Quantifying wall turbulence via a symmetry approach: A Lie group theory
NASA Astrophysics Data System (ADS)
She, Zhen-Su; Chen, Xi; Hussain, Fazle
2017-11-01
We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.
Recovery after abdominal wall reconstruction.
Jensen, Kristian Kiim
2017-03-01
Incisional hernia is a common long-term complication to abdominal surgery, occurring in more than 20% of all patients. Some of these hernias become giant and affect patients in several ways. This patient group often experiences pain, decreased perceived body image, and loss of physical function, which results in a need for surgical repair of the giant hernia, known as abdominal wall reconstruction. In the current thesis, patients with a giant hernia were examined to achieve a better understanding of their physical and psychological function before and after abdominal wall reconstruction. Study I was a systematic review of the existing standardized methods for assessing quality of life after incisional hernia repair. After a systematic search in the electronic databases Embase and PubMed, a total of 26 studies using standardized measures for assessment of quality of life after incisional hernia repair were found. The most commonly used questionnaire was the generic Short-Form 36, which assesses overall health-related quality of life, addressing both physical and mental health. The second-most common questionnaire was the Carolinas Comfort Scale, which is a disease specific questionnaire addressing pain, movement limitation and mesh sensation in relation to a current or previous hernia. In total, eight different questionnaires were used at varying time points in the 26 studies. In conclusion, standardization of timing and method of quality of life assessment after incisional hernia repair was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery pathway at the Digestive Disease Center, Bispebjerg Hospital, and compared to a control group of 16 patients included retrospectively in the period immediately prior to the implementation of the pathway. The enhanced recovery after surgery pathway included preoperative high-dose steroid, daily assessment of revised discharge criteria and an aggressive approach to restore bowel function (chewing gum and enema on postoperative day two). Patients who followed the enhanced recovery after surgery pathway reported low scores of pain, nausea and fatigue, and were discharged significantly faster than patients in the control group. A non-significant increase in postoperative readmissions and reoperations was observed after the introduction of the enhanced recovery after surgery pathway. Study III and IV were prospective studies of patients undergoing abdominal wall reconstruction for giant incisional hernia, who were compared to a control group of patients with an intact abdominal wall undergoing colorectal resection for benign or low-grade malignant disease. Patients were examined within a week preoperatively and again one year postoperatively. In study III, the respiratory function and respiratory quality of life were assessed, and the results showed that patients with a giant incisional hernia had a decreased expiratory lung function (peak expiratory flow and maximal expiratory pressure) compared to the predicted values and also compared to patients in the control group. Both parameters increased significantly after abdominal wall reconstruction, while no other significant changes were found in objective or subjective measures at one-year follow-up in both groups of patients. Lastly, study IV examined the abdominal wall- and extremity function, as well as overall and disease specific quality of life. We found that patients with a giant hernia had a significantly decreased relative function of the abdominal wall compared to patients with an intact abdominal wall, and that this deficit was offset at one-year follow-up. Patients in the control group showed a postoperative decrease in abdominal wall function, while no changes were found in extremity function in either group. Patients reported improved quality of life after abdominal wall reconstruction. In summary, the studies in this thesis concluded that; standardization of patient-reported outcomes after incisional hernia repair is lacking; enhanced recovery after surgery is feasible: after abdominal wall reconstruction and seems to lower the time to discharge; patients with giant incisional hernia have compromised expiratory lung function and abdominal wall function, both of which are restored one year after abdominal wall reconstruction.
Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A.; Bar-On, Benny
2017-01-01
Background and Aims Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns (Asplenium nidus and Platycerium bifurcatum) and angiosperms (Arabidopsis thaliana and Commelina erecta) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata (Sorghum bicolor and Triticum aestivum). Key Results Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. PMID:28158449
Grenzebach, Ulrike H; Schnorbus, Ulrike; Büchner, Thomas; Busse, Holger; Stoll, Wolfgang
2003-05-01
Permanent visual damage due to an increase in volume of the orbital contents may be the result of the failure of conservative therapeutic concepts in the treatment of endocrine orbitopathy. Considerable progress has been achieved in developing successful orbital decompression techniques with regard to functional and cosmetic outcome. Decompression techniques with resection of the bony orbital walls are adequate tools in restoring visual acuity and reducing exophthalmus. A considerable degree of deterioration of motility disorders has been described in the literature depending on the techniques being used. The purpose of this study was to investigate whether a modified technique of 3-wall orbital decompression with preservation of a medial part of the periorbital tissue to support the medial rectus muscle, is able to reduce the postoperative risk of diplopia. A modified technique of orbital 3-wall decompression with resection of the medial orbital wall, the medial orbital floor and the floor of the frontal sinus has been used in patients with compressive optic neuropathy (n = 20) and for cosmetic reasons (n = 7) in cases of uni- or bilateral proptosis. Analysis of the results was performed concerning visual outcome, exophthalmus reduction and development of horizontal and vertical motility changes. In all cases of optic neuropathy improvement of visual function at an average of 4.63 +/- 4.5 lines could be achieved. Exophthalmus reduction was 3.2 +/- 2.4 mm in the functional group and 3.9 +/- 1.7 mm in the rehabilitative group. In this group motility of the medial rectus muscle remained unaffected except in one eye. In the functional group motility deterioration was observed in 62 %. The modified 3-wall decompression technique with preservation of a medial periorbital tissue strip is an adequate alternative technique in the therapy of optic neuropathy and exophthalmus reduction in endocrine orbitopathy with a low risk of postoperative motility disorders.
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; Marzoog, Thorria R.; Hadi, Iman H.; Jameel, Zainab N.
2018-05-01
In this work, new surfactants for Functionalization of Multi Walled Carbon Nanotubes (F-MWCNTs) with functional groups have been developed by using walnut oil, to improve their surface activity (solubility) and a create free reticules (functional groups) on it. MWCNTs were functionalized with walnut oil via ultra-sonication technique at 25°C for 1h with no drastic fragmentation of MWCNTs. Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and have been employed for the characterizations and analysis. In addition, the antibacterial activity of functionalized MWCNTs against Gram negative. Escherichia coli (E. coli) and Gram positive Staphylococcus aureus (S. aureus) bacteria are examined.
Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar
2017-04-01
Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
Huang, Ning; Chen, Xiong; Krishna, Rajamani; Jiang, Donglin
2015-01-01
Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel-wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel-wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high-performance gas storage and separation. PMID:25613010
Dunker, Susanne; Wilhelm, Christian
2018-01-01
Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.
Chen, Jing; Yang, Zhi-Gang; Xu, Hua-Yan; Shi, Ke; Guo, Ying-Kun
2018-02-15
To assess left ventricular myocardial deformation in patients with primary cardiac tumors. MRI was retrospectively performed in 61 patients, including 31 patients with primary cardiac tumors and 30 matched normal controls. Left ventricular strain and function parameters were then assessed by MRI-tissue tracking. Differences between the tumor group and controls, left and right heart tumor groups, left ventricular wall tumor and non-left ventricular wall tumor groups, and tumors with and without LV enlargement groups were assessed. Finally, the correlations among tumor diameter, myocardial strain, and LV function were analyzed. Left ventricular myocardial strain was milder for tumor group than for normal group. Peak circumferential strain (PCS) and its diastolic strain rate, longitudinal strains (PLS) and its diastolic strain rates, and peak radial systolic and diastolic velocities of the right heart tumor group were lower than those of the left heart tumor group (all p<0.050), but the peak radial systolic strain rate of the former was higher than that of the latter (p=0.017). The corresponding strains were lower in the left ventricular wall tumor groups than in the non-left ventricular wall tumor group (p<0.050). Peak radial systolic velocities were generally higher for tumors with LV enlargement than for tumors without LV enlargement (p<0.050). Peak radial strain, PCS, and PLS showed important correlations with the left ventricular ejection fraction (all p<0.050). MRI-tissue tracking is capable of quantitatively assessing left ventricular myocardial strain to reveal sub-clinical abnormalities of myocardial contractile function. Copyright © 2017 Elsevier B.V. All rights reserved.
The functionalization and characterization of multi-walled carbon nanotubes (MWCNTs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Mohd Pauzi; Center of Water Analysis and Research; Zulkepli, Siti Aminah
2015-09-25
Functionalization is the process of introducing chemical functional groups on the surface of the material. In this study, a multi-walled carbon nanotube (MWCNTs) was functionalized by oxidation treatment using concentrated nitric acid. The functionalized and pristine MWCNTs were analyzed by using Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The XRD patterns exhibit the graphitic properties for all samples. Besides, the XRD results also demonstrate that the percent of crystallinity of MWCNTs increases as the duration of acid treatment increases. The percent of crystallinity increases from 66% to 80% when the pristine MWCNT treated for 12 hours with additionalmore » 12 hours reflux process with nitric acid. The IR spectrum for the 12 hours-treated MWCNTs shows the formation of carboxyl functional group. Additional 12 hours reflux process with nitric acid on the 12 hours-treated MWCNTs have shown the loss of existing carboxyl group and only hydroxyl group formed.« less
Totally implanted ports: the trapezius approach in practice.
Hill, Steve
Implanted ports (IPs) are an essential device for many patients who require long-term vascular access. IPs offer some advantages over other central venous access devices, such as lifestyle, body image benefits and lower infection rates. A typical implantation site for a port is the anterior chest wall. For some patients with breast cancer who have metastatic chest wall disease this site may lead to problems with the function of the device if disease spreads to the port site. One option for this patient group is to place the implanted port over the trapezius muscle. This article discusses six patients, all of whom had metastatic breast cancer with some degree of subcutaneous disease on the anterior chest wall. Three patients had received trapezius port placements and three had anterior chest wall placements. A retrospective review of the patients' medical records was undertaken from the time of insertion until removal or until the patient died. The anterior chest wall group of patients had their devices in for an average of 368 days vs 214 in the trapezius group. The total complications were higher in the anterior chest wall group (7 vs 2 in the trapezius group). Disease spread to two of the devices in the anterior chest wall group meaning the devices could no longer be used. The trapezius approach appears to be a safe and a reliable form of vascular access and may offer fewer complications than the traditional method of anterior chest wall placement when standard anterior chest wall approach is not suitable.
Molecular regulation of plant cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1998-01-01
Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.
Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A
2013-06-25
Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myneni, Satish C. B.; Fein, Jeremy; Mishra, Bhoopesh
Bacteria are ubiquitous in a wide-range of low temperature aqueous systems, and can strongly affect the distribution and transport of metals and radionuclides in the environment. However, the role of metal adsorption onto bacteria, via the reactive cell wall functional groups, has been largely overlooked. Previous macroscale metal sorption, and XAS studies have shown that carboxyl and phosphoryl functional groups to be the important metal binding groups on bacterial cell walls and the sulfhydryl groups were not considered. The goal of our investigation was to evaluate the density of the sulfhydryl sites on different bacterial cell membranes that are commonmore » to soil systems, the binding affinities of these reactive groups towards Hg, and how this binding modifies the speciation of Hg in the natural waters.« less
Kemal, Hatice S; Kayikcioglu, Meral; Kultursay, Hakan; Vuran, Ozcan; Nalbantgil, Sanem; Mogulkoc, Nesrin; Can, Levent
2017-04-01
Right ventricular (RV) dysfunction is a major determinant of outcomes in patients with pulmonary arterial hypertension (PAH), although the optimal measure of RV function is poorly defined. We evaluated the utility of RV free-wall speckle tracking strain as an assessment tool for RV function in patients with PAH who are already under specific treatment compared with conventional echocardiographic parameters and investigated the relationship of RV free-wall strain with clinical hemodynamic parameters of RV performance. Right ventricular free-wall strain was evaluated in 92 patients (Group-1 and Group-4 pulmonary hypertension) who were on PAH-specific treatment for at least 3 months. Right atrial (RA) area, RV FAC, TAPSE, tricuspid S, functional class, 6-minute walking distance, and NT-proBNP were studied. The mean duration of follow-up was 222±133 days. All patients were under PAH-specific treatment, and mean RV free-wall strain was -13.16±6.3%. RV free-wall strain correlated well with functional class (r=.312, P=.01), NT-proBNP (r=.423, P=.0001), RA area (r=.427, P=.0001), FAC (r=-.637, P=.0001), TAPSE (r=-.524, P=.0001), tricuspid S (r=-.450, P=.0001), 6-minute walking distance (r=-.333, P=.002). RV free-wall strain significantly correlated with all follow-up adverse events, death, and clinical right heart failure (RHF) (P=.04, P=.03, P=.02, respectively). According to the receiver operator characteristic analysis, the cutoff value for RV free-wall strain for the development of clinical RHF was -12.5% (sensitivity: 71%, specificity: 67%) and for all cardiovascular adverse events (death included) was -12.5% (sensitivity: 54%, specificity: 64%). Assessment of RV free-wall strain is a feasible, easy-to-perform method and may be used as a predictor of RHF, clinical deterioration, and mortality in patients already under PAH-specific treatment. © 2017, Wiley Periodicals, Inc.
Sukovatykh, B S; Valuĭskaia, N M; Pravednikova, N V; Netiaga, A A; Kas'ianova, M A; Zhukovskiĭ, V A
2011-01-01
An analysis of complex examination and treatment of 151 patients after planned and performed surgical interventions on organs of the retroperitoneal space was made. The patients were divided into 4 groups. The first group (of comparison) included 46 patients who were treated by lumbotomy for different diseases of organs of the urinary system. In 35 patients of the second group (prophylactics) the indications were determined and in 20 patients preventive endoprosthesis of the lateral abdominal wall using polypropylene endoprosthesis was fulfilled. Herniotomy with plasty of the lateral abdominal wall using local tissues was fulfilled in 30 patients. Prosthesing hernioplasty of the lateral abdominal wall was fulfilled in 40 patients of the main group. It was found that preventive endoprosthesis of the lateral abdominal wall allowed prevention of progressing anatomo-functional i/isufficiency and the appearance of postoperative hernias. The application of polypropylene endoprosthesis for the treatment of postoperative hernias allows obtaining 36.4% more good results as compared with the control group, 21.7% decreased number of satisfactory results and no recurrent hernias.
Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L
2017-05-01
Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2016-05-03
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeenk, Robert Jan, E-mail: r.smeenk@rther.umcn.nl; Hopman, Wim P.M.; Hoffmann, Aswin L.
2012-01-01
Purpose: To explore the influence of functional changes and dosimetric parameters on specific incontinence-related anorectal complaints after prostate external beam radiotherapy and to estimate dose-effect relations for the anal wall and rectal wall. Methods and Materials: Sixty patients, irradiated for localized prostate cancer, underwent anorectal manometry and barostat measurements to evaluate anal pressures, rectal capacity, and rectal sensory functions. In addition, 30 untreated men were analyzed as a control group. In 36 irradiated patients, the anal wall and rectal wall were retrospectively delineated on planning computed tomography scans, and dosimetric parameters were retrieved from the treatment plans. Functional and dosimetricmore » parameters were compared between patients with and without complaints, focusing on urgency, incontinence, and frequency. Results: After external beam radiotherapy, reduced anal pressures and tolerated rectal volumes were observed, irrespective of complaints. Patients with urgency and/or incontinence showed significantly lower anal resting pressures (mean 38 and 39 vs. 49 and 50 mm Hg) and lower tolerated rectal pressures (mean 28 and 28 vs. 33 and 34 mm Hg), compared to patients without these complaints. In patients with frequency, almost all rectal parameters were reduced. Several dosimetric parameters to the anal wall and rectal wall were predictive for urgency (e.g., anal D{sub mean}>38Gy), whereas some anal wall parameters correlated to incontinence and no dose-effect relation for frequency was found. Conclusions: Anorectal function deteriorates after external beam radiotherapy. Different incontinence-related complaints show specific anorectal dysfunctions, suggesting different anatomic and pathophysiologic substrates: urgency and incontinence seem to originate from both anal wall and rectal wall, whereas frequency seems associated with rectal wall dysfunction. Also, dose-effect relations differed between these complaints. This implies that anal wall and rectal wall should be considered separate organs in radiotherapy planning.« less
Sun, Yuliang; Juzenas, Kevin
2017-01-01
Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585
Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.
Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B
2005-06-01
This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.
Demirçelik, Muhammed Bora; Çetin, Mustafa; Çiçekcioğlu, Hülya; Uçar, Özgül; Duran, Mustafa
2014-05-01
We aimed to investigate effects of left ventricular diastolic dysfunction on left atrial appendage functions, spontaneous echo contrast and thrombus formation in patients with nonvalvular atrial fibrillation. In 58 patients with chronic nonvalvular atrial fibrilation and preserved left ventricular systolic function, left atrial appendage functions, left atrial spontaneous echo contrast grading and left ventricular diastolic functions were evaluated using transthoracic and transoesophageal echocardiogram. Patients divided in two groups: Group D (n=30): Patients with diastolic dysfunction, Group N (n=28): Patients without diastolic dysfunction. Categorical variables in two groups were evaluated with Pearson's chi-square or Fisher's exact test. The significance of the lineer correlation between the degree of spontaneous echo contrast (SEC) and clinical measurements was evaluated with Spearman's correlation analysis. Peak pulmonary vein D velocity of the Group D was significantly higher than the Group N (p=0.006). However, left atrial appendage emptying velocity, left atrial appendage lateral wall velocity, peak pulmonary vein S, pulmonary vein S/D ratio were found to be significantly lower in Group D (p=0.028, p<0.001, p<0.001; p<0.001). Statistically significant negative correlation was found between SEC in left atrium and left atrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities respectively (r=-0.438, r=-0.328, r=-0.233, r=-0.447). Left atrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities were significantly lower in SEC 2-3-4 than SEC 1 (p=0.003, p=0.029, p<0.001, p=0.002). In patients with nonvalvular atrial fibrillation and preserved left ventricular ejection fraction, left atrial appendage functions are decreased in patients with left ventricular diastolic dysfunction. Left ventricular diastolic dysfunction may constitute a potential risk for formation of thrombus and stroke.
Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li
2017-09-01
The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis <50%) and thirty gender- and age-matched patients (control group) without coronary artery stenosis according to the coronary angiogram results were prospectively enrolled. All the patients had no left ventricular regional wall motion abnormality in two-dimensional echocardiography at rest and exercise stress. There was no significant difference in the 16 segmental systolic peak AS at rest between two groups. After exercise stress, the peak systolic AS rest-stress at mid anterior wall (-7.00%±10.90% vs 2.80%±23.69%) and mid anterolateral wall (-4.40%±18.81% vs 8.80%±19.16%) were decreased, while increased at basal inferolateral wall (14.00%±19.27% vs -5.60%±15.94%) in case group compared with control group (P<.05). In patients with mild single vessel coronary artery stenosis, the area strain was decreased at involved segments, while compensatory increased at noninvolved segments after exercise stress. Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.
Hydrostatic pulpal pressure effect upon microleakage.
Roberts, Howard W; Pashley, David H
2012-02-01
To evaluate if hydrostatic pulpal pressure plays a role in reducing microleakage. Uniform Class 5 preparations were accomplished on human molars with one margin on root dentin. Prepared teeth were randomly placed in one of three groups: (1) Hydrostatic pressure simulation at 20 cm pulpal pressure; (2) Hydrostatic pressure simulation but no pressure applied (positive control); and (3) Conventional microleakage method. Specimens were subjected to 24 hours methylene blue dye, sectioned, and microleakage assessed as a function of microleakage length versus entire preparation wall length using a traveling microscope. Hydrostatic pressure specimens demonstrated less gingival wall microleakage than the control groups while no difference was found between occlusal preparation walls.
Liu, Liping; Li, Guangrun; Sun, Yuemei; Li, Jian; Tang, Ningbo; Dong, Liang
2015-03-01
Little was known about Airway wall thickness of asthma patients with different allergen allergy. So we explored the possible difference of Airway wall thickness of asthma patients mono-sensitized to weed pollen or HDM using high-resolution computed tomography. 85 severe asthma patients were divided into weed pollen group and HDM group according to relevant allergen. 20 healthy donors served as controls. Airway wall area, percentage wall area and luminal area at the trunk of the apical bronchus of the right upper lobe were quantified using HRCT and compared. The values of pulmonary function were assessed as well. There were differences between HDM group and weed pollen group in WA/BSA,WA% and FEF25-75% pred, and no significant difference in FEV1%pred, FEV1/FVC and LA/BSA. In weed pollen group, WA/BSA was observed to correlate with the duration of rhinitis, whereas in HDM group, WA/BSA and LA/BSA was observed to correlate with the duration of asthma. In weed pollen group, FEV1/FVC showed a weak but significant negative correlation with WA%, but in HDM group FEV1/FVC showed a significant positive correlation with WA% and a statistical negative correlation with LA/BSA. FEV1/FVC and FEF25-75% pred were higher and WA/BSA and LA/BSA were lower in healthy control group than asthma group. FEV1%pred and WA% was no significant difference between asthma patients and healthy subjects. There are differences between HDM mono-sensitized subjects and weed pollen mono-sensitized subjects, not only in airway wall thickness, but also small airway obstruction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid
2012-04-01
Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.
Carotid artery wall shear stress is independently correlated with renal function in the elderly.
Guo, Yuqi; Wei, Fang; Wang, Juan; Zhao, Yingxin; Sun, Shangwen; Zhang, Hua; Liu, Zhendong
2018-01-12
Hemodynamic has increasingly been regarded as an important factor of renal function. However, the relationship between carotid artery wall shear stress (WSS) and renal function is not clarified. To investigate the relationship between carotid WSS and renal function, we recruited 761 older subjects aged 60 years and over from community-dwelling in the Shandong area, China. Carotid WSS, endothelial function, and estimated glomerular filtration rate (eGFR) were assessed in all subjects. Subjects were grouped by the interquartile of the carotid artery mean WSS. We found that the eGFRs derived from serum creatinine and/or cystatin C using three CKD-EPI equations were significantly higher and albumin/creatinine ratio was lower in the higher interquartile groups than in the lower interquartile groups ( P <0.05). The mean WSS was independently correlated with eGFRs even after adjustment for confounders. Similar findings were found between carotid artery peak WSS and eGFRs and albumin/creatinine ratio. In addition, we found that endothelial function was strongly related to carotid WSS and renal function after adjustment for confounders. In conclusion, there is an independent correlation of carotid WSS with renal function in the elderly. The local rheologic forces may play an important role in renal function changing. The correlation may be mediated by regulation of endothelial function.
Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne
2009-01-01
No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall thickness had statistically significantly more crack formation after TCML than the group with 2.0 mm of remaining cusp wall thickness for CI. The remaining cusp wall thickness of non-functional cusps of adhesively bonded restorations (especially for CI) should have a thickness of at least 2.0 mm to avoid cracks and marginal deficiency at the dentin/LA interface.
Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun
2011-07-01
A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.
D'Andrea, Antonello; Stanziola, Anna; Di Palma, Enza; Martino, Maria; D'Alto, Michele; Dellegrottaglie, Santo; Cocchia, Rosangela; Riegler, Lucia; Betancourt Cordido, Meredyth Vanessa; Lanza, Maurizia; Maglione, Marco; Diana, Veronica; Calabrò, Raffaele; Russo, Maria Giovanna; Vannan, Mani; Bossone, Eduardo
2016-01-01
To elucidate right ventricular (RV) function in patients with idiopathic pulmonary fibrosis (IPF) with and without pulmonary hypertension (PH) and its relation to other features of the disease. Clinical evaluation, standard Doppler echo, Doppler myocardial imaging (DMI), and 2D strain echocardiography (STE) of RV septal and lateral walls were performed in 52 IPF patients (66.5 ± 8.5 years; 27 males) and in 45 age- and sex-comparable controls using a commercial US system (MyLab Alpha, Esaote). Pulmonary artery mean pressure (mPAP) was estimated by standard echo Doppler. RV global longitudinal strain (RV GLS) was calculated by averaging RV local strains. The IPF patients were divided into 2 groups by noninvasive assessment of PH: no PH (mPAP<25 mmHg; 36 pts) and PH (mPAP ≥25 mmHg; 16 pts). Left ventricular diameters and ejection fraction were comparable between controls and IPF, while GLS was impaired in IPF (P < 0.01). RV end-diastolic diameters, wall thickness andmPAP were increased in IPF patients with PH. In addition, pulsed DMI detected in PH IPF impaired myocardial RV early diastolic (Em) peak velocity. Also peak systolic RV strain was reduced in basal and middle RV lateral free walls in IPF, as well as RV GLS (P < 0.0001). The impairment in RV wall strain was more evident when comparing controls with the no PH group than comparing the no PH group with the PH group. By multivariate analysis, independent association of RV strain with both six-minute walking test distance (P < 0.001), mPAP (P < 0.0001), as well as with forced vital capacity (FVC) % (P < 0.005) in IPF patients were observed. Impaired RV diastolic and systolic myocardial function were present even in IPF patients without PH, which indicates an early impact on RV function and structure in patients with IPF. © 2015, Wiley Periodicals, Inc.
The effects of the Cox maze procedure on atrial function
Voeller, Rochus K.; Zierer, Andreas; Lall, Shelly C.; Sakamoto, Shun–ichiro; Chang, Nai–Lun; Schuessler, Richard B.; Moon, Marc R.; Damiano, Ralph J.
2010-01-01
Objective The effects of the Cox maze procedure on atrial function remain poorly defined. The purpose of this study was to investigate the effects of a modified Cox maze procedure on left and right atrial function in a porcine model. Methods After cardiac magnetic resonance imaging, 6 pigs underwent pericardiotomy (sham group), and 6 pigs underwent a modified Cox maze procedure (maze group) with bipolar radiofrequency ablation. The maze group had preablation and immediate postablation left and right atrial pressure–volume relations measured with conductance catheters. All pigs survived for 30 days. Magnetic resonance imaging was then repeated for both groups, and conductance catheter measurements were repeated for the right atrium in the maze group. Results Both groups had significantly higher left atrial volumes postoperatively. Magnetic resonance imaging–derived reservoir and booster pump functional parameters were reduced postoperatively for both groups, but there was no difference in these parameters between the groups. The maze group had significantly higher reduction in the medial and lateral left atrial wall contraction postoperatively. There was no change in immediate left atrial elastance or in the early and 30-day right atrial elastance after the Cox maze procedure. Although the initial left atrial stiffness increased after ablation, right atrial diastolic stiffness did not change initially or at 30 days. Conclusions Performing a pericardiotomy alone had a significant effect on atrial function that can be quantified by means of magnetic resonance imaging. The effects of the Cox maze procedure on left atrial function could only be detected by analyzing segmental wall motion. Understanding the precise physiologic effects of the Cox maze procedure on atrial function will help in developing less-damaging lesion sets for the surgical treatment of atrial fibrillation. PMID:19026812
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Zhao, Zhi-Min; Zhang, Guan-Xin
The aortic medial degeneration is the key histopathologic feature of Thoracic aortic dissection (TAD). The aim of this study was to identify the change of autophagic activity in the aortic wall during TAD development, and to explore the roles of autophagy on regulating functional properties of smooth muscle cells (SMCs). Firstly, compared with control group (n = 11), the increased expression of autophagic markers Beclin1 and LC3 was detected in the aortic wall from TAD group (n = 23) by immunochemistry and western blot. We found that more autophagic vacuoles were present in the aortic wall of TAD patients using Transmission electron microscopy. Next,more » autophagic activity was examined in AD mice model established by β-aminopropionitrile fumarate (BAPN) and angiotensin II. Immunochemistry proved that autophagic activity was dynamically changed during AD development. Beclin1 and LC3 were detected up-regulated in the aortic wall in the second week after BAPN feeding, earlier than the fragmentation or loss of elastic fibers. When AD occurred in the 4th week, the expression of Beclin1 and LC3 began to decrease, but still higher than the control. Furthermore, autophagy was found to inhibit starvation-induced apoptosis of SMCs. Meanwhile, blockage of autophagy could suppress PDGF-induced phenotypic switch of SMCs. Taken together, autophagic activity was dynamically changed in the aortic wall during TAD development. The abnormal autophagy could regulate the functional properties of aortic SMCs, which might be the potential pathogenesis of TAD. - Highlights: • Autophagy is up-regulated in aorta wall from thoracic aorta dissection (TAD) patient. • Autophagic activity is dynamically changed during TAD development. • Dynamically change of autophagy is associated with pathological process of TAD. • Autophagy participate in the development of TAD by regulating function of SMCs.« less
Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.
NASA Astrophysics Data System (ADS)
Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.
2016-05-01
Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.
LiveWall Operational Evaluation: Seattle Law Enforcement Pilot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Jonathan L.; Burtner, Edwin R.; Stein, Steven L.
2013-10-01
The LiveWall concept envisioned as an outgrowth of the Precision Information Environment (PIE) project allows communications between separate groups using interactive video, audio, and a shared desktop environment; this allows everyone to participate and collaborate in real time, regardless of location. The LiveWall concept provides a virtual window to other locations, where all parties can interact and collaboratively work with each other. This functionality is intended to improve multi-site coordination amongst emergency operations centers (EOC), field operations sites and across organizations and jurisdictions to accommodate communications during routine and emergency events. For the initial LiveWall operational evaluation PNNL partnered withmore » the Seattle Police Department (SPD). This partnership allowed for the creation of an excellent LiveWall test bed specific to law enforcement. This partnership made it possible to test the LiveWall concept with scenarios involving the many facets of the law enforcement work done by SPD. PNNL and SPD agreed that integrating the systems into operations for a real event would be the best test of the technology and give SPD staff greater visibility into the functionality and benefits offered by the LiveWall concept.« less
Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.
Feng, Tao; Hoagland, David A; Russell, Thomas P
2014-02-04
The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented.
Cinar, Bahar; Sert, Ahmet; Gokmen, Zeynel; Aypar, Ebru; Aslan, Eyup; Odabas, Dursun
2015-02-01
Previous studies have demonstrated structural changes in the heart and cardiac dysfunction in foetuses with intrauterine growth restriction. There are no available data that evaluated left ventricular dimensions and mass in neonates with symmetric and asymmetric intrauterine growth restriction. Therefore, we aimed to evaluate left ventricular dimensions, systolic functions, and mass in neonates with symmetric and asymmetric intrauterine growth restriction. We also assessed associated maternal risk factors, and compared results with healthy appropriate for gestational age neonates. In all, 62 asymmetric intrauterine growth restriction neonates, 39 symmetric intrauterine growth restriction neonates, and 50 healthy appropriate for gestational age neonates were evaluated by transthoracic echocardiography. The asymmetric intrauterine growth restriction group had significantly lower left ventricular end-systolic and end-diastolic diameters and posterior wall diameter in systole and diastole than the control group. The symmetric intrauterine growth restriction group had significantly lower left ventricular end-diastolic diameter than the control group. All left ventricular dimensions were lower in the asymmetric intrauterine growth restriction neonates compared with symmetric intrauterine growth restriction neonates (p>0.05), but not statistically significant except left ventricular posterior wall diameter in diastole (3.08±0.83 mm versus 3.54 ±0.72 mm) (p<0.05). Both symmetric and asymmetric intrauterine growth restriction groups had significantly lower relative posterior wall thickness (0.54±0.19 versus 0.48±0.13 versus 0.8±0.12), left ventricular mass (9.8±4.3 g versus 8.9±3.4 g versus 22.2±5.7 g), and left ventricular mass index (63.6±29.1 g/m2 versus 54.5±24.4 g/m2 versus 109±28.8 g/m2) when compared with the control group. Our study has demonstrated that although neonates with both symmetric and asymmetric intrauterine growth restriction had lower left ventricular dimensions, relative posterior wall thickness, left ventricular mass, and mass index when compared with appropriate for gestational age neonates, left ventricular systolic functions were found to be preserved. In our study, low socio-economic level, short maternal stature, and low maternal weight were found to be risk factors to develop intrauterine growth restriction. To our knowledge, our study is the first to evaluate left ventricular dimensions, wall thicknesses, mass, and systolic functions in neonates with intrauterine growth restriction and compare results with respect to asymmetric or symmetric subgroups.
ACID FUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES ENHANCE CARDIAC ISCHEMIC/REPERFUSIOIN INJURY
Engineered carbon nanotubes are being intensively developed for wide applications. Because of their unique light properties, nanotubes can impose some potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their sur...
Tang, Hua; Xu, Zhifei; Qin, Xiong; Wu, Bin; Wu, Lihui; Zhao, XueWei; Li, Yulin
2009-07-01
Extensive chest wall defect reconstruction remains a challenging problem for surgeons. In the past several years, little progress has been made in this area. In this study, a biodegradable polydioxanone (PDO) mesh and demineralized bone matrix (DBM) seeded with osteogenically induced bone marrow stromal cells (BMSCs) were used to reconstruct a 6 cm x 5.5 cm chest wall defect. Four experimental groups were evaluated (n=6 per group): polydioxanone (PDO) mesh/DBMs/BMSCs group, polydioxanone (PDO) mesh/DBMs group, polydioxanone (PDO) mesh group, and a blank group (no materials) in a canine model. All the animals survived except those in the blank group. In all groups receiving biomaterial implants, the polydioxanone (PDO) mesh completely degraded at 24 weeks and was replaced by fibrous tissue with thickness close to that of the normal intercostal tissue (P>0.05). In the polydioxanone (PDO) mesh/DBMs/BMSCs group, new bone formation and bone-union were observed by radiographic and histological examination. More importantly, the reconstructed rib could maintain its original radian and achieve satisfactory biomechanics close to normal ribs in terms of bending stress (P>0.05). However, in the other two groups, fibrous tissue was observed in the defect and junctions, and the reconstructed ribs were easily distorted under an outer force. Based on these results, a surgical approach utilizing biodegradable polydioxanone (PDO) mesh in combination with DBMs and BMSCs could repair the chest wall defect not only in function but also in structure.
Pore surface engineering in covalent organic frameworks.
Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin
2011-11-15
Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.
A chemical equilibrium model for metal adsorption onto bacterial surfaces
NASA Astrophysics Data System (ADS)
Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.
1997-08-01
This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.
Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.
Taghizadeh, Hadi; Tafazzoli-Shadpour, Mohammad
2017-01-01
Arterial wall tissues are sensitive to their mechanical surroundings and remodel their structure and mechanical properties when subjected to mechanical stimuli such as increased arterial pressure. Such remodeling is evident in hypertension and aging. Aging is characterized by stiffening of the artery wall which is assigned to disturbed elastin function and increased collagen content. To better understand and provide new insight on microstructural changes induced by aging, the lamellar model of the aortic media was utilized to characterize and compare wall structure and mechanical behavior of the young and old human thoracic aortic samples. Such model regards arterial media as two sets of alternating concentric layers, namely sheets of elastin and interlamellar layers. Histological and biaxial tests were performed and microstructural features and stress-strain curves of media were evaluated in young and old age groups. Then using optimization algorithms and hyperelastic constitutive equations the stress-strain curves of layers were evaluated for both age groups. Results indicated slight elevation in the volume fraction of interlamellar layer among old subjects most probably due to age related collagen deposition. Aging indicated substantial stiffening of interlamellar layers accompanied by noticeable softening of elastic lamellae. The general significant stiffening of old samples were attributed to both increase of volume fraction of interlamellar layers and earlier recruitment of collagen fibers during load bearing due to functional loss of elastin within wall lamellae. Mechanical characterization of lamellar structure of wall media is beneficial in study of arterial remodeling in response to alternated mechanical environment in aging and clinical conditions through coupling of wall microstructure and mechanical behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heteroblastic Development of Transfer Cells Is Controlled by the microRNA miR156/SPL Module1[OPEN
Greaves, Teighan
2017-01-01
We report that wall ingrowth deposition in phloem parenchyma (PP) transfer cells (TCs) in leaf veins of Arabidopsis (Arabidopsis thaliana) represents a novel trait of heteroblasty. Development of PP TCs involves extensive deposition of wall ingrowths adjacent to cells of the sieve element/companion cell complex. These PP TCs potentially facilitate phloem loading by enhancing efflux of symplasmic Suc for subsequent active uptake into cells of the sieve element/companion cell complex. PP TCs with extensive wall ingrowths are ubiquitous in mature cotyledons and juvenile leaves, but dramatically less so in mature adult leaves, an observation consistent with PP TC development reflecting vegetative phase change (VPC) in Arabidopsis. Consistent with this conclusion, the abundance of PP TCs with extensive wall ingrowths varied across rosette development in three ecotypes displaying differing durations of juvenile phase, and extensive deposition of wall ingrowths was observed in rejuvenated leaves following prolonged defoliation. PP TC development across juvenile, transition, and adult leaves correlated positively with levels of miR156, a major regulator of VPC in plants, and corresponding changes in wall ingrowth deposition were observed when miR156 was overexpressed or its activity suppressed by target mimicry. Analysis of plants carrying miR156-resistant forms of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes showed that wall ingrowth deposition was increased in SPL9-group but not SPL3-group genes, indicating that SPL9-group genes may function as negative regulators of wall ingrowth deposition in PP TCs. Collectively, our results point to wall ingrowth deposition in PP TCs being under control of the genetic program regulating VPC. PMID:28082719
NASA Astrophysics Data System (ADS)
Amiri, Rahebeh; Rasouli, Sousan; Ghasemi, Alireza; Eghbali, Babak; Mohammadi, Soutodeh
2014-05-01
Systematic studies on the covalent functionalization of multi-walled carbon nanotubes were performed by a series of azo molecules with different substituents. For this investigation, 4-substituted diazonium reagents have been used in the reaction with the functionalized multi-walled carbon nanotubes. We analyzed the effect of the substituted groups on the diazo component affinity in the grafting. Also, the structural differences of the final products were evaluated by visual dispersion test, UV-Vis absorption. Fourier transforms infrared, Raman, and several complementary techniques (scanning electron microscopy, thermal gravimetric analysis, and colorimetry test). Nuclear magnetic resonance spectroscopy has been used to confirm the allylic protons attached to the surface of carbon nanotubes after functionalization.
Effects of thyroid cystectomy for primary hyperparathyroidism on immune function.
Yin, Xiangdang; Hu, Liang; Wang, Xiaochun
2016-01-01
To evaluate the effects of thyroid cystectomy for primary hyperparathyroidism on immune function. Ninety-two patients with parathyroid cysts complicated with primary hyperparathyroidism were randomly divided into a treatment group and a control group (n=46). The treatment group received endoscopic thyroidectomy through the anterior chest wall via the areolar approach, and the control group was treated with conventional open thyroidectomy. The two groups had similar immune function indices as well as thyroid hormone, serum calcium and phosphorus levels before surgery (P>0.05). After surgery, FT3 and FT4 levels significantly increased in both groups, whereas that of TSH significantly decreased (P<0.05). The levels of the two groups differed significantly on the postoperative 5th day (P<0.05). NK%, CD3+%, CD4+% and CD8+%, which significantly fluctuated on the postoperative 1st day in both groups (P<0.05), were basically recovered on the postoperative 5th day in the treatment group that had significantly different outcomes from those of the control group (P<0.05). On the postoperative 1st and 5th days, the treatment group had significantly lower serum calcium level and significantly higher serum phosphorus level than those of the control group (P<0.05). The surgeries were successfully performed for all patients. During three months of follow-up, the treatment group was significantly less prone to complications such as surgical site infection, recurrent laryngeal nerve injury, parathyroid crisis and hoarseness than the control group (P<0.05). For treatment of primary hyperparathyroidism, endoscopic thyroidectomy through the anterior chest wall via the areolar approach decreased the incidence rate of complications, as well as promoted the recovery of serum calcium and phosphorous levels, probably by only mildly affecting immune function and thyroid hormone levels.
Ruseva, Boryana; Atanasova, Milena; Tsvetkova, Reni; Betova, Tatyana; Mollova, Margarita; Alexandrova, Margarita; Laleva, Pavlina; Dimitrova, Aneliya
2015-01-01
Selenium (Se) is an exogenous antioxidant that performs its function via the expression of selenoproteins. The aim of this study was to explore the effect of varying Se intake on the redox status of the aortic wall in young spontaneously hypertensive rats (SHR). Sixteen male Wistar Kyoto (WKY) rats and nineteen male SHR, 16-week-old, were tested after being given diets with different Se content for eight weeks. They were divided into 4 groups: control groups of WKY NSe and SHR NSe on an adequate Se diet and groups of WKY HSe and SHR HSe that received Se supplementation. The Se nutritional status was assessed by measuring whole blood glutathione peroxidase-1 (GPx-1) activity. Serum concentration of lipid hydroperoxides and serum level of antibodies against advanced glycation end products (anti-AGEs abs) were determined. Expression of GPx-1 and endothelial nitric oxide synthase (eNOS) were examined in aortic wall. Se supplementation significantly increased GPx-1 activity of whole blood and in the aortas of WKY and SHR. Decreased lipid peroxidation level, eNOS-3 expression in the aortic wall, and serum level of anti-AGEs abs were found in SHR HSe compared with SHR NSe. In conclusion, Se supplementation improved the redox status of the aortic wall in young SHR. PMID:26473024
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
NASA Technical Reports Server (NTRS)
Koide, M.; Nagatsu, M.; Zile, M. R.; Hamawaki, M.; Swindle, M. M.; Keech, G.; DeFreyte, G.; Tagawa, H.; Cooper, G. 4th; Carabello, B. A.
1997-01-01
BACKGROUND: When a pressure overload is placed on the left ventricle, some patients develop relatively modest hypertrophy whereas others develop extensive hypertrophy. Likewise, the occurrence of contractile dysfunction also is variable. The cause of this heterogeneity is not well understood. METHODS AND RESULTS: We recently developed a model of gradual proximal aortic constriction in the adult canine that mimicked the heterogeneity of the hypertrophic response seen in humans. We hypothesized that differences in outcome were related to differences present before banding. Fifteen animals were studied initially. Ten developed left ventricular dysfunction (dys group). Five dogs maintained normal function (nl group). At baseline, the nl group had a lower mean systolic wall stress (96 +/- 9 kdyne/cm2; dys group, 156 +/- 7 kdyne/cm2; P < .0002) and greater relative left ventricular mass (left ventricular weight [g]/body wt [kg], 5.1 +/- 0.36; dys group, 3.9 +/- 0.26; P < .02). On the basis of differences in mean systolic wall stress at baseline, we predicted outcome in the next 28 dogs by using a cutoff of 115 kdyne/cm2. Eighteen of 20 dogs with baseline mean systolic stress > 115 kdyne/cm2 developed dysfunction whereas 6 of 8 dogs with resting stress < or = 115 kdyne/cm2 maintained normal function. CONCLUSIONS: We conclude that this canine model mimicked the heterogeneous hypertrophic response seen in humans. In the group that eventually developed dysfunction there was less cardiac mass despite 60% higher wall stress at baseline, suggesting a different set point for regulating myocardial growth in the two groups.
Nagel, Deborah; Gehlen, Heidrun
2013-01-01
The aim of this study was to evaluate to what extent the myocardial function in horses (measured by PW-tissue Doppler = PW-TDI) is affected during a sedation with romifidine (0.04 mg/kg, i. v.), particularly in case of an accompanying heart disease. Based on an echo- and electrocardiographic examination, a total of 45 horses was subdivided into group 1 (no heart disease), group 2 (heart disease without increased heart dimensions) and group 3 (heart disease with increased heart dimensions). Heart rate (HF), M-mode- (FS%) and TDI-measurements were performed before and after the application of romifidine. The velocities of the radial myocardial movement in the left and right ventricular wall were evaluated using PW-TDI. The TDI parameters included the isovolumic contraction (IVC), the systolic (S) as well as the early (E) and late diastolic maximal velocity (A). After the application of romifidine HF and FS were significantly decreased in all groups. IVC, S and E, determined by PW-TDI were also significantly decreased in both ventricular walls. A significant difference between groups was shown for the isovolumic contraction in the left ventricular wall. This was observed distinctly more in horses with heart disease and increased heart dimensions compared to horses with heart disease but no increased heart dimensions. The results of the study indicate that PW-TDI is a suitable imaging technique to analyse the effects of romifidine on equine myocardial function. The major percentage change after application of romifidine for TDI measurements compared to the M-mode parameters indicate that the parameter myocardial velocity measured with TDI appeared to be the most sensitive parameter to document romifidine--induced changes on the myocardium.
Heare, Austin; Kramer, Nicholas; Salib, Christopher; Mauffrey, Cyril
2017-07-01
Despite overall improved outcomes with open reduction and internal fixation of acetabular fractures, posterior wall fractures show disproportionately poor results. The effect of weight bearing on outcomes of fracture management has been investigated in many lower extremity fractures, but evidence-based recommendations in posterior wall acetabular fractures are lacking. The authors systematically reviewed the current literature to determine if a difference in outcome exists between early and late postoperative weight-bearing protocols for surgically managed posterior wall acetabular fractures. PubMed and MEDLINE were searched for posterior wall acetabular fracture studies that included weight-bearing protocols and Merle d'Aubigné functional scores. Twelve studies were identified. Each study was classified as either early or late weight bearing. Early weight bearing was defined as full, unrestricted weight bearing at or before 12 weeks postoperatively. Late weight bearing was defined as restricted weight bearing for greater than 12 weeks postoperatively. The 2 categories were then compared by functional score using a 2-tailed t test and by complication rate using chi-square analysis. Six studies (152 fractures) were placed in the early weight-bearing category. Six studies (302 fractures) were placed in the late weight-bearing category. No significant difference in Merle d'Aubigné functional scores was found between the 2 groups. No difference was found regarding heterotopic ossification, avascular necrosis, superficial infections, total infections, or osteoarthritis. This systematic review found no difference in functional outcome scores or complication rates between early and late weight-bearing protocols for surgically treated posterior wall fractures. [Orthopedics. 2017: 40(4):e652-e657.]. Copyright 2017, SLACK Incorporated.
