Sample records for wall friction

  1. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  2. Effects of wall friction on flow in a quasi-2D hopper

    NASA Astrophysics Data System (ADS)

    Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha

    Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.

  3. Magnon-induced non-Markovian friction of a domain wall in a ferromagnet

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tchernyshyov, Oleg; Galitski, Victor; Tserkovnyak, Yaroslav

    2018-05-01

    Motivated by the recent study on the quasiparticle-induced friction of solitons in superfluids, we theoretically study magnon-induced intrinsic friction of a domain wall in a one-dimensional ferromagnet. To this end, we start by obtaining the hitherto overlooked dissipative interaction of a domain wall and its quantum magnon bath to linear order in the domain-wall velocity and to quadratic order in magnon fields. An exact expression for the pertinent scattering matrix is obtained with the aid of supersymmetric quantum mechanics. We then derive the magnon-induced frictional force on a domain wall in two different frameworks: time-dependent perturbation theory in quantum mechanics and the Keldysh formalism, which yield identical results. The latter, in particular, allows us to verify the fluctuation-dissipation theorem explicitly by providing both the frictional force and the correlator of the associated stochastic Langevin force. The potential for magnons induced by a domain wall is reflectionless, and thus the resultant frictional force is non-Markovian similar to the case of solitons in superfluids. They share an intriguing connection to the Abraham-Lorentz force that is well known for its causality paradox. The dynamical responses of a domain wall are studied under a few simple circumstances, where the non-Markovian nature of the frictional force can be probed experimentally. Our work, in conjunction with the previous study on solitons in superfluids, shows that the macroscopic frictional force on solitons can serve as an effective probe of the microscopic degrees of freedom of the system.

  4. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  5. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  6. Characterization of frictional interference in closely-spaced reinforcements in MSE walls.

    DOT National Transportation Integrated Search

    2014-09-01

    This research addresses one of several knowledge gaps in the understanding of tall MSE wall behavior: prediction of reinforcement loads impacted by frictional interference of closely-spaced reinforcements associated with tall walls.

  7. Fluid friction and wall viscosity of the 1D blood flow model.

    PubMed

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow

    NASA Astrophysics Data System (ADS)

    Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha

    We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.

  9. Preferential particle concentration in wall-bounded turbulence with zero skin friction

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Zhao, Lihao; Andersson, Helge I.

    2017-11-01

    Inertial particles dispersed in turbulence distribute themselves unevenly. Besides their tendency to segregate near walls, they also concentrate preferentially in wall-parallel planes. We explore the latter phenomenon in a tailor-made flow with the view to examine the homogeneity and anisotropy of particle clustering in the absence of mean shear as compared with conventional, i.e., sheared, wall turbulence. Inertial particles with some different Stokes numbers are suspended in a turbulent Couette-Poiseuille flow, in which one of the walls moves such that the shear rate vanishes at that wall. The anisotropies of the velocity and vorticity fluctuations are therefore qualitatively different from those at the opposite non-moving wall, along which quasi-coherent streaky structures prevail, similarly as in turbulent pipe and channel flows. Preferential particle concentration is observed near both walls. The inhomogeneity of the concentration is caused by the strain-vorticity selection mechanism, whereas the anisotropy originates from coherent flow structures. In order to analyse anisotropic clustering, a two-dimensional Shannon entropy method is developed. Streaky particle structures are observed near the stationary wall where the flow field resembles typical wall-turbulence, whereas particle clusters near the moving friction-free wall are similar to randomly oriented clusters in homogeneous isotropic turbulence, albeit with a modest streamwise inclination. In the absence of mean-shear and near-wall streaks, the observed anisotropy is ascribed to the imprint of large-scale flow structures which reside in the bulk flow and are global in nature.

  10. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    NASA Astrophysics Data System (ADS)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  11. Single cell rheometry with a microfluidic constriction: Quantitative control of friction and fluid leaks between cell and channel walls

    PubMed Central

    Preira, Pascal; Valignat, Marie-Pierre; Bico, José; Théodoly, Olivier

    2013-01-01

    We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data. PMID:24404016

  12. Experimental research on friction coefficient between grain bulk and bamboo clappers

    NASA Astrophysics Data System (ADS)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  13. On turbulent friction in straight ducts with complex cross-section: the wall law and the hydraulic diameter

    NASA Astrophysics Data System (ADS)

    Pirozzoli, Sergio

    2018-07-01

    We develop predictive formulas for friction resistance in ducts with complex cross-sectional shape based on the use of the log law and neglect of wall shear stress nonuniformities. The traditional hydraulic diameter naturally emerges from the analysis as the controlling length scale for common duct shapes as triangles and regular polygons. The analysis also suggests that a new effective diameter should be used in more general cases, yielding corrections of a few percent to friction estimates based on the traditional hydraulic diameter. Fair but consistent predictive improvement is shown for duct geometries of practical relevance, including rectangular and annular ducts, and circular rod bundles.

  14. Wall-Friction Support of Vertical Loads in Submerged Sand and Gravel Columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, O. R.; Vollmer, H. J.; Hepa, V. S.

    Laboratory studies of the ‘floor-loads’ under submerged vertical columns of sand and/or gravel indicate that such loads can be approximated by a buoyancy-corrected Janssen-silo-theory-like relationship. Similar to conditions in storage silos filled with dry granular solids, most of the weight of the sand or gravel is supported by wall friction forces. Laboratory measurements of the loads on the floor at the base of the water-filled columns (up to 25-diameters tall) indicate that the extra floor-load from the addition of the granular solid never exceeded the load that would exist under an unsupported (wide) bed of submerged sand or gravel thatmore » has a total depth corresponding to only two column-diameters. The measured floorloads reached an asymptotic maximum value when the depth of granular material in the columns was only three or four pipe-diameters, and never increased further as the columns were filled to the top (e.g. up to heights of 10 to 25 diameters). The floor-loads were stable and remained the same for days after filling. Aggressive tapping (e.g. hitting the containing pipe on the outside, manually with a wrench up and down the height and around the circumference) could increase (and occasionally decrease) the floor load substantially, but there was no sudden collapse or slumping to a state without significant wall friction effects. Considerable effort was required, repeatedly tapping over almost the entire column wall periphery, in order to produce floor-loads that corresponded to the total buoyancy-corrected weight of granular material added to the columns. Projecting the observed laboratory behavior to field conditions would imply that a stable floor-load condition, with only a slightly higher total floor pressure than the preexisting hydrostatic-head, would exist after a water-filled bore-hole is filled with sand or gravel. Significant seismic vibration (either a large nearby event or many micro-seismic events over an extended period) would

  15. 2D granular flows with the μ(I) rheology and side walls friction: A well-balanced multilayer discretization

    NASA Astrophysics Data System (ADS)

    Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G.

    2018-03-01

    We present here numerical modelling of granular flows with the μ (I) rheology in confined channels. The contribution is twofold: (i) a model to approximate the Navier-Stokes equations with the μ (I) rheology through an asymptotic analysis; under the hypothesis of a one-dimensional flow, this model takes into account side walls friction; (ii) a multilayer discretization following Fernández-Nieto et al. (2016) [20]. In this new numerical scheme, we propose an appropriate treatment of the rheological terms through a hydrostatic reconstruction which allows this scheme to be well-balanced and therefore to deal with dry areas. Based on academic tests, we first evaluate the influence of the width of the channel on the normal profiles of the downslope velocity thanks to the multilayer approach that is intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity profiles. We also check the well-balanced property of the proposed numerical scheme. We show that approximating side walls friction using single-layer models may lead to strong errors. Secondly, we compare the numerical results with experimental data on granular collapses. We show that the proposed scheme allows us to qualitatively reproduce the deposit in the case of a rigid bed (i.e. dry area) and that the error made by replacing the dry area by a small layer of material may be large if this layer is not thin enough. The proposed model is also able to reproduce the time evolution of the free surface and of the flow/no-flow interface. In addition, it reproduces the effect of erosion for granular flows over initially static material lying on the bed. This is possible when using a variable friction coefficient μ (I) but not with a constant friction coefficient.

  16. Role of friction in vertically oscillated granular materials

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.

  17. On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, J.T.; Louge, M.Y.

    We consider a flow of colliding spheres that interacts with a flat, frictional wall and calculate the flux of fluctuation energy in two limits. In the first limit, all spheres slide upon contact with the wall. Here, we refine the calculations of Jenkins [J. Appl. Mech. {bold 59}, 120 (1992)] and show that a correlation between two orthogonal components of the fluctuation velocity of the point of contact of the grains with the wall provides a substantial correction to the flux originally predicted. In the other limit, the granular material is agitated but the mean velocity of the contact pointsmore » with respect to the wall is zero and Jenkins{close_quote} earlier calculation is improved by distinguishing between those contacts that slide in a collision and those that stick. The new expressions for the flux agree well with the computer simulations of Louge [Phys. Fluids {bold 6}, 2253 (1994)]. Finally, we extend the expression for zero mean sliding to incorporate small sliding and obtain an approximate expression for the flux between the two limits. {copyright} {ital 1997 American Institute of Physics.}« less

  18. Thermal and frictional performance evaluation of nano lubricant with multi wall carbon nano tubes (MWCNTs) as nano-additive

    NASA Astrophysics Data System (ADS)

    Lijesh K., P.; Kumar, Deepak; Muzakkir S., M.; Hirani, Harish

    2018-05-01

    A Fluid Film Bearings (FFBs) operating in hydrodynamic boundary regime can provide moderate load carrying capacity, negligible wear and friction. However in extreme operating conditions i.e. at high load and low speed, asperities of journal and bearing surfaces come in contact with each other resulting in high wear and friction. During the contact of the asperities, the temperature of the lubricant increases due to frictional heating, resulting in reduction of the viscosity of lubricant. Variation of lubricant viscosity results in low load carrying capacity of the FFB and therefore resulting in detoriation of FFB performance. In the present work it is hypothesized that, by adding multi-functional Multi Wall Carbon Nano-Tubes (MWCNT) (having high thermal conductivity and anti-friction properties) as nano-additive in the base mineral oil, the aforementioned problems can be overcome. To validate the proposed hypothesis, five different samples of lubricant is considered: Sample 1: Base oil, Sample 2: Base oil +0.05% MWCNT, Sample 3: Base oil +0.05% MWCNT +0.5%surfactant, Sample 4: Base oil +0.1% MWCNT +0.5% surfactant, and Sample 5: Base oil +0.15% MWCNT +0.5%surfactant. To evaluate the performance of the developed lubricants, experiments were performed on the reduced scale conformal block on disc test setup. The experimental condition and dimension of the block and disc were decide for the Sommerfeld number equal to 0.0025, which indicates mixed lubrication regime. The performance of lubricant is evaluated by measuring the frictional force and temperature rise of the lubricant during the experiment.

  19. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  20. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  1. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  2. The problem of modeling the process of air blowing through finely perforated wall for skin friction reduction

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2017-10-01

    Problems of experimental modeling of the process of air blowing into turbulent boundary layer of incompressible fluid through finely perforated wall are discussed. Particular attention is paid to the analysis of both the main factors responsible for the effectiveness of blowing and the possibility of studying the factors in artificially generated turbulent boundary layer. It was shown that uniformity of the injected gas is one of the main requirements to enhance the effectiveness of this method of flow control. An example of the successful application of this technology exhibiting a significant reduction of the turbulent skin friction is provided.

  3. Friction enhancement in concertina locomotion of snakes

    PubMed Central

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  4. Friction enhancement in concertina locomotion of snakes.

    PubMed

    Marvi, Hamidreza; Hu, David L

    2012-11-07

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.

  5. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  6. A rare case of severe third degree friction burns and large Morel-Lavallee lesion of the abdominal wall.

    PubMed

    Brown, Darnell J; Lu, Kuo Jung G; Chang, Kristina; Levin, Jennifer; Schulz, John T; Goverman, Jeremy

    2018-01-01

    Morel-Lavallee lesions (MLLs) are rare internal degloving injuries typically caused by blunt traumatic injuries and most commonly occur around the hips and in association with pelvic or acetabular fractures. MLL is often overlooked in the setting of poly-trauma; therefore, clinicians must maintain a high degree of suspicion and be familiar with the management of such injuries, especially in obese poly-trauma patients. We present a 30-year-old female pedestrian struck by a motor vehicle who sustained multiple long bone fractures, a mesenteric hematoma, and full-thickness abdominal skin friction burn which masked a significant underlying abdominal MLL. The internal degloving caused significant devascularization of the overlying soft tissue and skin which required surgical drainage of hematoma, abdominal wall reconstruction with tangential excision, allografting, negative pressure wound therapy, and ultimately autografting. MLL is a rare, often overlooked, internal degloving injury. Surgeons must maintain a high index of suspicion when dealing with third degree friction burns as they may mask underlying injuries such as MLL, and a delay in diagnosis can lead to increased morbidity.

  7. Study of Unsteady Flows with Concave Wall Effect

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2003-01-01

    This paper presents computational fluid dynamic studies of the inlet turbulence and wall curvature effects on the flow steadiness at near wall surface locations in boundary layer flows. The time-stepping RANS numerical solver of the NASA Glenn-HT RANS code and a one-equation turbulence model, with a uniform inlet turbulence modeling level of the order of 10 percent of molecular viscosity, were used to perform the numerical computations. The approach was first calibrated for its predictabilities of friction factor, velocity, and temperature at near surface locations within a transitional boundary layer over concave wall. The approach was then used to predict the velocity and friction factor variations in a boundary layer recovering from concave curvature. As time iteration proceeded in the computations, the computed friction factors converged to their values from existing experiments. The computed friction factors, velocity, and static temperatures at near wall surface locations oscillated periodically in terms of time iteration steps and physical locations along the span-wise direction. At the upstream stations, the relationship among the normal and tangential velocities showed vortices effects on the velocity variations. Coherent vortices effect on the velocity components broke down at downstream stations. The computations also predicted the vortices effects on the velocity variations within a boundary layer flow developed along a concave wall surface with a downstream recovery flat wall surface. It was concluded that the computational approach might have the potential to analyze the flow steadiness in a turbine blade flow.

  8. Drag reduction of turbulent pipe flows by circular-wall oscillation

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So; Graham, Mark

    1998-01-01

    An experimental study on turbulent pipe flows was conducted with a view to reduce their friction drag by oscillating a section of the pipe in a circumferential direction. The results indicated that the friction factor of the pipe is reduced by as much as 25% as a result of active manipulation of near-wall turbulence structure by circular-wall oscillation. An increase in the bulk velocity was clearly shown when the pipe was oscillated at a constant head, supporting the measured drag reduction in the present experiment. The percentage reduction in pipe friction was found to be better scaled with the nondimensional velocity of the oscillating wall than with its nondimensional period, confirming a suggestion that the drag reduction seem to be resulted from the realignment of longitudinal vortices into a circumferential direction by the wall oscillation.

  9. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    NASA Technical Reports Server (NTRS)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  10. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.

    PubMed

    Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C

    2016-10-28

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  11. Skin friction reduction in supersonic flow by injection through slots, porous sections and combinations of the two

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Vanovereem, J.

    1975-01-01

    An experimental study of skin friction reduction in a Mach 3.0 air steam with gaseous injection through a tangential slot, a porous wall section, and combinations of the two was conducted. The primary data obtained were wall shear values measured directly with a floating element balance and also inferred from Preston Tube measurements. Detailed profiles at several axial stations, wall pressure distributions and schlieren photographs are presented. The data indicate that a slot provides the greatest skin friction reduction in comparison with a reference flat plate experiment. The porous wall section arrangement suffers from an apparent roughness-induced rise in skin friction at low injection rates compared to the flat plate. The combination schemes demonstrated a potential for gain.

  12. Disk in a groove with friction: An analysis of static equilibrium and indeterminacy

    NASA Astrophysics Data System (ADS)

    Donolato, Cesare

    2018-05-01

    This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.

  13. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  14. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1991-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

  15. Method and device for frictional welding

    DOEpatents

    Peacock, Harold B.

    1992-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

  16. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1992-10-13

    A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

  17. Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louge, M.Y.

    This paper employs computer simulations to test the theory of Jenkins [J. Applied Mech. [bold 59], 120 (1992)] for the interaction between a rapid granular flow of spheres and a flat, frictional wall. This paper examines the boundary conditions that relate the shear stress and energy flux at the wall to the normal stress, slip velocity, and fluctuation energy, and to the parameters that characterize a collision. It is found that while the theory captures the trends of the boundary conditions at low friction, it does not anticipate their behavior at large friction. A critical evaluation of Jenkins' assumptions suggestsmore » where his theory may be improved.« less

  18. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  19. Adhesion and friction in gecko toe attachment and detachment

    PubMed Central

    Tian, Yu; Pesika, Noshir; Zeng, Hongbo; Rosenberg, Kenny; Zhao, Boxin; McGuiggan, Patricia; Autumn, Kellar; Israelachvili, Jacob

    2006-01-01

    Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of ≈20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle θ between 0 and 90° to the substrate, has a “normal adhesion force” contribution, produced at the spatula-substrate bifurcation zone, and a “lateral friction force” contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles θ between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism. PMID:17148600

  20. Skin-friction measurements by laser interferometry

    NASA Technical Reports Server (NTRS)

    Kim, K.-S.; Settles, G. S.

    1989-01-01

    The measurement of skin friction in rapidly distorted compressible flows is difficult, and very few reliable techniques are available. A recent development, the laser interferometer skin friction (LISF) meter, promises to be useful for this purpose. This technique interferometrically measures the time rate of thinning of an oil film applied to an aerodynamic surface. Under the proper conditions the wall shear stress may thus be found directly, without reference to flow properties. The applicability of the LISF meter to supersonic boundary layers is examined experimentally. Its accuracy and repeatability are assessed, and conditions required for its successful application are considered.

  1. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  2. The relation between skin friction fluctuations and turbulent fluctuating velocities in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Diaz Daniel, Carlos; Laizet, Sylvain; Vassilicos, John Christos

    2015-11-01

    The Townsend-Perry hypothesis of wall-attached eddies relates the friction velocity uτ at the wall to velocity fluctuations at a position y from the wall, resulting in a wavenumber range where the streamwise fluctuating velocity spectrum scales as E (k) ~k-1 and the corresponding structure function scales as uτ2 in the corresponding length-scale range. However, this model does not take in account the fluctuations of the skin friction velocity, which are in fact strongly intermittent. A DNS of zero-pressure gradient turbulent boundary layer suggests a 10 to 15 degree angle from the lag of the peak in the cross-correlations between the fluctuations of the shear stress and streamwise fluctuating velocities at different heights in the boundary layer. Using this result, it is possible to refine the definition of the attached eddy range of scales, and our DNS suggests that, in this range, the second order structure function depends on filtered skin friction fluctuations in a way which is about the same at different distances from the wall and different local Reynolds numbers.

  3. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  4. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  5. Re-understanding the law-of-the-wall for wall-bounded turbulence based on in-depth investigation of DNS data

    NASA Astrophysics Data System (ADS)

    Cao, Bochao; Xu, Hongyi

    2018-05-01

    Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.

  6. Some effects of finite spatial resolution on skin friction measurements in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Westphal, Russell V.

    1988-01-01

    The effects of finite spatial resolution often cause serious errors in measurements in turbulent boundary layers, with particularly large effects for measurements of fluctuating skin friction and velocities within the sublayer. However, classical analyses of finite spatial resolution effects have generally not accounted for the substantial inhomogeneity and anisotropy of near-wall turbulence. The present study has made use of results from recent computational simulations of wall-bounded turbulent flows to examine spatial resolution effects for measurements made at a wall using both single-sensor probes and those employing two sensing volumes in a V shape. Results are presented to show the effects of finite spatial resolution on a variety of quantitites deduced from the skin friction field.

  7. Surface effects on friction-induced fluid heating in nanochannel flows.

    PubMed

    Li, Zhigang

    2009-02-01

    We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.

  8. Remote Estimation of River Discharge and Bathymetry: Sensitivity to Turbulent Dissipation and Bottom Friction

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2016-12-01

    We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry

  9. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  10. Curvature-induced domain wall pinning

    NASA Astrophysics Data System (ADS)

    Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri

    2015-09-01

    It is shown that a local bend of a nanowire is a source of pinning potential for a transversal head-to-head (tail-to-tail) domain wall. Eigenfrequency of the domain wall free oscillations at the pinning potential and the effective friction are determined as functions of the curvature and domain wall width. The pinning potential originates from the effective curvature-induced Dzyaloshinsky-like term in the exchange energy. The theoretical results are verified by means of micromagnetic simulations for the case of parabolic shape of the wire bend.

  11. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  12. Direct Numerical Simulation of Turbulent Couette-Poiseuille Flow With Zero Skin Friction

    NASA Technical Reports Server (NTRS)

    Coleman, Gary N.; Spalart, Philippe R.

    2015-01-01

    The near-wall scaling of mean velocity U(yw) is addressed for the case of zero skin friction on one wall of a fully turbulent channel flow. The present DNS results can be added to the evidence in support of the conjecture that U is proportional to the square root of yw in the region just above the wall at which the mean shear dU=dy = 0.

  13. Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall

    NASA Technical Reports Server (NTRS)

    Towne, C. E.

    1974-01-01

    An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.

  14. Polymer/riblet combination for hydrodynamic skin friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor)

    1995-01-01

    A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g. a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.

  15. Polymer/riblet combination for hydrodynamic skin friction reduction

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Inventor); Reed, Jason C. (Inventor)

    1990-01-01

    A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g., a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.

  16. A general review of concepts for reducing skin friction, including recommendations for future studies

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Ash, R. L.

    1974-01-01

    Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made.

  17. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  18. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  19. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  20. Riblets for aircraft skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Walsh, Michael J.

    1986-01-01

    Energy conservation and aerodynamic efficiency are the driving forces behind research into methods to reduce turbulent skin friction drag on aircraft fuselages. Fuselage skin friction reductions as small as 10 percent provide the potential for a 250 million dollar per year fuel savings for the commercial airline fleet. One passive drag reduction concept which is relatively simple to implement and retrofit is that of longitudinally grooved surfaces aligned with the stream velocity. These grooves (riblets) have heights and spacings on the order of the turbulent wall streak and burst dimensions. The riblet performance (8 percent net drag reduction thus far), sensitivity to operational/application considerations such as yaw and Reynolds number variation, an alternative fabrication technique, results of extensive parametric experiments for geometrical optimization, and flight test applications are summarized.

  1. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  2. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  3. Anti-aging Friction of Carbonate Fault Mirror and its Microstructural Interpretation

    NASA Astrophysics Data System (ADS)

    Park, Y.; Ree, J. H.; Hirose, T.

