Cassone, A

    1986-01-01

    Yeast cell wall is a complex, multilayered structure where amorphous, granular and fibrillar components interact with each other to confer both the specific cell shape and osmotic protection against lysis. Thus it is widely recognized that as is the case with bacteria, yeast cell wall is a major potential target for selective chemotherapeutic drugs. Despite intensive research, very few such drugs have been discovered and none has found substantial application in human diseases to date. Among the different cell wall components, beta-glucan and chitin are the fibrillar materials playing a fundamental role in the overall rigidity and resistance of the wall. Inhibition of the metabolism of these polymers, therefore, should promptly lead to lysis. This indeed occurs and aculeacin, echinocandin and polyoxins are examples of agents producing such an action. Particular attention should be focused on chitin synthesis. Although quantitatively a minor cell wall component, chitin is important in the mechanism of dimorphic transition, especially in Candida albicans, a major human opportunistic pathogen. This transition is associated with increased invasiveness and general virulence of the fungus. Yeast cell wall may also limit the effect of antifungals which owe their action to disturbance of the cytoplasmic membrane or of cell metabolism. Indeed, the cell wall may hinder access to the cell interior both under growing conditions and, particularly, during cell ageing in the stationary phase, when important structural changes occur in the cell wall due to unbalanced wall growth (phenotypic drug resistance).

  4. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  5. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  6. Collision prediction software for radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A., E-mail: c-pelizzari@uchicago.edu

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is thenmore » shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest

  7. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. Collective effects in light-heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Venugopalan, Raju

    2014-11-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  9. Run-Off Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 1 Vol. 2 Support Volume

    DOT National Transportation Integrated Search

    1994-10-28

    The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report contains a summary of data us...

  10. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  11. Dirac bubble potential for He-He and inadequacies in the continuum: Comparing an analytic model with elastic collision experiments

    NASA Astrophysics Data System (ADS)

    Chrysos, Michael

    2017-01-01

    We focus on the long-pending issue of the inadequacy of the Dirac bubble potential model in the description of He-He interactions in the continuum [L. L. Lohr and S. M. Blinder, Int. J. Quantum Chem. 53, 413 (1995)]. We attribute this failure to the lack of a potential wall to mimic the onset of the repulsive interaction at close range separations. This observation offers the explanation to why this excessively simple model proves incapable of quantitatively reproducing previous experimental findings of glory scattering in He-He, although being notorious for its capability of reproducing several distinctive features of the atomic and isotopic helium dimers and trimers [L. L. Lohr and S. M. Blinder, Int. J. Quantum Chem. 90, 419 (2002)]. Here, we show that an infinitely high, energy-dependent potential wall of properly calculated thickness rc(E) taken as a supplement to the Dirac bubble potential suffices for agreement with variable-energy elastic collision cross section experiments for 4He-4He, 3He-4He, and 3He-3He [R. Feltgen et al., J. Chem. Phys. 76, 2360 (1982)]. In the very low energy regime, consistency is found between the Dirac bubble potential (to which our extended model is shown to reduce) and cold collision experiments [J. C. Mester et al., Phys. Rev. Lett. 71, 1343 (1993)]; this consistency, which in this regime lends credence to the Dirac bubble potential, was never noticed by its authors. The revised model being still analytic is of high didactical value while expected to increase in predictive power relative to other appraisals.

  12. Design of vehicle intelligent anti-collision warning system

    NASA Astrophysics Data System (ADS)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  13. The validation of a swimming turn wall-contact-time measurement system: a touchpad application reliability study.

    PubMed

    Brackley, Victoria; Ball, Kevin; Tor, Elaine

    2018-05-12

    The effectiveness of the swimming turn is highly influential to overall performance in competitive swimming. The push-off or wall contact, within the turn phase, is directly involved in determining the speed the swimmer leaves the wall. Therefore, it is paramount to develop reliable methods to measure the wall-contact-time during the turn phase for training and research purposes. The aim of this study was to determine the concurrent validity and reliability of the Pool Pad App to measure wall-contact-time during the freestyle and backstroke tumble turn. The wall-contact-times of nine elite and sub-elite participants were recorded during their regular training sessions. Concurrent validity statistics included the standardised typical error estimate, linear analysis and effect sizes while the intraclass correlating coefficient (ICC) was used for the reliability statistics. The standardised typical error estimate resulted in a moderate Cohen's d effect size with an R 2 value of 0.80 and the ICC between the Pool Pad and 2D video footage was 0.89. Despite these measurement differences, the results from this concurrent validity and reliability analyses demonstrated that the Pool Pad is suitable for measuring wall-contact-time during the freestyle and backstroke tumble turn within a training environment.