Combellas, I; Puigbo, J J; Acquatella, H; Tortoledo, F; Gomez, J R
1985-01-01
To study left ventricular diastolic function in Chagas's disease, simultaneous echocardiograms, phonocardiograms, and apexcardiograms were recorded in 20 asymptomatic patients with positive Chagas's serology and no signs of heart disease (group 1), 12 with Chagas's heart disease and symptoms of ventricular arrhythmia but no heart failure (group 2), 20 normal subjects (group 3), and 12 patients with left ventricular hypertrophy (group 4). The recordings were digitised to determine left ventricular isovolumic relaxation time and the rate and duration of left ventricular cavity dimension increase and wall thinning. In groups 1 and 2 (a) aortic valve closure (A2) and mitral valve opening were significantly delayed relative to minimum dimension and were associated with prolonged isovolumic relaxation, (b) left ventricular cavity size was abnormally increased during isovolumic relaxation and abnormally reduced during isovolumic contraction, and (c) peak rate of posterior wall thinning and dimension increase were significantly reduced and duration of posterior wall thinning was significantly prolonged; both of these abnormalities occurred at the onset of diastolic filling. These abnormalities were more pronounced in group 2 and were accompanied by an increase in the height of the apexcardiogram "a" wave, an indication of pronounced atrial systole secondary to end diastolic filling impairment due to reduced left ventricular distensibility. Group 4, which had an established pattern of diastolic abnormalities, showed changes similar to those in group 2; however, the delay in aortic valve closure (A2) and in mitral valve opening and the degree of dimension change were greater in the latter group. Thus early isovolumic relaxation and left ventricular abnormalities were pronounced in the patients with Chagas's heart disease and may precede systolic compromise, which may become apparent in later stages of the disease. The digitised method is valuable in the early detection of myocardial damage. Images PMID:3155954
Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A
2017-06-01
Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.
Arslan, Derya; Oran, Bulent; Vatansev, Husamettin; Cimen, Derya; Guvenc, Osman
2013-11-01
The aim of this study was to examine whether asymmetric dimethylarginine (ADMA) concentrations are associated with ventricular function in the infants of mothers with gestational diabetes. Twenty-five term newborns of mothers with gestational diabetes and term newborns as the control group (n = 25) with normal general health status were evaluated at two time points, on the 3rd postnatal day, at the 3th months. Echocardiographic evaluations of all participants were performed and ADMA level was measured. In the first analysis, 10 patients (40%) had a septal thickness of 6 mm or more, indicating septal hypertrophy. In the first and second analysis, interventricular septum end-diastolic thickness (IVSTd) and the left ventricular posterior wall end-diastolic thickness (LVPWTd) in the patient group were higher than the control group. ADMA level measurement was not significantly different between the groups the first and second analysis. There was no difference in ADMA levels of the group with septal thickness ≥6 mm and the group with <6 mm. Newborn cardiac wall thickness was increased in pregnancies complicated by Gestational diabetes mellitus (GDM), and the increase was independent of glycemic control. Diastolic newborn cardiac function was impaired in GDM, and this effect was independent of septal thickness. We found no association between ADMA levels and cardiac systolic, diastolic functions or septum thickness in the GDM newborn.
Surface functionalized mesoporous material and method of making same
Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA; Fryxell, Glen E [Kennewick, WA
2001-12-04
According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surface(s) of the pore(s).
Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.
2014-01-01
Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268
Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R
2014-11-01
Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).
Bassand, J P; Bernard, Y; Lusson, J R; Machecourt, J; Cassagnes, J; Borel, E
1990-03-01
A total of 231 patients suffering from a first acute myocardial infarction were randomly allocated within 4 hours following the onset of symptoms either to anistreplase or anisoylated plasminogen streptokinase activator complex (APSAC), 30 U over 5 minutes, or to conventional heparin therapy, 5000 IU in bolus injection. Heparin was reintroduced in both groups 4 h after initial therapy at a dosage of 500 IU/kg per day. A total of 112 patients received anistreplase and 119 received heparin within a mean period of 188 +/- 62 min following the onset of symptoms. Infarct size was estimated from single photon emission computerized tomography and expressed in percentage of the total myocardial volume. The patency rate of the infarct-related artery was 77% in the anistreplase group and 36% in the heparin group (p less than 0.001). Left ventricular ejection fraction determined from contrast angiography was significantly higher in the anistreplase group than in the heparin group (6 absolute percentage point difference). A significant 31% reduction in infarct size was found in the anistreplase group (33% for the anterior wall infarction subgroup [p less than 0.05] and 16% for the inferior wall infarction subgroup, NS). A close inverse relation was found between the values of left ventricular ejection fraction and infarct size (r = -.73, p less than 0.01). In conclusion, early infusion of anistreplase in acute myocardial infarction produced a high early patency rate, a significant limitation of infarct size, and a significant preservation of left ventricular systolic function, mainly in the anterior wall infarctions.
Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.
2014-01-01
Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791
A unified wall function for compressible turbulence modelling
NASA Astrophysics Data System (ADS)
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
[Gallbladder contractility in children with functional abdominal pain or irritable bowel syndrome].
Iwańczak, Franciszek; Siedlecka-Dawidko, Jolanta; Iwanczak, Barbara
2013-07-01
III Rome Criteria of functional gastrointestinal disorders in children, distinguished the disturbances with abdominal pain, to which irritable bowel syndrome, functional abdominal pains, functional dyspepsia and abdominal migraine were included. THE AIM OF THE STUDY was sonographic assessment of the gallbladder and its contractility in functional abdominal pain and irritable bowel syndrome in children. The study comprised 96 children aged 6 to 18 years, 59 girls and 37 boys. Depending on diagnosis, the children were divided into three groups. 38 children with functional abdominal pain constituted the first group, 26 children with irritable bowel syndrome were included to the second group, the third group consisted of 32 healthy children (control group). Diagnosis of functional abdominal pain and irritable bowel syndrome was made based on the III Rome Criteria. In irritable bowel syndrome both forms with diarrhea (13) and with constipation (13) were observed. Anatomy and contractility of the gallbladder were assessed by ultrasound examination. The presence of septum, wall thickness, thick bile, vesicle volume in fasting state and 30th and 60th minute after test meal were taken into consideration. Test meal comprised about 15% of caloric requirement of moderate metabolism. Children with bile stones and organic diseases were excluded from the study. Thickened vesicle wall and thick bile were present more frequently in children with irritable bowel syndrome and functional abdominal pain than in control group (p < 0.02). Fasting vesicle volume was significantly greater in children with functional abdominal pain than in irritable bowel syndrome and control group (p = 0.003, p = 0.05). Vesicle contractility after test meal was greatest in children with functional abdominal pain. Evaluation of diminished (smaller than 30%) and enlarged (greater then 80%) gallbladder contractility at 30th and 60th minute after test meal demonstrated disturbances of contractility in children with irritable bowel syndrome and functional abdominal pain. In children with functional abdominal pain and irritable bowel syndrome disturbances of gallbladder anatomy, fasting volume and contractility after test meal were demonstrated. The observed disturbances require further studies for explanation of their role in functional gastrointestinal disturbances with abdominal pain in children.
Chronic abdominal wall pain misdiagnosed as functional abdominal pain.
van Assen, Tijmen; de Jager-Kievit, Jenneke W A J; Scheltinga, Marc R; Roumen, Rudi M H
2013-01-01
The abdominal wall is often neglected as a cause of chronic abdominal pain. The aim of this study was to identify chronic abdominal wall pain syndromes, such as anterior cutaneous nerve entrapment syndrome (ACNES), in a patient population diagnosed with functional abdominal pain, including irritable bowel syndrome, using a validated 18-item questionnaire as an identification tool. In this cross-sectional analysis, 4 Dutch primary care practices employing physicians who were unaware of the existence of ACNES were selected. A total of 535 patients ≥18 years old who were registered with a functional abdominal pain diagnosis were approached when they were symptomatic to complete the questionnaire (maximum 18 points). Responders who scored at least the 10-point cutoff value (sensitivity, 0.94; specificity, 0.92) underwent a diagnostic evaluation to establish their final diagnosis. The main outcome was the presence and prevalence of ACNES in a group of symptomatic patients diagnosed with functional abdominal pain. Of 535 patients, 304 (57%) responded; 167 subjects (31%) recently reporting symptoms completed the questionnaire. Of 23 patients who scored above the 10-point cutoff value, 18 were available for a diagnostic evaluation. In half of these subjects (n = 9) functional abdominal pain (including IBS) was confirmed. However, the other 9 patients were suffering from abdominal wall pain syndrome, 6 of whom were diagnosed with ACNES (3.6% prevalence rate of symptomatic subjects; 95% confidence interval, 1.7-7.6), whereas the remaining 3 harbored a painful lipoma, an abdominal herniation, and a painful scar. A clinically relevant portion of patients previously diagnosed with functional abdominal pain syndrome in a primary care environment suffers from an abdominal wall pain syndrome such as ACNES.
Triazine-Carbon Nanotubes: New Platforms for the Design of Flavin Receptors.
Lucío, María Isabel; Pichler, Federica; Ramírez, José Ramón; de la Hoz, Antonio; Sánchez-Migallón, Ana; Hadad, Caroline; Quintana, Mildred; Giulani, Angela; Bracamonte, Maria Victoria; Fierro, Jose L G; Tavagnacco, Claudio; Herrero, María Antonia; Prato, Maurizio; Vázquez, Ester
2016-06-20
The synthesis of functionalised carbon nanotubes as receptors for riboflavin (RBF) is reported. Carbon nanotubes, both single-walled and multi-walled, have been functionalised with 1,3,5-triazines and p-tolyl chains by aryl radical addition under microwave irradiation and the derivatives have been fully characterised by using a range of techniques. The interactions between riboflavin and the hybrids were analysed by using fluorescence and UV/Vis spectroscopic techniques. The results show that the attached functional groups minimise the π-π stacking interactions between riboflavin and the nanotube walls. Comparison of p-tolyl groups with the triazine groups shows that the latter have stronger interactions with riboflavin because of the presence of hydrogen bonds. Moreover, the triazine derivatives follow the Stern-Volmer relationship and show a high association constant with riboflavin. In this way, artificial receptors in catalytic processes could be designed through specific control of the interaction between functionalised carbon nanotubes and riboflavin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-03-01
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.
Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups
NASA Astrophysics Data System (ADS)
Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming
2013-07-01
In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.
Modification of conductive polyaniline with carbon nanomaterials
NASA Astrophysics Data System (ADS)
Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani
2014-08-01
The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.
Functional group interactions with single wall carbon NT studied by ab-initio calculations
NASA Astrophysics Data System (ADS)
Cicero, Giancarlo
2005-03-01
With the goal of designing functionalized nanotube materials, recent AFM measurements have succeeded in determining the force between individual chemical groups an single-wall carbon nanotubes (SWCNT) [1]. In order to rationalize and understand these experimental results, we have performed Density Functional Theory calculations for a number of structural arrangements of model tips functionalized with the same groups as those used experimentally. Our calculations include full geometry optimization of the composite SWCNT/tip system as well as `pulling-out' simulations to compute interaction forces. We considered (14x0), semi- conducting tubes, and AFM tips where modeled by a SiH3CH2-X molecule, with X- representing -CN, -CH3, -NH2 or -CH2OCH2. As X is varied, computed forces reproduce the same trend as that observed experimentally when n-doped SWCNT are considered; significantly different trends are observed for neutral and p-doped tubes. We propose that the polar solvent present in the experimental setup may be responsible for the n-doping of the nanotube suggested by our calculations. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. [1] M.C. LeMieux et al, preprint
Generalized Wall Function for Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Chen, Kuo-Huey
2000-01-01
A generalized wall function was proposed by Shih et al., (1999). It accounts the effect of pressure gradients on the flow near the wall. Theory shows that the effect of pressure gradients on the flow in the inertial sublayer is very significant and the standard wall function should be replaced by a generalized wall function. Since the theory is also valid for boundary layer flows toward separation, the generalized wall function may be applied to complex turbulent flows with acceleration, deceleration, separation and recirculation. This paper is to verify the generalized wall function with numerical simulations for boundary layer flows with various adverse and favorable pressure gradients, including flows about to separate. Furthermore, a general procedure of implementation of the generalized wall function for National Combustion Code (NCC) is described, it can be applied to both structured and unstructured CFD codes.
NASA Astrophysics Data System (ADS)
Yoosefian, Mehdi; Etminan, Nazanin
2016-07-01
In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.
NASA Astrophysics Data System (ADS)
Liu, J.; Wu, S. P.
2017-04-01
Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.
Ma, Zhengwei; Zhang, Xizhong
2003-07-01
To investigate the long-term effect of dietary fiber complex (DFC) on intestinal structure and function in hypercholesterolemic rats, 60 healthy SD rats were feed with food rich in lipids and hypercholesterolemic animal models were established. The animals were randomly divided into 5 groups. Rats were fed DFC at levels of 4%, 16%, or 64% for three month in the experimental groups. Wheat fiber was used in the hypercholesterolemic control (HC) group and rats feeding on normal food were used as normal control (NC). Morphology of the small intestine, reticum and caecum were observed by light and electron microscope examination. Intestinal function was measured physically. The results showed that (1) compared with NC group, fecal weight was significantly raised in DFC group of higher level (group D and E, P < 0.05); (2) the weights of small intestine wall in D and E group were significantly higher than those of NC and HC group and weights of caecum wall in E group were significantly higher than those of NC and HC group (P < 0.05); (3) widen villi and thickened muscle layer of small intestine were observed in DFC group of higher level. No demonstrable changes in reticulum morphology in any group of animals were found under the observation of light microscope (4) microvilla becoming short and/or absent, mitochondria swelling, impairment of the integrity of the cristae were commonly observed in DFC groups. Conclusions Long-term intake of DFC composed mainly of Hippophae rhamnoides L, Bran, oat bran and guar gum at higher levels might induce some morphological changes of intestine and caecum. Therefore, DFC might be used at low level as an effective cholesterol-lowering agent.
Structure and dynamics of water inside endohedrally functionalized carbon nanotubes.
Paul, Sanjib; Abi, T G; Taraphder, Srabani
2014-05-14
We have carried out classical molecular dynamics simulations on the formation of extended water chains inside single-walled carbon nanotubes (SWCNTs) in water in the presence of selected functional groups covalently attached to the inner wall of the tube. Analogues of polar amino acid sidechains have been chosen to carry out the endohedral functionalization of SWCNTs. Our results show a spontaneous and asymmetric filling of the nanotube with dynamical water chains in all the cases studied. The presence of Asp- and Glu-like sidechains is found to result in the formation of well-ordered water chains across the tube having the maximum number of water molecules being retained within the core with the largest residence times. The presence of methyl or methylene groups along the suspended chain is observed to disrupt the formation of water chains with higher length and/or longer residence times. The importance of hydrogen bonding in forming these water chains is assessed in terms of the relaxations of different hydrogen bond correlation functions. For a given dimension of the hydrophobic nanopore, we thus obtain a scale comparing the ability of carboxylic, alcohol, and imidazole groups in controlling the structure and dynamics of water in it. Our results also suggest that SWCNTs of varying lengths, endohedrally functionalized with Asp- and Glu-like sidechains, may be used as design templates in CNT-based water storage devices.
Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan
2009-06-01
Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.
Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders
2017-02-01
To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca 2+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH 2 ) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope.
Siegel, Sara D; Reardon, Melissa E; Ton-That, Hung
2017-01-01
In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.
Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids
Jin, Haibao; Ding, Yan-Huai; Wang, Mingming; ...
2018-01-18
Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less
Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Haibao; Ding, Yan-Huai; Wang, Mingming
Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less
Nguyen, Hong Phuong; Jeong, Ho Young; Jeon, Seung Ho; Kim, Donghyuk; Lee, Chanhui
2017-01-01
Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamel, Maedeh; Raissi, Heidar; Morsali, Ali; Shahabi, Mahnaz
2018-03-01
In the present work, we have studied the drug delivery performance of the functionalized (5, 5) single-walled carbon nanotube with a carboxylic acid group for Flutamide anticancer drug in the gas phase as well as water solution by means of density functional theory calculations. The obtained results confirmed the energetic stability of the optimized geometries and revealed that the nature of drug adsorption on the functionalized carbon nanotube is physical. Our computations showed that the hydrogen bonding between active sites of Flutamide molecule and the carboxyl functional group of the nanotube plays a vital role in the stabilization of the considered configurations. The natural bond orbital analysis suggested that the functionalized nanotube plays the role of an electron donor and Flutamide molecule acts as an electron acceptor at the investigated complexes. In addition, molecular dynamics simulation is also utilized to investigate the effect of functionalized carbon nanotube chirality on the dynamic process of drug molecule adsorption on the nanotube surface. Simulation results demonstrated that drug molecules are strongly adsorbed on the functionalized nanotube surface with (10,5) chirality, as reflected by the most negative van der Waals interaction energy and a high number of hydrogen bonds between the functionalized nanotube and drug molecules.
Ramadan, Ronnie; Dhawan, Saurabh S; Binongo, José Nilo G; Alkhoder, Ayman; Jones, Dean P; Oshinski, John N; Quyyumi, Arshed A
2016-04-01
Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of angiotensin II type-1 receptor blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Subjects (n = 120) with carotid intima-media thickness >0.65 mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area and wall thickness were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Over 2 years, the carotid bulb vessel wall area decreased with Valsartan (-6.7, 95% CI [-11.6, -1.9] mm(2)) but not with placebo (3.4, 95% CI [-2.8, 9.6] mm(2)), P = .01 between groups. Similarly, mean wall thickness decreased with Valsartan (-0.18, 95% CI [-0.30, -0.06] mm), but not with placebo (0.08, 95% CI [-0.07, 0.23] mm), P = .009 between groups. Furthermore, plaque thickness decreased with Valsartan (-0.35, 95% CI [-0.63, -0.08] mm) but was unchanged with placebo (+0.28, 95% CI [-0.11, 0.69] mm), P = .01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium-independent vascular function. In subjects with carotid wall thickening, angiotensin II type-1 receptor blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis warrants investigation. Copyright © 2016 Elsevier Inc. All rights reserved.
Nie, Boyuan; Chen, Xueying; Li, Jing; Wu, Dou; Liu, Qiang
2017-12-28
The major objective of the present study is to investigate the differences in the load and strain changes in the intertrochanteric region of human cadaveric femora between the loss of medial or lateral wall and after treatment with proximal femoral nail antirotation (PFNA). After measuring the geometry of the proximal femur region and modeling the medial or lateral wall defect femoral models, six pairs of freshly frozen human femora were randomly assigned in the medial or lateral wall group. According to a single-leg stance model, an axial loading was applied, and the strain distribution was measured before and after PFNA implantation. The strains of each specimen were recorded at load levels of 350, 700, and 1800 N and the failure load. Paired t test was performed to assess the differences between two groups. The failure mode of almost all defect model femora was consistent with that of the simulated type of intertrochanteric fractures. After the PFNA implantation, the failure mode of almost all stabilized femora was caused by new lateral wall fractures. The failure load of the lateral wall group for defect model femora was significantly higher than that of the medial wall group (p < 0.001). However, the difference disappeared after the PFNA was implanted (p = 0.990). The axial stiffness in all defect model femora showed the same results (p < 0.001). After the PFNA implantation, the axial stiffness of the lateral wall group remained higher than that of the medial wall group (p = 0.001). However, the axial stiffness of the lateral wall group showed that the femora removed from the lateral wall were higher than the PFNA-stabilized femora (p = 0.020). For the axial strain in the anterior wall after the PFNA implantation, the strain of the lateral wall group was significantly lower than that of the medial group (p = 0.003). Nevertheless, for the axial strain of the posterior wall after the PFNA implantation, the strain of the medial wall group was significantly lower than that of the lateral group (p < 0.001). In summary, this study demonstrated that PFNA is an effective intramedullary fixation system for treating unstable intertrochanteric fractures. Compared with the lateral wall, the medial femoral wall is a more important part in the intertrochanteric region. We suggest that in treating intertrochanteric femoral fractures with medial wall fractures, the medial wall fragment should be reset and fixed as much as possible.
Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui
2013-03-01
The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.
Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko
2014-03-01
To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p < 0.01) and Group 2. In Group 3, EGM thresholds showed no response for more than 2 years. In the control group (Group 1), 0 to 16 taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p < 0.01). In Group 3, without recovery, the FP was atrophied, and no taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.
40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Functionalized multi-walled carbon...
40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Functionalized multi-walled carbon...
Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian
2015-04-07
Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin
2015-03-15
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry
NASA Astrophysics Data System (ADS)
Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae
2018-01-01
Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.
Ferrera, René; Hadour, Guylaine; Tamion, Fabienne; Henry, Jean-Paul; Mulder, Paul; Richard, Vincent; Thuillez, Christian; Ovize, Michel; Derumeaux, Geneviève
2011-03-01
Our objective was to evaluate immediate acute changes in myocardial function during the autonomic storm of brain death (BD). Wistar rats were divided into four groups (n = 8/group): controls without any treatment, β-blocker (Esmolol®, 10 mg/kg), calcium channel blocker (Diltiazem®, 10 mg/kg), or alpha-blocker (Prazosin®, 0.3 mg/kg). Treatments were administered intravenously 5 min before BD induction. Echocardiography (ATL-5000, 8 MHz) was performed to measure left ventricular (LV) dimensions and fractional shortening at baseline, during BD induction and 5 min and 15 min after BD. In controls, BD was immediately associated with an increase in wall thickness and a decrease in LV cavity dimension. This myocardial wall hypertrophy was completely prevented by β-blockers, but not with calcium- and alpha-blockers. Extensive myocardial interstitial edema was found in all groups, except in the β-blocker group. Myocardial wall hypertrophy was also prevented during a longer follow-up of 180 min after BD in β-blocker group as opposed to controls. In conclusion, BD is associated with an immediate and severe myocardial damage related to an important interstitial edema which is prevented by β-blockers. © 2010 The Authors. Transplant International © 2010 European Society for Organ Transplantation.
Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J
2016-10-15
Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bae, Kunho; Suh, Wool; Kee, Changwon
2012-08-01
To compare the histopathologic and morphologic findings of encapsulated blebs following Ahmed glaucoma valve implantation and primary standard trabeculectomy with mitomycin-C. We reviewed the records of patients with otherwise uncontrollable glaucoma who had undergone Ahmed glaucoma valve implantation or trabeculectomy with mitomycin-C. Five eyes that underwent Ahmed valve implantation and three eyes that underwent trabeculectomy needed surgical revision of the initial surgery due to encapsulated bleb development with total loss of function. The surgically removed encapsulated blebs were analyzed macroscopically and microscopically. Removal of the encapsulated bleb was performed at a mean follow-up time of 26.6 ± 19.4 weeks in the Ahmed valve implantation group and 12.0 ± 11.4 weeks in the trabeculectomy group. The fibrotic wall of the encapsulated blebs had an overall thickness of 2.48 ± 0.42 mm in the Ahmed valve implantation group and 1.62 ± 0.37 mm in the trabeculectomy group. Macroscopically, the coconut flesh-like smooth surface was split into two layers, and the wall of the capsule was thicker in the Ahmed valve implantation group than in the trabeculectomy group. Histopathologically, the fibrotic capsule was composed of an inner fibrodegenerative layer and an outer fibrovascular layer, and there were no histopathological differences between the two groups. The fibrotic capsule wall was thicker in the Ahmed valve group, but there were no differences in histological findings between the two groups.
Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartley, Laura; Wu, Y.; Zhu, L.
Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cellmore » wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other transcription factors from the rice gene network. Eight of fifteen (53%) of these have not previously been examined for this function. Some of these may represent novel grass-diverged cell wall regulators, while others are likely to have this function across angiosperms. A parallel effort of this project to expand knowledge of enzymes that have evolved to function in grass cell wall synthesis, revealed that a grass-diverged enzyme in rice, OsAT 5, ferulates monolignols that are naturally incorporated into grass cell walls. This finding opens potential natural selection avenues for improving biomass composition for downstream processing by weak base pretreatment. Thus, this project has significantly expanded knowledge of cell wall synthesis and regulation in rice, information that can be used in reverse genetics and synthetic biology approaches to re-engineer cell walls for improved production of biofuel and high-value products. To lay the foundation for translating these results directly for switchgrass improvement, the project employed a comparative phylogenetic analysis of the major group of cell wall transcription factors that have been found to function in cell wall regulation, the R 2R 3 MYBs. This analysis concluded that known cell wall regulators are largely conserved across switchgrass, rice, maize, poplar, and Arabidopsis. This interpretation is also largely consistent with the gene network analysis described above, though both approaches provide evidence that some co-orthologs of Arabidopsis regulators have diminished or increased in importance based on gene expression patterns. Also, several clades containing dicot cell wall regulators have expanded, consistent with the evolution of new cell wall regulators. This latter result is supported by functional analysis of the R 2R 3 MYB protein SWAM 1 in a collaboration between this project and the DOE-funded group of Dr. S. Hazen at the University of Massachusettes. The curation of the switchgrass genome through this project provides specific targets for future engineering of switchgrass cell wall regulation and may also facilitate identification of regulators that underlie the molecular markers that are genetically linked to differences in cell wall quality. With the goal of spurring further research and technological developments in lignocellulosic biofuel production, this work has been communicated to the bioenergy and cell wall communities though various presentations and publications. To date, three manuscripts have been published, two others are near to publication, three others are in an advanced state, and two to four more are likely to be written based on analyses still in progress. In addition, project participants have presented thirteen posters and talks at regional, national, and international meetings about aspects of this project. In sum, the work supported by this funding has made and communicated significant progress in identifying the genes that grasses use for cell wall synthesis and regulation, information that will be used by project participants and others to improve the efficiency of conversion of lignocellulosic biomass to biofuels.« less
Ahmadi, Homa; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Behnam, Behzad; Razavi Azarkhiavi, Kamal; Hashem Nia, Azadeh; Mokhtarzadeh, Ahad; Matbou Riahi, Maryam; Razavi, Bibi Marjan; Abnous, Khalil
2017-09-25
Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue. Copyright © 2017 Elsevier B.V. All rights reserved.
Gunnarsson, U; Johansson, M; Strigård, K
2011-08-01
The decrease in recurrence rates in ventral hernia surgery have led to a redirection of focus towards other important patient-related endpoints. One such endpoint is abdominal wall function. The aim of the present study was to evaluate the reliability and external validity of abdominal wall strength measurement using the Biodex System-4 with a back abdomen unit. Ten healthy volunteers and ten patients with ventral hernias exceeding 10 cm were recruited. Test-retest reliability, both with and without girdle, was evaluated by comparison of measurements at two test occasions 1 week apart. Reliability was calculated by the interclass correlation coefficients (ICC) method. Validity was evaluated by correlation with the well-established International Physical Activity Questionnaire (IPAQ) and a self-assessment of abdominal wall strength. One person in the healthy group was excluded after the first test due to neck problems following minor trauma. The reliability was excellent (>0.75), with ICC values between 0.92 and 0.97 for the different modalities tested. No differences were seen between testing with and without a girdle. Validity was also excellent both when calculated as correlation to self-assessment of abdominal wall strength, and to IPAQ, giving Kendall tau values of 0.51 and 0.47, respectively, and corresponding P values of 0.002 and 0.004. Measurement of abdominal muscle function using the Biodex System-4 is a reliable and valid method to assess this important patient-related endpoint. Further investigations will be made to explore the potential of this technique in the evaluation of the results of ventral hernia surgery, and to compare muscle function after different abdominal wall reconstruction techniques.
Applications of a new wall function to turbulent flow computations
NASA Astrophysics Data System (ADS)
Chen, Y. S.
1986-01-01
A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.
Process for derivatizing carbon nanotubes with diazonium species
NASA Technical Reports Server (NTRS)
Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)
2007-01-01
The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.
A versatile strategy for grafting polymers to wood cell walls.
Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I
2015-01-01
The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K
2014-01-01
Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.
Higher dimensional curved domain walls on Kähler surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id; Radjabaycolle, Flinn C.
In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.
Stretchable and flexible thermoelectric polymer composites
NASA Astrophysics Data System (ADS)
Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.
2018-03-01
Polymer composites were manufactured from pristine and oxidized multi-walled carbon nanotubes and ethylene-octene copolymer. The composites had thermoelectric properties and exhibit thermoelectric effect, that is, the conversion of temperature differences into electricity. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy of the multi-walled carbon nanotubes in ethylene-octene copolymer matrix showed that the oxidation with HNO3 or KMnO4 enhanced its p-type electrical conductivity and that the thermoelectric power increase was proportional to the formation of new oxygen-containing functional groups on the surface of carbon nanotubes.
The influence of unstable modified wall squat exercises on the posture of female university students
Lee, Yoonmi
2015-01-01
[Purpose] The purpose of this study was to examine the effect of unstable modified wall squat exercises on the posture of female university students. [Subjects] The subjects of this study were 30 female university students who were equally and randomly allocated to an unstable modified wall squat exercises group the experimental group and a stable modified wall squat exercises group the control group. [Methods] Both groups performed their respective exercises for 30 minutes three times per week over a six-week period. Using BackMapper, trunk inclination, trunk imbalance, pelvic position, pelvic torsion, pelvic rotation, and position of the scapulae were evaluated. [Results] The unstable modified wall squat exercises group obtained significant results for trunk inclination, trunk imbalance, pelvic position, pelvic torsion, position of the scapulae, while the stable modified wall squat exercises group obtained significant results for trunk imbalance and pelvic position. [Conclusion] Unstable modified wall squat exercises may be applied as a method to correct the posture of average adults. PMID:26356770
Yoosefian, Mehdi; Etminan, Nazanin
2018-06-01
We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.
Zang, Sheng-Qi; Kang, Shuai; Hu, Xin; Wang, Meng; Wang, Xin-Wen; Zhou, Tao; Wang, Qin-Tao
2017-01-01
Background: Regenerative techniques help promote the formation of new attachment and bone filling in periodontal defects. However, the dimensions of intraosseous defects are a key determinant of periodontal regeneration outcomes. In this study, we evaluated the efficacy of use of anorganic bovine bone (ABB) graft in combination with collagen membrane (CM), to facilitate healing of noncontained (1-wall) and contained (3-wall) critical size periodontal defects. Methods: The study began on March 2013, and was completed on May 2014. One-wall (7 mm × 4 mm) and 3-wall (5 mm × 4 mm) intrabony periodontal defects were surgically created bilaterally in the mandibular third premolars and first molars in eight beagles. The defects were treated with ABB in combination with CM (ABB + CM group) or open flap debridement (OFD group). The animals were euthanized at 8-week postsurgery for histological analysis. Two independent Student's t-tests (1-wall [ABB + CM] vs. 1-wall [OFD] and 3-wall [ABB + CM] vs. 3-wall [OFD]) were used to assess between-group differences. Results: The mean new bone height in both 1- and 3-wall intrabony defects in the ABB + CM group was significantly greater than that in the OFD group (1-wall: 4.99 ± 0.70 mm vs. 3.01 ± 0.37 mm, P < 0.05; 3-wall: 3.11 ± 0.59 mm vs. 2.08 ± 0.24 mm, P < 0.05). The mean new cementum in 1-wall intrabony defects in the ABB + CM group was significantly greater than that in their counterparts in the OFD group (5.08 ± 0.68 mm vs. 1.16 ± 0.38 mm; P < 0.05). Likewise, only the 1-wall intrabony defect model showed a significant difference with respect to junctional epithelium between ABB + CM and OFD groups (0.67 ± 0.23 mm vs. 1.12 ± 0.28 mm, P < 0.05). Conclusions: One-wall intrabony defects treated with ABB and CM did not show less periodontal regeneration than that in 3-wall intrabony defect. The noncontained 1-wall intrabony defect might be a more discriminative defect model for further research into periodontal regeneration. PMID:28218223
Fabrication of ceramic oxide-coated SWNT composites by sol-gel process with a polymer glue
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Gao, Lei; Chen, Yongming
2011-09-01
The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]- co-[(1-pyrene-methyl) methacrylate] (TEPM13- co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π-π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol-gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.
Effective removal of cadmium ions from a simulated gastrointestinal fluid by Lentinus edodes.
Qiao, Xin; Huang, Wen; Bian, Yinbing
2014-12-01
Lentinus edodes, a functional food, was evaluated as a potential antidote for adsorption/removal of cadmium ion from simulated gastrointestinal fluids. An adsorption/removal capacity of 65.12 mg/g was achieved by L. edodes in solutions with a pH ranging from 2.5 to 6.0, while little if any adsorption was observed in solutions with a pH under 2.5. In solutions with pH 6.0, 84% of the cadmium adsorption by L. edodes occurred in the first minute. Scanning electronic microscopic examination showed that the cell wall polysaccharides of L. edodes provided a rough sponge-like surface for effective cadmium adsorption. FTIR indicated that the carboxyl, hydroxyl and -NH groups of the cell wall polysaccharides and proteins were the primary functional groups that chemically bind with cadmium ions. The energy dispersive spectrometry further revealed that cation exchange might be attributed to cadmium biosorption. These results suggested that L. edodes was effective for cadmium detoxication, especially in low concentration.
Hájek, T; Jirásek, K; Urban, M; Straka, Z
1998-12-01
During the period between January 1996 and July 1998 in our department 1920 patients were operated on account of heart disease from median sternotomy. In 17 patients, i.e. in 0.9% during the early postoperative period the surgical wound disintegrated incl. dehiscence of the sternum and the development of postoperative mediastinitis. In 14 of these patients the authors reconstructed the defect of the thoracic wall by their own modification of Jurkiewicz plastic operation using the pectoral muscles. One patient from this group died, in the remaining 13 patients the wound healed without deformity of the chest and without signs of instability, without restriction of movement and function.
Botha, C E J
2013-01-01
There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5-7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.
Botha, C. E. J.
2013-01-01
There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280
Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery
2015-01-01
In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.
Ion transport in a pH-regulated nanopore.
Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
2013-08-06
Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.
Pavlovic, Smiljana; Sobic-Saranovic, Dragana; Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Artiko, Vera; Giga, Vojislav; Petrasinovic, Zorica; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Obradovic, Vladimir
2010-04-01
To compare the diagnostic utility of gated single-photon emission computed tomography (SPECT) methoxy isobutyl isonitrile (MIBI) myocardial perfusion imaging and transthoracic Doppler echocardiography (TTDE) coronary flow reserve (CFR) to coronary angiography for detecting coronary artery disease (CAD) in patients with left bundle branch block (LBBB). Forty-three patients with complete LBBB and an intermediate pretest probability for CAD underwent dipyridamole stress TTDE and gated SPECT MIBI during the same session and coronary angiography within a month. The parameters of myocardial perfusion (summed stress score, summed difference scores) regional wall function (wall motion score, wall thickening score) and ejection fraction were derived using the 17-segment model and 4D-MSPECT software. TTDE variables included peak flow velocity at rest and during hyperemia in left anterior descending artery (LAD), based on which CFR was calculated (normal>2). Perfusion ischemic scores were significantly higher in group 1 with angiographic evidence of greater than 50% LAD stenosis compared with group 2 with less than 50% LAD stenosis (summed stress score 12.4+/-5.5 vs. 8.3+/-3.5, P<0.05, summed difference score 3.7+/-1.2 vs. 1.1+/-0.3, P<0.01, respectively). Left ventricular regional wall function and ejection fraction were not different between the two groups. CFR was significantly lower in group 1 than in group 2 (1.65+/-0.21 vs. 2.31+/-0.28, P<0.001). Gated SPECT MIBI and CFR had similar sensitivity (88 vs. 88%), specificity (80 vs. 84%), and accuracy (84 vs. 86%) for detecting CAD in patients with LBBB. The agreement between the two methods was 85%. Our results show comparable diagnostic utility and high agreement between gated SPECT MIBI perfusion imaging and TTDE CFR assessment for detecting CAD in patients with LBBB. The advantage of gated SPECT MIBI over TTDE CFR measurements is the ability to assess the perfusion abnormalities in multiple vascular territories during the same procedure, which is convenient for detecting multi-vessel disease in patients with LBBB.
Beirer, Marc; Postl, Lukas; Crönlein, Moritz; Siebenlist, Sebastian; Huber-Wagner, Stefan; Braun, Karl F; Biberthaler, Peter; Kirchhoff, Chlodwig
2015-05-28
Fractures of the clavicle present very common injuries with a peak of incidence in young active patients. Recently published randomized clinical trials demonstrated an improved functional outcome and a lower rate of nonunions in comparison to non-operative treatment. Anterior chest wall numbness due to injury of the supraclavicular nerve and postoperative pain constitute common surgery related complications in plate fixation of displaced clavicle fractures. We recently developed a technique for mini open plating (MOP) of the clavicle to reduce postoperative numbness and pain. The purpose of this study was to analyze the size of anterior chest wall numbness and the intensity of postoperative pain in MOP in comparison to conventional open plating (COP) of clavicle fractures. 24 patients (mean age 38.2 ± 14.2 yrs.) with a displaced fracture of the clavicle (Orthopaedic Trauma Association B1.2-C1.2) surgically treated using a locking compression plate (LCP) were enrolled. 12 patients underwent MOP and another 12 patients COP. Anterior chest wall numbness was measured with a transparency grid on the second postoperative day and at the six months follow-up. Postoperative pain was evaluated using the Visual Analog Scale (VAS). Mean ratio of skin incision length to plate length was 0.61 ± 0.04 in the MOP group and 0.85 ± 0.06 in the COP group (p < 0.05). Mean ratio of the area of anterior chest wall numbness to plate length was postoperative 7.6 ± 5.9 (six months follow-up 4.7 ± 3.9) in the MOP group and 22.1 ± 19.1 (16.9 ± 14.1) in the COP group (p < 0.05). Mean VAS was 2.6 ± 1.4 points in the MOP group and 3.4 ± 1.6 points in the COP group (p = 0.20). In our study, MOP significantly reduced anterior chest wall numbness in comparison to a conventional open approach postoperative as well as at the six months follow-up. Postoperative pain tended to be lower in the MOP group, however this difference was not statistically significant. ClinicalTrials.gov NCT02247778 . Registered 21 September 2014.
An NPARC Turbulence Module with Wall Functions
NASA Technical Reports Server (NTRS)
Zhu, J.; Shih, T.-H.
1997-01-01
The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.
Siasos, Gerasimos; Tousoulis, Dimitris; Kokkou, Eleni; Oikonomou, Evangelos; Kollia, Maria-Eleni; Verveniotis, Aleksis; Gouliopoulos, Nikolaos; Zisimos, Konstantinos; Plastiras, Aris; Maniatis, Konstantinos; Stefanadis, Christodoulos
2014-01-01
Smoking is associated with impaired vascular function. Concord grape juice (CGJ), a rich source of flavonoids, can modify cardiovascular risk factors. Endothelial function and arterial stiffness are surrogate markers of arterial health. We examined the impact of CGJ on arterial wall properties in healthy smokers. We studied the effect of a 2-week oral treatment with CGJ in 26 healthy smokers on 3 occasions (day 0 (baseline), day 7, and day 14) in a randomized, placebo-controlled, double-blind, crossover study. Measurements were taken before (pSm), immediately after (Sm0), and 20 minutes after (Sm20) cigarette smoking. Endothelial function was evaluated by flow-mediated dilation (FMD) of the brachial artery. Carotid-femoral pulse wave velocity (PWV) was measured as an index of aortic stiffness. Compared with placebo, treatment with CGJ resulted in a significant improvement in pSm values of FMD (P = 0.02) and PWV (P = 0.04). At baseline, smoking decreased FMD in both the CGJ group (P < 0.001) and the placebo group (P < 0.001). Compared with placebo, CGJ treatment prevented the acute smoking-induced decrease in FMD on day 7 (P = 0.02) and day 14 (P < 0.001). Moreover, at baseline, smoking induced a significant elevation in PWV in both the CGJ group (P = 0.02) and the placebo group (P = 0.04). Treatment with CGJ prevented the smoking-induced elevation in PWV on day 7 (P = 0.003) and day 14 (P < 0.001). CGJ consumption improved endothelial function and vascular elastic properties of the arterial tree in healthy smokers and attenuated acute smoking-induced impairment of arterial wall properties.
Galanti, Giorgio; Toncelli, Loira; Del Furia, Francesca; Stefani, Laura; Cappelli, Brunello; De Luca, Alessio; Vono, Maria Concetta Roberta
2009-01-01
Background Transthoracic echocardiography left ventricular wall thickness is often increased in master athletes and it results by intense physical training. Left Ventricular Hypertrophy can also be due to a constant pressure overload. Conventional Pulsed Wave (PW) Doppler analysis of diastolic function sometimes fails to distinguish physiological from pathological LVH. The aim of this study is to evaluate the role of Pulsed Wave Tissue Doppler Imaging in differentiating pathological from physiological LVH in the middle-aged population. Methods we selected a group of 80 master athletes, a group of 80 sedentary subjects with essential hypertension and an apparent normal diastolic function at standard PW Doppler analysis. The two groups were comparable for increased left ventricular wall thickness and mass index (134.4 ± 19.7 vs 134.5 ± 22.1 gr/m2; p > .05). Diastolic function indexes using the PW technique were in the normal range for both. Results Pulsed Wave TDI study of diastolic function immediately distinguished the two groups. While in master athletes the diastolic TDI-derived parameters remained within normal range (E' 9.4 ± 3.1 cm/sec; E/E' 7.8 ± 2.1), in the hypertensive group these parameters were found to be constantly altered, with mean values and variation ranges always outside normal validated limits (E' 7.2 ± 2.4 cm/sec; E/E' 10.6 ± 3.2), and with E' and E/E' statistically different in the two groups (p < .001). Conclusion Our study showed that the TDI technique can be an easy and validated method to assess diastolic function in differentiating normal from pseudonormal diastolic patterns and it can distinguish physiological from pathological LVH emphasizing the eligibility certification required by legal medical legislation as in Italy. PMID:19845938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gifford, Brendan Joel; Kilina, Svetlana; Htoon, Han
Recent spectroscopic studies have revealed the appearance of multiple low-energy peaks in the fluorescence of single-walled carbon nanotubes (SWCNTs) upon their covalent functionalization by aryl groups. The photophysical nature of these low energy optical bands is of significant interest in the quest to understand their appearance and to achieve their precise control via chemical modification of SWCNTs. This theoretical study explains the specific energy dependence of emission features introduced in chemically functionalized (6,5) SWCNTs with aryl bromides at different conformations and in various dielectric media. Calculations using density functional theory (DFT) and time dependent DFT (TD-DFT) show that the specificmore » isomer geometry—the relative position of functional groups on the carbon-ring of the nanotube—is critical for controlling the energies and intensities of optical transitions introduced by functionalization, while the dielectric environment and the chemical composition of functional groups play less significant roles. Furthermore, the predominant effects on optical properties as a result of functionalization conformation are rationalized by exciton localization on the surface of the SWCNT near the dopant sp3-defect but not onto the functional group itself.« less
Moka, D; Baer, F M; Theissen, P; Schneider, C A; Dietlein, M; Erdmann, E; Schicha, H
2001-05-01
Reduced regional technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) accumulation in patients with chronic non-Q-wave infarction (NQWI) but without significant coronary artery stenosis indicates non-transmural damage of the myocardial wall. The aim of this study was to characterise cardiac energy metabolism after NQWI using phosphorus-31 magnetic resonance spectroscopy (31P-MRS) and to compare the biochemical remodelling with changes in regional 99mTc-MIBI uptake and with morphological and functional parameters assessed by magnetic resonance imaging (MRI). Fifteen patients with a history of NQWI, exclusion of significant coronary artery stenosis (<50% diameter stenosis) and hypokinesia of the anterior wall (group A) were examined with 31P-MRS to study the effects of NQWI on myocardial energy metabolism. Spectroscopic measurements were performed in the infarct-related myocardial region. Corresponding gradient-echo MR images and myocardial 99mTc-MIBI single-photon emission tomography images were acquired for exact localisation of the infarct region. All examinations were performed at rest under anti-ischaemic medication. Data were compared with those of patients in whom coronary artery disease had been excluded by angiography (group B, n=10). All patients of group A displayed anterior wall hypokinesia in the infarcted area on both ventriculography and MRI, with a reduced myocardial accumulation of 99mTc-MIBI (66.3%+/-11.8% vs 95.6%+/-2.2% in group B). The mean wall thickness during the complete cardiac cycle (9.5+/-1.8 mm vs 13.1+/-1.1 mm in group B, P<0.001), the systolic wall thickening (2.6+/-1.4 mm vs 5.8+/-1.5 mm in group B, P<0.01) and the phosphocreatine/adenosine triphosphate ratio (1.12+/-0.22 vs 1.74+/-0.23 in group B, P<0.01) in the hypokinetic area were all significantly reduced. It is concluded that persisting hypokinetic myocardium after NQWI combined with reduced myocellular uptake of 99mTc-MIBI displays a reduced PCr/ATP ratio. Our results indicate that morphological remodelling after NQWI is accompanied by fundamental changes in cardiac energy metabolism.