    2017-12-01

    In our slide-hold-slide (SHS) friction tests on carbonate fault rocks, fault mirror (FM), light reflective mirror-like fault surface, shows almost zero or slightly negative aging rate of friction (`anti-aging' friction), whereas carbonate faults without FM exhibit a positive aging rate. We analyzed microstructures from three types of carbonate faults to explore the cause of the anti-aging friction of FM. The three types of fault rocks before SHS tests were made from Carrara marble; (i) FM, (ii) crushed gouge of former FM (CF), and (iii) gouge produced by pre-shearing of Carrara marble (PR). The fault zone of FM before SHS tests consists of sintered nanograin patches smeared into negative asperities of wall rocks (thickness up to 150 μm) and a sintered gouge layer between wall rocks (thickness up to 200 μm) that is composed of tightly-packed nanograins (50-500 nm in size) with triple junctions and angular-subangular fragments (a few-100 μm) of sintered nanograin aggregates. A straight and discrete Y-shear surface defines a boundary between the gouge layer and the nanograin patches or between the layer and wall rock. CF specimens before SHS tests are composed of patches of sintered nanograins as in FM specimens and a porous gouge layer with finer nanograins (a few-20 nm in size) and angular fragments of former FM. PR specimens before SHS tests are composed of damaged wall rocks and porous gouge with finer nanograins (a few-tens of μm). After SHS tests, sintered appearance of grains within the fault zones of CF and PR indicates the increase in interparticle bonding and also in contact area by grain aggregation. In contrast, the gouge layer of FM specimens after SHS tests consists mostly of angular fragments of sintered nanograin aggregates. The angular shape of the fragments indicates little increase in bonding and contact area between the fragments. Tightly sintered nanograins in FM specimens would have a lower chemical reactivity with their size coarser and

  4. On the Link Between Kolmogorov Microscales and Friction in Wall-Bounded Flow of Viscoplastic Fluids

    NASA Astrophysics Data System (ADS)

    Ramos, Fabio; Anbarlooei, Hamid; Cruz, Daniel; Silva Freire, Atila; Santos, Cecilia M.

    2017-11-01

    Most discussions in literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In this work, we present a new family of formulas for the evaluation of the friction coefficient of turbulent flows of a large family of viscoplastic fluids. The developments combine an unified analysis for the description of the Kolmogorov's micro-scales and the phenomenological turbulence model of Gioia and Chakraborty. The resulting Blasius-type friction equation has only Blasius' constant as a parameter, and tests against experimental data show excellent agreement over a significant range of Hedstrom and Reynolds numbers. The limits of the proposed model are also discussed. We also comment on the role of the new formula as a possible benchmark test for the convergence of DNS simulations of viscoplastic flows. The friction formula also provides limits for the Maximum Drag Reduction (MDR) for viscoplastic flows, which resembles MDR asymptote for viscoelastic flows.

  5. Low cost friction seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study

    NASA Astrophysics Data System (ADS)

    Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.

    2017-07-01

    A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.

  6. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments.

    PubMed

    Kasem, Haytam; Cohen, Yossi

    2017-08-04

    Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.

  7. How to push a block along a wall

    NASA Technical Reports Server (NTRS)

    Mason, Matthew T.

    1989-01-01

    Some robot tasks require manipulation of objects that may be touching other fixed objects. The effects of friction and kinematic constraint must be anticipated, and may even be exploited to accomplish the task. An example task, a dynamic analysis, and appropriate effector motions are presented. The goal is to move a rectangular block along a wall, so that one side of the block maintains contact with the wall. Two solutions that push the block along the wall are discussed.

  8. Jet impinging onto a laser drilled tapered hole: Influence of tapper location on heat transfer and skin friction at hole surface

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-02-01

    Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.

  9. Seismic analysis for translational failure of landfills with retaining walls.

    PubMed

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  11. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1989-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body; a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid; water, with the surface of the body; and the hull of the marine vehicle.

  12. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahidi, R.; Chakroun, W.; Al-Fahed, S.

    2005-11-01

    Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-frictionmore » coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.« less

  13. Application of a laser interferometer skin-friction meter in complex flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Driver, D. M.; Szodruch, J.

    1981-01-01

    The application of a nonintrusive laser-interferometer skin-friction meter, which measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film, is extended both experimentally and theoretically to several complex wind-tunnel flows. These include two-dimensional seperated and reattached subsonic flows with large pressure and shear gradients, and two and three-dimensional supersonic flows at high Reynolds number, which include variable wall temperatures and cross-flows. In addition, it is found that the instrument can provide an accurate location of the mean reattachment length for separated flows. Results show that levels up to 120 N/sq m, or 40 times higher than previous tests, can be obtained, despite encountering some limits to the method for very high skin-friction levels. It is concluded that these results establish the utility of this instrument for measuring skin friction in a wide variety of flows of interest in aerodynamic testing.

  14. Characterizing deformability and surface friction of cancer cells

    PubMed Central

    Byun, Sangwon; Son, Sungmin; Amodei, Dario; Cermak, Nathan; Shaw, Josephine; Kang, Joon Ho; Hecht, Vivian C.; Winslow, Monte M.; Jacks, Tyler; Mallick, Parag; Manalis, Scott R.

    2013-01-01

    Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell’s passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces. PMID:23610435

  15. Evolution of Friction and Permeability in a Propped Fracture under Shear

    DOE PAGES

    Zhang, Fengshou; Fang, Yi; Elsworth, Derek; ...

    2017-12-04

    We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less

  16. Evolution of Friction and Permeability in a Propped Fracture under Shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengshou; Fang, Yi; Elsworth, Derek

    We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less

  17. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  18. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.

    PubMed

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 microm and coated silicon oil has a very high viscosity (10,000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  19. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 µm and coated silicon oil has a very high viscosity (10 000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  20. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  1. Spine growth mechanisms: friction and seismicity at Mt. Unzen, Japan

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Kendrick, Jackie; Hirose, Takehiro; Henton De Angelis, Sarah; De Angelis, Silvio; Umakoshi, Kodo; Miwa, Takahiro; Wadsworth, Fabian; Dingwell, Don; Lavallee, Yan

    2014-05-01

    The final episode of dome growth during the 1991-1995 eruption of Mt. Unzen was characterised by spine extrusion accompanied by repetitive seismicity. This type of cyclic activity has been observed at several dome-building volcanoes and recent work suggests a source mechanism of brittle failure of magma in the conduit. Spine growth may proceed by densification and closure of permeable pathways within the uppermost conduit magma, leading to sealing of the dome and inflation of the edifice. Amplified stresses on the wall rock and plug cause brittle failure near the conduit wall once static friction forces are overcome, and during spine growth these fractures may propagate to the dome surface. The preservation of these features is rare, and the conduit is typically inaccessible; therefore spines, the extruded manifestation of upper conduit material, provide the opportunity to study direct evidence of brittle processes in the conduit. At Mt. Unzen the spine retains evidence for brittle deformation and slip, however mechanical constraints on the formation of these features and their potential impact on eruption dynamics have not been well constrained. Here, we conduct an investigation into the process of episodic spine growth using high velocity friction apparatus at variable shear slip rate (0.4-1.5 m.s-1) and normal stress (0.4-3.5 MPa) on dome rock from Mt. Unzen, generating frictional melt at velocity >0.4 m.s-1 and normal stress >0.7 MPa. Our results show that the presence of frictional melt causes a deviation from Byerlee's frictional rule for rock friction. Melt generation is a disequilibrium process: initial amphibole breakdown leads to melt formation, followed by chemical homogenization of the melt layer. Ultimately, the experimentally generated frictional melts have a similar final chemistry, thickness and comminuted clast size distribution, thereby facilitating the extrapolation of a single viscoelastic model to describe melt-lubricated slip events at Mt

  2. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1991-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body, e.g., a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid, e.g., water, with the surface of the body, e.g., the hull of the marine vehicle.

  3. Development of a new instrument for direct skin friction measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.

  4. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties.

    PubMed

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-09-19

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.

  5. A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows

    NASA Astrophysics Data System (ADS)

    Deleon, Rey; Senocak, Inanc

    2016-11-01

    The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.

  6. Evolution and dynamics of shear-layer structures in near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Johansson, Arne V.; Alfredsson, P. H.; Kim, John

    1991-01-01

    Near-wall flow structures in turbulent shear flows are analyzed, with particular emphasis on the study of their space-time evolution and connection to turbulence production. The results are obtained from investigation of a database generated from direct numerical simulation of turbulent channel flow at a Reynolds number of 180 based on half-channel width and friction velocity. New light is shed on problems associated with conditional sampling techniques, together with methods to improve these techniques, for use both in physical and numerical experiments. The results clearly indicate that earlier conceptual models of the processes associated with near-wall turbulence production, based on flow visualization and probe measurements need to be modified. For instance, the development of asymmetry in the spanwise direction seems to be an important element in the evolution of near-wall structures in general, and for shear layers in particular. The inhibition of spanwise motion of the near-wall streaky pattern may be the primary reason for the ability of small longitudinal riblets to reduce turbulent skin friction below the value for a flat surface.

  7. Friction surfacing and linear friction welding

    NASA Astrophysics Data System (ADS)

    Nicholas, E. D.

    The paper describes the development of the friction-surfacing and linear-friction welding technologies, with particular attention given to the equipment evolution and the application of the processes and advanced materials (such as intermetallics, metal-matrix composites (MMCs), ODS alloys, and powder metallurgy alloys) for the aerospace industry. The use of friction surfacing to modify the surface material with MMCs, to repair defects by plugging, and manufacture/reprocess materials is described.

  8. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  9. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less

  10. Analytical skin friction and heat transfer formula for compressible internal flows

    NASA Technical Reports Server (NTRS)

    Dechant, Lawrence J.; Tattar, Marc J.

    1994-01-01

    An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.

  11. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    NASA Astrophysics Data System (ADS)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction

  12. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  13. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  14. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  15. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  16. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    PubMed

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P < 0.0001) increased for all materials, with increasing precompaction RDP decreased for plastic materials (P < 0.05), whereas with increasing speed MDP decreased for all materials (P < 0.05). During decompression, microcrystalline cellulose and pre-gelatinized starch showed higher axial relaxation, whereas mannitol and lactose showed higher radial relaxation, calcium hydrogen phosphate showed high axial and radial relaxations. Plastic and brittle materials showed increased tendencies for friction because of high radial relaxation. Die-wall monitoring is suggested as a valuable tool for characterizing compaction behavior of materials and detecting friction phenomena in the early stage of development.

  17. Microscopic and low Reynolds number flows between two intersecting permeable walls

    NASA Astrophysics Data System (ADS)

    Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.

    2018-06-01

    Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.

  18. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  19. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties

    PubMed Central

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-01-01

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube. PMID:28788213

  1. Behavior of turbulent boundary layers on curved convex walls

    NASA Technical Reports Server (NTRS)

    Schmidbauer, Hans

    1936-01-01

    The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.

  2. General theory of frictional heating with application to rubber friction.

    PubMed

    Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J

    2015-05-08

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.

  3. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  4. Hanging-wall deformation above a normal fault: sequential limit analyses

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand

    2015-04-01

    The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring

  5. A skin friction gauge for impulsive flows

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; Paull, A.; Stalker, R. J.

    1995-01-01

    A new skin friction gauge has been designed for use in impulsive facilities. The gauge was tested in the T4 free piston shock tunnel, at the University of Queensland, using a 1.5 m long plate that formed one of the inner walls of a rectangular duct. The test gas was fair and the test section free stream flow had a stagnation enthalpy of 4.7 MJ/kg. Measurements were conducted in a laminar and turbulent boundary layer. The measurements compared well with laminar and turbulent analytical theory.

  6. Friction welding.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.

  7. Skin friction measurements by laser interferometry in swept shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Kim, Kwang-Soo; Settles, Gary S.

    1988-01-01

    The laser interferometric skin friction meter was used to measure wall shear stress distributions in two interactions of fin-generated swept shock waves with turbulent boundary layers. The basic research configuration was an unswept sharp-leading-edge fin of variable angle mounted on a flatplate. The results indicate that such measurements are practical in high-speed interacting flows, and that a repeatability of + or - 6 percent or better is possible. Marked increases in wall shear were observed in both swept interactions tested.

  8. Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock

    NASA Astrophysics Data System (ADS)

    Kato, Naoki; Hirono, Tetsuro

    2016-07-01

    To understand the correlation between the mesoscale structure and the frictional strength of an active fault, we performed a field investigation of the Atera fault at Tase, central Japan, and made laboratory-based determinations of its mineral assemblages and friction coefficients. The fault zone contains a light gray fault gouge, a brown fault gouge, and a black fault breccia. Samples of the two gouges contained large amounts of clay minerals such as smectite and had low friction coefficients of approximately 0.2-0.4 under the condition of 0.01 m s-1 slip velocity and 0.5-2.5 MP confining pressure, whereas the breccia contained large amounts of angular quartz and feldspar and had a friction coefficient of 0.7 under the same condition. Because the fault breccia closely resembles the granitic rock of the hangingwall in composition, texture, and friction coefficient, we interpret the breccia as having originated from this protolith. If the mechanical incorporation of wall rocks of high friction coefficient into fault zones is widespread at the mesoscale, it causes the heterogeneity in friction strength of fault zones and might contribute to the evolution of fault-zone architectures.

  9. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    PubMed

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  10. Skin Friction at Very High Reynolds Numbers in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Anders, John B.; Hall, Robert M.

    2006-01-01

    Skin friction coefficients were derived from measurements using standard measurement technologies on an axisymmetric cylinder in the NASA Langley National Transonic Facility (NTF) at Mach numbers from 0.2 to 0.85. The pressure gradient was nominally zero, the wall temperature was nominally adiabatic, and the ratio of boundary layer thickness to model diameter within the measurement region was 0.10 to 0.14, varying with distance along the model. Reynolds numbers based on momentum thicknesses ranged from 37,000 to 605,000. The measurements approximately doubled the range of available data for flat plate skin friction coefficients. Three different techniques were used to measure surface shear. The maximum error of Preston tube measurements was estimated to be 2.5 percent, while that of Clauser derived measurements was estimated to be approximately 5 percent. Direct measurements by skin friction balance proved to be subject to large errors and were not considered reliable.

  11. A new skin friction balance and selected measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.

    1992-01-01

    A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.

  12. A new look at the near-wall turbulence structure

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So

    An experiment was carried out in the BMT environmental wind tunnel (4.8 m x 2.4 m x 15 m) in order to study the near-wall structure of the turbulent boundary layer, particular attention being given to the dynamics of the 'near-wall bursts'. Conditional sampling of the wall-shear stress fluctuations was extensively used along with a simultaneous application of flow visualization using a streak-smoke wire and a sheet of laser light. The results suggested that a 'near-wall burst' was taking place between a pair of smoke tubes, which was interpreted as a pair of stretched legs of neighboring hairpin loops. The spanwise spacing of the 'near-wall bursts' determined from a conditional space correlation of skin-friction signals was found to be a function of the threshold value used in burst detection.

  13. Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties

    NASA Astrophysics Data System (ADS)

    Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava

    2018-04-01

    A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.

  14. Bioinspired orientation-dependent friction.

    PubMed

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  15. Self-sustained lift and low friction via soft lubrication

    PubMed Central

    Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Mahadevan, L.

    2016-01-01

    Relative motion between soft wet solids arises in a number of applications in natural and artificial settings, and invariably couples elastic deformation fluid flow. We explore this in a minimal setting by considering a fluid-immersed negatively buoyant cylinder moving along a soft inclined wall. Our experiments show that there is an emergent robust steady-state sliding regime of the cylinder with an effective friction that is significantly reduced relative to that of rigid fluid-lubricated contacts. A simple scaling approach that couples the cylinder-induced flow to substrate deformation allows us to explain the elastohydrodynamic lift that underlies the self-sustained lubricated motion of the cylinder, consistent with recent theoretical predictions. Our results suggest an explanation for a range of effects such as reduced wear in animal joints and long-runout landslides, and can be couched as a design principle for low-friction interfaces. PMID:27162361

  16. Effect of different hardness nanoparticles on friction properties of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Zhao, Mingmei; Zhang, Jinqiu; Yao, Jun

    2017-10-01

    Magnetorheological fluids (MRFs) exhibit different wear performance when nanoparticles with different hardness are added. In this study, three solid particles with different hardness are considered to study the variation in MRF performance. The friction and wear properties of the MRF are measured by using a four-ball friction and wear tester, and the surface of the steel ball was observed using a three-dimensional white light interferometer. Also, the rheological properties of MRF are tested by using an Anton-Paar rheometer. The results show that the addition of graphite yields a stable friction process and does not degrade the rheological properties of MRF. Nano-diamond increases the shear yield strength and reduces the wall slip to a greater extent. However, the wear is more serious in this case. Copper particles are unstable, and their surface activity is too high to get adsorbed on the surface of iron powder aggravating the settlement rate. The above three MRFs with different kinds of nano-particles present a more regular grinding spot, and the nano-particles have a certain repair function to the surface.

  17. Skin friction measurements by a new nonintrusive double-laser-beam oil viscosity balance technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1980-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low-speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a 'law-of-the-wall' coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.

  18. Effect of grid resolution on large eddy simulation of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Rezaeiravesh, S.; Liefvendahl, M.

    2018-05-01

    The effect of grid resolution on a large eddy simulation (LES) of a wall-bounded turbulent flow is investigated. A channel flow simulation campaign involving a systematic variation of the streamwise (Δx) and spanwise (Δz) grid resolution is used for this purpose. The main friction-velocity-based Reynolds number investigated is 300. Near the walls, the grid cell size is determined by the frictional scaling, Δx+ and Δz+, and strongly anisotropic cells, with first Δy+ ˜ 1, thus aiming for the wall-resolving LES. Results are compared to direct numerical simulations, and several quality measures are investigated, including the error in the predicted mean friction velocity and the error in cross-channel profiles of flow statistics. To reduce the total number of channel flow simulations, techniques from the framework of uncertainty quantification are employed. In particular, a generalized polynomial chaos expansion (gPCE) is used to create metamodels for the errors over the allowed parameter ranges. The differing behavior of the different quality measures is demonstrated and analyzed. It is shown that friction velocity and profiles of the velocity and Reynolds stress tensor are most sensitive to Δz+, while the error in the turbulent kinetic energy is mostly influenced by Δx+. Recommendations for grid resolution requirements are given, together with the quantification of the resulting predictive accuracy. The sensitivity of the results to the subgrid-scale (SGS) model and varying Reynolds number is also investigated. All simulations are carried out with second-order accurate finite-volume-based solver OpenFOAM. It is shown that the choice of numerical scheme for the convective term significantly influences the error portraits. It is emphasized that the proposed methodology, involving the gPCE, can be applied to other modeling approaches, i.e., other numerical methods and the choice of SGS model.

  19. A Reynolds stress model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  20. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    PubMed Central

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  1. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  2. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO 2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS).more » We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.« less

  3. Extraction of skin-friction fields from surface flow visualizations as an inverse problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu

    2013-12-01

    Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.

  4. Large-Eddy Simulations of Fully Developed Turbulent Channel and Pipe Flows with Smooth and Rough Walls

    NASA Astrophysics Data System (ADS)

    Saito, Namiko

    Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the

  5. Frictional ageing from interfacial bonding and the origins of rate and state friction.

    PubMed

    Li, Qunyang; Tullis, Terry E; Goldsby, David; Carpick, Robert W

    2011-11-30

    Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults.

  6. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  7. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  8. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  9. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  10. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  11. Spectral derivation of the classic laws of wall-bounded turbulent flows.

    PubMed

    Gioia, Gustavo; Chakraborty, Pinaki

    2017-08-01

    We show that the classic laws of the mean-velocity profiles (MVPs) of wall-bounded turbulent flows-the 'law of the wall,' the 'defect law' and the 'log law'-can be predicated on a sufficient condition with no manifest ties to the MVPs, namely that viscosity and finite turbulent domains have a depressive effect on the spectrum of turbulent energy. We also show that this sufficient condition is consistent with empirical data on the spectrum and may be deemed a general property of the energetics of wall turbulence. Our findings shed new light on the physical origin of the classic laws and their immediate offshoot, Prandtl's theory of turbulent friction.

  12. Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.

    2012-12-01

    The Alpine Fault, a transpressional plate-boundary fault transecting the South Island of New Zealand, is the current focus of the Deep Fault Drilling Project (DFDP), a major fault zone drilling initiative. Phase 1 of this project included 2 boreholes that penetrated the active fault at depths of ˜100 m and ˜150 m, and provided a suite of core samples crossing the fault. Here, we report on laboratory measurements of frictional strength and constitutive behavior, permeability, and ultrasonic velocities for a suite of the recovered core samples We conducted friction experiments on powdered samples in a double-direct shear configuration at room temperature and humidity. Our results show that over a range of effective normal stresses from 10-100 MPa, friction coefficients are ~0.60-0.70, and are similar for all of the materials we tested. Rate-stepping tests document velocity-weakening behavior in the majority of wall rock samples, whereas the principal slip surface (PSS) and an adjacent clay-rich cataclasite exhibit velocity-strengthening behavior. We observe significant rates of frictional healing in all of our samples, indicating that that the fault easily regains its strength during interseismic periods. Our results indicate that seismic slip is not likely to nucleate in the clay-rich PSS at shallow depths, but might nucleate and propagate on the gouge/wall rock interface. We measured permeability using a constant head technique, on vertically oriented cylindrical mini-cores (i.e. ˜45 degrees to the plane of the Alpine Fault). We conducted these tests in a triaxial configuration, under isotropic stress conditions and effective confining pressures from ~2.5 - 63.5 MPa. We conducted ultrasonic wavespeed measurements concurrently with the permeability measurements to determine P- and S-wave velocities from time-of-flight. The permeability of all samples decreases systematically with increasing effective stress. The clay-rich cataclasite (1.37 x 10-19 m2) and PSS (1

  13. Control of Tollmien-Schlichting instabilities by finite distributed wall actuation

    NASA Astrophysics Data System (ADS)

    Losse, Nikolas R.; King, Rudibert; Zengl, Marcus; Rist, Ulrich; Noack, Bernd R.

    2011-06-01

    Tollmien-Schlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.

  14. Development of FDR-AF (Frictional Drag Reduction Anti-Fouling) Marine Coating

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan; GCRC-SOP Team

    2013-11-01

    In this study, a novel skin-friction reducing marine paint has been developed by mixing fine powder of PEO(PolyEthyleneOxide) with SPC (Self-Polishing Copolymer) AF (Anti-Fouling) paint. The PEO is well known as one of drag reducing agent to exhibit Toms effect, the attenuation of turbulent flows by long chain polymer molecules in the near wall region. The frictional drag reduction has been implemented by injecting such polymer solutions to liquid flows. However, the injection holes have been a significant obstacle to marine application. The present PEO-containing marine paint is proposed as an alternative to realize Toms effect without any hole on the ship surface. The erosion mechanism of SPC paint resin and the subsequent dissolution of PEO enable the controlled release of PEO solution from the coating. Various tests such as towing tank drag measurement of flat plate and turbulence measurement in circulating water tunnel demonstrated over 10% frictional drag reduction compared with conventional AF paint. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP(No. 2011-0030013).