  14. Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures, Task 1, Volume 2: Support Volume, Final Report

    DOT National Transportation Integrated Search

    1994-10-01

    THE RUN-OFF-ROAD COLLISION AVOIDANCE USING LVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES.

  15. Collision-free motion of two robot arms in a common workspace

    NASA Technical Reports Server (NTRS)

    Basta, Robert A.; Mehrotra, Rajiv; Varanasi, Murali R.

    1987-01-01

    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed.

  16. Global linear gyrokinetic simulations for LHD including collisions

    NASA Astrophysics Data System (ADS)

    Kauffmann, K.; Kleiber, R.; Hatzky, R.; Borchardt, M.

    2010-11-01

    The code EUTERPE uses a Particle-In-Cell (PIC) method to solve the gyrokinetic equation globally (full radius, full flux surface) for three-dimensional equilibria calculated with VMEC. Recently this code has been extended to include multiple kinetic species and electromagnetic effects. Additionally, a pitch-angle scattering operator has been implemented in order to include collisional effects in the simulation of instabilities and to be able to simulate neoclassical transport. As a first application of this extended code we study the effects of collisions on electrostatic ion-temperature-gradient (ITG) instabilities in LHD.

  17. Toward a Physical Characterization of Raindrop Collision Outcome Regimes

    NASA Technical Reports Server (NTRS)

    Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.

    2011-01-01

    A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.

  18. Octree Bin-to-Bin Fractional-NTC Collisions

    DTIC Science & Technology

    2015-09-17

    Briefing Charts 3. DATES COVERED (From - To) 24 August 2015 – 17 September 2015 4. TITLE AND SUBTITLE Octree bin-to-bin fractional -NTC collisions...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 OCTREE BIN-TO-BIN FRACTIONAL -NTC COLLISIONS Robert Martin ERC INC., SPACECRAFT PROPULSION...AFTC/PA clearance No. TBD ROBERT MARTIN (AFRL/RQRS) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE 1 / 15 OUTLINE 1 BACKGROUND 2 FRACTIONAL COLLISIONS 3 BIN

  19. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  20. Collision Resolution Scheme with Offset for Improved Performance of Heterogeneous WLAN

    NASA Astrophysics Data System (ADS)

    Upadhyay, Raksha; Vyavahare, Prakash D.; Tokekar, Sanjiv

    2016-03-01

    CSMA/CA based DCF of 802.11 MAC layer employs best effort delivery model, in which all stations compete for channel access with same priority. Heterogeneous conditions result in unfairness among stations and degradation in throughput, therefore, providing different priorities to different applications for required quality of service in heterogeneous networks is challenging task. This paper proposes a collision resolution scheme with a novel concept of introducing offset, which is suitable for heterogeneous networks. Selection of random value by a station for its contention with offset results in reduced probability of collision. Expression for the optimum value of the offset is also derived. Results show that proposed scheme, when applied to heterogeneous networks, has improved throughput and fairness than conventional scheme. Results show that proposed scheme also exhibits higher throughput and fairness with reduced delay in homogeneous networks.

  1. Review on DTU-parton model for hh and hA collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.

    1981-02-01

    Recently several groups have considered small-p/sub T/ models, which combine features from both the parton model and the DTU model. We shall refer to them loosely as the DTU-parton model. In this talk, we take a definite point of view to motivate this model, and based on this framework we briefly survey its phenomenological applications to hadron-hadron and hadron-nucleus collisions.

  2. Determination of the Airborne Sound Insulation of a Straw Bale Partition Wall

    NASA Astrophysics Data System (ADS)

    Teslík, Jiří; Fabian, Radek; Hrubá, Barbora

    2017-06-01

    This paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.

  3. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  4. Trends in motor vehicle traffic collision statistics, 1988-1997

    DOT National Transportation Integrated Search

    2001-02-01

    This report presents descriptive statistics about Canadian traffic collisions during the ten-year period : from 1988 to 1997, focusing specifically on casualty collisions. Casualty collisions are defined as all : reportable motor vehicle crashes resu...

  5. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  6. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    DOE PAGES

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; ...