Characterization of microRNAs Expressed during Secondary Wall Biosynthesis in Acacia mangium
Ong, Seong Siang; Wickneswari, Ratnam
2012-01-01
MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324
NASA Astrophysics Data System (ADS)
Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Eun Jin; Min, Nam Ki
2013-01-01
The single-walled carbon nanotube (SWCNT)-based thin film was spray-coated on the Pt support and functionalized using O2 plasma. The effects of plasma treatment on the biointerfacial properties of the SWCNT films were analyzed by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The plasma-functionalized (pf) SWCNT electrodes modified with Legionella pneumophila-specific probe DNA strands showed a much higher peak current and a smaller peak separation in differential pulse voltammetry and a lower charge transfer resistance, compared to the untreated samples. These results suggest that the pf-SWCNT films have a better electrocatalytic character and an electron transfer capability faster than the untreated SWCNTs, due to the fact that the oxygen-containing functional groups promote direct electron transfer in the biointerfacial region of the electrocatalytic activity of redox-active biomolecules.
NASA Astrophysics Data System (ADS)
Feng, Tao; Russell, Thomas; Hoagland, David
2013-03-01
Interfacial assembly of acid-functionalized single-walled carbon nanotubes at the oil/water interface is achieved by the addition of low molecular weight (MW) amino-terminated polystyrene in the oil phase. The surface activity of carboxylated SWCNTs is strongly influenced by the end-group chemistry and molecular weight of the polystyrene component, the concentrations of this component and the SWCNTs, along with the degree of functionalization of the SWCNTs. The prerequisites for interfacial trapping are amino termini on chains with MW less than 5K and 6 hours or longer incubation of pristine SWCNTs to achieve their carboxylation. Plummets in interfacial tension resembling those for surfactants were observed at critical bulk concentrations of both SWCNTs and PS-NH2. In dried droplets, SWCNTs densely packed with associated PS-NH2 form a bird nest-like interfacial structure, with the SWCNTs preferentially oriented perpendicular to the original interface. Advisor
Opazo, María Cecilia; Lizana, Rodrigo; Stappung, Yazmina; Davis, Thomas M; Herrera, Raúl; Moya-León, María Alejandra
2017-11-07
Fragaria vesca or 'woodland strawberry' has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit. The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an increasing expression pattern as the fruit ripens. A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall degrading enzymes.
Single functional group interactions with individual carbon nanotubes
NASA Astrophysics Data System (ADS)
Friddle, Raymond W.; Lemieux, Melburne C.; Cicero, Giancarlo; Artyukhin, Alexander B.; Tsukruk, Vladimir V.; Grossman, Jeffrey C.; Galli, Giulia; Noy, Aleksandr
2007-11-01
Carbon nanotubes display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits and biosensors to field emitters and membranes. These applications use the non-covalent interactions between the nanotubes and chemical functionalities, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.
Naderi, Naghmeh; Madani, Seyed Y.; Mosahebi, Afshin; Seifalian, Alexander M.
2015-01-01
Background Carbon nanotubes (CNTs) have unique physical and chemical properties. Furthermore, novel properties can be developed by attachment or encapsulation of functional groups. These unique properties facilitate the use of CNTs in drug delivery. We developed a new nanomedicine consisting of a nanocarrier, cell-targeting molecule, and chemotherapeutic drug and assessed its efficacy in vitro. Methods The efficacy of a single-walled carbon nanotubes (SWCNTs)-based nanoconjugate system is assessed in the targeted delivery of paclitaxel (PTX) to cancer cells. SWCNTs were oxidized and reacted with octa-ammonium polyhedral oligomeric silsesquioxanes (octa-ammonium POSS) to render them biocompatible and water dispersable. The functionalized SWCNTs were loaded with PTX, a chemotherapeutic agent toxic to cancer cells, and Tn218 antibodies for cancer cell targeting. The nanohybrid composites were characterized with transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and ultraviolet–visible–near-infrared (UV–Vis–NIR). Additionally, their cytotoxic effects on Colon cancer cell (HT-29) and Breast cancer cell (MCF-7) lines were assessed in vitro. Results TEM, FTIR, and UV–Vis–NIR studies confirmed side-wall functionalization of SWCNT with COOH-groups, PTX, POSS, and antibodies. Increased cell death was observed with PTX–POSS–SWCNT, PTX–POSS–Ab–SWCNT, and free PTX compared to functionalized-SWCNT (f-SWCNT), POSS–SWCNT, and cell-only controls at 48 and 72 h time intervals in both cell lines. At all time intervals, there was no significant cell death in the POSS–SWCNT samples compared to cell-only controls. Conclusion The PTX-based nanocomposites were shown to be as cytotoxic as free PTX. This important finding indicates successful release of PTX from the nanocomposites and further reiterates the potential of SWCNTs to deliver drugs directly to targeted cells and tissues. PMID:26356347
Effect of preoperative antiplatelet drugs on vascular prostacyclin synthesis.
Karwande, S V; Weksler, B B; Gay, W A; Subramanian, V A
1987-03-01
Patients undergoing aortocoronary bypass using autogenous saphenous veins were randomly divided into three comparable groups. Group 1 (n = 10) acted as a control, Group 2 (n = 14) received 80 mg of aspirin at midnight before the operation, and Group 3 (n = 12) received 80 mg of aspirin and 75 mg of dipyridamole at midnight and an additional 75-mg dose of dipyridamole at 6 AM. The purpose was to determine which regimen would maximally inhibit platelet function without depressing vascular prostacyclin synthesis. Serum thromboxane A2, saphenous vein wall and aortic wall prostacyclin, platelet aggregation, and bleeding time were measured in all patients. None was restarted on a regimen of aspirin or dipyridamole postoperatively. Aspirin alone and in combination with dipyridamole significantly inhibited thromboxane A2 and platelet aggregation in all treated patients but spared venous prostacyclin synthesis. Aortic prostacyclin synthesis was partially inhibited in both treated groups. Chest tube drainage was comparable in all three groups. These results indicate that the combination of aspirin and dipyridamole offers no measurable advantage over aspirin alone in the perioperative period.
NASA Astrophysics Data System (ADS)
Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki
2010-08-01
An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.
Willats, W G; Orfila, C; Limberg, G; Buchholt, H C; van Alebeek, G J; Voragen, A G; Marcus, S E; Christensen, T M; Mikkelsen, J D; Murray, B S; Knox, J P
2001-06-01
Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.
Peptidoglycan turnover and recycling in Gram-positive bacteria.
Reith, Jan; Mayer, Christoph
2011-10-01
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.
Malakan Rad, Elaheh; Ghandi, Yazdan; Kocharian, Armen; Mirzaaghayan, Mohammadreza
2016-01-01
Background: The late postoperative course for children with transposition of the great arteries (TGA) with an intact ventricular septum (IVS) is very important because the coronary arteries may be at risk of damage during arterial switch operation (ASO). We sought to investigate left ventricular function in patients with TGA/IVS by echocardiography. Methods: From March 2011 to December 2012, totally 20 infants (12 males and 8 females) with TGA/IVS were evaluated via 2-dimensional speckle-tracking echocardiography (2D STE) more than 6 months after they underwent ASO. A control group of age-matched infants and children was also studied. Left ventricular longitudinal strain (S), strain rate (SR), time to peak systolic longitudinal strain (TPS), and time to peak systolic longitudinal strain rate (TPSR) were measured and compared between the 2 groups. Results: Mean ± SD of age at the time of study in the patients with TGA/IVS was 15 ± 5 months, and also age at the time of ASO was 12 ± 3 days. Weight was 3.13 ± 0.07 kg at birth and 8.83 ± 1.57 kg at the time of ASO. Global strain (S), Time to peak strain rate (TPSR), and Time to peak strain (TPS) were not significantly different between the 2 groups, whereas global strain rate (SR) was significantly different (p value < 0.001). In the 3-chamber view, the values of S in the lateral, septal, inferior, and anteroseptal walls were significantly different between the 2 groups (p value < 0.001), and SR in the posterior wall was significantly different between the 2 groups (p value < 0.001). There were no positive correlations between S and SR in terms of the variables of heart rate, total cardiopulmonary bypass time, and aortic cross-clamp time. There were no statistically significant differences between the 2 groups regarding S, SR, TPS, and TPSR in the anteroseptal and posterior walls in the 3-chamber view and in the lateral and septal walls in the 4-chamber view. Conclusion: We showed that between 6 and 18 months after a successful ASO, the parameters of S, SR, and global TPS were normal in our patients with TGA/IVS. However, LV myocardial TPSR did not normalize in this time period. PMID:27956909
Malakan Rad, Elaheh; Ghandi, Yazdan; Kocharian, Armen; Mirzaaghayan, Mohammadreza
2016-07-06
Background: The late postoperative course for children with transposition of the great arteries (TGA) with an intact ventricular septum (IVS) is very important because the coronary arteries may be at risk of damage during arterial switch operation (ASO). We sought to investigate left ventricular function in patients with TGA/IVS by echocardiography. Methods: From March 2011 to December 2012, totally 20 infants (12 males and 8 females) with TGA/IVS were evaluated via 2-dimensional speckle-tracking echocardiography (2D STE) more than 6 months after they underwent ASO. A control group of age-matched infants and children was also studied. Left ventricular longitudinal strain (S), strain rate (SR), time to peak systolic longitudinal strain (TPS), and time to peak systolic longitudinal strain rate (TPSR) were measured and compared between the 2 groups. Results: Mean ± SD of age at the time of study in the patients with TGA/IVS was 15 ± 5 months, and also age at the time of ASO was 12 ± 3 days. Weight was 3.13 ± 0.07 kg at birth and 8.83 ± 1.57 kg at the time of ASO. Global strain (S), Time to peak strain rate (TPSR), and Time to peak strain (TPS) were not significantly different between the 2 groups, whereas global strain rate (SR) was significantly different (p value < 0.001). In the 3-chamber view, the values of S in the lateral, septal, inferior, and anteroseptal walls were significantly different between the 2 groups (p value < 0.001), and SR in the posterior wall was significantly different between the 2 groups (p value < 0.001). There were no positive correlations between S and SR in terms of the variables of heart rate, total cardiopulmonary bypass time, and aortic cross-clamp time. There were no statistically significant differences between the 2 groups regarding S, SR, TPS, and TPSR in the anteroseptal and posterior walls in the 3-chamber view and in the lateral and septal walls in the 4-chamber view. Conclusion: We showed that between 6 and 18 months after a successful ASO, the parameters of S, SR, and global TPS were normal in our patients with TGA/IVS. However, LV myocardial TPSR did not normalize in this time period.
Peverill, Roger E; Chou, Bon; Donelan, Lesley
2017-01-01
The physiological factors which affect left ventricular (LV) long-axis function are not fully defined. We investigated the relationships of resting heart rate and body size with the peak velocities and amplitudes of LV systolic and early diastolic long axis motion, and also with long-axis contraction duration. Two groups of adults free of cardiac disease underwent pulsed-wave tissue Doppler imaging at the septal and lateral mitral annular borders. Group 1 (n = 77) were healthy subjects <50 years of age and Group 2 (n = 65) were subjects between 40-80 years of age referred for stress echocardiography. Systolic excursion (SExc), duration (SDur) and peak velocity (s') and early diastolic excursion (EDExc) and peak velocity (e') were measured. SExc was not correlated with heart rate, height or body surface area (BSA) for either LV wall in either group, but SDur was inversely correlated with heart rate for both walls and both groups, and after adjustment for heart rate, males in both groups had a shorter septal SDur. Septal and lateral s` were independently and positively correlated with SExc, heart rate and height in both groups, independent of sex and age. There were no correlations of heart rate, height or BSA with either e` or EDExc for either wall in either group. Heart rate and height independently modify the relationship between s` and SExc, but neither are related to EDExc or e`. These findings suggest that s` and SExc cannot be used interchangeably for the assessment of LV long-axis contraction.
Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.
The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxinmore » gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.« less
Sawchuk, Megan G.; Scarpella, Enrico
2018-01-01
The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026
Rolf, Andreas; Assmus, Birgit; Schächinger, Volker; Rixe, Johannes; Möllmann, Susanne; Möllmann, Helge; Dimmeler, Stefanie; Zeiher, Andreas M; Hamm, Christian W; Dill, Thorsten
2011-11-01
In the aftermath of myocardial infarction, increased loading conditions will trigger hypertrophy of viable myocardium. This in turn causes deterioration of regional contractility. Cardiac magnetic resonance imaging (cMRI) allows the exact differentiation of viable and infarcted myocardium and therefore the measurement of regional wall thickness and function. Bone marrow-derived stem cell (BMC) transfer has been shown to improve global function and remodeling. The present study examines the effect of BMC transfer on regional remodeling and function after myocardial infarction by cMRI. Fifty-four patients of the MR substudy of the REPAIR-AMI trial have been studied at baseline and 12-month follow-up. Enddiastolic wall thickness (EDWT) and wall thickening (WT%) have been measured on SSFP cine sequences. Enddiastolic wall thickness decreased in both placebo and BMC groups in viable as well as infarcted segments. The effect was largest in the pre-specified subgroup of patients below the median EF of 48.9% (infarcted segments -1.14 mm Placebo vs. -1.91 mm BMC, p for interaction 0.01, remote segments -0.19 mm Placebo vs. -0.94 mm BMC, p for interaction 0.00001). Corrected for baseline values BMC therapy yielded smaller EDWT at 12 months in infarcted and remote segments (infarcted 7.58 mm Placebo vs. 6.13 mm BMC p = 0.0001, remote 8.76 mm Placebo vs. 7.32 mm BMC, p = 0.0001). This was associated with better contractility within the infarcted segments among BMC patients (WT% 24.17% Placebo vs. 49.31% BMC, p = 0.0001). The WT% was inversely correlated with EDWT (r = -0.37, p = 0.0001). Bone marrow-derived stem cell therapy yields smaller EDWT when compared with placebo patients suggesting a positive effect on maladaptive hypertrophy of viable myocardium. This notion is supported by the enhanced regional contractility within the BMC group which is inversely correlated with EDWT.
Zhou, Lulu; Forman, Henry Jay; Ge, Yi; Lunec, Joseph
2017-08-01
Chemical functionalization broadens carbon nanotube (CNT) applications, conferring new functions, but at the same time potentially altering toxicity. Although considerable experimental data related to CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis and genotoxicity). The threshold dose for safe medical application in relation to both pristine and functionalized carbon nanotubes remains ambiguous. In this study, we evaluated the in vitro cytotoxicity of pristine and functionalized (OH, COOH) multi-walled carbon nanotubes (MWCNTs) for cell viability, oxidant detection, apoptosis and DNA mutations, to determine the non-toxic dose and influence of functional group in a human lung-cancer cell line exposed to 1-1000μg/ml MWCNTs for 24, 48 and 72h. The findings suggest that pristine MWCNTs induced more cell death than functionalized MWCNTs while functionalized MWCNTs are more genotoxic compared to their pristine form. The level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meltzner, Geoffrey S.; Kobler, James B.; Hillman, Robert E.
2003-08-01
Measurements of the neck frequency response function (NFRF), defined as the ratio of the spectrum of the estimated volume velocity that excites the vocal tract to the spectrum of the acceleration delivered to the neck wall, were made at three different positions on the necks of nine laryngectomized subjects (five males and four females) and four normal laryngeal speakers (two males and two females). A minishaker driven by broadband noise provided excitation to the necks of subjects as they configured their vocal tracts to mimic the production of the vowels /aye/, /æ/, and /I/. The sound pressure at the lips was measured with a microphone and an impedance head mounted on the shaker measured the acceleration. The neck wall passed low-frequency sound energy better than high-frequency sound energy, and thus the NFRF was accurately modeled as a low-pass filter. The NFRFs of the different subject groups (female laryngeal, male laryngeal speakers, laryngectomized males, and laryngectomized females) differed from each other in terms of corner frequency and gain, with both types of male subjects presenting NFRFs with larger overall gains. In addition, there was a notable amount of intersubject variability within groups. Because the NFRF is an estimate of how sound energy passes through the neck wall, these results should aid in the design of improved neck-type electrolarynx devices.
Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander
2016-08-01
The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping
2015-09-07
Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dehydration of D-xylose to furfural using acid-functionalized MWCNTs catalysts
NASA Astrophysics Data System (ADS)
Termvidchakorn, Chompoopitch; Itthibenchapong, Vorranutch; Songtawee, Siripit; Chamnankid, Busaya; Namuangruk, Supawadee; Faungnawakij, Kajornsak; Charinpanitkul, Tawatchai; Khunchit, Radchadaporn; Hansupaluk, Nanthiya; Sano, Noriaki; Hinode, Hirofumi
2017-09-01
Acid-functionalized multi-wall carbon nanotubes (MWCNTs) catalysts were prepared by a wet chemical sonication with various acid solutions, i.e. H2SO4, H3PO4, HNO3, and HCl. Sulfonic groups and carboxyl groups were detected on MWCNTs with H2SO4 treatment (s-MWCNTs), while only carboxyl groups were presented from other acid treatments. The catalytic dehydration of D-xylose into furfural was evaluated using a batch reactor at 170 °C for 3 h under N2 pressure of 15 bar. The highest furfural selectivity was achieved around 57% by s-MWCNTs catalyst, suggesting a positive role of the sulfonic functionalized groups. The effect of Co species was related to their Lewis acid property resulting in the enhancement of xylose conversion with low selectivity to furfural product. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.
Thermal effects associated with the Nd/YAG dental laser.
von Fraunhofer, J A; Allen, D J
1993-01-01
The heat produced at the dentinal pulpal wall opposite the irradiation site was measured during etching of dental enamel with an Nd:YAG laser in preparation for direct bonding of orthodontic appliances. Forty extracted human teeth were randomly divided into four groups of 10 teeth. Within each group, the buccal surfaces of 5 teeth and the lingual surfaces of the other 5 teeth were laser treated for 12 sec. Irradiation was performed with a commercial Nd:YAG laser at the power settings of 80mJ, 1W, 2W and 3W. Prior to irradiation, an occlusal access preparation was made into the pulp in order to facilitate the placement of a thermocouple for measurement of temperature changes at the dentinal pulpal wall opposite the irradiation site. The thermocouple was held against the dentinal pulpal wall and the resulting temperature changes were recorded. Heating effects at the dentinal pulpal wall on both buccal and lingual surfaces showed an increase in heat as a function of the increase in power output from the laser unit (p < 0.01). The temperatures measured at power levels 1-3W appeared to be of sufficient magnitude to cause at least localized pulpal inflammation and possible irreversible damage to the pulp tissue immediately opposite the site of laser irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Priya; Yin, Tongming; Zhang, Xinye
2009-11-01
Quantitative trait locus (QTL) studies are an integral part of plant research and are used to characterize the genetic basis of phenotypic variation observed in structured populations and inform marker-assisted breeding efforts. These QTL intervals can span large physical regions on a chromosome comprising hundreds of genes, thereby hampering candidate gene identification. Genome history, evolution, and expression evidence can be used to narrow the genes in the interval to a smaller list that is manageable for detailed downstream functional genomics characterization. Our primary motivation for the present study was to address the need for a research methodology that identifies candidatemore » genes within a broad QTL interval. Here we present a bioinformatics-based approach for subdividing candidate genes within QTL intervals into alternate groups of high probability candidates. Application of this approach in the context of studying cell wall traits, specifically lignin content and S/G ratios of stem and root in Populus plants, resulted in manageable sets of genes of both known and putative cell wall biosynthetic function. These results provide a roadmap for future experimental work leading to identification of new genes controlling cell wall recalcitrance and, ultimately, in the utility of plant biomass as an energy feedstock.« less
Exciton Localization and Optical Emission in Aryl-Functionalized Carbon Nanotubes
Gifford, Brendan Joel; Kilina, Svetlana; Htoon, Han; ...
2017-10-26
Recent spectroscopic studies have revealed the appearance of multiple low-energy peaks in the fluorescence of single-walled carbon nanotubes (SWCNTs) upon their covalent functionalization by aryl groups. The photophysical nature of these low energy optical bands is of significant interest in the quest to understand their appearance and to achieve their precise control via chemical modification of SWCNTs. This theoretical study explains the specific energy dependence of emission features introduced in chemically functionalized (6,5) SWCNTs with aryl bromides at different conformations and in various dielectric media. Calculations using density functional theory (DFT) and time dependent DFT (TD-DFT) show that the specificmore » isomer geometry—the relative position of functional groups on the carbon-ring of the nanotube—is critical for controlling the energies and intensities of optical transitions introduced by functionalization, while the dielectric environment and the chemical composition of functional groups play less significant roles. Furthermore, the predominant effects on optical properties as a result of functionalization conformation are rationalized by exciton localization on the surface of the SWCNT near the dopant sp3-defect but not onto the functional group itself.« less
Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload
Vatner, Stephen F.; Yan, Lin; Gao, Shumin; Yoon, Seunghun; Lee, Grace Jung Ah; Xie, Lai-Hua; Kitsis, Richard N.; Vatner, Dorothy E.