  15. Towards improving the efficiency of blowing through a permeable wall and prospects of its use for a flow control

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2016-10-01

    Modern achievements, status, and prospects of studies on reducing the turbulent friction and aerodynamic drag with the help of the blowing through a permeable wall are discussed. The main focus is placed upon a physical modeling of the process of boundary layer blowing in the framework of the dimensional theory, a critical analysis of experimental and numerical results for different conditions of air blowing through a high-tech finely perforated wall including the case of external-pressure-flow air supply in wind tunnel, and elicitation of the physical mechanisms responsible for the reduction of turbulent friction at flow-exposed surfaces. It is shown that the use of air supply through the micro-perforated wall with low effective roughness, which is manufactured in compliance with the highest necessary requirements to quality and geometry of orifices, is quite a justified means for easy, affordable, and reliable control of near-wall turbulent flows in laboratory experiment and numerical simulation. This approach can provide a sustained reduction of local skin friction coefficient along flat plate, which in some cases reaches 90%. At the request of all authors of the paper and with the agreement of the Proceedings Editor, an updated version of this article was published on 26 October 2016. The original version supplied to AIP Publishing contained a misrepresentation in Figure 1. This has been corrected in the updated and republished article.

  16. Friction Stir Welding of Line-Pipe Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Samuel; Mahoney, Murray; Feng, Zhili

    Friction stir welding (FSW) offers both economic and technical advantages over conventional fusion welding practices for welding line-pipe. For offshore line-pipe construction, the economic savings has been shown to be considerable, approaching a calculated 25%. Offshore pipe is relatively small diameter but heavy wall compared to onshore pipe. One concern is the ability to achieve consistent full weld penetration in an on-site offshore FSW operation, e.g., on a lay-barge. In addition, depending on the size and morphology of the unwelded zone, lack of penetration at the weld root can be difficult if not impossible to detect by conventional NDE methods.more » Thus, an approach to assure consistent full penetration via process control is required for offshore line-pipe construction using FSW. For offshore construction, an internal structural mandrel can be used offering the opportunity to use a sacrificial anvil FSW approach. With this approach, a small volume of sacrificial material can be inserted into the structural anvil. The FSW tool penetrates into the sacrificial anvil, beyond the inner diameter of the pipe wall, thus assuring full penetration. The sacrificial material is subsequently removed from the pipe inner wall. In the work presented herein, FSW studies were completed on both 6 mm and 12 mm wall thickness line-pipe. Lastly, post-FSW evaluations including radiography, root-bend tests, and metallography demonstrated the merits of the sacrificial anvil approach to achieve consistent full penetration.« less

  17. Chemical origins of frictional aging.

    PubMed

    Liu, Yun; Szlufarska, Izabela

    2012-11-02

    Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.

  18. Reynolds number dependence of large-scale friction control in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2016-12-01

    The present work investigates the effectiveness of the control strategy introduced by Schoppa and Hussain [Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] as a function of Reynolds number (Re). The skin-friction drag reduction method proposed by these authors, consisting of streamwise-invariant, counter-rotating vortices, was analyzed by Canton et al. [Flow, Turbul. Combust. 97, 811 (2016), 10.1007/s10494-016-9723-8] in turbulent channel flows for friction Reynolds numbers (Reτ) corresponding to the value of the original study (i.e., 104) and 180. For these Re, a slightly modified version of the method proved to be successful and was capable of providing a drag reduction of up to 18%. The present study analyzes the Reynolds number dependence of this drag-reducing strategy by performing two sets of direct numerical simulations (DNS) for Reτ=360 and 550. A detailed analysis of the method as a function of the control parameters (amplitude and wavelength) and Re confirms, on the one hand, the effectiveness of the large-scale vortices at low Re and, on the other hand, the decreasing and finally vanishing effectiveness of this method for higher Re. In particular, no drag reduction can be achieved for Reτ=550 for any combination of the parameters controlling the vortices. For low Reynolds numbers, the large-scale vortices are able to affect the near-wall cycle and alter the wall-shear-stress distribution to cause an overall drag reduction effect, in accordance with most control strategies. For higher Re, instead, the present method fails to penetrate the near-wall region and cannot induce the spanwise velocity variation observed in other more established control strategies, which focus on the near-wall cycle. Despite the negative outcome, the present results demonstrate the shortcomings of the control strategy and show that future focus should be on methods that directly target the near-wall region or other suitable alternatives.

  19. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  20. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  1. Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction

    NASA Astrophysics Data System (ADS)

    Beckebanze, F.; Brouzet, C.; Sibgatullin, I. N.; Maas, L. R. M.

    2018-04-01

    The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008).

  2. On the theory of compliant wall drag reduction in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1974-01-01

    A theoretical model has been developed which can explain how the motion of a compliant wall reduces turbulent skin friction drag. Available experimental evidence at low speeds has been used to infer that a compliant surface selectively removes energy from the upper frequency range of the energy containing eddies and through resulting surface motions can produce locally negative Reynolds stresses at the wall. The theory establishes a preliminary amplitude and frequency criterion as the basis for designing effective drag reducing compliant surfaces.

  3. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    NASA Astrophysics Data System (ADS)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  4. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.

    2016-12-01

    The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.

  5. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Sondak, D. L.; Pletcher, R. H.; Vandalsem, W. R.

    1992-01-01

    A k-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, has been incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low Reynolds number k-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were added to the F3D code including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed by using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. All models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to a k-epsilon model by Kim and Patel (1991), in which one equation model patched in at the wall was employed. Both models gave reasonable solutions, but improvement is required for accurate prediction of friction coefficients in the separated regions.

  6. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  7. Physics and control of wall turbulence for drag reduction.

    PubMed

    Kim, John

    2011-04-13

    Turbulence physics responsible for high skin-friction drag in turbulent boundary layers is first reviewed. A self-sustaining process of near-wall turbulence structures is then discussed from the perspective of controlling this process for the purpose of skin-friction drag reduction. After recognizing that key parts of this self-sustaining process are linear, a linear systems approach to boundary-layer control is discussed. It is shown that singular-value decomposition analysis of the linear system allows us to examine different approaches to boundary-layer control without carrying out the expensive nonlinear simulations. Results from the linear analysis are consistent with those observed in full nonlinear simulations, thus demonstrating the validity of the linear analysis. Finally, fundamental performance limit expected of optimal control input is discussed.

  8. Friction in hip prostheses.

    PubMed

    Hall, R M; Unsworth, A

    1997-08-01

    Although the reduction of frictional torques was the driving force behind the design of the Charnley prosthesis, later concerns about wear and subsequent loosening of this and other hip replacements have dominated debate within the bioengineering community. To stimulate discussion on the role of friction in loosening, a review of the frictional characteristics of different prostheses was undertaken. The use of simple laboratory screening-type machines in the frictional assessment of different material combinations is discussed together with experiments performed on single axis simulators using both conventional and experimental prostheses. In particular, recent developments in the use of soft layer components are highlighted. Further, the possible link between excessively high frictional torques and loosening is discussed in the light of current results obtained from explanted prostheses.

  9. Direct measurement of skin friction with a new instrument

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    The design and performance of a small belt-type skin-friction gage to measure wall shear-stress coefficients in wind-tunnel testing are described, summarizing the report of Vakili and Wu (1982). The sensor employs a flexible belt of variable surface characteristics; this belt, wrapped tightly around two cylinders mounted on frictionless flexures, is equipped with strain gages to estimate the deflection of the belt by the flow. An alternative approach uses IR illumination, optical fibers, and a photosensitive transistor, permitting direct measurement of the belt deflection. Drawings, diagrams, and graphs of sample data are provided.

  10. Science 101: What Causes Friction?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  11. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  12. Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.

    2014-10-01

    Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.

  13. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  14. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    NASA Technical Reports Server (NTRS)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well

  15. Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction

    NASA Astrophysics Data System (ADS)

    Matsukawa, Hiroshi; Otsuki, Michio

    2012-02-01

    It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.

  16. Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.

    2016-01-01

    We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.

  17. Friction is Fracture: a new paradigm for the onset of frictional motion

    NASA Astrophysics Data System (ADS)

    Fineberg, Jay

    Friction is generally described by a single degree of freedom, a `friction coefficient'. We experimentally study the space-time dynamics of the onset of dry and lubricated frictional motion when two contacting bodies start to slide. We first show that the transition from static to dynamic sliding is governed by rupture fronts (closely analogous to earthquakes) that break the contacts along the interface separating the two bodies. Moreover, the structure of these ''laboratory earthquakes'' is quantitatively described by singular solutions originally derived to describe the motion of rapid cracks under applied shear. We demonstrate that this framework quantitatively describes both earthquake motion and arrest. This framework also providing a new window into the hidden properties of the micron thick interface that governs a body's frictional properties. Using this window we show that lubricated interfaces, although ``slippery'', actually becomes tougher; lubricants significantly increase dissipated energy during rupture. The results establish a new (and fruitful) paradigm for describing friction. Israel Science Foundation, ERC.

  18. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Spandan, Vamsi; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5 ×104 . The effect of wall friction is analyzed by comparing three separate cases, in which the cylinders are either suddenly made no-slip or stress-free. Different life stages are observed during the decay. In the first stage, the decay is dominated by large-scale rolls. Counterintuitively, when these rolls fade away, if the flow inertia is small a redistribution of energy occurs and the energy of the azimuthal velocity behaves nonmonotonically, first decreasing by almost two orders of magnitude and then increasing during the redistribution. The second stage is dominated by non-normal transient growth of perturbations in the axial (spanwise) direction. Once this mechanism is exhausted, the flow enters the final life stage, viscous decay, which is dominated by wall friction. We show that this stage can be modeled by a one-dimensional heat equation, and that self-similar velocity profiles collapse onto the theoretical solution.

  19. Friction and wear behaviors and mechanisms of ZnO and graphite in Cu-based friction materials

    NASA Astrophysics Data System (ADS)

    Chen, Tianhua

    2018-03-01

    Based on powder metallurgy method, nanometer graphite reinforced copper matrix friction materials were prepared. The nanometer zinc oxide were obtained by the hydro-thermal synthesis. Nanoparticles on friction performances of copper-based materials was studied. The wear morphology were investigated by metallographic microscopes. Tribological performance were use the inertia friction and wear testing machine. Experimental results show that the friction factor of the friction material added by nanometer zinc oxide and nano graphite are high and stable, which has no obvious recession phenomenon with the increase of number of joint compared with not add nanoparticles of friction materials.

  20. Wall-resolved spectral cascade-transport turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  1. Wall-resolved spectral cascade-transport turbulence model

    DOE PAGES

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...

    2017-07-08

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  2. Origins of Rolling Friction

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  3. SRM propellant, friction/ESD testing

    NASA Technical Reports Server (NTRS)

    Campbell, L. A.

    1989-01-01

    Following the Pershing 2 incident in 1985 and the Peacekeeper ignition during core removal in 1987, it was found that propellant can be much more sensitive to Electrostatic Discharges (ESD) than ever before realized. As a result of the Peacekeeper motor near miss incident, a friction machine was designed and fabricated, and used to determine friction hazards during core removal. Friction testing with and electrical charge being applied across the friction plates resulted in propellant ignitions at low friction pressures and extremely low ESD levels. The objective of this test series was to determine the sensitivity of solid rocket propellant to combined friction pressure and electrostatic stimuli and to compare the sensitivity of the SRM propellant to Peacekeeper propellant. The tests are fully discussed, summarized and conclusions drawn.

  4. Laser Interferometer Skin-Friction measurements of crossing-shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.

    1993-01-01

    Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.

  5. Tactile friction of topical formulations.

    PubMed

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  7. Friction factor and heat transfer of nanofluids containing cylindrical nanoparticles in laminar pipe flow

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Xia, Yi; Ku, Xiaoke

    2014-10-01

    Numerical simulations of polyalphaolefins-Al2O3 nanofluids containing cylindrical nanoparticles in a laminar pipe flow are performed by solving the Navier-Stokes equation with term of cylindrical nanoparticles, the general dynamic equation for cylindrical nanoparticles, and equation for nanoparticle orientation. The distributions of particle number and volume concentration, the friction factor, and heat transfer are obtained and analyzed. The results show that distributions of nanoparticle number and volume concentration are non-uniform across the section, with larger and smaller values in the region near the pipe center and near the wall, respectively. The non-uniformity becomes significant with the increase in the axial distance from the inlet. The friction factor decreases with increasing Reynolds number. The relationships between the friction factor and the nanoparticle volume concentration as well as particle aspect ratio are dependent on the Reynolds number. The Nusselt number of nanofluids, directly proportional to the Reynolds number, particle volume concentration, and particle aspect ratio, is higher near the pipe entrance than at the downstream locations. The rate of increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle aspect ratio, and Reynolds number are derived based on the numerical data.

  8. Friction of Aviation Engines

    NASA Technical Reports Server (NTRS)

    Sparrow, S W; Thorne, M A

    1928-01-01

    The first portion of this report discusses measurements of friction made in the altitude laboratory of the Bureau of Standards between 1920 and 1926 under research authorization of the National Advisory Committee for Aeronautics. These are discussed with reference to the influence of speed, barometric pressure, jacket-water temperature, and throttle opening upon the friction of aviation engines. The second section of the report deals with measurements of the friction of a group of pistons differing from each other in a single respect, such as length, clearance, area of thrust face, location of thrust face, etc. Results obtained with each type of piston are discussed and attention is directed particularly to the fact that the friction chargeable to piston rings depends upon piston design as well as upon ring design. This is attributed to the effect of the rings upon the thickness and distribution of the oil film which in turn affects the friction of the piston to an extent which depends upon its design.

  9. Effect of grafted oligopeptides on friction.

    PubMed

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  10. Investigation of blown boundary layers with an improved wall jet system

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1980-01-01

    Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.

  11. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  12. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  13. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  14. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  15. Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1992-01-01

    The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.

  16. Development of a penetration friction apparatus (PFA) to measure the frictional performance of surgical suture.

    PubMed

    Zhang, Gangqiang; Ren, Tianhui; Lette, Walter; Zeng, Xiangqiong; van der Heide, Emile

    2017-10-01

    Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Friction Stir Back Extrusion of Aluminium Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Xu, Zeren

    Since the invention of Friction Stir Welding in 1991 as a solid state joining technique, extensive scientific investigations have been carried out to understand fundamental aspects of material behaviors when processed by this technique, in order to optimize processing conditions as well as mechanical properties of the welds. Based on the basic principles of Friction Stir Welding, several derivatives have also been developed such as Friction Stir Processing, Friction Extrusion and Friction Stir Back Extrusion. Friction Stir Back Extrusion is a novel technique that is proposed recently and designed for fabricating tubes from lightweight alloys. Some preliminary results have been reported regarding microstructure and mechanical properties of Friction Stir Back Extrusion processed AZ31 magnesium alloy, however, systematic study and in-depth investigations are still needed to understand the materials behaviors and underlying mechanisms when subjected to Friction Stir Back Extrusion, especially for age-hardenable Al alloys. In the present study, Friction Stir Back Extrusion processed AA6063-T5 and AA7075-T6 alloys are analyzed with respect to grain structure evolution, micro-texture change, recrystallization mechanisms, precipitation sequence as well as mechanical properties. Optical Microscopy, Electron Backscatter Diffraction, Transmission Electron Microscopy, Vickers Hardness measurements and uniaxial tensile tests are carried out to characterize the microstructural change as well as micro and macro mechanical properties of the processed tubes. Special attention is paid to the micro-texture evolution across the entire tube and dynamic recrystallization mechanisms that are responsible for grain refinement. Significant grain refinement has been observed near the processing zone while the tube wall is characterized by inhomogeneous grain structure across the thickness for both alloys. Dissolution of existing precipitates is noticed under the thermal hysterias imposed by

  18. Optimization of wheel-rail interface friction using top-of-rail friction modifiers: State of the art

    NASA Astrophysics Data System (ADS)

    Khan, M. Roshan; Dasaka, Satyanarayana Murty

    2018-05-01

    High Speed Railways and Dedicated Freight Corridors are the need of the day for fast and efficient transportation of the ever growing population and freight across long distances of travel. With the increase in speeds and axle loads carried by these trains, wearing out of rails and train wheel sections are a common issue, which is due to the increase in friction at the wheel-rail interfaces. For the cases where the wheel-rail interface friction is less than optimum, as in case of high speed trains with very low axle loads, wheel-slips are imminent and loss of traction occurs when the trains accelerate rapidly or brake all of a sudden. These vast variety of traction problems around the wheel-rail interface friction need to be mitigated carefully, so that the contact interface friction neither ascents too high to cause material wear and need for added locomotive power, nor be on the lower side to cause wheel-slips and loss of traction at high speeds. Top-of-rail friction modifiers are engineered surface coatings applied on top of rails, to maintain an optimum frictional contact between the train wheels and the rails. Extensive research works in the area of wheel-rail tribology have revealed that the optimum frictional coefficients at wheel-rail interfaces lie at a value of around 0.35. Application of top-of-rail (TOR) friction modifiers on rail surfaces add an extra layer of material coating on top of the rails, with a surface frictional coefficient of the desired range. This study reviews the common types of rail friction modifiers, the methods for their application, issues related with the application of friction modifiers, and a guideline on selection of the right class of coating material based on site specific requirements of the railway networks.

  19. High-velocity frictional properties of gabbro

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  20. Degradation of turbulent skin-friction drag reduction with superhydrophobic, liquid-infused and riblet surfaces with increasing Reynolds number

    NASA Astrophysics Data System (ADS)

    Akhavan, Rayhaneh; Rastegari, Amirreza

    2017-11-01

    It is shown that the magnitude of Drag Reduction (DR) with Super-Hydrophobic (SH), liquid-infused, or riblet surfaces can be parameterized in terms of the shift, ΔB , in the intercept of a log-law representation of the mean velocity profile and the friction coefficient of the base flow. Available DNS data shows ΔB to be Reynolds number independent and only a function of the geometrical parameters of the surface micro-texture in viscous wall units. This allows the DR results from DNS to be extrapolated to higher Reynolds numbers. It is shown that for a given geometry and size of the wall micro-texture in viscous wall units, the magnitude of DR degrades by factors of 2 - 3 as the friction Reynolds number of the base flow increases from Reτ0 200 of DNS to Reτ0 105 -106 of practical applications. Extrapolation of DNS results in turbulent channel flow at Reτ0 222 and 442 with SH longitudinal microgrooves of width 15 <=g+0 <= 60 and shear-free-fractions of 0.875 - 0.985 shows that the maximum DRs which can be sustained with SH longitudinal micro-grooves of size g+0 <= 20 - 30 in practical applications is limited to DRs of 25 - 35 % at Reτ0 105 and 20 - 25 % at Reτ0 106 .

  1. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  2. Effect of coating material on heat transfer and skin friction due to impinging jet onto a laser producedhole

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-07-01

    Jet impingement onto a two-layer structured hole in relation to laser drilling is investigated. The hole consists of a coating layer and a base material. The variations in the Nusselt number and the skin friction are predicted for various coating materials. The Reynolds stress turbulent model is incorporated to account for the turbulence effect of the jet flow and nitrogen is used as the working fluid. The study is extended to include two jet velocities emanating from the conical nozzle. It is found that coating material has significant effect on the Nusselt number variation along the hole wall. In addition, the skin friction varies considerably along the coating thickness in thehole.

  3. The effect of friction in coulombian damper

    NASA Astrophysics Data System (ADS)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  4. Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2012-01-01

    Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.

  5. The damage is done: Low fault friction recorded in the damage zone of the shallow Japan Trench décollement

    NASA Astrophysics Data System (ADS)

    Keren, Tucker T.; Kirkpatrick, James D.

    2016-05-01

    Fault damage zones record the integrated deformation caused by repeated slip on faults and reflect the conditions that control slip behavior. To investigate the Japan Trench décollement, we characterized the damage zone close to the fault from drill core recovered during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). Core-scale and microscale structures include phyllosilicate bands, shear fractures, and joints. They are most abundant near the décollement and decrease in density sharply above and below the fault. Power law fits describing the change in structure density with distance from the fault result in decay exponents (n) of 1.57 in the footwall and 0.73 in the hanging wall. Microstructure decay exponents are 1.09 in the footwall and 0.50 in the hanging wall. Observed damage zone thickness is on the order of a few tens of meters. Core-scale structures dip between ~10° and ~70° and are mutually crosscutting. Compared to similar offset faults, the décollement has large decay exponents and a relatively narrow damage zone. Motivated by independent constraints demonstrating that the plate boundary is weak, we tested if the observed damage zone characteristics could be consistent with low-friction fault. Quasi-static models of off-fault stresses and deformation due to slip on a wavy, frictional fault under conditions similar to the JFAST site predict that low-friction fault produces narrow damage zones with no preferred orientations of structures. These results are consistent with long-term frictional weakness on the décollement at the JFAST site.

  6. Modeling frictional melt injection to constrain coseismic physical conditions

    NASA Astrophysics Data System (ADS)

    Sawyer, William J.; Resor, Phillip G.

    2017-07-01

    Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress drop, as well as slip weakening distance and wall rock stiffness. These studies have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a pressurized crack model, an analytical approximation of injection vein formation based on dike intrusion, we find that the timescales of quenching and flow propagation may be similar for a subset of injection veins compiled from the Asbestos Mountain Fault, USA, Gole Larghe Fault Zone, Italy, and the Fort Foster Brittle Zone, USA under minimum melt temperature conditions. 34% of the veins are found to be flow limited, with a final geometry that may reflect cooling of the vein before it reaches an elastic equilibrium with the wall rock. Formation of these veins is a dynamic process whose behavior is not fully captured by the analytical approach. To assess the applicability of simplifying assumptions of the pressurized crack we employ a time-dependent finite-element model of injection vein formation that couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. This finite element model reveals that two basic assumptions of the pressurized crack model, self-similar growth and a uniform pressure gradient, are false. The pressurized crack model thus underestimates flow propagation time by 2-3 orders of magnitude. Flow limiting may therefore occur under a wider range of conditions than previously thought. Flow-limited veins may be recognizable in the field where veins have tapered profiles or smaller aspect ratios than expected. The occurrence and

  7. Chirality-dependent friction of bulk molecular solids.

    PubMed

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  8. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Buselli, Elisa; Pensabene, Virginia; Castrataro, Piero; Valdastri, Pietro; Menciassi, Arianna; Dario, Paolo

    2010-10-01

    Capsule endoscopy is an emerging field in medical technology. Despite very promising innovations, some critical issues are yet to be addressed, such as the management and possible exploitation of the friction in the gastrointestinal environment in order to control capsule locomotion more actively. This paper presents the fabrication and testing of bio-inspired polymeric micro-patterns, which are arrays of cylindrical pillars fabricated via soft lithography. The aim of the work is to develop structures that enhance the grip between an artificial device and the intestinal tissue, without injuring the mucosa. In fact, the patterns are intended to be mounted on microfabricated legs of a capsule robot that is able to move actively in the gastrointestinal tract, thus improving the robot's traction ability. The effect of micro-patterned surfaces on the leg-slipping behaviour on colon walls was investigated by considering both different pillar dimensions and the influence of tissue morphology. Several in vitro tests on biological samples demonstrated that micro-patterns of pillars made from a soft polymer with an aspect ratio close to 1 enhanced friction by 41.7% with regard to flat surfaces. This work presents preliminary modelling of the friction and adhesion forces in the gastrointestinal environment and some design guidelines for endoscopic devices.