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr 2O 3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr 2O 3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr 2O 3. These major drawbacks for device implementationmore » can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

  7. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application

    PubMed Central

    Lv, Pengfei; Feng, Quan; Wang, Qingqing; Li, Guohui; Li, Dawei; Wei, Qufu

    2016-01-01

    Novel nanocomposites comprised of bacterial cellulose (BC) with carboxylic multi-walled carbon nanotubes (c-MWCNTs) incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC) were prepared using BC/c-MWCNTs composite injected by laccase (Lac) and glucose oxidase (GOD) with the aid of glutaraldehyde (GA) crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scanning electron microscope (SEM), and Fourier Transform Infrared (FTIR). The experimental results indicated the successful incorporation of c-MWCNTs into the BC. The electrochemical and biofuel performance were evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The power density and current density of EBFCs were recorded at 32.98 µW/cm3 and 0.29 mA/cm3, respectively. Additionally, the EBFCs also showed acceptable stability. Preliminary tests on double cells indicated that renewable BC have great potential in the application field of EBFCs. PMID:28773310

  8. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    PubMed Central

    Champer, Jackson; Ito, James I.; Clemons, Karl V.; Stevens, David A.; Kalkum, Markus

    2016-01-01

    We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here. PMID:26878023

  9. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  10. Collision Detection for Underwater ROV Manipulator Systems

    PubMed Central

    Rossi, Matija; Dooly, Gerard; Toal, Daniel

    2018-01-01

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations. PMID:29642396

  11. Collision Detection for Underwater ROV Manipulator Systems.

    PubMed

    Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel

    2018-04-06

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  12. Intermittency in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Murray, Michael; HELIOS Collaboration

    1991-04-01

    This paper describes a study of multiplicity and transverse energy fluctuations using factorial moments for sulphur collisions with silver — bromide emulsion and platinium targets at 200 GeV/A. The data were taken with the HELIOS experiment at CERN. Bialas and Peschanski [1] predicted a power law dependence of the moments on the rapidity bin size if the fluctuations are invariant over a range of scales. This pattern is known as intermittency in the theory of turbulence, and indicates a fractal structure. Fluctuations were studied for a range of pseudorapidity scales using scaled factorial moments. Correlated fluctuations were studied using correlated scaled factorial moments. For peripheral collisions the data are weakly intermittent and consistent with a simple cascading mechanism, the a model. For central collisions no clear signal of intermittency was seen.

  13. Intermittency in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    1991-04-01

    This paper describes a study of multiplicity and transverse energy fluctuations using factorial moments for sulphur collisions with silver - bromide emulsion and platinium targets at 200 GeV/A. The data were taken with the HELIOS experiment at CERN. Bialas and Peschanski [1] predicted a power law dependence of the moments on the rapidity bin size if the fluctuations are invariant over a range of scales. This pattern is known as intermittency in the theory of turbulence, and indicates a fractal structure. Fluctuations were studied for a range of pseudorapidity scales using scaled factorial moments. Correlated fluctuations were studied using correlated scaled factorial moments. For peripheral collisions the data are weakly intermittent and consistent with a simple cascading mechanism, the a model. For central collisions no clear signal of intermittency was seen.

  14. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  15. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  16. The Mobius domain wall fermion algorithm

    DOE PAGES

    Brower, Richard C.; Neff, Harmut; Orginos, Kostas

    2017-07-22

    We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (m res) and the Ward–Takahashi identities. The Möbius class interpolates between Shamir’s domain wall operator and Boriçi’s domain wall implementation of Neuberger’s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (L s) but yields exactly the same overlap action in the limit L s →more » ∞ . Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(L s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls . Here, we argue that the residual mass for a tuned Möbius algorithm with α = O(1/L s γ) for γ < 1 will eventually fall asymptotically as m res = O(1/L s 1+γ) in the case of a 5D Hamiltonian with out a spectral gap.« less

  17. The Mobius domain wall fermion algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Richard C.; Neff, Harmut; Orginos, Kostas

    We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (m res) and the Ward–Takahashi identities. The Möbius class interpolates between Shamir’s domain wall operator and Boriçi’s domain wall implementation of Neuberger’s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (L s) but yields exactly the same overlap action in the limit L s →more » ∞ . Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(L s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls . Here, we argue that the residual mass for a tuned Möbius algorithm with α = O(1/L s γ) for γ < 1 will eventually fall asymptotically as m res = O(1/L s 1+γ) in the case of a 5D Hamiltonian with out a spectral gap.« less

  18. Observation of correlated excitations in bimolecular collisions

    NASA Astrophysics Data System (ADS)

    Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.

  19. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method.

    PubMed

    Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.

  20. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method

    PubMed Central

    Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892

  1. First results on d+Au collisions from PHOBOS

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-02-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at √SNN = 200 GeV, in the range 0.25 < pT < 6.0 GeV/c. With increasing collision centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.