2013-01-01
Myocyte apoptosis is considered a major mechanism in the pathogenesis of heart failure. Accordingly, manipulations that inhibit apoptosis are assumed to preserve cardiac function by maintaining myocyte numbers. We tested this assumption by examining the effects of caspase inhibition (CI) on cardiac structure and function in C57BL/6 mouse with pressure overload model induced by transverse aortic constriction (TAC). CI preserved left ventricular (LV) function following TAC compared with the vehicle. TAC increased apoptosis in non-myocytes more than in myocytes and these increases were blunted more in non-myocytes by CI. Total myocyte number, however, did not differ significantly among control and TAC groups and there was no correlation between myocyte number and apoptosis, but there was a strong correlation between myocyte number and an index of myocyte proliferation, Ki67-positive myocytes. Despite comparable pressure gradients, LV hypertrophy was less in the CI group, likely attributable to decreased wall stress. Since changes in myocyte numbers did not account for protection from TAC, several other CI-mediated mechanisms were identified including: (a) lessening of TAC-induced fibrosis, (b) augmentation of isolated myocyte contractility, and (c) increased angiogenesis and Ki67-positive myocytes, which were due almost entirely to the non-myocyte apoptosis, but not myocyte apoptosis, with CI. CI maintained LV function following TAC not by protecting against myocyte loss, but rather by augmenting myocyte contractile function, myocyte proliferation, and angiogenesis resulting in reduced LV wall stress, hypertrophy, and fibrosis. PMID:23277091
Acid base activity of live bacteria: Implications for quantifying cell wall charge
NASA Astrophysics Data System (ADS)
Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe
2006-01-01
To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.
1999-01-01
The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model.
Diercke, K; Lussi, A; Kersten, T; Seemann, R
2009-12-01
The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.
Wildey, R.L.
1971-01-01
By the use of only relative photometry (intraframe) it is shown that the photometric functions of material reposed on the inner walls of some of the ypunger lunar craters photographed on the far side of the Moon from the Apollo 11 Command Module are not of a form which can be reduced to a dependence on phase angle and brightness-longitude (g, ??) alone. Some other dependence on the completely general degrees of freedom described by phase angle, angle of incidence, and angle of emergence (g, i, ??{lunate}) seems to be required. In addition, however, it has been found that a dependence of g and ?? is more closely approached for the crater, in the group observed, which is obviously the oldest by virtue of the roundedness of the rim crest and the mass-wasting which has occured on its inner walls. The possibility thus arises of crater age-dating by making a brightness ratio measurement together with some image geometry measurements. It is at least evident that more than one type of geologic material has been encountered. ?? 1971.
LoMauro, Antonella; Pochintesta, Simona; Romei, Marianna; D'Angelo, Maria Grazia; Pedotti, Antonio; Turconi, Anna Carla; Aliverti, Andrea
2012-01-01
Background Osteogenesis imperfecta (OI) is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients. Methods Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. Results Both OI type III and IV patients showed reduced FVC and FEV1 compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01). In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01) angle at the sternum (pectus carinatum), paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001). Conclusions In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the disease. PMID:22558284
NASA Technical Reports Server (NTRS)
Braam, J.; McIntire, L. V. (Principal Investigator)
1999-01-01
The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.
Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro
2013-12-01
Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, <100 μm in diameter). These were examined for functionality and compared with adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies involving each vessel wall-resident stromal population.
Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng
2014-08-01
The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable. Copyright © 2014. Published by Elsevier B.V.
Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.
Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry
2012-04-03
The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.
Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon
NASA Technical Reports Server (NTRS)
Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.
2012-01-01
The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.
NASA Astrophysics Data System (ADS)
Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon
In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.
Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.
Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G
2010-02-01
Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.
PDF modeling of near-wall turbulent flows
NASA Astrophysics Data System (ADS)
Dreeben, Thomas David
1997-06-01
Pdf methods are extended to include modeling of wall- bounded turbulent flows. For flows in which resolution of the viscous sublayer is desired, a Pdf near-wall model is developed in which the Generalized Langevin model is combined with an exact model for viscous transport. Durbin's method of elliptic relaxation is used to incorporate the wall effects into the governing equations without the use of wall functions or damping functions. Close to the wall, the Generalized Langevin model provides an analogy to the effect of the fluctuating continuity equation. This enables accurate modeling of the near-wall turbulent statistics. Demonstrated accuracy for fully-developed channel flow is achieved with a Pdf/Monte Carlo simulation, and with its related Reynolds-stress closure. For flows in which the details of the viscous sublayer are not important, a Pdf wall- function method is developed with the Simplified Langevin model.
Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P
2010-09-01
Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2016-11-01
In this work, we develop a fully coupled bolus-esophageal-gastric model to study esophageal emptying based on the immersed boundary method. The model includes an esophageal segment, an ellipsoid-shaped stomach, and a bolus. It can easily handle the passive and active function of the lower esophageal sphincter (LES). Two groups of case studies are presented. The first group is about the influence from tissue anisotropy. Simulation shows that the weaker (or more compliant) part suffers from a higher wall shear stress and higher pressure load when the bolus is filled in and emptied from the LES segment. This implies a degradation cycle in which a weaker tissue becomes much weaker due to an increased load, a possible pathway to the esophageal lower diverticulum. The second group is about bulge formation resulting from asymmetric anatomy and a compliant LES. In particular, we find a right bulge tends to develop for a compliant LES. The bulge is most pronounced with a highest stiffness of the gastric wall. This implies that the competition between the LES stiffness and gastric wall stiffness might be another factor related to the esophageal lower diverticulum. The support of Grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.
Effects of partial portal vein arterialization on the hilar bile duct in a rat model.
Guo, Shao-Hua; Li, Chong-Hui; Chen, Yong-Liang; Song, Jian-Ning; Zhang, Ai-Qun; Zhou, Cheng
2011-10-01
Liver revascularization is frequently required during the enlarged radical operation for hilar cholangiocarcinoma involving the hepatic artery. Researchers have carried out a number of experiments applying partial portal vein arterialization (PVA) in clinical practice. In this study we aimed to establish a theoretical basis for clinical application of partial PVA and to investigate the effects of partial PVA on rat hilar bile duct and hepatic functions. Thirty rats were randomly and equally assigned into 3 groups: control (group A), hepatic artery ligation+bile duct recanalization (group B), and partial PVA+bile duct recanalization (group C). Proliferation and apoptosis of rat hilar bile duct epithelial cells, arteriolar counts of the peribiliary plexus (PBP) of the bile duct wall, changes in serum biochemistry, and pathologic changes in the bile duct were assessed 1 month after operation. The proliferation of hilar bile duct epithelial cells in group B was greater than in groups A and C (P<0.01). No apoptotic hilar bile duct epithelial cells were detected in any of the groups. The PBP arteriolar counts of the hilar bile duct wall were similar in groups A and C (P>0.05), but the count was lower in group B than in group A (P<0.01). No statistically significant differences in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and albumin were found in the 3 groups. The gamma-glutamyltransferase value was higher in group B than in groups A and C (P<0.01). The hepatic tissues of groups A and C showed no significant abnormality. Chronic inflammatory changes in the hilar bile duct walls were observed only in group B. Partial PVA can restore the arterial blood supply of the hilar bile duct and significantly extenuate the injury to hilar bile duct epithelial cells resulting from hepatic artery ligation.
Gajfulin, R A; Sumin, A N; Arhipov, O G
2016-01-01
The aim of study was to examine echocardiographic indices of right heart chambers in patients with coronary artery disease in different age groups. On 678 patients aged 38-85 years, who underwent echocardiography, are including with the use of spectral tissue Doppler. Obtained 2 age groups: 1st - patients up to 60 years (n=282) and group 2nd - patients 60 years and older (n=396). In the analysis the obtained results in patients with coronary heart disease in older age groups showed an increase in right ventricular wall thickness, systolic and average pressure in the pulmonary artery. These changes were accompanied by deterioration in left ventricular diastolic function, while the systolic function of the left and right ventricle were independent of age. Thus, the results can be recommended for assessment of right ventricular dysfunction in patients of older age groups.
"For whom the bell tolls": emotional rubbernecking in Facebook memorial groups.
DeGroot, Jocelyn M
2014-01-01
Facebook memorial groups are often formed as a way for people to remember a deceased loved one. Because of the public nature of communication on Facebook, people who did not intimately know the deceased (emotional rubberneckers) can locate memorial groups and watch as people grieve the loss of their friend or family member. Using grounded theory methods, the author identified and examined the function of the rubberneckers' messages posted on 10 Facebook memorial group walls. Emotional rubberneckers identified with the deceased and expressed sadness at their death, indicating a connection with the deceased stranger.
2012-01-01
Background Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. In this study we analyzed whether intracoronary autologous freshly isolated BMCs-Tx have beneficial effects on cardiac function in patients with ischemic heart disease (IHD). Results In this prospective nonrandomized study we treated 12 patients with IHD by freshly isolated BMCs-Tx by use of point of care system and compared them with a representative 12 control group without cell therapy. Global ejection fraction (EF) and infarct size area were determined by left ventriculography. Intracoronary transplantation of autologous freshly isolated BMCs led to a significant reduction of infarct size (p < 0.001) and an increase of global EF (p = 0.003) as well as infarct wall movement velocity (p < 0.001) after 6 months follow-up compared to control group. In control group there were no significant differences of global EF, infarct size and infarct wall movement velocity between baseline and 6 months after coronary angiography. Furthermore, we found significant decrease in New York Heart Association (NYHA) as well as significant decrease of B-type natriuretic peptide (BNP) level 6 months after intracoronary cell therapy (p < 0.001), whereas there were no significant differences in control group 6 months after coronary angiography. Conclusions These results demonstrate that intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system is safe and may lead to improvement of cardiac function in patients with IHD. Trial registration Registration number: ISRCTN54510226 PMID:22534049
Cross, D B; Ashton, N G; Norris, R M; White, H D
1991-04-01
In a trial of streptokinase versus recombinant tissue-type plasminogen activator (rt-PA) for a first myocardial infarction, 270 patients were randomized. Regional left ventricular function was assessed in 214 patients at 3 weeks. The infarct-related artery was the left anterior descending artery in 78 patients, the right coronary artery in 122 and a dominant left circumflex artery in 14. Analysis was by the centerline method with a novel correction for the area of myocardium at risk, whereby the search region was determined by the anatomic distribution of the infarct-related artery. Infarct-artery patency at 3 weeks was 73% in the streptokinase group and 71% in the rt-PA group. Global left ventricular function did not differ between the two groups. Mean chord motion (+/- SD) in the most hypokinetic half of the defined search region was similar in the streptokinase and rt-PA groups (-2.4 +/- 1.5 versus -2.3 +/- 1.3, p = 0.63). There were no differences in hyperkinesia of the noninfarct zone. Compared with conventional centerline analysis, regional wall motion in the defined area at risk was significantly more abnormal. The two methods correlated strongly, however (r = 0.99, p less than 0.0001), and both methods produced similar overall results. Patients with a patent infarct-related artery and those with an occluded artery at the time of catheterization had similar levels of global function (ejection fraction 58 +/- 12% versus 57 +/- 12%, p = 0.58).(ABSTRACT TRUNCATED AT 250 WORDS)
Green chemistry of carbon nanomaterials.
Basiuk, Elena V; Basiuk, Vladimir A
2014-01-01
The global trend of looking for more ecologically friendly, "green" techniques manifested itself in the chemistry of carbon nanomaterials. The main principles of green chemistry emphasize how important it is to avoid the use, or at least to reduce the consumption, of organic solvents for a chemical process. And it is precisely this aspect that was systematically addressed and emphasized by our research group since the very beginning of our work on the chemistry of carbon nanomaterials in early 2000s. The present review focuses on the results obtained to date on solvent-free techniques for (mainly covalent) functionalization of fullerene C60, single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as nanodiamonds (NDs). We designed a series of simple and fast functionalization protocols based on thermally activated reactions with chemical compounds stable and volatile at 150-200 degrees C under reduced pressure, when not only the reactions take place at a high rate, but also excess reagents are spontaneously removed from the functionalized material, thus making its purification unnecessary. The main two classes of reagents are organic amines and thiols, including bifunctional ones, which can be used in conjunction with different forms of nanocarbons. The resulting chemical processes comprise nucleophilic addition of amines and thiols to fullerene C60 and to defect sites of pristine MWNTs, as well as direct amidation of carboxylic groups of oxidized nanotubes (mainly SWNTs) and ND. In the case of bifunctional amines and thiols, reactions of the second functional group can give rise to cross-linking effects, or be employed for further derivatization steps.
Sleep Duration and Quality as Related to Left Ventricular Structure and Function.
Lee, Jae-Hon; Park, Sung Keun; Ryoo, Jae-Hong; Oh, Chang-Mo; Kang, Jeong Gyu; Mansur, Rodrigo B; Alfonsi, Jeffrey E; Lee, Yena; Shin, Sun-Han; McIntyre, Roger S; Jung, Ju Young
2018-01-01
Inadequate sleep is associated with increased risk of cardiovascular events; however, the associations between sleep duration or quality and cardiac function or structure are not well understood. This cross-sectional study was conducted to investigate to what extent sleep duration and quality are associated with left ventricular (LV) diastolic dysfunction or structural deterioration. A total of 31,598 healthy Korean adults who received echocardiography and completed the Pittsburg Sleep Quality Index were enrolled in this study. Participants were stratified into three groups by self-reported sleep duration (i.e., <7, 7-9, >9 hours) and into two groups by subjective sleep quality. Sleep duration was also assessed as a continuous variable. The odds ratios for impaired LV diastolic function, increased relative wall thickness, and LV hypertrophy (LVH) were compared between groups using multivariable logistic regression analyses. After adjustment for confounding variables (e.g., age, smoking, body mass index), there was a statistically significant association between short sleep duration (<7 hours) and greater LVH (fully adjusted odds ratio = 1.32 [95% confidence interval {CI} = 1.02-1.73]). Short sleep duration was also significantly associated with greater LVH (0.87 per hour [95% CI = 0.78-0.98]) and increased relative wall thickness (0.92 [95% CI = 0.86-0.99]), but there was no significant association between sleep and LV diastolic function. Among individuals with normal sleep duration, poor quality of sleep was not associated with adverse cardiac measures. These results indicate that short sleep duration (<7 hours) is associated with unfavorable LV structural characteristics. The association of insufficient sleep with adverse cardiovascular health outcomes may be mediated in part by adverse changes in cardiac structure and function.
Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko
2018-06-15
Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.
Do obesity and weight loss affect vocal function?
Solomon, Nancy Pearl; Helou, Leah B; Dietrich-Burns, Katie; Stojadinovic, Alexander
2011-02-01
Obesity may be associated with increased tissue bulk in the laryngeal airway, neck, and chest wall, and as such may affect vocal function. Eight obese and eight nonobese adults participated in this study; the obese participants underwent bariatric surgical procedures. This mixed-design study included cross-sectional analysis for group differences and longitudinal analysis for multidimensional changes in vocal function from four assessments collected over 6 months. No significant differences were detected between groups from the preoperative assessment. Further, no changes were detected over time for acoustic parameters, maximum phonation time, laryngeal airway resistance, and airflow during a sustained vowel for either group. Only minor differences were detected for strain, pitch, and loudness perceptions of voice over time, but not between groups. Phonation threshold pressure (PTP), at comfortable and high pitches (30% and 80% of the F0 range) changed significantly over time, but not between groups. Examination of individual data revealed a trend for PTP at 30% F0 to decrease as body mass index decreased. PTP may be informative for assessing vocal function in clients who present with obesity and voice symptoms. © Thieme Medical Publishers.
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-11-18
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory
NASA Astrophysics Data System (ADS)
Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.
2017-07-01
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.
Evans, Robert; Stewart, Maria C; Wilding, Nigel B
2017-07-28
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Purification and Characterization of Four β-Expansins (Zea m 1 Isoforms) from Maize Pollen1[w
Li, Lian-Chao; Bedinger, Patricia A.; Volk, Carol; Jones, A. Daniel; Cosgrove, Daniel J.
2003-01-01
Four proteins with wall extension activity on grass cell walls were purified from maize (Zea mays) pollen by conventional column chromatography and high-performance liquid chromatography. Each is a basic glycoprotein (isoelectric point = 9.1–9.5) of approximately 28 kD and was identified by immunoblot analysis as an isoform of Zea m 1, the major group 1 allergen of maize pollen and member of the β-expansin family. Four distinctive cDNAs for Zea m 1 were identified by cDNA library screening and by GenBank analysis. One pair (GenBank accession nos. AY104999 and AY104125) was much closer in sequence to well-characterized allergens such as Lol p 1 and Phl p 1 from ryegrass (Lolium perenne) and Phleum pretense, whereas a second pair was much more divergent. The N-terminal sequence and mass spectrometry fingerprint of the most abundant isoform (Zea m 1d) matched that predicted for AY197353, whereas N-terminal sequences of the other isoforms matched or nearly matched AY104999 and AY104125. Highly purified Zea m 1d induced extension of a variety of grass walls but not dicot walls. Wall extension activity of Zea m 1d was biphasic with respect to protein concentration, had a broad pH optimum between 5 and 6, required more than 50 μg mL-1 for high activity, and led to cell wall breakage after only approximately 10% extension. These characteristics differ from those of α-expansins. Some of the distinctive properties of Zea m 1 may not be typical of β-expansins as a class but may relate to the specialized function of this β-expansin in pollen function. PMID:12913162
Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B
2018-01-01
The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.
Girdauskas, Evaldas; Rouman, Mina; Disha, Kushtrim; Fey, Beatrix; Dubslaff, Georg; Theis, Bernhard; Petersen, Iver; Gutberlet, Matthias; Borger, Michael A; Kuntze, Thomas
2016-04-19
The correlation between bicuspid aortic valve (BAV) disease and aortopathy is not fully defined. This study aimed to prospectively analyze the correlation between functional parameters of the aortic root and expression of aortopathy in patients undergoing surgery for BAV versus tricuspid aortic valve (TAV) stenosis. From January 1, 2012 through December 31, 2014, 190 consecutive patients (63 ± 8 years, 67% male) underwent aortic valve replacement ± proximal aortic surgery for BAV stenosis (n = 137, BAV group) and TAV stenosis (n = 53, TAV group). All patients underwent pre-operative cardiac magnetic resonance imaging to evaluate morphological/functional parameters of the aortic root. Aortic tissue was sampled during surgery on the basis of the location of eccentric blood flow contact with the aortic wall, as determined by cardiac magnetic resonance (i.e., jet sample and control sample). Aortic wall lesions were graded using a histological sum score (0 to 21). The largest cross-sectional aortic diameters were at the mid-ascending level in both groups and were larger in BAV patients (40.2 ± 7.2 mm vs. 36.6 ± 3.3 mm, respectively, p < 0.001). The histological sum score was 2.9 ± 1.4 in the BAV group versus 3.4 ± 2.6 in the TAV group (p = 0.4). The correlation was linear and comparable between the maximum indexed aortic diameter and the angle between the left ventricular outflow axis and aortic root (left ventricle/aorta angle) in both groups (BAV group: r = 0.6, p < 0.001 vs. TAV group r = 0.45, p = 0.03, z = 1.26, p = 0.2). Logistic regression identified the left ventricle/aorta angle as an indicator of indexed aortic diameter >22 mm/m(2) (odds ratio: 1.2; p < 0.001). Comparable correlation patterns between functional aortic root parameters and expression of aortopathy are found in patients with BAV versus TAV stenosis. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DRY CUPPING IN CHILDREN WITH FUNCTIONAL CONSTIPATION: A RANDOMIZED OPEN LABEL CLINICAL TRIAL.
Shahamat, Mahmoud; Daneshfard, Babak; Najib, Khadijeh-Sadat; Dehghani, Seyed Mohsen; Tafazoli, Vahid; Kasalaei, Afshineh
2016-01-01
As a common disease in pediatrics, constipation poses a high burden to the community. In this study, we aimed to investigate the efficacy of dry cupping therapy (an Eastern traditional manipulative therapy) in children with functional constipation. One hundred and twenty children (4-18 years old) diagnosed as functional constipation according to ROME III criteria were assigned to receive a traditional dry cupping protocol on the abdominal wall for 8 minutes every other day or standard laxative therapy (Polyethylene glycol (PEG) 40% solution without electrolyte), 0.4 g/kg once daily) for 4 weeks, in an open label randomized controlled clinical trial using a parallel design with a 1:1 allocation ratio. Patients were evaluated prior to and following 2, 4, 8 and 12 weeks of the intervention commencement in terms of the ROME III criteria for functional constipation. There were no significant differences between the two arms regarding demographic and clinical basic characteristics. After two weeks of the intervention, there was a significant better result in most of the items of ROME III criteria of patients in PEG group. In contrast, after four weeks of the intervention, the result was significantly better in the cupping group. There was no significant difference in the number of patients with constipation after 4 and 8 weeks of the follow-up period. This study showed that dry cupping of the abdominal wall, as a traditional manipulative therapy, can be as effective as standard laxative therapy in children with functional constipation.
Cakmakci, Emin; Ucan, Berna; Colak, Bayram; Cinar, Hasibe Gokçe
2014-09-01
The purpose of this study was to find out whether transabdominal sonography may have a predictive role for detection of antral gastritis and Helicobacter pylori infection in the antrum. A total of 108 patients and 54 control participants were allocated into 3 groups: group 1, controls without any symptoms or findings of antral gastritis and H pylori infection; group 2, patients with symptoms and endoscopic findings consistent with gastritis in the absence of documented H pylori infection; and group 3, patients with symptoms and endoscopic findings consistent with gastritis and documented H pylori infection. These groups were compared in terms of demographics, antral wall thickness, mucosal layer (together with muscularis mucosa) thickness, and mucosal layer-to-antral wall thickness ratio. The groups had no statistically significant differences with respect to age, sex, body mass index, and smoking habits. However, it turned out that both antral walls and muscularis mucosa layers were thicker and the mucosal layer-to-antral wall thickness ratio was higher in groups 2 and 3 compared to group 1 (P > .001). In addition, group 3 had statistically significantly thicker antral walls and muscularis mucosa layers and a significantly increased mucosal layer-to-antral wall thickness ratio than group 2 (P < .001). Our results suggest that antral gastritis caused by H pylori infection is associated with characteristic features such as thickening of antral walls and mucosal layers on sonography. These novel clues may be useful in the diagnosis of gastritis, and unnecessary interventions and measures can be avoided in some cases. © 2014 by the American Institute of Ultrasound in Medicine.