  9. Extremely high wall-shear stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  10. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    NASA Astrophysics Data System (ADS)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  11. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  12. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  13. Friction between Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2006-03-01

    A polymer brush consists of a surface with a fairly concentrated coating of polymer chains, each one of which has one of its ends tightly bound to the surface. They serve as extremely effective lubricant, producing friction coefficients as low as 0.001 or less! Polymer brushes are a promising way to reduce friction to extremely low values. They have the disadvantage, however, that they must be immersed in a liquid solvent in order to function as a lubricant. The presence of a solvent is believed to result in osmotic pressure which partially supports the load. The density profile of a polymer brush (i.e., the density of monomers as a function of distance from the surface to which the polymers are attached) is well established. What is not understood is how the interaction of polymer brush coated surfaces in contact with each other is able to account for the details of the observed low friction. For example, molecular dynamics studies generally do not predict static friction, whereas surface force apparatus measurements due to Tadmor, et. al., find that there is static friction. This is the topic of the present presentation.

  14. Iliotibial band friction syndrome

    PubMed Central

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy. PMID:21063495

  15. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  16. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  17. ``Large''- vs Small-scale friction control in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2017-11-01

    We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.

  18. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  19. Static friction between rigid fractal surfaces

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  20. Constraint counting for frictional jamming

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Henkes, S.; Schwarz, J. M.

    2012-02-01

    While the frictionless jamming transition has been intensely studied in recent years, more realistic frictional packings are less well understood. In frictionless sphere packings, the transition is predicted by a simple mean-field constraint counting argument, the isostaticity argument. For frictional packings, a modified constraint counting argument, which includes slipping contacts at the Coulomb threshold, has had limited success in accounting for the transition. We propose that the frictional jamming transition is not mean field and is triggered by the nucleation of unstable regions, which are themselves dynamical objects due to the Coulomb criterion. We create frictional packings using MD simulations and test for the presence and shape of rigid clusters with the pebble game to identify the partition of the packing into stable and unstable regions. To understand the dynamics of these unstable regions we follow perturbations at contacts crucial to the stability of the ``frictional house of cards.''

  1. Capturing strain localization behind a geosynthetic-reinforced soil wall

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.

    2003-04-01

    This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.

  2. Internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna; Derényi, Imre; Gráf, László; Málnási-Csizmadia, András

    2013-01-01

    The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  3. Perception and Haptic Rendering of Friction Moments.

    PubMed

    Kawasaki, H; Ohtuka, Y; Koide, S; Mouri, T

    2011-01-01

    This paper considers moments due to friction forces on the human fingertip. A computational technique called the friction moment arc method is presented. The method computes the static and/or dynamic friction moment independent of a friction force calculation. In addition, a new finger holder to display friction moment is presented. This device incorporates a small brushless motor and disk, and connects the human's finger to an interface finger of the five-fingered haptic interface robot HIRO II. Subjects' perception of friction moment while wearing the finger holder, as well as perceptions during object manipulation in a virtual reality environment, were evaluated experimentally.

  4. Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Tayon, W. A.; Domack, M. S.

    2012-01-01

    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.

  5. Structural Controls of the Friction Constitutive Properties of Carbonate-bearing Faults

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Collettini, C.; Scuderi, M.; Marone, C.

    2012-12-01

    The identification of hetereogenous and complex post-seismic slip for the 2009, Mw = 6.3, L'Aquila earthquake highlights the importance of fault zone structure and frictional behavior. Many of the Mw 6 to 7 earthquakes that occur on normal faults in the active Apennines, such as L'Aquila, nucleate at depths where the lithology is dominated by carbonate rocks. Due to the complex structure observed in exhumed faults (i.e. the presence of highly polished principal slip surfaces, cemented cataclasites, and phyllosilicate-bearing, foliated fault gouge) as well as the large spectrum of fault slip behaviors identified world wide, we designed a suite of experiments using intact and powdered samples to better constrain the possible slip behaviors of these carbonate bearing faults. We collected samples from the exposed Rocchetta Fault, a ~10km long, normal fault with approximately 600m of total offset. The exposed principal slip surface cuts through the Calcare Massiccio formation, which is present throughout central Italy at depths of earthquake nucleation. We collected intact specimens of the natural slip surface and cemented cataclasite, as well as fragments of both which were later pulverized. Furthermore, we collected an intact sample of the hanging wall cataclasite and footwall limestone that contained the principal slip surface. We performed friction experiments in a variety of different configurations (slip surface on slip surface, slip surface on powdered cataclasite, etc.) in order to investigate heterogeneity in frictional behavior as controlled by fault structure. We sheared saturated samples at a constant normal stress of 10 MPa at room temperature. Velocity-stepping tests were performed from 1 to 300 μm/s to identify the friction constitutive parameters of this fault material. Furthermore, a series slide-hold-slide tests were performed (holds of 3 to 1000 seconds) to measure the amount of frictional healing and determine the frictional healing rate. Results

  6. Global and local skin friction diagnostics from TSP surface patterns on an underwater cylinder in crossflow

    NASA Astrophysics Data System (ADS)

    Miozzi, Massimo; Capone, Alessandro; Di Felice, Fabio; Klein, Christian; Liu, Tianshu

    2016-12-01

    A systematical method is formulated for extracting skin-friction fields from Temperature Sensitive Paint (TSP) images in the sense of time-averaging and phase-averaging. The method is applied to an underwater cylinder in crossflow at two subcritical regimes (Re = 72 000 and 144 000). TSP maps are decomposed in a time-averaged, a phase-averaged, and a random component. The asymptotic form of the energy equation at the wall provides an Euler-Lagrange equation set that is solved numerically to gain the relative skin friction time- and phase-averaged fields from the TSP surface temperature maps. The comparison of the time averaged relative skin-friction profiles with the literature data shows an excellent agreement on the whole laminar boundary layer up to the laminar separation line. Downstream of separation, time averaged results identify the secondary reattachment/separation events, which are lost in the available literature data. The periodic behavior of the skin-friction is taken, describing how the laminar separation bubble evolves by providing the time history of the laminar separation line and of the secondary reattachment/separation over the entire vortex shedding period. Instantaneous skin friction maps reveal the existence of coherent structures by capturing their footprint on the cylinder's surface. An array of Π-shaped traces marks the existence of counter-rotating, streamwise-oriented vortices just before the laminar separation line. Their interaction with the laminar boundary layer and with the separation line is briefly described. An example of the intermittent excerpt of their influence through the laminar separation line is reported.

  7. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  8. Friction Stir Welding Development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1998-01-01

    The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.

  9. Joint Winter Runway Friction Program Accomplishments

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew

    2002-01-01

    The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.

  10. Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2001-01-01

    The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.

  11. Nonlinear friction model for servo press simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  12. Superradiance-tidal friction correspondence

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Kapadia, Shasvath J.; Kennefick, Daniel

    2014-01-01

    Since the work of Hartle in the 1970s, and the subsequent development of the membrane paradigm approach to black hole physics it has been widely accepted that superradiant scattering of gravitational waves bears strong similarities with the phenomenon of "tidal friction" (well known from Newtonian gravity) operating in binary systems of viscous material bodies. In this paper we revisit the superradiance-tidal friction analogy within the context of ultracompact relativistic bodies. We advocate that as long as these bodies have nonzero viscosity they should undergo tidal friction that can be construed as a kind of superradiant scattering from the point of view of the dynamics of an orbiting test body. In addition we consider the presence of anisotropic matter, which is required for at least some ultracompact bodies, if they are to sustain a radius very close to the gravitational radius. We find that the tidal friction/superradiance output is enhanced with increasing anisotropy and that strongly anisotropic systems exhibit an unconventional response to tidal and centrifugal forces. Finally, we make contact with the artificial system comprising a black hole with its horizon replaced by a mirror (sometimes used as a proxy for ultracompact material bodies) and discuss superradiance and tidal friction in relation to it.

  13. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  14. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  15. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  16. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  17. Superlubricity and friction>
  18. Electronic and phononic contributions to friction>
  19. Friction on the atomic and molecular scales
  20. van der Waals friction and Casimir force
  21. Molecular motor and friction>
  22. Friction and adhesion in soft matter systems
  23. Wear and crack on the nanoscale
  24. Theoretical studies on the atomic scale friction and energy dissipation
  25. Friction and chaos
  26. Mechanical properties of nanoscale contacts
  27. Friction of powder
  28. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  29. Nonmonotonicity of the Frictional Bimaterial Effect

    NASA Astrophysics Data System (ADS)

    Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran

    2017-10-01

    Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.

  30. Frictional `non-aging' of fault mirror surfaces?: Insight from friction experiments on Carrara marble

    NASA Astrophysics Data System (ADS)

    Park, Y.; Ree, J. H.; Hirose, T.

    2016-12-01

    Mirror-like fault surfaces (or fault mirror: FM) have recently been suggested as a precursor of unstable slip (thus indicative of seismic slip). Frictional aging of fault surfaces (increase in static friction during interseismic period) is a common phenomenon of fault surfaces, resulting from increase in contact area or in bond strength between asperities with time. Despite the importance of FM in earthquake faulting, the frictional-aging behavior of FM has never been studied. To understand the frictional-aging behavior of FM, slide-hold-slide friction experiments were done on carbonate FM and powdered gouge of former carbonate FM (PG hereafter) using low-to-high-velocity-rotary-shear apparatus, at a slip rate of 1 μm s-1 a normal stress of 1.5 MPa, room temperature and room humidity condition. The sheared PG specimens showed a logarithmic positive relationship between static friction and holding time, consistent with Dieterich-type healing behavior. In contrast, the sheared FM specimens showed little effect of holding time on static friction. The slip surface of FM specimens consists of densely-packed and sintered nano-particles while that of PG specimens is composed of loose nano-particles. It has been known that yield strength of a material increases dramatically with size-decreasing grains being nano-particles. Since FM is a layer of densely-packed and sintered nanoparticles, enhanced strength of FM may inhibit growth of real contact area of fault surfaces during hold time. Furthermore, sintered particles composing FM have less pore space than loose gouge layer, and thus there would be a less chance of strengthening by pore space reduction, inter-particle meniscus formation or water adsorption onto the particles surface in the FM layer. Our preliminary result suggests that carbonate FM's may impede the recovery of fault strength during interseismic period, resulting in less possibility of earthquake nucleation. Reduced frictional healing may be a common

  31. Introduction to boundary-layer theory. [viscous friction loss calculation for turbine blade design

    NASA Technical Reports Server (NTRS)

    Mcnally, W. D.

    1973-01-01

    The pressure ratio across a turbine provides a certain amount of ideal energy that is available to the turbine for producing work. The portion of the ideal energy that is not converted to work is considered to be a loss. One of the more important and difficult aspects of turbine design is the prediction of the losses. The primary cause of losses is the boundary layer that develops on the blade and end wall surfaces. Boundary-layer theory is used to calculate the parameters needed to estimate viscous (friction) losses.

  32. Three-dimensional friction measurement during hip simulation.

    PubMed

    Sonntag, Robert; Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J Philippe

    2017-01-01

    Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  1. Integrated Data Collection and Analysis Project: Friction Correlation Study

    DTIC Science & Technology

    2015-08-01

    methods authorized in AOP-7 include Pendulum Friction, Rotary Friction, Sliding Friction (ABL), BAM Friction and Steel/Fiber Shoe Methods. The...sensitivity can be obtained by Pendulum Friction, Rotary Friction, Sliding Friction (such as the ABL), BAM Friction and Steel/Fiber Shoe Methods.3, 4 Within...Figure 4.16 A variable compressive force is applied downward through the wheel hydraulically (50-1995 psi). The 5 kg pendulum impacts (8 ft/sec is the

  2. High-velocity frictional properties of chert in the Jurassic accretionary complex, central Japan

    NASA Astrophysics Data System (ADS)

    Motohashi, G.; Oohashi, K.; Ujiie, K.

    2017-12-01

    Chert is one of the main components in accretionary complexes. Previous friction experiments on quartz-rich rocks at slip rates of 0.1-100 mm/s revealed that fault weakening was caused by a thixotropic behavior of silica gel [Goldsby and Tullis, 2002; Di Toro et al., 2004; Hayashi and Tsutsumi, 2010]. We conducted high-velocity friction experiments on chert at a slip rate of 1.3 m/s and normal stresses of 5-13 MPa under room humidity conditions and examined the resultant microstructures. During experiments, temperatures were measured using a high-resolution infrared thermal-imaging camera, and the process of shearing was monitored by a digital video camera. The samples for experiments were collected from the host rock (gray chert) of the thrust fault in the Jurassic accretionary complex, central Japan. Experimental data indicated that slip strengthening occurred after first slip weakening. This was followed by second slip weakening toward a steady-state friction, with maximum temperature being less than 1200 °C. The melt patches developed during slip strengthening, while the growth of melt layer was recognized during and after second slip weakening. The melt patches included little chert fragments, and the color of the chert surrounding melt patches was changed to dark, possibly representing thermal alteration of quartz grains. After second slip weakening, the volume fraction of chert fragments in the melt layer increased, and the chert fragments and the wall rocks adjacent to the melt layer were intensely cracked. These features indicated that the growth of melt layer was accompanied by the incorporation of cracked wall rocks, suggesting that off-fault damage may be linked to the slip behavior during and after second slip weakening. Goldsby, D. L., T. E. Tullis (2002), Geophys. Res. Lett., 29(17), 1844. Di Toro, G., D. L. Goldsby, T. E. Tullis (2004), Nature, 427, 436-439. Hayashi, N., A. Tsutsumi (2010), Geophys. Res. Lett., 37, L12305.

  3. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  4. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Winkel, Eric S.; Lay, Keary A.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0msinitial zone1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.

  5. Friction Sensitivity of Primary Explosives

    DTIC Science & Technology

    1982-09-01

    diffeomI from. Report) ISI. SUPPLEMENTARY NOTES It. KEY WORDS (Contflnuo on rvotr.. oldo. it nec~oaoty and Identify by block ri,uobr) Friction...friction senisitivity. Primary explosives RD 1333 lead azide, dextrinated lead azide, polyvinyl-alcohol (PVA)-lead a~.ide, colloidal lead azide, nocrnal lead...results for dextrinated lead azide duPont 52-127 13 4 A comparison of friction data at 10% probability of initiation 14 FIGURES 1 Working surfaces of BAM

  6. Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls

    NASA Astrophysics Data System (ADS)

    Guha Ray, A.; Baidya, D. K.

    2012-09-01

    Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.

  7. Frictional and hydrologic behavior of the San Andreas Fault: Insights from laboratory experiments on SAFOD cuttings and core

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Marone, C.; Saffer, D. M.

    2010-12-01

    The debate concerning the apparent low strength of tectonic faults, including the San Andreas Fault (SAF), continues to focus on: 1) low intrinsic friction resulting from mineralogy and/or fabric, and 2) decreased effective normal stress due to elevated pore pressure. Here we inform this debate with laboratory measurements of the frictional behavior and permeability of cuttings and core returned from the SAF at a vertical depth of 2.7 km. We conducted experiments on cuttings and core recovered during SAFOD Phase III drilling. All samples in this study are adjacent to and within the active fault zone penetrated at 10814.5 ft (3296m) measured depth in the SAFOD borehole. We sheared gouge samples composed of drilling cuttings in a double-direct shear configuration subject to true-triaxial loading under constant effective normal stress, confining pressure, and pore pressure. Intact wafers of material were sheared in a single-direct shear configuration under similar conditions of effective stress, confining pressure, and pore pressure. We also report on permeability measurements on intact wafers of wall rock and fault gouge prior to shearing. Initial results from experiments on cuttings show: 1) a weak fault (µ=~0.21) compared to the surrounding wall rock (µ=~0.35), 2) velocity strengthening behavior, (a-b > 0), consistent with aseismic slip, and 3) near zero healing rates in material from the active fault. XRD analysis on cuttings indicates the main mineralogical difference between fault rock and wall rock, is the presence of significant amounts of smectite within the fault rock. Taken together, the measured frictional behavior and clay mineral content suggest that the clay composition exhibits a basic control on fault behavior. Our results document the first direct evidence of weak material from an active fault at seismogenic depths. In addition, our results could explain why the SAF in central California fails aseismically and hosts only small earthquakes.

  8. Showing Area Matters: A Work of Friction

    ERIC Educational Resources Information Center

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  9. [Friction: self-ligating brackets].

    PubMed

    Thermac, Guilhem; Morgon, Laurent; Godeneche, Julien

    2008-12-01

    The manufacturers of self-ligating brackets advertise a reduction of the friction engendered between the wire and the bracket, which is an essential parameter for treatment's speed and comfort. We have compared the friction obtained with four types of self-ligating brackets - In-Ovation R, Damon 3, Smart Clip and Quick - with that of a standard bracket Omniarch associated with an elastomeric ligature. All bracket were tested on a bench of traction with three types of wires: steel .019"x.025", TMA .019"x.025" and NEO sentalloy F300 .020"x.020". The results confirm a clear friction reduction for all tested wire.

  10. Three-dimensional friction measurement during hip simulation

    PubMed Central

    Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J. Philippe

    2017-01-01

    Objectives Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. Materials and methods A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). Results A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. Conclusions This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization. PMID:28886102

  11. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  12. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  13. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

  14. Slow rupture of frictional interfaces

    NASA Astrophysics Data System (ADS)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  15. Light domain walls, massive neutrinos and the large scale structure of the Universe

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1991-01-01

    Domain walls generated through a cosmological phase transition are considered, which interact nongravitationally with light neutrinos. At a redshift z greater than or equal to 10(exp 4), the network grows rapidly and is virtually decoupled from the matter. As the friction with the matter becomes dominant, a comoving network scale close to that of the comoving horizon scale at z of approximately 10(exp 4) gets frozen. During the later phases, the walls produce matter wakes of a thickness d of approximately 10h(exp -1)Mpc, that may become seeds for the formation of the large scale structure observed in the Universe.

  16. Quantum friction in arbitrarily directed motion

    DOE PAGES

    Klatt, J.; Farías, M. Belen; Dalvit, D. A. R.; ...

    2017-05-30

    In quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion—compared with the paradigmatic setup of parallel motion—here we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equationsmore » and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles by employing both methods and compare them.« less

  17. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles

    NASA Astrophysics Data System (ADS)

    Volino, Ralph J.; Schultz, Michael P.

    2018-03-01

    An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.

  18. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    PubMed

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  19. Geodesy cannot presently detect the up-dip limit of frictional locking on megathrusts

    NASA Astrophysics Data System (ADS)

    Almeida, R. V.; Lindsey, E. O.; Bradley, K.; Hubbard, J.; Sathiakumar, S.; Malick, R.; Hill, E.

    2017-12-01

    Most discussions of interseismic behavior on megathrust faults focus on whether they are frictionally locked or creeping. Unfortunately, many geodetic studies of subduction zone megathrusts equate fault coupling with frictional locking. This comparison is not appropriate, as one reflects the physical properties of the fault, and the other reflects the kinematics of the fault. Much of the uncertainty about slip behavior is because in subduction zones, the shallow part of the fault is far from land, and therefore creep is not detectable by land-based GPS. Published coupling maps of subduction zone megathrusts often assume a low coupling ratio near the trench, updip from fully coupled regions. Yet, if the megathrust attains a coupling ratio of 1 anywhere on the fault (i.e., the hanging wall is moving with the same velocity as the footwall), a lower value of coupling updip of this location requires interseismic extension at a rate proportional to the decrease (Wang and Dixon, 2004). We argue that the shallow region of megathrusts lie in updip stress shadows, and do not (except under rare circumstances) experience appropriate driving forces to cause significant creep during the interseismic period. Therefore it may not be possible to determine whether these regions are frictionally locked by examining interseismic geodetic records. We demonstrate this effect using a boundary element model with rate-strengthening friction and a simplified subduction zone geometry. We show that a coupling value of zero at the trench is physically unrealistic even if only a small portion of the downdip fault zone is locked. The maximum creep at the trench depends on the width of the transition of the frictionally locked zone, but should be small (<30% of plate rate) under most circumstances. During the interseismic period, even if the shallow parts of megathrusts are frictionally unlocked, creep is likely smaller than the resolution of current seafloor geodetic techniques (which is

  20. Friction measurement in a hip wear simulator.

    PubMed

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.

  1. Friction in Forming of UD Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, U.; Haanappel, S. P.; Akkerman, R.

    2011-05-04

    Inter-ply and tool/ply friction play a dominant role in hot stamp forming of UD fiber-reinforced thermoplastic laminates. This research treats friction measurements of a PEEK-AS4 composite system. To this end, an in-house developed friction tester is utilized to pull a laminate through two heat controlled clamping platens. The friction coefficient is determined by relating the clamp force to the pull force. The geometry of the gap between the clamping platens is monitored with micrometer accuracy. A first approach to describe the relation between the geometry and frictional behavior is undertaken by applying a standard thin-film theory for hydrodynamic lubrication. Experimentalmore » measurements showed that the thin-film theory does not entirely cover the underlying physics. Thus a second model is utilized, which employs a Leonov-model to describe the shear deformation of the matrix material, while its viscosity is described with a multi-mode Maxwell model. The combination of both models shows the potential to capture the complete frictional behavior.« less

  2. Friction coefficient of skin in real-time.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  3. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

    PubMed Central

    Whitney, G. A.; Mansour, J. M.; Dennis, J. E.

    2015-01-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  4. Reduction of turbulent skin-friction drag by oscillating discs

    NASA Astrophysics Data System (ADS)

    Wise, Daniel; Ricco, Pierre

    2013-11-01

    A new drag-reduction method, based on the active technique proposed by Ricco & Hahn (2013), i.e. steadily rotating flush-mounted discs, is studied by DNS. The effect of sinusoidally oscillating discs on the turbulent channel-flow drag is investigated at Reτ = 180 , based on the friction velocity of the stationary-wall case and the half channel height. A parametric investigation on the disc diameter, tip velocity and oscillation period yielded a maximum drag reduction of 18.5%. Regions of net power saved, calculated by considering the power spent to enforce the disc motion against the viscous resistance of the fluid, are found to reach up to 6.5% for low disc tip velocities. Significantly, the characteristic time-scale for the oscillating disc forcing is double that for the steadily rotating discs, representing a further step towards industrial implementation. The oscillating disc forcing, similar to the steadily rotating disc forcing, creates streamwise-elongated structures between the discs. These structures - largely unaffected by the periodic wall forcing and persisting throughout the entire period of the oscillation - are the main contributor to the additional Reynolds stresses term created by the disc forcing, and are important for the drag reduction mechanism.