  2. Applications of multi-walled carbon nanotube in electronic packaging

    PubMed Central

    2012-01-01

    Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation of the chip is generally achieved through the die attach material and solders. With the temperature gradients in these materials, high thermo-mechanical stress will be developed in them, and thus they must also be mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free solder is demonstrated in this work. PMID:22405035

  3. Progress in Acoustic Transmission of Power through Walls

    NASA Technical Reports Server (NTRS)

    Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu

    2008-01-01

    A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.

  4. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  5. Are High Energy Heavy Ion Collisions similar to a Little Bang, or just a very nice Firework?

    NASA Astrophysics Data System (ADS)

    Shuryak, E. V.

    2001-09-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that it is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations. Note that both a generation of a pressure and the rate of fluctuation relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies.

  6. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  7. Global Λ hyperon polarization in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  8. A numerical 4D Collision Risk Model

    NASA Astrophysics Data System (ADS)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  9. Outreach Materials for the Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  10. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  11. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  12. On the Collision Nature of Two Coronal Mass Ejections: A Review

    NASA Astrophysics Data System (ADS)

    Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang

    2017-08-01

    Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.

  13. Variable Weight Fractional Collisions for Multiple Species Mixtures

    DTIC Science & Technology

    2017-08-28

    DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in

  14. Simple method for forming thin-wall pressure vessels

    NASA Technical Reports Server (NTRS)

    Erickson, A. L.; Guist, L. R.

    1972-01-01

    Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.

  15. The Möbius domain wall fermion algorithm

    NASA Astrophysics Data System (ADS)

    Brower, Richard C.; Neff, Harmut; Orginos, Kostas

    2017-11-01

    We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (mres) and the Ward-Takahashi identities. The Möbius class interpolates between Shamir's domain wall operator and Boriçi's domain wall implementation of Neuberger's overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (Ls) but yields exactly the same overlap action in the limit Ls → ∞. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(Ls) , we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls. We argue that the residual mass for a tuned Möbius algorithm with α = O(1 /Lsγ) for γ < 1 will eventually fall asymptotically as mres = O(1 /Ls1+γ) in the case of a 5D Hamiltonian with out a spectral gap.

  16. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    PubMed

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  17. A problem of collision avoidance

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Cliff, E. M.; Grantham, W. J.; Peng, W. Y.

    1972-01-01

    Collision avoidance between two vehicles of constant speed with limited turning radii, moving in a horizontal plane is investigated. Collision avoidance is viewed as a game by assuming that the operator of one vehicle has perfect knowledge of the state of the other, whereas the operator of the second vehicle is unaware of any impending danger. The situation envisioned is that of an encounter between a commercial aircraft and a small light aircraft. This worse case situation is examined to determine the conditions under which the commercial aircraft should execute a collision avoidance maneuver. Three different zones of vulnerability are defined and the boundaries, or barriers, between these zones are determined for a typical aircraft encounter. A discussion of the methods used to obtain the results as well as some of the salient features associated with the resultant barriers is included.

  18. Microfabricated alkali vapor cell with anti-relaxation wall coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straessle, R.; Pétremand, Y.; Briand, D.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less

  19. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  20. Collisions of dark matter axion stars with astrophysical sources

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Leeney, Joseph; ...

    2017-04-18

    If QCD axions form a large fraction of the total mass of dark matter, then axion stars could be very abundant in galaxies. As a result, collisions with each other, and with other astrophysical bodies, can occur. We calculate the rate and analyze the consequences of three classes of collisions, those occurring between a dilute axion star and: another dilute axion star, an ordinary star, or a neutron star. In all cases we attempt to quantify the most important astrophysical uncertainties; we also pay particular attention to scenarios in which collisions lead to collapse of otherwise stable axion stars, and possible subsequent decay through number changing interactions. Collisions between two axion stars can occur with a high total rate, but the low relative velocity required for collapse to occur leads to a very low total rate of collapses. On the other hand, collisions between an axion star and an ordinary star have a large rate,more » $$\\Gamma_\\odot \\sim 3000$$ collisions/year/galaxy, and for sufficiently heavy axion stars, it is plausible that most or all such collisions lead to collapse. We identify in this case a parameter space which has a stable region and a region in which collision triggers collapse, which depend on the axion number ($N$) in the axion star, and a ratio of mass to radius cubed characterizing the ordinary star ($$M_s/R_s^3$$). Finally, we revisit the calculation of collision rates between axion stars and neutron stars, improving on previous estimates by taking cylindrical symmetry of the neutron star distribution into account. Finally, collapse and subsequent decay through collision processes, if occurring with a significant rate, can affect dark matter phenomenology and the axion star mass distribution.« less