Eikendal, Anouk L M; Bots, Michiel L; Haaring, Cees; Saam, Tobias; van der Geest, Rob J; Westenberg, Jos J M; den Ruijter, Hester M; Hoefer, Imo E; Leiner, Tim
2016-01-01
Reference values for morphological and functional parameters of the cardiovascular system in early life are relevant since they may help to identify young adults who fall outside the physiological range of arterial and cardiac ageing. This study provides age and sex specific reference values for aortic wall characteristics, cardiac function parameters and aortic pulse wave velocity (PWV) in a population-based sample of healthy, young adults using magnetic resonance (MR) imaging. In 131 randomly selected healthy, young adults aged between 25 and 35 years (mean age 31.8 years, 63 men) of the general-population based Atherosclerosis-Monitoring-and-Biomarker-measurements-In-The-YOuNg (AMBITYON) study, descending thoracic aortic dimensions and wall thickness, thoracic aortic PWV and cardiac function parameters were measured using a 3.0T MR-system. Age and sex specific reference values were generated using dedicated software. Differences in reference values between two age groups (25-30 and 30-35 years) and both sexes were tested. Aortic diameters and areas were higher in the older age group (all p<0.007). Moreover, aortic dimensions, left ventricular mass, left and right ventricular volumes and cardiac output were lower in women than in men (all p<0.001). For mean and maximum aortic wall thickness, left and right ejection fraction and aortic PWV we did not observe a significant age or sex effect. This study provides age and sex specific reference values for cardiovascular MR parameters in healthy, young Caucasian adults. These may aid in MR guided pre-clinical identification of young adults who fall outside the physiological range of arterial and cardiac ageing.
NASA Astrophysics Data System (ADS)
Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.
2015-12-01
Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.
Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles
NASA Technical Reports Server (NTRS)
Gradl, Paul R.
2016-01-01
The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.
Cultured normal mammalian tissue and process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)
1993-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
2010-01-01
Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation. Conclusion Overall, monolignol substitutes improved the inherent degradability of non-pretreated cell walls by restricting lignification or possibly by reducing lignin hydrophobicity or cross-linking to structural polysaccharides. Furthermore some monolignol substitutes, chiefly readily cleaved bi-phenolic conjugates like epigallocatechin gallate or diferuloyl polyol esters, are expected to greatly boost the enzymatic degradability of cell walls following chemical pretreatment. In ongoing work, we are characterizing the enzymatic saccharification of intact and chemically pretreated cell walls lignified by these and other monolignol substitutes to identify promising genetic engineering targets for improving plant fiber utilization. PMID:20565789
Outcomes of Complete Versus Partial Surgical Stabilization of Flail Chest.
Nickerson, Terry P; Thiels, Cornelius A; Kim, Brian D; Zielinski, Martin D; Jenkins, Donald H; Schiller, Henry J
2016-01-01
Rib fractures are common after chest wall trauma. For patients with flail chest, surgical stabilization is a promising technique for reducing morbidity. Anatomical difficulties often lead to an inability to completely repair the flail chest; thus, the result is partial flail chest stabilization (PFS). We hypothesized that patients with PFS have outcomes similar to those undergoing complete flail chest stabilization (CFS). A prospectively collected database of all patients who underwent rib fracture stabilization procedures from August 2009 until February 2013 was reviewed. Abstracted data included procedural and complication data, extent of stabilization, and pulmonary function test results. Of 43 patients who underwent operative stabilization of flail chest, 23 (53%) had CFS and 20 (47%) underwent PFS. Anterior location of the fracture was the most common reason for PFS (45%). Age, sex, operative time, pneumonia, intensive care unit and hospital length of stay, and narcotic use were the same in both groups. Total lung capacity was significantly improved in the CFS group at 3 months. No chest wall deformity was appreciated on follow-up, and no patients underwent additional stabilization procedures following PFS. Despite advances in surgical technique, not all fractures are amenable to repair. There was no difference in chest wall deformity, narcotic use, or clinically significant impairment in pulmonary function tests among patients who underwent PFS compared with CFS. Our data suggest that PFS is an acceptable strategy and that extending or creating additional incisions for CFS is unnecessary.
Kim, So Young; Lee, Kyeong-Tae; Mun, Goo-Hyun
2017-03-01
A Pfannenstiel incision involves the obstruction of superficial venous pathways and functional diversion of flow through alternative pathways and adjacent vessels. This study investigated the effect of a prior Pfannenstiel incision on venous anatomy of the lower abdominal wall; specifically, the superficial inferior epigastric vein (SIEV), using computed tomographic angiography. A case-control study was performed of 50 patients with Pfannenstiel scars and 50 age-matched, body mass index-matched control patients without Pfannenstiel scars. The authors compared the number of direct/indirect and total communications between the SIEV and deep inferior epigastric artery perforator (DIEP) venae comitantes, midline crossover, and other SIEV-related anatomical changes by using computed tomographic angiography. Flap-related clinical outcomes and donor-site-related complications were also assessed. The median number of direct and total communications between the SIEV and DIEP venae comitantes in the study group was greater than in the control group. The percentage of SIEVs having more than two branching patterns per hemiabdomen was significantly higher in the study group than in the control group. The study group also showed a significantly lower rate of fat necrosis compared with the control group (p = 0.03). The rate of donor-site seroma was significantly higher in the study group. This study suggests that the presence of a Pfannenstiel scar may promote the development of direct and total communications between the SIEV and DIEP venae comitantes and branching within the SIEV in the lower abdominal wall, which may facilitate venous drainage of adipose tissue in DIEP flap breast reconstruction. Risk, II.
Augment clinical measurement using a constraint-based esophageal model
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Acharya, Shashank; Kahrilas, Peter; Patankar, Neelesh; Pandolfino, John
2017-11-01
Quantifying the mechanical properties of the esophageal wall is crucial to understanding impairments of trans-esophageal flow characteristic of several esophageal diseases. However, these data are unavailable owing to technological limitations of current clinical diagnostic instruments that instead display esophageal luminal cross sectional area based on intraluminal impedance change. In this work, we developed an esophageal model to predict bolus flow and the wall property based on clinical measurements. The model used the constraint-based immersed-boundary method developed previously by our group. Specifically, we first approximate the time-dependent wall geometry based on impedance planimetry data on luminal cross sectional area. We then fed these along with pressure data into the model and computed wall tension based on simulated pressure and flow fields, and the material property based on the strain-stress relationship. As examples, we applied this model to augment FLIP (Functional Luminal Imaging Probe) measurements in three clinical cases: a normal subject, achalasia, and eosinophilic esophagitis (EoE). Our findings suggest that the wall stiffness was greatest in the EoE case, followed by the achalasia case, and then the normal. This is supported by NIH Grant R01 DK56033 and R01 DK079902.
Visualizing chemical functionality in plant cell walls
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
2017-11-30
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls.
Zeng, Yining; Himmel, Michael E; Ding, Shi-You
2017-01-01
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.
Zhao, Qiao; Zeng, Yining; Yin, Yanbin; ...
2014-08-05
In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less
Adhikari, Prashanta Dhoj; Jeon, Seunghan; Cha, Myoung-Jun; Jung, Dae Sung; Kim, Yooseok; Park, Chong-Yun
2014-02-01
We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT-G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT-G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT-G structure and p-n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT-G hybrids with the present technique could provide an efficient, novel route to device fabrication.
Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria
Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.
2016-01-01
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195
Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.
Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M
2016-07-01
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.
A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode.
Zheng, Yu-Bin; Zhao, Shuang; Cao, Shuo-Hui; Cai, Sheng-Lin; Cai, Xiu-Hong; Li, Yao-Qun
2017-01-07
In this article, we have demonstrated for the first time a triple stimuli-responsive nanofluidic diode that can rectify ionic current under multiple external stimuli including temperature, pH, and sugar. This diode was fabricated by immobilizing poly[2-(dimethylamino)ethyl methacrylate]-co-[4-vinyl phenylboronic acid] (P(DMAEMA-co-VPBA)) onto the wall of a single glass conical nanopore channel via surface-initiator atom transfer radical polymerization (SI-ATRP). The copolymer brushes contain functional groups sensitive to pH, temperature and sugar that can induce charge and configuration change to affect the status of the pore wall. The experimental results confirmed that the P(DMAEMA-co-VPBA) brush modified nanochannel regulated the ionic current rectification successfully under three different external stimuli. This biomimetically inspired research simulates the complex biological multi-functions of ion channels and promotes the development of "smart" biomimetic nanochannel systems for actuating and sensing applications.
S-layers: principles and applications
Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar
2014-01-01
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
Găloiu, S; Jurcuţ, R; Vlădaia, A; Florian, A; Purice, M; Popescu, B A; Ginghină, C; Coculescu, M
2012-04-01
Vascular changes are common in acromegaly (ACM). Current therapies can normalise the levels of both growth hormone (GH) and insulin-like growth factor (IGF1). To establish whether the ACM vascular changes in patients with effectively managed disease are different from those in patients with an active condition. 64 ACM patients were tested for serum GH (random and during an oral glucose tolerance test) and IGF1. Ultrasonography of the right common carotid (RCC) explored structural (the carotid diameter and intima-media thickness index (IMT)) and functional (the augmentation index (AIx), elastic modulus (Ep), and local pulse wave velocity (PWV)) arterial parameters in the ACM patients (groups A and B) and an age- and sex-matched control group of 21 patients without acromegaly (group C). The ACM patients were divided into 2 subgroups that had similar cardiovascular risk factor profiles: A (n=10, with controlled ACM), and B (n=54, with active ACM). The AIx was higher in groups A (27.7% [2.2-54.3]) and B (20.0% [ - 38.2-97.1]) than in group C (3.5% [ - 11.3-31.1]), p=0.01 and 0.002, respectively. The group B patients presented with poorer functional carotid wall parameters than the control subjects: Ep-95.5 [33-280] KPa vs. 77.5 [39-146] KPa, p=0.01; and PWV-6 [3.6-10.4] m/s vs. 5.4 [3.9-7.2] m/s, p=0.03.The ACM patients had greater RCC diameters (6.4 ± 0.6 mm vs. 5.7 ± 0.6 mm, p<0.001) and IMT values (0.72 ± 0.13 mm vs. 0.58 ± 0.08 mm, p<0.001) than the subjects in group C. Both the controlled and active ACM patients showed structural arterial changes. After 1 year of disease control, the patients with controlled ACM showed improvements in the functional, but not the structural, arterial parameters compared with the patients with an active condition. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Investigation into the optimal prosthetic material for wound healing of abdominal wall defects
Akcakaya, Adem; Aydogdu, Ibrahim; Citgez, Bulent
2018-01-01
The purpose of this experimental study is to investigate and compare the effects of prosthetic materials used for wound healing of abdominal wall hernias. A total of 60 rats were divided into five equal groups: Group I, control subjected to laparotomy; group II, abdominal wall defect 3×2 cm+polypropylene (PP) mesh; group III, abdominal wall defect 3×2 cm+PP mesh+hyaluronate and carboxymethylcellulose (H-CMC; Seprafilm®); group IV, abdominal wall defect 3×2 cm+polytetrafluoroethylene (PTFE; Composix™); and group V, abdominal wall defect 3×2 cm+polyethylene terephthalate (PET; Dacron®). A total of 14 days after the surgery, rats were sacrificed and the meshes with the surrounding tissue were extracted in block. The breaking strength of the mesh from the fascia was recorded. The healing tissue was examined with the index of histopathology and the hydroxyproline value was analyzed using the Switzer method. Both the breaking strength and histopathological index of the wound healing were significantly improved in groups II and III compared with that in groups IV and V (P<0.001). Hydroxyproline values were the highest in group I (P<0.001). There was also a statistically significant difference between groups II and IV, and group V and the other groups (P<0.001). The present findings demonstrated that PP mesh and PP mesh+H-CMC had a superior breaking strength and improved histopathologic indices compared with PTFE and PET. Furthermore, hydroxyproline values were the lowest in the PET group. In conclusion, wound healing was improved in the PP mesh group and the PP mesh+H-CMC group compared with the PTFE and PET groups according to the present study parameters. PMID:29399133
A two-layer multiple-time-scale turbulence model and grid independence study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-01-01
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579
Pumera, Martin; Smíd, Bretislav
2007-10-01
Double wall carbon nanotubes are noncovalently functionalized with redox protein and such assembly is used for construction of electrochemical binder-less glucose biosensor. Redox protein glucose oxidase performs as biorecognition element and double wall carbon nanotubes act both as immobilization platform for redox enzyme and as signal transducer. The double carbon nanotubes are characterized by cyclic voltammetry and specific surface area measurements; the redox protein noncovalently functionalized double wall carbon nanotubes are characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, amperometry, and transmission electron microscopy.
Lü, Wei-Dong; Wang, An-Ping; Wu, Zhong-Shi; Zhang, Ming; Hu, Tie-Hui; Lei, Guang-Yan; Hu, Ye-Rong
2012-10-01
This study aimed to investigate the effect of decellularization plus photooxidative crosslinking and ethanol pretreatment on bioprosthetic tissue calcification. Photooxidatively crosslinked acellular (PCA) bovine jugular vein conduits (BJVCs) and their photooxidized controls (n = 5 each) were sterilized in a graded concentration of ethanol solutions for 4 h, and used to reconstruct dog right ventricular outflow tracts. At 1-year implantation, echocardiography showed similar hemodynamic performance, but obvious calcification for the photooxidized BJVC walls. Further histological examination showed intense calcium deposition colocalized with slightly degraded elastic fibers in the photooxidized BJVC walls, with sparsely distributed punctate calcification in the valves and other areas of walls. But PCA BJVCs had apparent degradation of elastic fibers in the walls, with only sparsely distributed punctate calcification in the walls and valves. Content assay demonstrated comparable calcium content for the two groups at preimplantation, whereas less calcium for the PCA group in the walls and similar calcium in the valvular leaflets compared with the photooxidized group at 1-year retrieval. Elastin content assay presented the conduit walls of PCA group had less elastin content at preimplantation, but similar content at 1-year retrieval compared with the photooxidized group. Phospholipid analysis showed phospholipid extraction by ethanol for the PCA group was more efficacious than the photooxidized group. These results indicate that PCA BJVCs resist calcification in right-side heart implantation owing to decellularization, further photooxidative crosslinking, and subsequent phospholipid extraction by ethanol at preimplantation. Copyright © 2012 Wiley Periodicals, Inc.
The effect of ethanol vapour exposure on atrial and ventricular walls of chick embryos.
Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali
2016-10-01
To study the effects of ethanol vapour exposure on atrial and ventricular walls of heart in chick embryo. The study design was experimental, conducted at Islamabad Centre of College of Physicians and Surgeons, Pakistan. One hundred and eighty chicken eggs were divided into two groups, experimental and control, of 90 eggs each. Each group was subdivided into three subgroups of 30 eggs each based on the day of sacrifice. Experimental group was exposed to ethanol vapours and then compared with age matched controls. The thickness of atrial and ventricular walls along with lengths of valvular cusps increased in hearts of day 7 and day 10 chick embryos in experimental group. There was thinning of walls and decreased length of valvular cusps in hearts of experimental chicks on hatching as compared to age matched controls. Ethanol vapour exposure during development causes cardiac and septal wall thickening during initial days of development followed by cardiac and septal wall thinning which is a classical picture of alcohol induced cardiomyopathies.
Near-wall k-epsilon turbulence modeling
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moin, P.
1987-01-01
The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.
NASA Technical Reports Server (NTRS)
McElmurray, J. H. 3rd; Mukherjee, R.; New, R. B.; Sampson, A. C.; King, M. K.; Hendrick, J. W.; Goldberg, A.; Peterson, T. J.; Hallak, H.; Zile, M. R.;
1999-01-01
The progression of congestive heart failure (CHF) is left ventricular (LV) myocardial remodeling. The matrix metalloproteinases (MMPs) contribute to tissue remodeling and therefore MMP inhibition may serve as a useful therapeutic target in CHF. Angiotensin converting enzyme (ACE) inhibition favorably affects LV myocardial remodeling in CHF. This study examined the effects of specific MMP inhibition, ACE inhibition, and combined treatment on LV systolic and diastolic function in a model of CHF. Pigs were randomly assigned to five groups: 1) rapid atrial pacing (240 beats/min) for 3 weeks (n = 8); 2) ACE inhibition (fosinopril, 2.5 mg/kg b.i.d. orally) and rapid pacing (n = 8); 3) MMP inhibition (PD166793 2 mg/kg/day p.o.) and rapid pacing (n = 8); 4) combined ACE and MMP inhibition (2.5 mg/kg b.i.d. and 2 mg/kg/day, respectively) and rapid pacing (n = 8); and 5) controls (n = 9). LV peak wall stress increased by 2-fold with rapid pacing and was reduced in all treatment groups. LV fractional shortening fell by nearly 2-fold with rapid pacing and increased in all treatment groups. The circumferential fiber shortening-systolic stress relation was reduced with rapid pacing and increased in the ACE inhibition and combination groups. LV myocardial stiffness constant was unchanged in the rapid pacing group, increased nearly 2-fold in the MMP inhibition group, and was normalized in the ACE inhibition and combination treatment groups. Increased MMP activation contributes to the LV dilation and increased wall stress with pacing CHF and a contributory downstream mechanism of ACE inhibition is an effect on MMP activity.
Ramadan, Ronnie; Dhawan, Saurabh S.; Binongo, José Nilo G.; Alkhoder, Ayman; Jones, Dean P.; Oshinski, John N.; Quyyumi, Arshed A.
2016-01-01
Background Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of Angiotensin II type-1 receptor (AT1R) blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Methods Subjects (n= 120) with carotid intima-media thickness >0.65mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area (VWA) and wall thickness (WT) were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Results Over 2 years, the carotid bulb VWA decreased with Valsartan (−6.7, 95% CI: (−11.6,−1.9) mm2) but not with placebo (3.4, 95% CI: (−2.8,9.6) mm2)), p=0.01 between groups. Similarly, mean WT decreased with Valsartan (−0.18, 95% CI: (−0.30,−0.06) mm), but not with placebo (0.08, 95% CI: (−0.07,0.23) mm),), p=0.009 between groups. Furthermore, plaque thickness decreased with Valsartan (−0.35, 95% CI: (−0.63,−0.08) mm) but was unchanged with placebo (+0.28, 95% CI: (−0.11,0.69) mm), p=0.01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium–independent vascular function. Conclusions In subjects with carotid wall thickening, AT1R blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis warrants investigation. PMID:26995372
NASA Astrophysics Data System (ADS)
Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William
2018-02-01
The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.
Kubota, Yasuhiko; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Watabe, Hiroshi; Daimon, Takashi; Sakai, Yoshiki; Akita, Toshiaki; Sawa, Yoshiki
2014-03-01
The cardiac support device supports the heart and mechanically reduces left ventricular (LV) diastolic wall stress. Although it has been shown to halt LV remodeling in dilated cardiomyopathy, its therapeutic efficacy is limited by its lack of biological effects. In contrast, the slow-release synthetic prostacyclin agonist ONO-1301 enhances reversal of LV remodeling through biological mechanisms such as angiogenesis and attenuation of fibrosis. We therefore hypothesized that ONO-1301 plus a cardiac support device might be beneficial for the treatment of ischemic cardiomyopathy. Twenty-four dogs with induced anterior wall infarction were assigned randomly to 1 of 4 groups at 1 week postinfarction as follows: cardiac support device alone, cardiac support device plus ONO-1301 (hybrid therapy), ONO-1301 alone, or sham control. At 8 weeks post-infarction, LV wall stress was reduced significantly in the hybrid therapy group compared with the other groups. Myocardial blood flow, measured by positron emission tomography, and vascular density were significantly higher in the hybrid therapy group compared with the cardiac support device alone and sham groups. The hybrid therapy group also showed the least interstitial fibrosis, the greatest recovery of LV systolic and diastolic functions, assessed by multidetector computed tomography and cardiac catheterization, and the lowest plasma N-terminal pro-B-type natriuretic peptide levels (P < .05). The combination of a cardiac support device and the prostacyclin agonist ONO-1301 elicited a greater reversal of LV remodeling than either treatment alone, suggesting the potential of this hybrid therapy for the clinical treatment of ischemia-induced heart failure. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi
2017-11-09
Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.
[Characteristics of heavy metals enrichment in algae ano its application prospects].
Lu, Kaixing; Tang, Jian-jun; Jiang, De'an
2006-01-01
Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.
Optical excitation of carbon nanotubes drives stoichiometric reaction with diazonium salts
NASA Astrophysics Data System (ADS)
Powell, Lyndsey; Piao, Yanmei; Wang, Yuhuang; YuHuang Wang Research Group Team
Covalent chemistry is known to lack the precision required to tailor the physical properties of carbon nanostructures. Here we show that, for the first time, light can be used to drive a typically inefficient reaction with single-walled carbon nanotubes in a more stoichiometric fashion. Specifically, our experimental results suggest that light can enhance the reaction rate of diazonium salt with carbon nanotubes by as much as 35-fold, making possible stoichiometric control of the covalent bonding of a functional group to the sp2 carbon lattice. This light-controlled reaction paves the way for the possibility of highly selective and precise chemistry on single-walled carbon nanotubes and other graphitic nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Haiyan; McGee, John K.; Saxena, Rajiv K.
2009-09-15
Engineered carbon nanotubes are being developed for a wide range of industrial and medical applications. Because of their unique properties, nanotubes can impose potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their surface. The present study was designed to evaluate whether acid functionalization (AF) enhanced the cardiopulmonary toxicity of single-walled carbon nanotubes (SWCNT) as well as control carbon black particles. Mice were exposed by oropharyngeal aspiration to 10 or 40 {mu}g of saline-suspended single-walled carbon nanotubes (SWCNTs), acid-functionalized SWCNTs (AF-SWCNTs), ultrafine carbon black (UFCB), AF-UFCB, or 2 {mu}g LPS. 24 hours later,more » pulmonary inflammatory responses and cardiac effects were assessed by bronchoalveolar lavage and isolated cardiac perfusion respectively, and compared to saline or LPS-instilled animals. Additional mice were assessed for histological changes in lung and heart. Instillation of 40 {mu}g of AF-SWCNTs, UFCB and AF-UFCB increased percentage of pulmonary neutrophils. No significant effects were observed at the lower particle concentration. Sporadic clumps of particles from each treatment group were observed in the small airways and interstitial areas of the lungs according to particle dose. Patches of cellular infiltration and edema in both the small airways and in the interstitium were also observed in the high dose group. Isolated perfused hearts from mice exposed to 40 {mu}g of AF-SWCNTs had significantly lower cardiac functional recovery, greater infarct size, and higher coronary flow rate than other particle-exposed animals and controls, and also exhibited signs of focal cardiac myofiber degeneration. No particles were detected in heart tissue under light microscopy. This study indicates that while acid functionalization increases the pulmonary toxicity of both UFCB and SWCNTs, this treatment caused cardiac effects only with the AF-carbon nanotubes. Further experiments are needed to understand the physico-chemical processes involved in this phenomenon.« less
Elliott, S. D.; Hayward, John; Liu, T. Y.