  5. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity

  6. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  7. Pressure and Friction Injuries in Primary Care.

    PubMed

    Phillips, Shawn; Seiverling, Elizabeth; Silvis, Matthew

    2015-12-01

    Pressure and friction injuries are common throughout the lifespan. A detailed history of the onset and progression of friction and pressure injuries is key to aiding clinicians in determining the underlying mechanism behind the development of the injury. Modifying or removing the forces that are creating pressure or friction is the key to both prevention and healing of these injuries. Proper care of pressure and friction injuries to the skin is important to prevent the development of infection. Patient education on positioning and ergonomics can help to prevent recurrence of pressure and friction injuries. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  9. Intelligent Flow Friction Estimation.

    PubMed

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  10. Intelligent Flow Friction Estimation

    PubMed Central

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  11. The friction cost method: a comment.

    PubMed

    Johannesson, M; Karlsson, G

    1997-04-01

    The friction cost method has been proposed as an alternative to the human-capital approach of estimating indirect costs. We argue that the friction cost method is based on implausible assumptions not supported by neoclassical economic theory. Furthermore consistently applying the friction cost method would mean that the method should also be applied in the estimation of direct costs, which would mean that the costs of health care programmes are substantially decreased. It is concluded that the friction cost method does not seem to be a useful alternative to the human-capital approach in the estimation of indirect costs.

  12. Flame front propagation in a channel with porous walls

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  13. Experimental investigations of OSL signal changes of quartz gouge during low- to high-velocity friction

    NASA Astrophysics Data System (ADS)

    Oohashi, K.; Akasegawa, K.; Hasebe, N.; Miura, K.; Minomo, Y.

    2017-12-01

    Luminescence dating methods such as OSL and TL are mainly used to characterize an age of sediments based on trapping of electron by natural radiation exposure. Recent research suggests its potential applicability for direct age measurement of faulting. The idea behind to the luminescence dating for a determination of paleo-earthquake event is the accumulated natural radiation damage in intra-fault materials becomes to zero by the frictional heating and/or grinding. However, a relationship between fault motion and annihilation of luminescence signals, and its mechanism has not been understood. In this study, we conduct low- to high-velocity friction experiments using quartz gouge under various displacements and moisture conditions to establish an empirical relationship of OSL signal change upon shearing. In the friction experiments, we used quartz grains of <150 μm separated from the Cretaceous granite, taken from the east wall of the Nojima fault Ogura trench site, western Japan, as an analogue gouge. Our results of the OSL measurements are (1) <75 μm fraction of sheared gouge have high fast component ratio than the pre-sheared grains, (2) the fast component ratio of <75 μm fraction increases with increasing slip rate from 200 μm/s to 0.13 m, (3) OSL signal becomes to zero in the experiment sheared under 0.65 m/s. The increase of the fast component ratio found in relatively low slip-rate experiments may be caused by addition of ionized electrons, that emitted from newly formed fracture surface during comminution, in electron center. The signal zeroing observed in the high-velocity friction experiment is attributable to rapid frictional heating up to 700 °C estimated by temperature measurement and calculation. Based on the calculation of frictional energy we added to the experiment sheared under 0.65 m/s, we estimated the zeroing depth in natural conditions of earthquake (1.6 m in displacement) to 192 m.

  14. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  15. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  16. Friction testing of a new ligature

    NASA Astrophysics Data System (ADS)

    Mantel, Alison R.

    Objective. To determine if American Orthodontics' (AO) new, experimental ligature demonstrates less friction in vitro when compared to four other ligatures on the market. Methods. Four brackets were mounted on a custom metal fixture allowing an 0.018-in stainless steel wire attached to an opposite fixture with one bracket to be passively centered in the bracket slot. The wire was ligated to the bracket using one of five types of ligatures including the low friction test ligatures (AO), conventional ligatures (AO), Sili-Ties(TM) Silicone Infused Ties (GAC), SynergyRTM Low-Friction Ligatures (RMO), and SuperSlick ligatures (TP Orthodontics). Resistance to sliding was measured over a 7 mm sliding distance using a universal testing machine (Instron) with a 50 Newton load cell and a crosshead speed of 5 mm/min. The initial resistance to sliding (static) was determined by the peak force needed to initiate movement and the kinetic resistance to sliding was taken as the force at 5 mm of wire/bracket sliding. Fifteen unique tests were run for each ligature group in both dry and wet (saliva soaked for 24 hours with one drop prior to testing) conditions. Results. In the dry state, the SuperSlick ligature demonstrated more static friction than all of the other ligatures, while SuperSlick and Sili-Ties demonstrated more kinetic friction than the AO conventional, AO experimental and Synergy ligatures. In the wet condition, SuperSlick and the AO experimental ligature demonstrated the least static friction, followed by the AO conventional and Sili-Ties. The most static friction was observed with the Synergy ligatures. In the wet condition, the SuperSlick, AO experimental and AO conventional exhibited less kinetic friction than the Sili-Ties and Synergy ligatures. Conclusions. AO's experimental ligature exhibits less friction in the wet state than conventional ligatures, Sili-Ties and Synergy and is comparable to the SuperSlick ligature. These preliminary results suggest that the

  17. Understanding dynamic friction through spontaneously evolving laboratory earthquakes

    PubMed Central

    Rubino, V.; Rosakis, A. J.; Lapusta, N.

    2017-01-01

    Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876

  18. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  19. Skin Friction Measurements Using Luminescent Oil Films

    NASA Astrophysics Data System (ADS)

    Husen, Nicholas M.

    As aircraft are designed to a greater extent on computers, the need for accurate and fast CFD algorithms has never been greater. The development of CFD algorithms requires experimental data against which CFD output can be validated and from which insight about flow physics can be acquired. Skin friction, in particular, is an important quantity to predict with CFD, and experimental skin friction data sets aid not only with the validation of the CFD predictions, but also in tuning the CFD models to predict specific flow fields. However, a practical experimental technique for collecting spatially and temporally resolved skin friction data on complex models does not yet exist. This dissertation develops and demonstrates a new luminescent oil film skin friction meter which can produce spatially-resolved quantitative steady and unsteady skin friction data on models with complex curvature. The skin friction acting on the surface of a thin film of oil can be approximated by the expression tauw =mu ouh/h, where mu o is the dynamic viscosity of the oil, uh is the velocity of the surface of the oil film, and h is the thickness of the oil film. The new skin friction meter determines skin friction by measuring h and uh. The oil film thickness h is determined by ratioing the intensity of the fluorescent emissions from the oil film with the intensity of the incident light which is scattered from the surface of the model. When properly calibrated, that ratio provides an absolute oil film thickness value. This oil film thickness meter is therefore referred as the Ratioed-Image Film-Thickness (RIFT) Meter. The oil film velocity uh is determined by monitoring the evolution of tagged molecules within the oil film: Photochromic molecules are dissolved into the fluorescent oil and a pattern is written into the oil film using an ultraviolet laser. The evolution of the pattern is recorded, and standard cross-correlation techniques are applied to the resulting sequence of images. This

  20. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  1. On laminar and turbulent friction

    NASA Technical Reports Server (NTRS)

    Von Karman, TH

    1946-01-01

    Report deals, first with the theory of the laminar friction flow, where the basic concepts of Prandtl's boundary layer theory are represented from mathematical and physical points of view, and a method is indicated by means of which even more complicated cases can be treated with simple mathematical means, at least approximately. An attempt is also made to secure a basis for the computation of the turbulent friction by means of formulas through which the empirical laws of the turbulent pipe resistance can be applied to other problems on friction drag. (author)

  2. Tire-to-Surface Friction Especially Under Wet Conditions

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Batterson, Sidney A.; Harrin, Eziaslav N.

    1959-01-01

    The results of measurements of the maximum friction available in braking on various runway surfaces under various conditions is shown for a C-123B airplane and comparisons of measurements with a tire-friction cart on the same runways are made. The.results of studies of wet-surface friction made with a 12-inch-diameter low-pressure tire on a tire-friction treadmill, with an automobile tire on the tire-friction cart, and with a 44 x 13 extra-high-pressure type VII aircraft tire at the Langley landing-loads track are compared. Preliminary results of tests on the tire-friction treadmill under wet-surface conditions to determine the effect of the wiping action of the front wheel of a tandem-wheel arrangement on the friction available in braking for the rear wheel are given.

  3. Servo Reduces Friction In Flexure Bearing

    NASA Technical Reports Server (NTRS)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  4. Statewide pavement friction testing 2012.

    DOT National Transportation Integrated Search

    2012-11-01

    In 2012, Dynatest conducted friction testing for the Wisconsin Department of Transportation (WisDOT) on a representative subset of its State Trunk Highway Network. Friction testing was performed at 3,394 sites in accordance with ASTM E274 using a Dyn...

  5. An investigation of the effects of spanwise wall oscillation on the structure of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Trujillo, Steven Mathew

    Transition of a fluid boundary layer from a laminar to a turbulent regime is accompanied by a large increase in skin friction drag. The ability to manipulate the flow or its bounding geometry to reduce this drag effectively has been a long-sought goal in contemporary fluid mechanics. Recently, workers have demonstrated that continuous lateral oscillation of the flow's bounding surface is one means to this goal, producing significant drag reduction. The present study was performed to understand better the mechanism by which such a flow achieves drag reduction. An oscillating wall section was installed in a water channel facility, and the resulting flow was studied using laser Doppler velocimetry, hot-film anemometry, and visualization techniques. Traditional mean and fluctuating statistics were examined, as well as statistics computed from conditionally-sampled turbulent events. The dependence of these quantities on the phase of the oscillating surface's motion was also studied. Visualization-based studies were employed to provide insight into the structural changes brought on by the wall oscillation. The most dramatic changes effected by the wall motion were seen as reductions in frequency of bursts and sweeps, events which concentrate large production of Reynolds stress and which ultimately augment wall skin friction. These Reynolds-stress reductions were reflected in reductions in mean and fluctuating quantifies in the lower regions of the boundary layer. Other velocity measurements confirmed earlier workers' speculations that the secondary flow induced by the oscillating wall is comparable to Stokes' solution for an oscillating plate in a quiescent fluid. Other than this secondary flow, however, the boundary layer displayed essentially no dependence on the phase of the wall motion. A simple cost analysis showed that, in general, the energy cost required to implement this technique is greater than the savings it produces. The visualizations of the flow revealed a

  6. Low friction wear resistant graphene films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  7. Are there reliable constitutive laws for dynamic friction?

    PubMed

    Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew

    2015-09-28

    Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).

  8. Preface: Friction at the nanoscale

    NASA Astrophysics Data System (ADS)

    Fusc, Claudio; Smith, Roger; Urbakh, Michael; Vanossi, Andrea

    2008-09-01

    Interfacial friction is one of the oldest problems in physics and chemistry, and certainly one of the most important from a practical point of view. Everyday operations on a broad range of scales, from nanometer and up, depend upon the smooth and satisfactory functioning of countless tribological systems. Friction imposes serious constraints and limitations on the performance and lifetime of micro-machines and, undoubtedly, will impose even more severe constraints on the emerging technology of nano-machines. Standard lubrication techniques used for large objects are expected to be less effective in the nano-world. Novel methods for control and manipulation are therefore needed. What has been missing is a molecular level understanding of processes occurring between and close to interacting surfaces to help understand, and later manipulate friction. Friction is intimately related to both adhesion and wear, and all three require an understanding of highly non-equilibrium processes occurring at the molecular level to determine what happens at the macroscopic level. Due to its practical importance and the relevance to basic scientific questions there has been major increase in activity in the study of interfacial friction on the microscopic level during the last decade. Intriguing structural and dynamical features have been observed experimentally. These observations have motivated theoretical efforts, both numerical and analytical. This special issue focusses primarily on discussion of microscopic mechanisms of friction and adhesion at the nanoscale level. The contributions cover many important aspects of frictional behaviour, including the origin of stick-slip motion, the dependence of measured forces on the material properties, effects of thermal fluctuations, surface roughness and instabilities in boundary lubricants on both static and kinetic friction. An important problem that has been raised in this issue, and which has still to be resolved, concerns the

  9. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  10. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts

    PubMed Central

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-01-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  11. Assessment of semi-active friction dampers

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  12. Machine Learning of Fault Friction

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  13. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  14. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.

    PubMed

    Vuković, Lela; Vokac, Elizabeth; Král, Petr

    2014-06-19

    We reveal by classical molecular dynamics simulations electroosmotic flows in thin neutral carbon (CNT) and boron nitride (BNT) nanotubes filled with ionic solutions of hydrated monovalent atomic ions. We observe that in (12,12) BNTs filled with single ions in an electric field, the net water velocity increases in the order of Na(+) < K(+) < Cl(-), showing that different ions have different power to drag water in thin nanotubes. However, the effect gradually disappears in wider nanotubes. In (12,12) BNTs containing neutral ionic solutions in electric fields, we observe net water velocities going in the direction of Na(+) for (Na(+), Cl(-)) and in the direction of Cl(-) for (K(+), Cl(-)). We hypothesize that the electroosmotic flows are caused by different strengths of friction between ions with different hydration shells and the nanotube walls.

  15. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    NASA Astrophysics Data System (ADS)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  16. Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.

  17. Dependence of internal friction on folding mechanism.

    PubMed

    Zheng, Wenwei; De Sancho, David; Hoppe, Travis; Best, Robert B

    2015-03-11

    An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.

  18. Structure of AA5056 after friction drilling

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Kalashnikova, T. A.; Fortuna, S. V.

    2017-12-01

    Here we present data on the structure of AA5056 alloy after friction drilling to unveil potentials of the process for use in model experiments on friction stir welding. Our analysis of the average size and volume content of precipitates shows that their content decreases immediately beneath the friction surface and that the structure of this zone is the same as the structure of stirring zones formed in friction stir welding. The data suggest that both processes provide similar metal structures.

  19. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  20. Entrainment of solid particles over irregular wavy walls

    NASA Astrophysics Data System (ADS)

    Milici, Barbara

    2017-11-01

    The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the dynamics of turbulent structures of the underlying carrier flow field which, in turn, is affected by the presence of a loading of dispersed particles. The issue is discussed here focusing on the coupling between near-bed coherent structures and suspended solid particles dynamics, in wall-bounded turbulent multiphase flows, bounded by rough boundaries. The friction Reynolds number of the unladen flow is Reτ=180 and the dispersed phase spans one order of magnitude of particle diameter. The analysis takes into account fluid-particle interaction (two-way coupling) in the frame of the Particle-Source-In-Cell (PSIC) method, using Direct Numerical Simulations (DNS) for the carrier phase coupled with Lagrangian Particle Tracking (LPT) for the dispersed phase. The effect of the wall's roughness is taken into account modelling the elastic rebound of particles onto it, instead of using a virtual rebound model.

  1. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  2. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  3. Experimental Evaluation of Hot Films on Ceramic Substrates for Skin-Friction Measurement

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Lavine, Adrienne S.; Hamory, Philip J.

    2003-01-01

    An investigation has been performed on the use of low-thermal conductivity, ceramic substrates for hot films intended to measure skin friction. Hot films were deposited on two types of ceramic substrates. Four hot films used composite-ceramic substrates with subsurface thermocouples (TCs), and two hot films were deposited on thin Macor(R) substrates. All six sensors were tested side by side in the wall of the NASA Glenn Research Center 8-ft by 6-ft Supersonic Wind Tunnel (SWT). Data were obtained from zero flow to Mach 1.98 in air. Control measurements were made with three Preston tubes and two boundary-layer rakes. The tests were repeated at two different hot film power levels. All hot films and subsurface TCs functioned throughout the three days of testing. At zero flow, the films on the high-thermal conductivity Macor(R) substrates required approximately twice the power as those on the composite-ceramic substrates. Skin-friction results were consistent with the control measurements. Estimates of the conduction heat losses were made using the embedded TCs but were hampered by variability in coating thicknesses and TC locations.

  4. Nonlinear friction dynamics on polymer surface under accelerated movement

    NASA Astrophysics Data System (ADS)

    Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-04-01

    Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  5. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  6. Friction Spinning—New Innovative Tool Systems For The Production of Complex Functionally Graded Workpieces

    NASA Astrophysics Data System (ADS)

    Homberg, Werner; Hornjak, Daniel

    2011-05-01

    Friction spinning is a new innovative and promising incremental forming technology implying high potential regarding the manufacturing of complex functionally graded workpieces and enhancing existing forming limits of conventional metal spinning processes. The friction spinning process is based on the integration of thermo-mechanical friction subprocesses in this incremental forming process. By choosing the appropriate process parameters, e.g. axial feed rate or relative motion, the contact conditions between tool and workpiece can be influenced in a defined way and, thus, a required temperature profile can be obtained. Friction spinning allows the extension of forming limits compared to conventional metal spinning in order to produce multifunctional components with locally varying properties and the manufacturing of e.g. complex hollow parts made of tubes, profiles, or sheet metals. In this way, it meets the demands regarding efficiency and the manufacturing of functionally graded lightweight components. There is e.g. the possibility of locally increasing the wall thickness in joining zones and, as a consequence, achieving higher quality of the joint at decreased expense. These products are not or only hardly producible by conventional processes so far. In order to benefit from the advantages and potentials of this new innovative process new tooling systems and concepts are indispensable which fulfill the special requirements of this thermo-mechanical process concerning thermal and tribological loads and which allow simultaneous and defined forming and friction operations. An important goal of the corresponding research work at the Chair of Forming and Machining Technology at the University of Paderborn is the development of tool systems that allow the manufacturing of such complex parts by simple uniaxial or sequential biaxial linear tool paths. In the paper, promising tool systems and geometries as well as results of theoretical and experimental research work (e

  7. Effects of shear load on frictional healing

    NASA Astrophysics Data System (ADS)

    Ryan, K. L.; Marone, C.

    2014-12-01

    During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating

  8. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  9. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  10. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  11. Frictional properties of silicic to calcareous ooze on the Cocos Plate entering the Costa Rica Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tsutsumi, A.; Kameda, J.; Ujiie, K.

    2012-12-01

    Here we report experimental results on the frictional properties of the cover sediments on the Cocos plate incoming into the erosive Costa Rica subduction zone. Mechanical properties of the incoming sediments to subduction plate boundaries are essential to constrain subduction-related faulting processes. However, knowledge of the frictional properties of sediments composed of abundant biogenic component, such as spicules, diatoms, and radiolarians are limited. Experimental samples were silicic to calcareous ooze collected at a reference site (Site U1381) off shore Osa Peninsula during IODP Expedition 334 (Vannucchi et al., 2012). To be used in the experiments, the discrete samples was disaggregated, oven dried at 60 degrees centigrade for 24 hours. The experimental fault is composed of a 24.9 mm diameter cylinder of gabbro cut perpendicularly to the cylinder axis in two halves that are ground to obtain rough wall surfaces, and re-assembled with an intervening thin layer (~1.0 mm) disaggregated sample. Frictional experiments have been performed using a rotary-shear friction testing machine, at normal stresses up to 5 MPa, over a range of slip velocities from 0.0026 mm/s to 1.3 m/s, with more than ~150 mm of displacements for water saturated condition. Experimental results reveal that friction values at slow slip velocities (v < ~30 mm/s) are about ~0.7, of which level is comparable to the typically reported friction values for rocks. The experimental faults exhibited velocity-weakening at v < 0.3 mm/s and neutral to velocity-strengthening at 0.3 < v < ~3 mm/s. At higher velocities (v > ~30 mm/s), steady state friction decreases dramatically. For example, at a velocity of 260 mm/s, the friction coefficient for samples U1381A-9R and -10R show a gradual decrease with a large weakening displacement toward the establishment of a nearly constant level of friction at ~0.1. The velocity weakening behavior at slow velocities could provide a condition to initiate unstable

  12. Friction in a Moving Car

    ERIC Educational Resources Information Center

    Goldberg, Fred M.

    1975-01-01

    Describes an out-of-doors, partially unstructured experiment to determine the coefficient of friction for a moving car. Presents the equation which relates the coefficient of friction to initial velocity, distance, and time and gives sample computed values as a function of initial speed and tire pressure. (GS)

  13. Tribo-performance evaluation of ecofriendly brake friction composite materials

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Singh, Tej; Grewal, G. S.

    2018-05-01

    This paper presents the potential of natural fibre in brake friction materials. Natural fibre filled ecofriendly brake friction materials were developed without Kevlar fibre evaluated for tribo-performance on a chase friction testing machine following SAE J 661a standard. Experimental results indicated that natural fibre enhances the fade performance, but depresses the friction and wear performance, whereas Kevlar fibre improves the friction, wear and recovery performance but depresses the fade performance. Also the results revealed that with the increase in natural fibre content, the friction and fade performances enhanced.

  14. Skin friction fields on delta wings

    NASA Astrophysics Data System (ADS)

    Woodiga, S. A.; Liu, Tianshu

    2009-12-01

    The normalized skin friction fields on a 65° delta wing and a 76°/40° double-delta wing are measured by using a global luminescent oil-film skin friction meter. The detailed topological structures of skin friction fields on the wings are revealed for different angles of attack and the important features are detected such as reattachment lines, secondary separation lines, vortex bursting and vortex interaction. The comparisons with the existing flow visualization results are discussed.

  15. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  16. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  17. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  18. Flexure Bearing Reduces Startup Friction

    NASA Technical Reports Server (NTRS)

    Clingman, W. Dean

    1991-01-01

    Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.

  19. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Orbital friction stir weld system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Carter, Robert W. (Inventor)

    2001-01-01

    This invention is an apparatus for joining the ends of two cylindrical (i.e., pipe-shaped) sections together with a friction stir weld. The apparatus holds the two cylindrical sections together and provides back-side weld support as it makes a friction stir weld around the circumference of the joined ends.

  1. Time-dependent friction and the mechanics of stick-slip

    USGS Publications Warehouse

    Dieterich, J.H.

    1978-01-01

    Time-dependent increase of static friction is characteristic of rock friction undera variety of experimental circumstances. Data presented here show an analogous velocity-dependent effect. A theor of friction is proposed that establishes a common basis for static and sliding friction. Creep at points of contact causes increases in friction that are proportional to the logarithm of the time that the population of points of contact exist. For static friction that time is the time of stationary contact. For sliding friction the time of contact is determined by the critical displacement required to change the population of contacts and the slip velocity. An analysis of a one-dimensional spring and slider system shows that experimental observations establishing the transition from stable sliding to stick-slip to be a function of normal stress, stiffness and surface finish are a consequence of time-dependent friction. ?? 1978 Birkha??user Verlag.

  2. Friction behavior for clay minerals during dehydration process: implication for unstable friction at shallow portion along subducting plate

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Katayama, I.

    2016-12-01

    Along plate boundary subduction thrusts, the transformation of smectite to illite within fault gouge at temperatures around 100 - 200 °C is one of the key mineralogical changes thought to control the updip limit of seismicity (Hyndman et al., 1997). Since hydration state of clay minerals is possible to vary from moment to moment in nature, it is important to investigate the effect of dehydration and hydrate state on frictional properties with progression of a removal of water is rare. In this study, we focus on the effect of dehydration of water on the frictional properties of clay minerals by temperature-rising test. For the friction experiments, starting materials we used are Ca-montmorillonite, which were placed on the simulated fault surface and two side blocks were placed together to produce a double-direct shear configuration. The sample assembly was heated by an external furnace up to 400 °C that is monitored by thermocouples located in the central part of sample assembly. After steady-state friction at room temperature we started to elevate the temperature around the specimen at a constant heating rate of 1, 3, and 10 °C/min. Ca-montmorillonite gouge showed unique friction behavior development as elevated temperature, which is divided into three stages; (1) friction coefficient decreased at relative low temperature, (2) friction coefficient increased at middle temperature, and (3) stick-slip behavior occurred at high temperature. Stick-slip behavior as elevated temperature implies to have a potential of velocity weakening behavior. Observed stick-slip behavior occurs at a temperature of 320 °C, which is extremely higher from a temperature range of occurring dehydration for Ca-montmorillonite (100 - 200 °C). However, at low heating rate the temperature that stick-slip behavior occurs shifted to lower temperature. Our preliminary results suggest that the observed systematical shift suggest that these frictional behavior is likely to be controlled by

  3. Lateral-deflection-controlled friction force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong

    2014-08-01

    Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.

  4. Collapse limit states of reinforced earth retaining walls

    NASA Astrophysics Data System (ADS)

    Bolton, M. D.; Pang, P. L. R.

    The use of systems of earth reinforcement or anchorage is gaining in popularity. It therefore becomes important to assess whether the methods of design which were adopted for such constructions represent valid predictions of realistic limit states. Confidence can only be gained with regard to the effectiveness of limit state criteria if a wide variety of representative limit states were observed. Over 80 centrifugal model tests of simple reinforced earth retaining walls were carried out, with the main purpose of clarifying the nature of appropriate collapse criteria. Collapses due to an insufficiency of friction were shown to be repeatable and therefore subject to fairly simple limit state calculations.

  5. Suppression of friction by mechanical vibrations.

    PubMed

    Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano

    2009-08-21

    Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.

  6. Constitutive equation of friction based on the subloading-surface concept

    PubMed Central

    Ueno, Masami; Kuwayama, Takuya; Suzuki, Noriyuki; Yonemura, Shigeru; Yoshikawa, Nobuo

    2016-01-01

    The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article by incorporating the concept of overstress for viscoplastic sliding velocity into the subloading-friction model to describe not only negative rate sensitivity but also positive rate sensitivity (i.e. an increase in friction resistance with increasing sliding velocity) at a general sliding velocity ranging from quasi-static to impact sliding. The validity of the model is verified by numerical experiments and comparisons with test data obtained from friction tests using a lubricated steel specimen. PMID:27493570

  7. Skin friction related behaviour of artificial turf systems.

    PubMed

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  8. Wall-Resolved Large-Eddy Simulation of Flow Separation Over NASA Wall-Mounted Hump

    NASA Technical Reports Server (NTRS)

    Uzun, Ali; Malik, Mujeeb R.

    2017-01-01

    This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.

  9. Ice friction of flared ice hockey skate blades.

    PubMed

    Federolf, Peter A; Mills, Robert; Nigg, Benno

    2008-09-01

    In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.

  10. Frictional stability-permeability relationships for fractures in shales

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  11. Some aspects of frictional measurements in hip joint simulators.

    PubMed

    Unsworth, Anthony

    2016-05-01

    The measurement of friction in artificial hip joints can lead to the knowledge of the lubrication mechanisms occurring in the joints. However, the measurement of friction, particularly in spherical contacts, is not always straightforward. The important loading and kinematic features must be appropriate and the friction must be measured in the correct plane. Even defining a coefficient of friction is difficult with spherical contacts as friction acts at different moment arms throughout the contact area. Thus, the generated frictional torques depend on the pressure distribution of the contact and the moment arms at which this pressure acts. The pressure distribution depends on the material properties, the surface entraining velocities, the joint diameters, and the clearance between the two surfaces of the ball and socket joint. Equally measuring friction is very taxing for machines which are applying very high loads. Slight misalignments of the application of these loads can produce torques which are very much greater than the frictional torques that we are trying to measure. This article attempts to share the thoughts behind over 40 years of measuring friction in artificial joints using the Durham Friction Simulators. This has led to accrued consistency of measurement and a robust scientific design rationale to understand the nature of friction in these spherical contacts. It also impacts on how to obtain accurate measurements as well as on the understanding of where the difficult issues lie and how to overcome them. © IMechE 2016.

  12. Engineering prediction of turbulent skin friction and heat transfer in high-speed flow

    NASA Technical Reports Server (NTRS)

    Cary, A. M., Jr.; Bertram, M. H.

    1974-01-01

    A large collection of experimental turbulent-skin-friction and heat-transfer data for flat plates and cones was used to determine the most accurate of six of the most popular engineering-prediction methods; the data represent a Mach number range from 4 to 13 and ratio of wall to total temperature ranging from 0.1 to 0.7. The Spalding and Chi method incorporating virtual-origin concepts was found to be the best prediction method for Mach numbers less than 10; the limited experimental data for Mach numbers greater than 10 were not well predicted by any of the engineering methods except the Coles method.

  13. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  14. Environmental influences on the friction behavior of glasses

    NASA Astrophysics Data System (ADS)

    Rolf, Jacqueline C.

    Two aspects of the friction behavior of glasses were the main focus of this investigation. First, the influence of aqueous inorganic salt solutions on friction and damage on soda-lime-silica, vitreous silica, and an aluminosilicate glass high in alumina content were studied. It was found that the pH of a solution has a higher influence on the friction behavior than the concentration of electrolyte and the size of ions in the solution. A minimum at the i.e.p. (iso-electric point) of the network former of the glass was found, i.e., soda-lime-silica and vitreous silica showed a small minimum in friction at a pH of about 1.8, which corresponds to the i.e.p. of silica. Two small minima were observed for the aluminosilicate in the vicinities of the i.e.p.'s of silica and alumina respectively. The damage created by the frictional contact showed variations with environment. Microindentation experiments on the same glasses were performed in the same environments to compare the responses to the findings of the friction test. For soda-lime-silica and vitreous silica, a maximum in hardness was found at the i.e.p. of the glasses, and for the aluminosilicate, two maxima were found in the vicinity of the i.e.p.'s of silica and alumina respectively, confirming the findings of the friction tests. A data-fitting analysis showed that the major contribution to the observed trends originates from the elastic properties of the surface. A model describing the influence of surface charging on the mechanical properties of the glass surface is suggested. The second major aspect of the study was the influence of temperature on the friction coefficients and resulting surface damage of commercial glasses. Four float glasses were selected, and vitreous silica was tested for comparison. As expected, the coefficients of friction were found to increase, with increasing temperature. Very small differences in composition had an effect on the temperature dependence of the coefficients of friction

  15. The frictional response of patterned soft polymer surfaces

    NASA Astrophysics Data System (ADS)

    Rand, Charles J.

    2008-10-01

    Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid

  16. The evolving quality of frictional contact with graphene.

    PubMed

    Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju

    2016-11-24

    Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick

  17. Dependence of Internal Friction on Folding Mechanism

    PubMed Central

    2016-01-01

    An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133

  18. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  19. Special cases of friction and applications

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Coy, J. J.

    1983-01-01

    Two techniques for reducing friction forces are presented. The techniques are applied to the generalized problem of reducing the friction between kinematic pairs which connect a moveable link to a frame. The basic principles are: (1) Let the moveable link be supported by two bearings where the relative velocities of the link with respect to each bearing are of opposite directions. Thus the resultant force (torque) of friction acting on the link due to the bearings is approximately zero. Then, additional perturbation of motion parallel to the main motion of the moveable link will require only a very small force; (2) Let the perturbation in motion be perpendicular to the main motion. Equations are developed which explain these two methods. The results are discussed in relation to friction in geared couplings, gyroscope gimbal bearings and a rotary conveyor system. Design examples are presented.

  20. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  1. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  2. A study of kinetic friction: The Timoshenko oscillator

    NASA Astrophysics Data System (ADS)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  3. Inertial frictional ratchets and their load bearing efficiencies

    NASA Astrophysics Data System (ADS)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2018-03-01

    We investigate the performance of an inertial frictional ratchet in a sinusoidal potential driven by a sinusoidal external field. The dependence of the performance on the parameters of the sinusoidally varying friction, such as the mean friction coefficient and its phase difference with the potential, is studied in detail. Interestingly, under certain circumstances, the thermodynamic efficiency of the ratchet against an applied load shows a non-monotonic behaviour as a function of the mean friction coefficient. Also, in the large friction ranges, the efficiency is shown to increase with increasing applied load even though the corresponding ratchet current decreases as the applied load increases. These counterintuitive numerical results are explained in the text.

  4. Understanding and Observing Subglacial Friction Using Seismology

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  5. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  6. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  7. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with...

  8. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  9. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with...

  10. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with...

  11. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with...

  12. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  13. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  14. 30 CFR 57.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Friction hoist synchronizing mechanisms. 57... MINES Personnel Hoisting Hoists § 57.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with...

  15. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  16. Quasi-equilibrium melting of quartzite upon extreme friction

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro

    2017-06-01

    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  17. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  18. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  19. Prediction of friction coefficients for gases

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  20. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  1. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  2. Micro- and macroscale coefficients of friction of cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang, Kejin

    2013-12-15

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses onmore » bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.« less

  3. 30 CFR 56.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist overtravel protection. 56.19014 Section 56.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 56.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  4. 30 CFR 57.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist overtravel protection. 57.19014 Section 57.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 57.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  5. 30 CFR 57.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Friction hoist overtravel protection. 57.19014 Section 57.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 57.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  6. 30 CFR 57.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Friction hoist overtravel protection. 57.19014 Section 57.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 57.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  7. 30 CFR 57.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Friction hoist overtravel protection. 57.19014 Section 57.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 57.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  8. 30 CFR 56.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Friction hoist overtravel protection. 56.19014 Section 56.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 56.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  9. 30 CFR 56.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Friction hoist overtravel protection. 56.19014 Section 56.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 56.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  10. 30 CFR 57.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Friction hoist overtravel protection. 57.19014 Section 57.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 57.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  11. 30 CFR 56.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Friction hoist overtravel protection. 56.19014 Section 56.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 56.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  12. 30 CFR 56.19014 - Friction hoist overtravel protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Friction hoist overtravel protection. 56.19014 Section 56.19014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 56.19014 Friction hoist overtravel protection. In a friction hoist installation, tapered...

  13. Coupled Mechanical and Thermal Modeling of Frictional Melt Injection to Constrain Physical Conditions of the Earthquake Source Region

    NASA Astrophysics Data System (ADS)

    Sawyer, W.; Resor, P. G.

    2016-12-01

    Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress and strength drop, as well as slip weakening distance and wall rock stiffness. These studies, however, have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a modified analytical approximation of injection vein formation based on a dike intrusion model we find that the timescales of quenching and flow propagation are similar for a composite set of injection veins compiled from the Asbestos Mountain Fault, USA (Rowe et al., 2012), Gole Larghe Fault Zone, Italy (Griffith et al., 2012) and the Fort Foster Brittle Zone. This indicates a complex, dynamic process whose behavior is not fully captured by the current approach. To assess the applicability of the simplifying assumptions of the dike model when applied to injection veins we employ a finite-element time-dependent model of injection vein formation. This model couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. The final geometry of many injection veins is unaffected by the inclusion of these processes. However, some injection veins are found to be flow limited, with a final geometry reflecting cooling of the vein before it reaches an elastic equilibrium with the wall rock. In these cases, numerical results are significantly different from the dike model, and two basic assumptions of the dike model, self-similar growth and a uniform pressure gradient, are shown to be false. Additionally, we apply the finite-element model to provide two new constraints on the Fort Foster coseismic environment: a lower limit on the initial

  14. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  15. Effect of friction on the rheology of dense suspensions

    NASA Astrophysics Data System (ADS)

    Gallier, Stany; Lemaire, Elisabeth; Peters, François; Lobry, Laurent

    2014-11-01

    This work reports three-dimensional numerical simulations of sheared non-Brownian concentrated suspensions using a fictitious domain method. Contacts between particles are modeled using a DEM-like approach (Discrete Element Method), which allows for a more physical description, including roughness and friction. This study emphasizes the effect of friction between particles and its role on rheological properties, especially on normal stress differences. Friction is shown to notably increase viscosity and second normal stress difference | N2 | and decrease | N1 | , in better agreement with experiments. The hydrodynamic and contact contributions to the overall particle stress are particularly investigated and this shows that the effect of friction is mostly due to the additional contact stress since the hydrodynamic stress remains unaffected by friction. Simulation results are also compared with experiments and the agreement is improved when friction is accounted for: this suggests that friction is operative in actual suspensions.

  16. Spatial dispersion in atom-surface quantum friction

    DOE PAGES

    Reiche, D.; Dalvit, D. A. R.; Busch, K.; ...

    2017-04-15

    We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change notmore » only the magnitude but also the distance scaling of quantum friction.« less

  17. Investigation friction factor and heat transfer characteristics of turbulent flow inside the corrugated tube inserted with typical and V-cut twisted tapes

    NASA Astrophysics Data System (ADS)

    Langeroudi, H. G.; Javaherdeh, K.

    2018-07-01

    In present paper the effects of using typical twisted tape (TT) and V-cut twisted tape (VTT) on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) inside corrugated tube in the turbulent flow are experimentally investigated despite the fact that the wall is under uniform heat flux. The experiments are conducted by twisted tapes with different twist ratio (y = 4.5, 6.07), depth and width ratios ranging (0.285-0.5) and Reynolds number varied from 5300 to 25,700 and water was as a working fluid. The obtained results show that the Nusselt number for corrugated tube that equipped with twisted tapes increases with increasing Reynolds number and is remarkable at high Reynolds Number while the friction factor is low. Moreover, the thermal performance factor for fluid increases with increasing Reynolds number and also the thermal performance factor for all states of VTT are higher than of TT. The new empirical correlations for Nusselt number, friction factor and thermal performance factor are predicted and compared with experimental data.

  18. Friction Stir Welding of ODS and RAFM Steels

    DOE PAGES

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  19. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  20. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  1. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less

  2. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    DOE PAGES

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...

    2016-07-11

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less

  3. Implicit LES of Turbulent, Separated Flow: Wall-Mounted Hump Configuration

    NASA Technical Reports Server (NTRS)

    Sekhar, Susheel; Mansour, Nagi N.; Caubilla, David Higuera

    2015-01-01

    Direct simulations (ILES) of turbulent, separated flow over the wall-mounted hump configuration is conducted to investigate the physics of separated flows. A chord-based Reynolds number of Re(sub c) = 47,500 is set up, with a turbulent in flow of Re(sub theta) = 1,400 (theta/c = 3%). FDL3DI, a code that solves the compressible Navier-Stokes equations using high- order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Two different configurations of the upper-wall are analyzed, and results are compared with both a higher Re(sub c) (= 936,000, Re(sub theta) = 7,200, theta/c = 0.77%) experiment for major flow features, and RANS (k-omega SST) results. A lower Rec allows for DNS-like mesh resolution, and an adequately wide span. Both ILES and RANS show delayed reattachment compared to experiment, and significantly higher skin friction in the forebody of the hump, as expected. The upper-wall shape influences the C(sub p) distribution only. Results from this study are being used to setup higher Rec (lower theta/c) ILES.

  4. Ratchet due to broken friction symmetry.

    PubMed

    Nordén, B; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must be provided with some internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary unidirectional motion of some swimming organisms in a liquid.

  5. The thermodynamic efficiency of heat engines with friction

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.

    2012-04-01

    The presence of the work done against friction is incorporated into the analysis of the efficiency of heat engines based on the first and second laws of thermodynamics. We obtain the efficiencies of Stirling and Brayton engines with friction and recover results known from finite-time thermodynamics. We show that ηfric/η ≈ (1 - Wfric/W), where ηfric/η is the ratio of the efficiencies with and without friction and Wfric/W is the fraction of the work W performed by the working fluid which is spent against friction forces.

  6. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  7. Frictional constraints on crustal faulting

    USGS Publications Warehouse

    Boatwright, J.; Cocco, M.

    1996-01-01

    We consider how variations in fault frictional properties affect the phenomenology of earthquake faulting. In particular, we propose that lateral variations in fault friction produce the marked heterogeneity of slip observed in large earthquakes. We model these variations using a rate- and state-dependent friction law, where we differentiate velocity-weakening behavior into two fields: the strong seismic field is very velocity weakening and the weak seismic field is slightly velocity weakening. Similarly, we differentiate velocity-strengthening behavior into two fields: the compliant field is slightly velocity strengthening and the viscous field is very velocity strengthening. The strong seismic field comprises the seismic slip concentrations, or asperities. The two "intermediate" fields, weak seismic and compliant, have frictional velocity dependences that are close to velocity neutral: these fields modulate both the tectonic loading and the dynamic rupture process. During the interseismic period, the weak seismic and compliant regions slip aseismically, while the strong seismic regions remain locked, evolving into stress concentrations that fail only in main shocks. The weak seismic areas exhibit most of the interseismic activity and aftershocks but can also creep seismically. This "mixed" frictional behavior can be obtained from a sufficiently heterogenous distribution of the critical slip distance. The model also provides a mechanism for rupture arrest: dynamic rupture fronts decelerate as they penetrate into unloaded complaint or weak seismic areas, producing broad areas of accelerated afterslip. Aftershocks occur on both the weak seismic and compliant areas around a fault, but most of the stress is diffused through aseismic slip. Rapid afterslip on these peripheral areas can also produce aftershocks within the main shock rupture area by reloading weak fault areas that slipped in the main shock and then healed. We test this frictional model by comparing the

  8. Efficient computation of turbulent flow in ribbed passages using a non-overlapping near-wall domain decomposition method

    NASA Astrophysics Data System (ADS)

    Jones, Adam; Utyuzhnikov, Sergey

    2017-08-01

    Turbulent flow in a ribbed channel is studied using an efficient near-wall domain decomposition (NDD) method. The NDD approach is formulated by splitting the computational domain into an inner and outer region, with an interface boundary between the two. The computational mesh covers the outer region, and the flow in this region is solved using the open-source CFD code Code_Saturne with special boundary conditions on the interface boundary, called interface boundary conditions (IBCs). The IBCs are of Robin type and incorporate the effect of the inner region on the flow in the outer region. IBCs are formulated in terms of the distance from the interface boundary to the wall in the inner region. It is demonstrated that up to 90% of the region between the ribs in the ribbed passage can be removed from the computational mesh with an error on the friction factor within 2.5%. In addition, computations with NDD are faster than computations based on low Reynolds number (LRN) models by a factor of five. Different rib heights can be studied with the same mesh in the outer region without affecting the accuracy of the friction factor. This is tested with six different rib heights in an example of a design optimisation study. It is found that the friction factors computed with NDD are almost identical to the fully-resolved results. When used for inverse problems, NDD is considerably more efficient than LRN computations because only one computation needs to be performed and only one mesh needs to be generated.

  9. The experiment research of the friction sliding isolation structure

    NASA Astrophysics Data System (ADS)

    Zhang, Shirong; Li, Jiangle; Wang, Sheliang

    2018-04-01

    This paper investigated the theory of the friction sliding isolation structure, The M0S2 solid lubricant was adopted as isolation bearing friction materials, and a new sliding isolation bearing was designed and made. The formula of the friction factor and the compression stress was proposed. The feasibility of the material MoS2 used as the coating material in a friction sliding isolation system was tested on the 5 layers concrete frame model. Two application experiment conditions were presented. The results of the experiment research indicated that the friction sliding isolation technology have a good damping effect.

  10. CAM/LIFTER forces and friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbey, D.J.; Lee, J.; Patterson, D.J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less

  11. Ground Simulator Studies of the Effects of Valve Friction, Stick Friction, Flexibility, and Backwash on Power Control System Quality

    NASA Technical Reports Server (NTRS)

    Brown, B Porter

    1958-01-01

    Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.

  12. Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Lee, Ilzoo

    1990-01-01

    The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.

  13. Gimballed Shoulders for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  14. On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Zaikina, A. A.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2018-04-01

    A comparative investigation of the structure of an aluminum-manganese alloy is performed after its friction stir welding and sliding friction. Using the methods of optical and electron microscopy, it is shown that during friction identical ultrafine-grained structures are formed in the weld nugget and in the surface layer, in which the grains measure 5 μm irrespective of the initial grain size of the alloy. An assumption is made that the microstructure during both processes under study is formed by the mechanism of rotational plasticity.

  15. Skin friction under pressure. The role of micromechanics

    NASA Astrophysics Data System (ADS)

    Leyva-Mendivil, Maria F.; Lengiewicz, Jakub; Limbert, Georges

    2018-03-01

    The role of contact pressure on skin friction has been documented in multiple experimental studies. Skin friction significantly raises in the low-pressure regime as load increases while, after a critical pressure value is reached, the coefficient of friction of skin against an external surface becomes mostly insensitive to contact pressure. However, up to now, no study has elucidated the qualitative and quantitative nature of the interplay between contact pressure, the material and microstructural properties of the skin, the size of an indenting slider and the resulting measured macroscopic coefficient of friction. A mechanistic understanding of these aspects is essential for guiding the rational design of products intended to interact with the skin through optimally-tuned surface and/or microstructural properties. Here, an anatomically-realistic 2D multi-layer finite element model of the skin was embedded within a computational contact homogenisation procedure. The main objective was to investigate the sensitivity of macroscopic skin friction to the parameters discussed above, in addition to the local (i.e. microscopic) coefficient of friction defined at skin asperity level. This was accomplished via the design of a large-scale computational experiment featuring 312 analyses. Results confirmed the potentially major role of finite deformations of skin asperities on the resulting macroscopic friction. This effect was shown to be modulated by the level of contact pressure and relative size of skin surface asperities compared to those of a rigid slider. The numerical study also corroborated experimental observations concerning the existence of two contact pressure regimes where macroscopic friction steeply and non-linearly increases up to a critical value, and then remains approximately constant as pressure increases further. The proposed computational modelling platform offers attractive features which are beyond the reach of current analytical models of skin

  16. Fragility and hysteretic creep in frictional granular jamming.

    PubMed

    Bandi, M M; Rivera, M K; Krzakala, F; Ecke, R E

    2013-04-01

    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the

  17. Stick-slip friction and ageing in Velcro®

    NASA Astrophysics Data System (ADS)

    Mariani, Lisa; Angiolillo, Paul

    2014-03-01

    The mesoscopic hook and loop system of Velcro® provides a model of stick-slip friction that exhibits behavior reminiscent of results seen in nanoscale model systems. The friction is linearly dependent on contact area and independent of driving velocity. Morever, there is a power law dependence of the friction on loading, with exponent between 1/4 and 1/3. Furthermore, the evolution of stick-slip to more smooth sliding, as controlled by contact area, is also noted. These transition predictions follow power law profiles, as well, with respect to increasing contact area. Thus, the hook-and-loop system shows to be a good mesoscale model system of stick-slip friction and provides a link between nanoscale and macroscale friction. Through an investigation into the ageing of the hooks in the system, the data suggests that the hooks age during the shearing regime and take a characteristic time to return to initial attachment strength. Additionally, there does not appear to be a significant affect of ageing on the kinetic friction experienced by the system.

  18. In-Vivo Human Skin to Textiles Friction Measurements

    NASA Astrophysics Data System (ADS)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  19. Dynamic measurements of gear tooth friction and load

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1991-01-01

    As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.

  20. Friction on a single MoS2 nanotube

    PubMed Central

    2012-01-01

    Friction was measured on a single molybdenum disulfide (MoS2) nanotube and on a single MoS2 nano-onion for the first time. We used atomic force microscopy (AFM) operating in ultra-high vacuum at room temperature. The average coefficient of friction between the AFM tip and MoS2 nanotubes was found considerably below the corresponding values obtained from an air-cleaved MoS2 single crystal or graphite. We revealed a nontrivial dependency of friction on interaction strength between the nanotube and the underlying substrate. Friction on detached or weakly supported nanotubes by the substrate was several times smaller (0.023 ± 0.005) than that on well-supported nanotubes (0.08 ± 0.02). We propose an explanation of a quarter of a century old phenomena of higher friction found for intracrystalline (0.06) than for intercrystalline slip (0.025) in MoS2. Friction test on a single MoS2 nano-onion revealed a combined gliding-rolling process. PACS, 62.20, 61.46.Fg, 68.37 Ps PMID:22490562

  1. Gimbaled-shoulder friction stir welding tool

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  2. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

  3. The limiting velocity effect in a magnetically held discharge with a moving wall

    NASA Astrophysics Data System (ADS)

    Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.

    1991-08-01

    Experiments are reported in which bodies with a mass of about 1 g were accelerated in nearly constant current regimes by using a discharge magnetically held against the channel wall, with maximum permissible accelerations of 3.5 x 10 exp 6 g and linear current densities of 60 kA/mm. A saturation of the velocity was observed at 4-6 mm/microsec. The velocity limit does not depend on the current intensity and duration or linear electrode inductance and is proportional to m exp -1/2; it is practically unaffected by the characteristics of body friction against the channel walls and by small deviations of the current pulse shape from its constant value. A simple empirical theory is proposed which provides an adequate description of the experimentally observed phenomena.

  4. Numerical Simulation of Flow Features and Energy Exchange Physics in Near-Wall Region with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lixiang; Wang, Wenquan; Guo, Yakun

    Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.

  5. Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls

    NASA Astrophysics Data System (ADS)

    Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew

    2017-11-01

    The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.

  6. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation

    PubMed Central

    Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2015-01-01

    Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics. PMID:25598161

  7. Change in Frictional Behavior during Olivine Serpentinization

    NASA Astrophysics Data System (ADS)

    Xing, T.; Zhu, W.; French, M. E.; Belzer, B.

    2017-12-01

    Hydration of mantle peridotites (serpentinization) is pervasive at plate boundaries. It is widely accepted that serpentinization is intrinsically linked to hydromechanical processes within the sub-seafloor, where the interplay between cracking, fluid supply and chemical reactions is responsible for a spectrum of fault slip, from earthquake swarms at the transform faults, to slow slip events at the subduction zone. Previous studies demonstrate that serpentine minerals can either promote slip or creep depend on many factors that include sliding velocity, temperature, pressure, interstitial fluids, etc. One missing link from the experimental investigation of serpentine to observations of tectonic faults is the extent of alteration necessary for changing the frictional behaviors. We quantify changes in frictional behavior due to serpentinization by conducting experiments after in-situ serpentinization of olivine gouge. In the sample configuration a layer of powder is sandwiched between porous sandstone blocks with 35° saw-cut surface. The starting material of fine-grained (63 120 µm) olivine powder is reacted with deionized water for 72 hours at 150°C before loading starts. Under the conventional triaxial configuration, the sample is stressed until sliding occurs within the gouge. A series of velocity-steps is then performed to measure the response of friction coefficient to variations of sliding velocity from which the rate-and-state parameters are deduced. For comparison, we measured the frictional behavior of unaltered olivine and pure serpentine gouges.Our results confirm that serpentinization causes reduced frictional strength and velocity weakening. In unaltered olivine gouge, an increase in frictional resistance with increasing sliding velocity is observed, whereas the serpentinized olivine and serpentine gouges favor velocity weakening behaviors at the same conditions. Furthermore, we observed that high pore pressures cause velocity weakening in olivine but

  8. Confinement-Dependent Friction in Peptide Bundles

    PubMed Central

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  9. Direct Measurements of Skin Friction

    NASA Technical Reports Server (NTRS)

    Dhawan, Satish

    1953-01-01

    A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.

  10. Historical overview of friction testing in Connecticut.

    DOT National Transportation Integrated Search

    2010-03-01

    A historical overview of pavement friction testing in Connecticut is presented. : Photographs of early pavement friction testers are provided, including vintage photos : of a skid trailer from a Federal Highway Administration (formally Bureau of Publ...

  11. Earthquake Resilient Tall Reinforced Concrete Buildings at Near-Fault Sites Using Base Isolation and Rocking Core Walls

    NASA Astrophysics Data System (ADS)

    Calugaru, Vladimir

    : two isolation systems (both implemented below a three-story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low-friction tension-resistant cross-linear bearings, lead-rubber bearings, and NFVDs. Finally, this dissertation investigates the seismic response of four 20-story buildings hypothetically located in the San Francisco Bay Area, 0.5 km from the San Andreas fault. One of the four studied buildings is fixed-base (FB), two are base-isolated (BI), and one uses a combination of base isolation and a rocking core wall (BIRW). Above the ground level, a reinforced concrete core wall provides the majority of the lateral force resistance in all four buildings. The FB and BI buildings satisfy requirements of ASCE 7-10. The BI and BIRW buildings use the same isolation system, which combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers. The rocking core-wall includes post-tensioning steel, buckling-restrained devices, and at its base is encased in a steel shell to maximize confinement of the concrete core. The total amount of longitudinal steel in the wall of the BIRW building is 0.71 to 0.87 times that used in the BI buildings. Response history two-dimensional analysis is performed, including the vertical components of excitation, for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). While the FB building at MCE level of shaking develops inelastic deformations and shear stresses in the wall that may correspond to irreparable damage, the BI and the BIRW buildings experience nominally elastic response of the wall, with floor accelerations and shear forces which are 0.36 to 0.55 times those experienced by the FB building. The response of the four buildings to two historical and two simulated

  12. Scale dependence of rock friction at high work rate.

    PubMed

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  13. Modeling of Instabilities and Self-organization at the Frictional Interface

    NASA Astrophysics Data System (ADS)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a

  14. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks.

    PubMed

    Lv, Qichao; Li, Zhaomin; Li, Binfei; Husein, Maen; Shi, Dashan; Zhang, Chao; Zhou, Tongke

    2017-07-11

    In this work, wall slipping behavior of foam with nanoparticle-armored bubbles was first studied in a capillary tube and the novel multiphase foam was characterized by a slipping law. A crack model with a cuboid geometry was then used to compare with the foam slipping results from the capillary tube and also to evaluate the flow resistance factor of the foam. The results showed that the slipping friction force F FR in the capillary tube significantly increased by addition of modified SiO 2 nanoparticles, and an appropriate power law exponents by fitting F FR vs. Capillary number, Ca, was 1/2. The modified nanoparticles at the surface were bridged together and formed a dense particle "armor" surrounding the bubble, and the interconnected structures of the "armor" with strong steric integrity made the surface solid-like, which was in agreement with the slip regime associated with rigid surface. Moreover, as confirmed by 3D microscopy, the roughness of the bubble surface increased with nanoparticle concentration, which in turn increased the slipping friction force. Compared with pure SDBS foam, SDBS/SiO 2 foam shows excellent stability and high flow resistance in visual crack. The resistance factor of SiO 2 /SDBS foam increased as the wall surface roughness increased in core cracks.

  15. Estimation of wheel-rail friction for vehicle certification

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Berg, Mats; Persson, Ingemar

    2014-08-01

    In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel-rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel-rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel-rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m-1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.

  16. Temperature dependence of internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna Á; Simon, Zoltán; Szöllosi, Gergely J; Gráf, László; Derényi, Imre; Malnasi-Csizmadia, Andras

    2011-08-01

    Our aim was to elucidate the physical background of internal friction of enzyme reactions by investigating the temperature dependence of internal viscosity. By rapid transient kinetic methods, we directly measured the rate constant of trypsin 4 activation, which is an interdomain conformational rearrangement, as a function of temperature and solvent viscosity. We found that the apparent internal viscosity shows an Arrhenius-like temperature dependence, which can be characterized by the activation energy of internal friction. Glycine and alanine mutations were introduced at a single position of the hinge of the interdomain region to evaluate how the flexibility of the hinge affects internal friction. We found that the apparent activation energies of the conformational change and the internal friction are interconvertible parameters depending on the protein flexibility. The more flexible a protein was, the greater proportion of the total activation energy of the reaction was observed as the apparent activation energy of internal friction. Based on the coupling of the internal and external movements of the protein during its conformational change, we constructed a model that quantitatively relates activation energy, internal friction, and protein flexibility.

  17. Psychophysical evaluation of a variable friction tactile interface

    NASA Astrophysics Data System (ADS)

    Samur, Evren; Colgate, J. Edward; Peshkin, Michael A.

    2009-02-01

    This study explores the haptic rendering capabilities of a variable friction tactile interface through psychophysical experiments. In order to obtain a deeper understanding of the sensory resolution associated with the Tactile Pattern Display (TPaD), friction discrimination experiments are conducted. During the experiments, subjects are asked to explore the glass surface of the TPaD using their bare index fingers, to feel the friction on the surface, and to compare the slipperiness of two stimuli, displayed in sequential order. The fingertip position data is collected by an infrared frame and normal and translational forces applied by the finger are measured by force sensors attached to the TPaD. The recorded data is used to calculate the coefficient of friction between the fingertip and the TPaD. The experiments determine the just noticeable difference (JND) of friction coefficient for humans interacting with the TPaD.

  18. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  19. Quantum friction on monoatomic layers and its classical analog

    NASA Astrophysics Data System (ADS)

    Maslovski, Stanislav I.; Silveirinha, Mário G.

    2013-07-01

    We consider the effect of quantum friction at zero absolute temperature resulting from polaritonic interactions in closely positioned two-dimensional arrays of polarizable atoms (e.g., graphene sheets) or thin dielectric sheets modeled as such arrays. The arrays move one with respect to another with a nonrelativistic velocity v≪c. We confirm that quantum friction is inevitably related to material dispersion, and that such friction vanishes in nondispersive media. In addition, we consider a classical analog of the quantum friction which allows us to establish a link between the phenomena of quantum friction and classical parametric generation. In particular, we demonstrate how the quasiparticle generation rate typically obtained from the quantum Fermi golden rule can be calculated classically.

  20. ABL and BAM Friction Analysis Comparison

    DOE PAGES

    Warner, Kirstin F.; Sandstrom, Mary M.; Brown, Geoffrey W.; ...

    2014-12-29

    Here, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here is a comparison of the Alleghany Ballistic Laboratory (ABL) friction data and Bundesanstalt fur Materialforschung und -prufung (BAM) friction data for 19 HEM and military standard explosives.

  1. Fault Frictional Stability in a Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the

  2. Prediction and validation of the energy dissipation of a friction damper

    NASA Astrophysics Data System (ADS)

    Lopez, I.; Nijmeijer, H.

    2009-12-01

    Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of mechanical systems. In the present work it is shown that the maximum energy dissipation and corresponding optimum friction force of friction dampers with stiff localized contacts and large relative displacements within the contact, can be determined with sufficient accuracy using a dry (Coulomb) friction model. Both the numerical calculations with more complex friction models and the experimental results in a laboratory test set-up show that these two quantities are relatively robust properties of a system with friction. The numerical calculations are performed with several friction models currently used in the literature. For the stick phase smooth approximations like viscous damping or the arctan function are considered but also the non-smooth switch friction model is used. For the slip phase several models of the Stribeck effect are used. The test set-up for the laboratory experiments consists of a mass sliding on parallel ball-bearings, where additional friction is created by a sledge attached to the mass, which is pre-stressed against a friction plate. The measured energy dissipation is in good agreement with the theoretical results for Coulomb friction.

  3. Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material

    NASA Astrophysics Data System (ADS)

    Ito, K.; Ujiie, K.; Kagi, H.

    2017-12-01

    Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.

  4. Ultralow Friction in a Superconducting Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  5. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  6. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  7. The friction and wear of TPS fibers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Wong, S.

    1987-01-01

    The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.

  8. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  9. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  10. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  11. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Menezes, Marcos; Almeida, Clara; de Cicco, Marcelo; Achete, Carlos; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas; Prioli, Rodrigo

    The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction coefficient of graphene is highly dependent on the scanning direction: Under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

  12. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

    NASA Astrophysics Data System (ADS)

    Almeida, Clara M.; Prioli, Rodrigo; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas S.; de Cicco, Marcelo; Menezes, Marcos G.; Achete, Carlos A.; Capaz, Rodrigo B.

    2016-08-01

    The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

  13. Coefficient of friction: tribological studies in man - an overview.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Compared to other studies of skin, relatively few studies have focused on the friction of skin. This work reviews existing skin friction, emphasizing test apparatuses and parameters that have added to information regarding the friction coefficient. This review also outlines what factors are important to consider in future friction studies. Past studies have utilized numerous designs for a test apparatus, including probe geometry and material, as well as various probe motions (rotational vs. linear). Most tests were performed in vivo; a few were performed in vitro and on porcine skin. Differences in probe material, geometry and smoothness affect friction coefficient measurements. An increase in skin hydration, either through water or through moisturizer application, increases its friction coefficient; a decrease in skin hydration, either through clinical dermatitis or through alcohol addition, decreases the coefficient. Differences are present between anatomical sites. Conflicting results are found regarding age and no differences are apparent as a result of gender or race. Skin friction appears to be dependent on several factors - such as age, anatomical site and skin hydration. The choice of the probe and the test apparatus also influence the measurement.

  14. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGFmore » 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder

  15. High friction interactive aircraft tire-runway systems

    NASA Technical Reports Server (NTRS)

    Clark, S. K.

    1974-01-01

    The principle of utilizing geometric interaction between runway asperities and tire pattern design is discussed, and a theoretical basis is presented for substantial enhancement of frictional effects by this process. Test data confirming this is given. First order analytical expressions are given for the increased friction coefficients and for the engagement distances required. High speed friction data on a 7.00 x 8 aircraft tire is presented confirming this. Example design geometries are shown for the tire tread groove pattern, and designs and materials are discussed for the asperity grid and its attachment system.

  16. The amazing cases of motion with friction

    NASA Astrophysics Data System (ADS)

    Grech, Dariusz; Mazur, Zygmunt

    2001-07-01

    The paper describes the behaviour of a simple mechanical system, which should help students (or teachers) to understand and clarify the importance of relative motion of two surfaces when kinetic friction is present. We show that despite the simplicity of this system, the peculiar interplay between friction forces, tension forces and gravity leads to physical solutions exceeding in many cases most intuitive expectations. These are discussed in detail. The problem is intended to be solved in a theoretical framework as an example, which helps to understand better the physical background of kinetic friction phenomena.

  17. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  18. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  19. Correlation between friction and thickness of vanadium-pentoxide nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-11-01

    We investigated the correlation between friction and thickness of vanadium-pentoxide nanowires (V2O5 NWs) by using friction/atomic force microscopy (FFM/AFM). We observed that the friction signal generally increased with thickness in the FFM/AFM image of the V2O5 NWs. We constructed a two-dimensional (2D) correlation distribution of the frictional force and the thickness of the V2O5 NWs and found that they are strongly correlated; i.e., thicker NWs had higher friction. We also generated a histogram for the correlation factors obtained from each distribution and found that the most probable factor is ~0.45. Furthermore, we found that the adhesion force between the tip and the V2O5 NWs was about -3 nN, and that the friction increased with increasing applied load for different thicknesses of V2O5 NWs. Our results provide an understanding of tribological and nanomechanical studies of various one-dimensional NWs for future fundamental research.

  20. Estimating Fault Friction From Seismic Signals in the Laboratory

    DOE PAGES

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; ...

    2018-01-29

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress andmore » frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. Finally, these results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.« less

  1. Dependence of the friction strengthening of graphene on velocity.

    PubMed

    Zeng, Xingzhong; Peng, Yitian; Liu, Lei; Lang, Haojie; Cao, Xing'an

    2018-01-25

    Graphene shows great potential applications as a solid lubricant in micro- and nanoelectromechanical systems (MEMS/NEMS). An atomic-scale friction strengthening effect in a few initial atomic friction periods usually occurred on few-layer graphene. Here, velocity dependent friction strengthening was observed in atomic-scale frictional behavior of graphene by atomic force microscopy (AFM). The degree of the friction strengthening decreases with the increase of velocity first and then reaches a plateau. This could be attributed to the interaction potential between the tip and graphene at high velocity which is weaker than that at low velocity, because the strong tip-graphene contact interface needs a longer time to evolve. The subatomic-scale stick-slip behavior in the conventional stick-slip motion supports the weak interaction between the tip and graphene at high velocity. These findings can provide a deeper understanding of the atomic-scale friction mechanism of graphene and other two-dimensional materials.

  2. Estimating Fault Friction From Seismic Signals in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress andmore » frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. Finally, these results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.« less

  3. Estimating Fault Friction From Seismic Signals in the Laboratory

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  4. The Indeterminate Case of Classical Static Friction When Coupled with Tension

    NASA Astrophysics Data System (ADS)

    Hahn, Kenneth D.; Russell, Jacob M.

    2018-02-01

    It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.

  5. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  6. High Friction Surface Treatments, Transportation Research Synthesis

    DOT National Transportation Integrated Search

    2018-03-01

    MnDOT and local transportation agencies in Minnesota are considering the use of a high friction surface treatment (HFST) as a safety strategy. HFST is used as a spot pavement surfacing treatment in locations with high friction demand (for example, cr...

  7. Fracture and Friction

    NASA Astrophysics Data System (ADS)

    Gerde, Eric; Marder, Michael

    2001-03-01

    We present an atomic scale description of a self-healing crack steadily traveling along a compressed interface between dissimilar solids. The motion is similar to the wrinkle-like Weertman pulse observed by Anooshehpoor in recent foam-rubber sliding experiments. In contrast to the theoretical models of Weertman and Adams, and the numerical calculations of Andrews and Ben-Zion, we do not employ a frictional constitutive law on the interface. Yet the restrictive conditions under which these cracks can propagate make the interface appear to have a static coefficient of friction. By analytically linking atomic and continuum fields, we are able to efficiently and exhaustively explore the conditions under which self-healing cracks can propagate. To a good approximation, they are sustainable only when the interfacial shear stresses are 0.4 times the compressive stresses.

  8. Evaluation of Wear Resistance of Friction Materials Prepared by Granulation.

    PubMed

    Ma, Yunhai; Liu, Yucheng; Menon, Carlo; Tong, Jin

    2015-10-21

    The tribological properties of friction materials prepared by hot-pressing pellets of different sizes were experimentally investigated. Friction and wear tests of the specimens were performed and morphological analysis was carried out by investigating images acquired with both scanning electron and confocal laser microscopes. The highest friction coefficient of friction materials was obtained with pellets having 1-5 mm size. The lowest wear rate was obtained with pellets having 8-10 mm size. Specimens processed by mixing pellets of different sizes had the highest density and the lowest roughness and were the least expensive to fabricate. The results show that granulation generally enabled increasing the friction coefficient, decreasing the wear rate, and reducing the number of defects on the surface of friction materials.

  9. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  10. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  11. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Friction behavior of a microstructured polymer surface inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  13. Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Agarwal, Karuna; Katz, Joseph

    2017-11-01

    On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.

  14. The coefficient of friction, particularly of ice

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2008-07-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.

  15. Composites materials for friction and braking application

    NASA Astrophysics Data System (ADS)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  16. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  17. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  18. Development of a rocking R/C shear wall system implementing repairable structural fuses

    NASA Astrophysics Data System (ADS)

    Parsafar, Saeed; Moghadam, Abdolreza S.

    2017-09-01

    In the last decades, the concept of earthquake resilient structural systems is becoming popular in which the rocking structure is considered as a viable option for buildings in regions of high seismicity. To this end, a novel wall-base connection based on the " repairable structure" approach is proposed and evaluated. The proposed system is made of several steel plates and high strength bolts act as a friction connection. To achieve the desired rocking motion in the proposed system, short-slotted holes are used in vertical directions for connecting the steel plates to the shear wall (SW). The experimental and numerical studies were performed using a series of displacement control quasi-static cyclic tests on a reference model and four different configurations of the proposed connection installed at the wall corners. The seismic response of the proposed system is compared to the conventional SW in terms of energy dissipation and damage accumulation. In terms of energy dissipation, the proposed system depicted better performance with 95% more energy dissipation capability compared to conventional SW. In terms of damage accumulation, the proposed SW system is nearly undamaged compared to the conventional wall system, which was severely damaged at the wall-base region. Overall, the introduced concept presents a feasible solution for R/C structures when a low-damage design is targeted, which can improve the seismic performance of the structural system significantly.

  19. Internal friction of single polypeptide chains at high stretch.

    PubMed

    Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B

    2008-01-01

    Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.

  20. Analysis of dry friction damping characteristics for short cylindrical shell structures

    NASA Astrophysics Data System (ADS)

    Wang, Nengmao; Wang, Yanrong

    2018-05-01

    An efficient mathematical model to describe the friction of short cylindrical shell structures with a dry friction damping sleeve is proposed. The frictional force in the circumference and axial direction is caused by the opposing bending strains at the interface. Slipping will occur at part region of the interface and the mathematic model of the slipping region is established. Ignoring the effect of contact stiffness on the vibration analysis, the friction energy dissipation capability of damping sleeve would be calculated. Structural vibration mode, positive pressure at the interface and vibration stress of the short cylindrical shell structures is analyzed as influence factors to the critical damping ratio. The results show that the circumferential friction energy dissipation is more sensitive to the number of nodal diameter, and the circumferential friction damping ratio increases rapidly with the number of nodal diameter. The slipping frictional force would increase along with the positive pressure, but the slipping region would decrease with it. The peak damping ratio keeps nearly constant. But the vibration stress corresponding to peak damping ratio would increases with the positive pressure. The dry friction damping ratio of damping sleeve contains the effect of frictional force in the circumference and axial direction, and the axial friction plays a major role.

  1. Measurement of rolling friction by a damped oscillator

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Buckley, D. H.

    1983-01-01

    An experimental method for measuring rolling friction is proposed. The method is mechanically simple. It is based on an oscillator in a uniform magnetic field and does not involve any mechanical forces except for the measured friction. The measured pickup voltage is Fourier analyzed and yields the friction spectral response. The proposed experiment is not tailored for a particular case. Instead, various modes of operation, suitable to different experimental conditions, are discussed.

  2. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; G. Smedley

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukeshamore » VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  3. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  4. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  5. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  6. The detrimental effect of friction on space microgravity robotics

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S.; Glosser, Gregory D.; Miller, Jeffrey H.; Rohn, Douglas

    1992-01-01

    The authors present an analysis of why control systems are ineffective in compensating for acceleration disturbances due to Coulomb friction. Linear arguments indicate that the effects of Coulomb friction on a body are most difficult to reject when the control actuator is separated from the body of compliance. The linear arguments were illustrated in a nonlinear simulation of optimal linear tracking control in the presence of nonlinear friction. The results of endpoint acceleration measurements for four robot designs are presented and are compared with simulation and to equivalent measurements on a human. It is concluded that Coulomb friction in common bearings and transmission induces unacceptable levels of endpoint acceleration, that these accelerations cannot be adequately attenuated by control, and that robots for microgravity work will require special design considerations for inherently low friction.

  7. Friction and Surface Damage of Several Corrosion-resistant Materials

    NASA Technical Reports Server (NTRS)

    Peterson, Marshall B; Johnson, Robert L

    1952-01-01

    Friction and surface damage of several materials that are resistant to corrosion due to liquid metals was studied in air. The values of kinetic friction coefficient at low sliding velocities and photomicrographs of surface damage were obtained. Appreciable surface damage was evident for all materials tested. The friction coefficients for the combinations of steel, stainless steel, and monel sliding against steel, stainless steel, nickel, Iconel, and Nichrome ranged from 0.55 for the monel-Inconel combination to 0.97 for the stainless-steel-nickel combination; for steel, stainless steel, monel, and tungsten carbide against zirconium, the friction coefficient was approximately 0.47. Lower coefficients of friction (0.20 to 0.60) and negligible surface failure at light loads were obtained with tungsten carbide when used in combination with various plate materials.

  8. Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer

    NASA Astrophysics Data System (ADS)

    Khalid, Asma; Khan, Ilyas; Khan, Arshad; Shafie, Sharidan

    2018-06-01

    The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD) flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement.

  9. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  10. Rubber friction: role of the flash temperature

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2006-08-01

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  11. Rubber friction: role of the flash temperature.

    PubMed

    Persson, B N J

    2006-08-16

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  12. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  13. Epidemics in markets with trade friction and imperfect transactions.

    PubMed

    Moslonka-Lefebvre, Mathieu; Monod, Hervé; Gilligan, Christopher A; Vergu, Elisabeta; Filipe, João A N

    2015-06-07

    Market trade-routes can support infectious-disease transmission, impacting biological populations and even disrupting trade that conduces the disease. Epidemiological models increasingly account for reductions in infectious contact, such as risk-aversion behaviour in response to pathogen outbreaks. However, responses in market dynamics clearly differ from simple risk aversion, as are driven by other motivation and conditioned by "friction" constraints (a term we borrow from labour economics). Consequently, the propagation of epidemics in markets of, for example livestock, is frictional due to time and cost limitations in the production and exchange of potentially infectious goods. Here we develop a coupled economic-epidemiological model where transient and long-term market dynamics are determined by trade friction and agent adaptation, and can influence disease transmission. The market model is parameterised from datasets on French cattle and pig exchange networks. We show that, when trade is the dominant route of transmission, market friction can be a significantly stronger determinant of epidemics than risk-aversion behaviour. In particular, there is a critical level of friction above which epidemics do not occur, which suggests some epidemics may not be sustained in highly frictional markets. In addition, friction may allow for greater delay in removal of infected agents that still mitigates the epidemic and its impacts. We suggest that policy for minimising contagion in markets could be adjusted to the level of market friction, by adjusting the urgency of intervention or by increasing friction through incentivisation of larger-volume less-frequent transactions that would have limited effect on overall trade flow. Our results are robust to model specificities and can hold in the presence of non-trade disease-transmission routes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Prediction of Very High Reynolds Number Compressible Skin Friction

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1998-01-01

    Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.

  15. Friction torque in thrust ball bearings grease lubricated

    NASA Astrophysics Data System (ADS)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  16. Friction behavior of ceramic injection-molded (CIM) brackets.

    PubMed

    Reimann, Susanne; Bourauel, Christoph; Weber, Anna; Dirk, Cornelius; Lietz, Thomas

    2016-07-01

    Bracket material, bracket design, archwire material, and ligature type are critical modifiers of friction behavior during archwire-guided movement of teeth. We designed this in vitro study to compare the friction losses of ceramic injection-molded (CIM) versus pressed-ceramic (PC) and metal injection-molded (MIM) brackets-used with different ligatures and archwires-during archwire-guided retraction of a canine. Nine bracket systems were compared, including five CIM (Clarity™ and Clarity™ ADVANCED, both by 3M Unitek; discovery(®) pearl by Dentaurum; Glam by Forestadent; InVu by TP Orthodontics), two PC (Inspire Ice by Ormco; Mystique by DENTSPLY GAC), and two MIM (discovery(®) and discovery(®) smart, both by Dentaurum) systems. All of these were combined with archwires made of either stainless steel or fiberglass-reinforced resin (remanium(®) ideal arch or Translucent pearl ideal arch, both by Dentaurum) and with elastic ligatures or uncoated or coated stainless steel (all by Dentaurum). Archwire-guided retraction of a canine was simulated with a force of 0.5 N in the orthodontic measurement and simulation system (OMSS). Friction loss was determined by subtracting the effective orthodontic forces from the applied forces. Based on five repeated measurements performed on five brackets each, weighted means were calculated and evaluated by analysis of variance and a Bonferroni post hoc test with a significance level of 0.05. Friction losses were significantly (p < 0.05) higher (58-79 versus 20-30 %) for the combinations involving the steel versus the resin archwire in conjunction with the elastic ligature. The uncoated steel ligatures were associated with the lowest friction losses with Clarity™ (13 %) and discovery(®) pearl (16 %) on the resin archwire and the highest friction losses with Clarity™ ADVANCED (53 %) and Mystique (63 %) on the steel archwire. The coated steel ligatures were associated with friction losses similar to the uncoated steel

  17. Linear Mechanisms and Pressure Fluctuations in Wall Turbulence

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan

    2014-11-01

    Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.

  18. Dynamics and locomotion of flexible foils in a frictional environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  19. Dynamics and locomotion of flexible foils in a frictional environment.

    PubMed

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N -periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  20. Thermodynamics of a Block Sliding across a Frictional Surface

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2007-01-01

    The following idealized problem is intended to illustrate some basic thermodynamic concepts involved in kinetic friction. A block of mass m is sliding on top of a frictional, flat-topped table of mass M. The table is magnetically levitated, so that it can move without thermal contact and friction across a horizontal floor. The table is initially…

  1. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  2. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  3. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  4. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  5. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.

    1976-01-01

    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  6. Mapping of power consumption and friction reduction in piezoelectrically-assisted ultrasonic lubrication

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Dapino, Marcelo J.

    2015-04-01

    Ultrasonic lubrication has been proven effective in reducing dynamic friction. This paper investigates the relationship between friction reduction, power consumption, linear velocity, and normal stress. A modified pin-on-disc tribometer was adopted as the experimental set-up, and a Labview system was utilized for signal generation and data acquisition. Friction reduction was quantified for 0.21 to 5.31 W of electric power, 50 to 200 mm/s of linear velocity, and 23 to 70 MPa of normal stress. Friction reduction near 100% can be achieved under certain conditions. Lower linear velocity and higher electric power result in greater friction reduction, while normal stress has little effect on friction reduction. Contour plots of friction reduction, power consumption, linear velocity, and normal stress were created. An efficiency coefficient was proposed to calculate power requirements for a certain friction reduction or reduced friction for a given electric power.

  7. Friction Stir Processing of Particle Reinforced Composite Materials

    PubMed Central

    Gan, Yong X.; Solomon, Daniel; Reinbolt, Michael

    2010-01-01

    The objective of this article is to provide a review of friction stir processing (FSP) technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  8. Solvent viscosity and friction in protein folding dynamics.

    PubMed

    Hagen, Stephen J

    2010-08-01

    The famous Kramers rate theory for diffusion-controlled reactions has been extended in numerous ways and successfully applied to many types of reactions. Its application to protein folding reactions has been of particular interest in recent years, as many researchers have performed experiments and simulations to test whether folding reactions are diffusion-controlled, whether the solvent is the source of the reaction friction, and whether the friction-dependence of folding rates generally can provide insight into folding dynamics. These experiments involve many practical difficulties, however. They have also produced some unexpected results. Here we briefly review the Kramers theory for reactions in the presence of strong friction and summarize some of the subtle problems that arise in the application of the theory to protein folding. We discuss how the results of these experiments ultimately point to a significant role for internal friction in protein folding dynamics. Studies of friction in protein folding, far from revealing any weakness in Kramers theory, may actually lead to new approaches for probing diffusional dynamics and energy landscapes in protein folding.

  9. Friction and wear life properties of polyimide thin films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1972-01-01

    A transition in the friction coefficient and wear life properties of Pyralin polyimide (PI) thin films was found to exist at a temperature between 25 deg and 100 deg C. Above this transition, PI thin films gave long wear lives and low friction coefficients. The presence of H2O in air improved the friction and wear life properties at 25 deg C; but at 100 deg C, H2O had a detrimental effect. At 100 deg C and above, a dry argon atmosphere gave lower friction coefficients and longer wear lives than did a dry air atmosphere.

  10. Frequency-dependent solvent friction and torsional damping in liquid 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    MacPhail, Richard A.; Monroe, Frances C.

    1991-04-01

    We have used Raman spectroscopy to study the torsional dynamics, rotational dynamics, and conformational solvation energy of liquid 1,2-difluoroethane. From the Raman intensities, we obtain Δ H(g-t) = -2.4±0.1 kcal/mol, indicating strong dipolar solvation of the gauche conformer. We analyze the Raman linewidths of the CCF bending bands to obtain the zero-frequency torsional damping coefficient or well friction for the gauche conformer, and from the linewidth of the torsion band we obtain the friction evaluated at the torsional frequency. The zero-frequency well friction shows deviations from hydrodynamic behavior reminiscent of those observed for barrier friction, whereas the high-frequency friction is considerably smaller in magnitude and independent of temperature and viscosity. The zero-frequency torsional friction correlates linearly with the rotational friction. It is argued that the small amplitude of the torsional fluctuations emphasizes the short distance, or high wavevector components of the solvent friction. Dielectric friction apparently does not contribute to the torsional friction at the observed frequencies.

  11. Steady sliding frictional contact problem for a 2d elastic half-space with a discontinuous friction coefficient and related stress singularities

    NASA Astrophysics Data System (ADS)

    Ballard, Patrick

    2016-12-01

    The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.

  12. Friction forces position the neural anlage

    PubMed Central

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-01-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. PMID:28346437

  13. Friction forces position the neural anlage.

    PubMed

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-04-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.

  14. Nanoscale friction properties of graphene and graphene oxide

    DOE PAGES

    Berman, Diana; Erdemir, Ali; Zinovev, Alexander V.; ...

    2015-04-03

    Achieving superlow friction and wear at the micro/nano-scales through the uses of solid and liquid lubricants may allow superior performance and long-lasting operations in a range of micromechanical system including micro-electro mechanical systems (MEMS). Previous studies have indicated that conventional solid lubricants such as highly ordered pyrolitic graphite (HOPG) can only afford low friction in humid environments at micro/macro scales; but, HOPG is not suitable for practical micro-scale applications. Here, we explored the nano-scale frictional properties of multi-layered graphene films as a potential solid lubricant for such applications. Atomic force microscopy (AFM) measurements have revealed that for high-purity multilayered graphenemore » (7–9 layers), the friction force is significantly lower than what can be achieved by the use of HOPG, regardless of the counterpart AFM tip material. We have demonstrated that the quality and purity of multilayered graphene plays an important role in reducing lateral forces, while oxidation of graphene results in dramatically increased friction values. Furthermore, for the first time, we demonstrated the possibility of achieving ultralow friction for CVD grown single layer graphene on silicon dioxide. This confirms that the deposition process insures a stronger adhesion to substrate and hence enables superior tribological performance than the previously reported mechanical exfoliation processes.« less

  15. Phononic Origins of Friction in Carbon Nanotube Oscillators.

    PubMed

    Prasad, Matukumilli V D; Bhattacharya, Baidurya

    2017-04-12

    Phononic coupling can have a significant role in friction between nanoscale surfaces. We find frictional dissipation per atom in carbon nanotube (CNT) oscillators to depend significantly on interface features such as contact area, commensurability, and by end-capping of the inner core. We perform large-scale phonon wavepacket MD simulations to study phonon coupling between a 250 nm long (10,10) outer tube and inner cores of four different geometries. Five different phonon polarizations known to have dominant roles in thermal transport are selected, and transmission coefficient plots for a range of phonon energies along with phonon scattering dynamics at specific energies are obtained. We find that the length of interface affects friction only through LA phonon scattering and has a significant nonlinear effect on total frictional force. Incommensurate contact does not always give rise to superlubricity: the net effect of two competing interaction mechanisms shown by longitudinal and transverse phonons decides the role of commensurability. Capping of the core has no effect on acoustic phonons but destroys the coherence of transverse optical phonons and creates diffusive scattering. In contrast, the twisting and radial breathing phonon modes have perfect transmission at all energies and can be deemed as the enablers of ultralow friction in CNT oscillators. Our work suggests that tuning of interface geometries can give rise to desirable friction properties in nanoscale devices.

  16. Frictional strength and heat flow of southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault

  17. Friction of atomically stepped surfaces

    NASA Astrophysics Data System (ADS)

    Dikken, R. J.; Thijsse, B. J.; Nicola, L.

    2017-03-01

    The friction behavior of atomically stepped metal surfaces under contact loading is studied using molecular dynamics simulations. While real rough metal surfaces involve roughness at multiple length scales, the focus of this paper is on understanding friction of the smallest scale of roughness: atomic steps. To this end, periodic stepped Al surfaces with different step geometry are brought into contact and sheared at room temperature. Contact stress that continuously tries to build up during loading, is released with fluctuating stress drops during sliding, according to the typical stick-slip behavior. Stress release occurs not only through local slip, but also by means of step motion. The steps move along the contact, concurrently resulting in normal migration of the contact. The direction of migration depends on the sign of the step, i.e., its orientation with respect to the shearing direction. If the steps are of equal sign, there is a net migration of the entire contact accompanied by significant vacancy generation at room temperature. The stick-slip behavior of the stepped contacts is found to have all the characteristic of a self-organized critical state, with statistics dictated by step density. For the studied step geometries, frictional sliding is found to involve significant atomic rearrangement through which the contact roughness is drastically changed. This leads for certain step configurations to a marked transition from jerky sliding motion to smooth sliding, making the final friction stress approximately similar to that of a flat contact.

  18. Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent

    2018-03-01

    In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

  19. Steady and transient sliding under rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block

  20. Friction management on Kansas Department of Transportation highways.

    DOT National Transportation Integrated Search

    2017-04-01

    The Federal Highway Administration (FHWA) estimates that about 70% of wet pavement crashes can be : prevented or minimized by improving pavement friction. High Friction Surface Treatment (HFST), a speciallydesigned : thin surface application of hard ...

  1. Shearing Low-frictional 3D Granular Materials

    NASA Astrophysics Data System (ADS)

    Chen, David; Zheng, Hu; Behringer, Robert

    Shear jamming occurs in frictional particles over a range of packing fractions, from random loose to random dense. Simulations show shear jamming for frictionless spheres, but over a vanishing range as the system size grows. We use packings of submerged and diffractive index-matched hydrogel particles to determine the shear-induced microscopic response of 3D, low-frictional granular systems near jamming, bridging the gap between frictionless and low friction packings. We visualize the particles by a laser scanning technique, and we track particle motion along with their interparticle contact forces from its 3D-reconstructions. NSF-DMF-1206351, NASA NNX15AD38G, William M. Keck Foundation, and DARPA.

  2. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less

  3. Kinetic theory for identical, frictional, nearly elastic disks

    NASA Astrophysics Data System (ADS)

    Yoon, David K.; Jenkins, James T.

    2005-08-01

    We develop kinetic theory for slightly frictional and nearly elastic disks. The tangential interaction is modeled by two parameters: a Coulomb friction coefficient and a tangential restitution coefficient. Assuming Maxwellian velocity distribution functions for both translational and rotational velocities, we derive exact expressions for the rates of dissipation of translational and rotational fluctuation energies per unit area. Setting the rotational dissipation rate to zero, as in a steady, homogeneous shearing flow, we find the ratio of the rotational temperature to the translational. In the case of small friction, this is used to determine an effective coefficient of normal restitution. In this way, the effects of small friction can be incorporated into the theory, thereby dispensing with the need to separately consider the complete balances for the momentum and the energy of the rotational motion.

  4. External Coulomb-Friction Damping For Hydrostatic Bearings

    NASA Technical Reports Server (NTRS)

    Buckmann, Paul S.

    1992-01-01

    External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.

  5. Studying the Frictional Force Directions via Bristles

    ERIC Educational Resources Information Center

    Prasitpong, S.; Chitaree, R.; Rakkapao, S.

    2010-01-01

    We present simple apparatus designed to help Thai high school students visualize the directions of frictional forces. Bristles of toothbrushes, paintbrushes and scrubbing brushes are used to demonstrate the frictional forces acting in a variety of situations. These demonstrations, when followed by discussion of free-body diagrams, were found to be…

  6. Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor)

    2002-01-01

    A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.

  7. Electrochemistry with double electrical layers in frictional interaction metal-polymer tribolink

    NASA Astrophysics Data System (ADS)

    Volchenko, N. A.; Krasin, P. S.; Volchenko, D. A.; Voznyi, A. V.

    2018-03-01

    The materials of the article illustrate the estimation of the energy loading of a metal friction element in a “metal-electrolyte-polymer” friction pair while forming various types of double electrical layers with the release of its thermal stabilization state. The rapidity of the processes of oxidation and reduction of the working surfaces of friction pairs during their electrothermomechanical frictional interaction leaves an imprint on all other additional processes that subsequently lead to the thermostabilizing and steady state of the metal friction element. Depending on the type of a brake device, the metal friction element has a different metal consumption and the temperature range varies. In addition, it is shown that the materials of the friction pair play an important role in the formation of electric tribosystems, namely: chemical elements that make up the materials, their valence, and the predominant type of intrinsic conductivity, as well as the sign of the electric charge of the friction pair elements that determines the laws of triboelectricity. Thus, an in-depth approach to the evaluation of the thermal stabilization state of a metal element in a “metal-electrolyte” friction pair is shown due to double electric layers that promote the emergence of current densities of different directions.

  8. The effect of ligation method on friction in sliding mechanics.

    PubMed

    Hain, Max; Dhopatkar, Ashish; Rock, Peter

    2003-04-01

    During orthodontic tooth movement with the preadjusted edgewise system, friction generated at the bracket/archwire interface tends to impede the desired movement. The method of ligation is an important contributor to this frictional force. This in vitro study investigated the effect of ligation method on friction and evaluated the efficacy of the new slick elastomeric modules from TP Orthodontics (La Porte, Ind), which are claimed to reduce friction at the module/wire interface. Slick modules were compared with regular nonslick modules, stainless steel ligatures, and the SPEED self-ligating bracket system (Strite Industries, Cambridge, Ontario, Canada). The effect of using slick modules with metal-reinforced ceramic (Clarity, 3M Unitek, Monrovia, Calif) and miniature brackets (Minitwin, 3M Unitek) was also examined. Results showed that, when considering tooth movement along a 0.019 x 0.025-in stainless steel archwire, saliva-lubricated slick modules can reduce static friction at the module/archwire interface by up to 60%, regardless of the bracket system. The SPEED brackets produced the lowest friction compared with the 3 other tested bracket systems when regular modules were used. The use of slick modules, however, with all of the ligated bracket types tested significantly reduced friction to below the values recorded in the SPEED groups. Loosely tied stainless steel ligatures were found to generate the least friction.

  9. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    PubMed Central

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  10. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  11. Friction measurements on InAs NWs by AFM manipulation

    NASA Astrophysics Data System (ADS)

    Pettersson, Hakan; Conache, Gabriela; Gray, Struan; Bordag, Michael; Ribayrol, Aline; Froberg, Linus; Samuelson, Lars; Montelius, Lars

    2008-03-01

    We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.

  12. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  13. Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar De Guzman; Rebello, N. Sanjay

    2017-08-01

    The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.

  14. Velocity and pressure fields associated with near-wall turbulence structures

    NASA Technical Reports Server (NTRS)

    Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John

    1990-01-01

    Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.

  15. Scalar model for frictional precursors dynamics

    PubMed Central

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  16. Scalar model for frictional precursors dynamics.

    PubMed

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-02-02

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective.

  17. Title: Experimental and analytical study of frictional anisotropy of nanotubes

    NASA Astrophysics Data System (ADS)

    Riedo, Elisa; Gao, Yang; Li, Tai-De; Chiu, Hsiang-Chih; Kim, Suenne; Klinke, Christian; Tosatti, Erio

    The frictional properties of Carbon and Boron Nitride nanotubes (NTs) are very important in a variety of applications, including composite materials, carbon fibers, and micro/nano-electromechanical systems. Atomic force microscopy (AFM) is a powerful tool to investigate with nanoscale resolution the frictional properties of individual NTs. Here, we report on an experimental study of the frictional properties of different types of supported nanotubes by AFM. We also propose a quantitative model to describe and then predict the frictional properties of nanotubes sliding on a substrate along (longitudinal friction) or perpendicular (transverse friction) their axis. This model provides a simple but general analytical relationship that well describes the acquired experimental data. As an example of potential applications, this experimental method combined with the proposed model can guide to design better NTs-ceramic composites, or to self-assemble the nanotubes on a surface in a given direction. M. Lucas et al., Nature Materials 8, 876-881 (2009).

  18. Sensitivity to friction for primary explosives.

    PubMed

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-04-30

    The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  20. Friction forces on atoms after acceleration

    DOE PAGES

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; ...

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v 4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v 3.« less