1971-01-01
A Group A variant-like antigen has been detected in streptococci belonging to Groups D, E, G, M, and N. In Groups D and N the variant-like antigen was located in the streptococcal cell walls. In two strains of Group N streptococci (C559 and B209) the cell walls were chemically different and serologically distinct. In strain C559 N-acetylgalactosamine, and in strain B209, N-acetylglucosamine were the major determinants of serological specificity. The cell walls of strain C559 contained at least three serologically reactive components: a rhamnose-containing fraction that precipitated with an antiserum to Group A-variant carbohydrate; a strain-specific polysaccharide composed of galactosamine and glucosamine, both in the N-acetylated form and probably polymerized with an unidentified phosphorylated substance; and a component of unknown composition serologically related to a Group D streptococcus strain C3 (S. durans). An analogy is drawn between the cell wall structure in streptococcus and Salmonella. PMID:5111438
Parrotta, Luigi; Guerriero, Gea; Sergeant, Kjell; Cai, Giampiero; Hausman, Jean-Francois
2015-01-01
Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e., barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering. PMID:25814996
Hamann, Thorsten
2015-04-01
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells
Steinman, D.A.
1980-05-30
Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.
Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells
Steinman, David A.
1982-01-01
Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.
Hashemzadeh, Shahryar; Hashemzadeh, Khosrov; Hosseinzadeh, Hamzeh; Aligholipour Maleki, Raheleh; Golzari, Samad E J; Golzari, Samad
2011-01-01
Chest wall blunt trauma causes multiple rib fractures and will often be associated with significant pain and may compromise ventilator mechanics. Analgesia has great roll in rib fracture therapies, opioid are useful, but when used as sole agent may require such high dose that they produce respiratory depression, especially in elderly .the best analgesia for a severe chest wall injury is a continuous epidural infusion of local anesthetic. This provides complete analgesia allowing inspiration and coughing without of the risk of respiratory depression. sixty adult patients who with multiple rib fractures were enrolled in this study. They were divided into Group A or thoracic epidural with bupivacaine 0.125 % +1mg/5ml morphine and group B or intercostal block with 0.25% bupivacaine. The patients were assessed through ICU and hospital stay length, ventilation function tests. Pain score among the patients was measured with verbal rating scale, before and after administration of the analgesia. We found a significant improvement in ventilatory function tests during the 1st, 2nd, and 3rd days after epidural analgesia compared with the intercostal block (P < 0.004). Changes in the visual Analogue Scale were associated with marked improvement regarding pain at rest and pain caused by coughing and deep breathing in group A compared group B... ICU and hospital stay markedly reduced in Group A. thoracic epidural analgesia is superior to intercostals block regarding pain relief of rib fractures. Patients who received epidural analgesia had significantly lower pain scores at all studied times.
DRY CUPPING IN CHILDREN WITH FUNCTIONAL CONSTIPATION: A RANDOMIZED OPEN LABEL CLINICAL TRIAL
Shahamat, Mahmoud; Daneshfard, Babak; Najib, Khadijeh-Sadat; Dehghani, Seyed Mohsen; Tafazoli, Vahid; Kasalaei, Afshineh
2016-01-01
Background: As a common disease in pediatrics, constipation poses a high burden to the community. In this study, we aimed to investigate the efficacy of dry cupping therapy (an Eastern traditional manipulative therapy) in children with functional constipation. Materials and Methods: One hundred and twenty children (4-18 years old) diagnosed as functional constipation according to ROME III criteria were assigned to receive a traditional dry cupping protocol on the abdominal wall for 8 minutes every other day or standard laxative therapy (Polyethylene glycol (PEG) 40% solution without electrolyte), 0.4 g/kg once daily) for 4 weeks, in an open label randomized controlled clinical trial using a parallel design with a 1:1 allocation ratio. Patients were evaluated prior to and following 2, 4, 8 and 12 weeks of the intervention commencement in terms of the ROME III criteria for functional constipation. Results: There were no significant differences between the two arms regarding demographic and clinical basic characteristics. After two weeks of the intervention, there was a significant better result in most of the items of ROME III criteria of patients in PEG group. In contrast, after four weeks of the intervention, the result was significantly better in the cupping group. There was no significant difference in the number of patients with constipation after 4 and 8 weeks of the follow-up period. Conclusion: This study showed that dry cupping of the abdominal wall, as a traditional manipulative therapy, can be as effective as standard laxative therapy in children with functional constipation. PMID:28852716
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
Cano, Amanda M; Kohl, Kristina; Deleon, Sabrina; Payton, Paxton; Irin, Fahmida; Saed, Mohammad; Shah, Smit Alkesh; Green, Micah J; Cañas-Carrell, Jaclyn E
2016-06-01
Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Fernandes Carmen; Fernandes, C M C; Murrell, H C
2009-06-01
This study is an anatomical study designed to benefit surgeons working in the region of the maxillary sinus. This paper investigates ethnic and gender variations in the shape of the maxillary sinus in dried crania from the Raymond Dart collection of human skeletons. The paper claims that an estimate of the area of the medial antral wall of the maxillary sinus is one of the best ethnic/gender group predictors. Helical, multislice computed tomography was performed using 1mm coronal slices length, depth, width and volume measurements for each sinus were taken. Classification by shape and estimated area of medial wall was attempted. Shape classification was found to be unsuccessful whilst medial wall classification into ethnic/gender groupings gave encouraging results. The area of the medial wall is related to ethnic/gender groups.
Dong, L-R; Zhu, Y-M; Xu, Q; Cao, C-X; Zhang, B-Z
2012-01-01
This study investigated whether extraperitoneal colostomy without damaging the muscle layer of the abdominal wall is an improved surgical procedure compared with conventional sigmoid colostomy in patients undergoing abdominoperineal resection. Patients with rectal cancer undergoing abdominoperineal resection were selected and randomly divided into two groups: the study group received extraperitoneal colostomy without damaging the muscle layer of the abdominal wall and the control group received conventional colostomy. Clinical data from both groups were analysed. A total of 128 patients were included: 66 received extraperitoneal colostomy without damaging the muscle layer of the abdominal wall and 62 received conventional colostomy. Significant differences between the two groups were found in relation to colostomy operating time, defaecation sensation, bowel control and overall stoma-related complications. Duration of postoperative hospital stay was also significantly different between the study groups. Extraperitoneal colostomy without damaging the muscle layer of the abdominal wall was found to be an improved procedure compared with conventional sigmoid colostomy in abdominoperineal resection, and may reduce colostomy-related complications, shorten operating time and postoperative hospital stay, and potentially improve patients' quality of life.
The structure and function of fungal cells
NASA Technical Reports Server (NTRS)
Nozawa, Y.
1984-01-01
The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.
Spaceflight Affects Postnatal Development of the Aortic Wall in Rats
Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi
2014-01-01
We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713
Cho, Misuk
2013-01-01
[Purpose] The purpose of this study was to compare the effects of bridge exercises applying the abdominal drawing-in method and modified wall squat exercises on deep abdominal muscle thickness and lumbar stability. [Subjects] A total of 30 subjects were equally divided into an experimental group and a control group. [Methods] The experimental group completed modified wall squat exercises, and the control group performed bridge exercises. Both did so for 30 minutes three times per week over a six-week period. Both groups’ transversus abdominis (Tra), internal oblique (IO), and multifidus muscle thickness were measured using ultrasonography, while their static lumbar stability and dynamic lumbar stability were measured using a pressure biofeedback unit. [Results] A comparison of the pre-intervention and post-intervention measures of the experimental group and the control group was made; the Tra and IO thicknesses were significantly different in both groups. [Conclusion] The modified wall squat exercise and bridge exercise affected the thicknesses of the Tra and the IO muscles. While the bridge exercise requirs space and a mattress to lie on, the modified wall squat exercise can be conveniently performed anytime. PMID:24259831
Mandler, W Kyle; Nurkiewicz, Timothy R; Porter, Dale W; Kelley, Eric E; Olfert, I Mark
2018-05-21
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) disrupts peripheral microvascular function. Thrombospondin-1 (TSP-1) is highly expressed during lung injury and has been shown to alter microvascular reactivity. It is unclear exactly how TSP-1 exerts effects on vascular function, but we hypothesized that the TSP-1 receptor CD47 may mediate changes in vasodilation.Wildtype (WT) or CD47 knockout (CD47 KO) C57B6/J-background animals were exposed to 50 µg of MWCNT or saline control via pharyngeal aspiration. Twenty-four hours post-exposure, intravital microscopy was performed to assess arteriolar dilation and venular leukocyte adhesion and rolling. To assess tissue redox status, electron paramagnetic resonance and NOx measurements were performed, while inflammatory biomarkers were measured via multiplex assay.Vasodilation was impaired in the WT+MWCNT group compared to control (57±9% vs 90±2% relaxation), while CD47 KO animals showed no impairment (108±8% relaxation). Venular leukocyte adhesion and rolling increased by > 2-fold, while the CD47 KO group showed no change. Application of the antioxidant apocynin rescued normal leukocyte activity in the WT+MWCNT group. Lung and plasma NOx were reduced in the WT+MWCNT group by 47% and 32%, respectively, while the CD47 KO groups were unchanged from control. Some inflammatory cytokines were increased in the CD47+MWCNT group only.In conclusion, TSP-1 is an important ligand mediating MWCNT-induced microvascular dysfunction, and CD47 is a component of this dysregulation. CD47 activation likely disrupts nitric oxide (•NO) signaling and promotes leukocyte-endothelial interactions. Impaired •NO production, signaling, and bioavailability is linked to a variety of cardiovascular diseases in which TSP-1/CD47 may play an important role.
LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION
Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik
2017-01-01
The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; ...
2016-10-06
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins.more » We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.« less
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins.more » We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.« less
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E
2016-11-07
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.
2013-01-01
Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112
Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C
2013-01-01
Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.
Functional electronic inversion layers at ferroelectric domain walls
NASA Astrophysics Data System (ADS)
Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.
2017-06-01
Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.
Ab initio study of edge effect on relative motion of walls in carbon nanotubes
NASA Astrophysics Data System (ADS)
Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.
2013-01-01
Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.
The influence of a wall function on turbine blade heat transfer prediction
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1989-01-01
The second phase of a continuing investigation to improve the prediction of turbine blade heat transfer coefficients was completed. The present study specifically investigated how a numeric wall function in the turbulence model of a two-dimensional boundary layer code, STAN5, affected heat transfer prediction capabilities. Several sources of inaccuracy in the wall function were identified and then corrected or improved. Heat transfer coefficient predictions were then obtained using each one of the modifications to determine its effect. Results indicated that the modifications made to the wall function can significantly affect the prediction of heat transfer coefficients on turbine blades. The improvement in accuracy due the modifications is still inconclusive and is still being investigated.
Confined polar mixtures within cylindrical nanocavities.
Rodriguez, Javier; Elola, M Dolores; Laria, Daniel
2010-06-17
Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius R(cnt) = 0.55 nm, and (16,16) ones, with R(cnt) = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches approximately 1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius approximately 1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoellnast, Helmut; Monette, Sebastien; Ezell, Paula C.
To evaluate the effects of irreversible electroporation (IRE) on the rectum wall after IRE applied adjacent to the rectum. CT-guided IRE adjacent to the rectum wall was performed in 11 pigs; a total of 44 lesions were created. In five pigs, ablations were performed without a water-filled endorectal coil (group A); in six pigs, ablation was performed with the coil to avoid displacement of the rectum wall (group B). The pigs were killed after 7-15 days and the rectums were harvested for pathological evaluation. There was no evidence of perforation on gross postmortem examination. Perirectal muscle lesions were observed inmore » 18 of 20 ablations in group A and in 21 of 24 ablations in group B. Inflammation and fibrosis of the muscularis propria was observed in ten of 18 lesions in group A and in ten of 21 lesions in group B. In group A, findings were limited to the external layer of the muscularis propria except for one lesion; in group B, findings were transmural in all cases. Transmural necrosis with marked suppurative mucosal inflammation was observed in seven of 21 lesions in group B and in no lesion in group A. IRE-ablation adjacent to the rectum may be uneventful if the rectum wall is mobile and able to contract. IRE-ablation of the rectum may be harmful if the rectum wall is fixed adjacent to the IRE-probe.« less
Cameli, Matteo; Lisi, Matteo; Righini, Francesca Maria; Tsioulpas, Charilaos; Bernazzali, Sonia; Maccherini, Massimo; Sani, Guido; Ballo, Piercarlo; Galderisi, Maurizio; Mondillo, Sergio
2012-03-01
Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and success of using left ventricular assist devices (LVADs) in patients with refractory heart failure. Tissue Doppler and M-mode measurements of tricuspid systolic motion (tricuspid S' and tricuspid annular plane systolic excursion [TAPSE]) are the most currently used methods for the quantification of RV longitudinal function; RV deformation analysis by speckle-tracking echocardiography (STE) has recently allowed the analysis of global RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed at exploring the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) in patients referred for cardiac transplantation. Right-side heart catheterization and transthoracic echo Doppler were simultaneously performed in 41 patients referred for cardiac transplantation evaluation for advanced systolic heart failure. Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging all segments in apical 4-chamber view (global RVLS) and by averaging RV free-wall segments (free-wall RVLS). Tricuspid S' and TAPSE were also calculated. No significant correlations were found for TAPSE or tricuspid S' with RVSWI (r = 0.14; r = 0.06; respectively). Close negative correlations between global RVLS and free-wall RVLS with the RVSWI were found (r = -0.75; r = -0.82; respectively; both P < .0001). Furthermore, free-wall RVLS demonstrated the highest diagnostic accuracy (area under the receiver operating characteristic (ROC) curve 0.90) and good sensitivity and specificity of 92% and 86%, respectively, to predict depressed RVSWI using a cutoff value of less than -11.8%. In a group of patients referred for heart transplantation, TAPSE and tricuspid S' did not correlate with invasively obtained RVSWI. RV longitudinal deformation analysis by STE correlated well with RVSWI, providing a better estimation of RV systolic performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Chest Wall Diseases: Respiratory Pathophysiology.
Tzelepis, George E
2018-06-01
The chest wall consists of various structures that function in an integrated fashion to ventilate the lungs. Disorders affecting the bony structures or soft tissues of the chest wall may impose elastic loads by stiffening the chest wall and decreasing respiratory system compliance. These alterations increase the work of breathing and lead to hypoventilation and hypercapnia. Respiratory failure may occur acutely or after a variable period of time. This review focuses on the pathophysiology of respiratory function in specific diseases and disorders of the chest wall, and highlights pathogenic mechanisms of respiratory failure. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Kun; Gu, Boqin
2017-07-01
The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs) with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR) polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb), radius of gyration (Rg) and end-to-end distance (h). The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.
Aboul-Enein, Fatma; Kar, Saibal; Hayes, Sean W; Sciammarella, Maria; Abidov, Aiden; Makkar, Raj; Friedman, John D; Eigler, Neal; Berman, Daniel S
2004-06-01
The functional role of various angiographic grades for coronary collaterals remains controversial. The aim of this study was to assess the influence of the Rentrop angiographic grading of coronary collaterals on myocardial perfusion in patients with single-vessel chronic total occlusion (CTO) and no prior myocardial infarction (MI). The study included 56 patients with single-vessel CTO and no prior MI who underwent rest-stress myocardial perfusion SPECT and coronary angiography within 6 mo. All patients had angiographic evidence of coronary collaterals. Patients were divided according to the Rentrop classification: Group I had grade 1 or 2 (n = 25) and group II had grade 3 collaterals (n = 31). Group I had a higher frequency of resting regional wall motion abnormalities on left ventriculography (52.6% vs. 19.2% [P = 0.019]). The mean perfusion scores of the overall population showed severe and extensive stress perfusion defects (summed stress score of 14.1 +/- 7.1 and summed difference score of 12.9 +/- 6.9) but minimal resting perfusion defects (summed rest score of 1.0 +/- 2.7). No perfusion scores differed between the 2 groups. The perfusion findings suggested that chronic stunning rather than hibernation is the principal cause of regional wall motion abnormalities in these patients. In the setting of single-vessel CTO and no prior MI, coronary collaterals appear to protect against resting perfusion defects. Excellent angiographic collaterals may prevent resting regional wall motion abnormalities but do not appear to protect against stress-induced perfusion defects.
2017-01-30
dynamic structural time- history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC...research (Ebeling et al. 2012) has developed simplified analysis procedures for flexible approach wall systems founded on clustered groups of vertical...history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC/ITL TR-16-X. Vicksburg, MS
Prognostic Value of Facial Nerve Antidromic Evoked Potentials in Bell Palsy: A Preliminary Study
WenHao, Zhang; Minjie, Chen; Chi, Yang; Weijie, Zhang
2012-01-01
To analyze the value of facial nerve antidromic evoked potentials (FNAEPs) in predicting recovery from Bell palsy. Study Design. Retrospective study using electrodiagnostic data and medical chart review. Methods. A series of 46 patients with unilateral Bell palsy treated were included. According to taste test, 26 cases were associated with taste disorder (Group 1) and 20 cases were not (Group 2). Facial function was established clinically by the Stennert system after monthly follow-up. The result was evaluated with clinical recovery rate (CRR) and FNAEP. FNAEPs were recorded at the posterior wall of the external auditory meatus of both sides. Results. Mean CRR of Group 1 and Group 2 was 61.63% and 75.50%. We discovered a statistical difference between two groups and also in the amplitude difference (AD) of FNAEP. Mean ± SD of AD was −6.96% ± 12.66% in patients with excellent result, −27.67% ± 27.70% with good result, and −66.05% ± 31.76% with poor result. Conclusions. FNAEP should be monitored in patients with intratemporal facial palsy at the early stage. FNAEP at posterior wall of external auditory meatus was sensitive to detect signs of taste disorder. There was close relativity between FNAEPs and facial nerve recovery. PMID:22164176
Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail
2018-05-01
Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.
NASA Astrophysics Data System (ADS)
Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen
2010-05-01
Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO - NA + ) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.
Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen
2010-05-07
Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO( - )NA( + )) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.
Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N
2013-09-01
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.
NASA Astrophysics Data System (ADS)
Rasappan, Ramesh; Aggarwal, Varinder K.
2014-09-01
In planning organic syntheses, disconnections are most often made adjacent to functional groups, which assist in C-C bond formation. For molecules devoid of obvious functional groups this approach presents a problem, and so functionalities must be installed temporarily and then removed. Here we present a traceless strategy for organic synthesis that uses a boronic ester as such a group in a one-pot lithiation-borylation-protodeboronation sequence. To realize this strategy, we developed a methodology for the protodeboronation of alkyl pinacol boronic esters that involves the formation of a boronate complex with a nucleophile followed by oxidation with Mn(OAc)3 in the presence of the hydrogen-atom donor 4-tert-butylcatechol. Iterative lithiation-borylation-protodeboronation allows the coupling of smaller fragments to build-up long alkyl chains. We employed this strategy in the synthesis of hydroxyphthioceranic acid, a key component of the cell-wall lipid of the virulent Mycobacterium tuberculosis, in just 14 steps (longest linear sequence) with full stereocontrol.
Can computed tomography aid in diagnosis of intramural hematomas of the intestinal wall?
Ulusan, Serife; Pekoz, Burcak; Sariturk, Cagla
2015-12-01
We sought to use computed tomography (CT) data to support the correct differential diagnosis of patients with spontaneous intramural hematomas of the gastrointestinal tract, to aid in the clinical management of those using oral anticoagulants. Patient data were retrospectively analyzed and patients were divided into two groups. The first group contained 10 patients (5 females, 5 males, median age 65 years [range 35-79 years]) who had been diagnosed with spontaneous intramural hematomas of the gastrointestinal tract. The second group contained nine patients (5 females, 4 males, median age 41 years [range 24-56 years]) who exhibited intestinal wall thickening on CT, and who had been diagnosed with ulcerative colitis, Crohn's disease, ameboma, and lymphoma. The enhancement patterns in the CT images of the two groups were compared by an experienced and inexperienced radiologist. The differences in values were subjected to ROC analysis. Inter-observer variability was excellent (0.84) when post-contrast CT images were evaluated, as were the subtraction values (0.89). The subtracted values differed significantly between the two groups (p=0.0001). A cutoff of +31.5 HU was optimal in determining whether a hematoma was or was not present. Contrast enhancement of an intestinal wall hematoma is less than that of other intestinal wall pathologies associated with increased wall thickness. If the post-contrast enhancement of a thickened intestinal wall is less than +31.5 HU, a wall hematoma is possible. © Acta Gastro-Enterologica Belgica.
Respiratory muscles stretching acutely increases expansion in hemiparetic chest wall.
Rattes, Catarina; Campos, Shirley Lima; Morais, Caio; Gonçalves, Thiago; Sayão, Larissa Bouwman; Galindo-Filho, Valdecir Castor; Parreira, Verônica; Aliverti, Andrea; Dornelas de Andrade, Armèle
2018-08-01
Individuals post-stroke may present restrictive ventilatory pattern generated from changes in the functionality of respiratory system due to muscle spasticity and contractures. Objective was to assess the acute effects after respiratory muscle stretching on the ventilatory pattern and volume distribution of the chest wall in stroke subjects. Ten volunteers with right hemiparesis after stroke and a mean age of 60 ± 5.7 years were randomised into the following interventions: respiratory muscle stretching and at rest (control). The ventilatory pattern and chest wall volume distribution were evaluated through optoelectronic plethysmography before and immediately after each intervention. Respiratory muscle stretching promoted a significant acute increase of 120 mL in tidal volume, with an increase in minute ventilation, mean inspiratory flow and mean expiratory flow compared with the control group. Pulmonary ribcage increased 50 mL after stretching, with 30 mL of contribution to the right pulmonary rib cage (hemiparetic side) in comparison to the control group. Respiratory muscle stretching in patients with right hemiparesis post-stroke demonstrated that acute effects improve the expansion of the respiratory system during tidal breathing. NCT02416349 (URL: https://clinicaltrials.gov/ct2/show/ NCT02416349). Copyright © 2018 Elsevier B.V. All rights reserved.
Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.
Blevins, D G; Lukaszewski, K M
1994-01-01
Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877
Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...
Evangelista, Danilo Elton; Schutzer de Godoy, Andre; Fonseca Pereira de Paula, Fernando; Henrique-Silva, Flavio; Polikarpov, Igor
2014-03-01
Pectin methylesterase removes the methyl groups from the main chain of pectin, the major component of the middle lamella of the plant cell wall. The enzyme is involved in plant cell-wall development, is part of the enzymatic arsenal used by microorganisms to attack plants and also has a wide range of applications in the industrial sector. Therefore, there is a considerable interest in studies of the structure and function of this enzyme. In this work, the pectin methylesterase from Sphenophorus levis was produced in Pichia pastoris and purified. Crystals belonging to the monoclinic space group C2, with unit-cell parameters a = 122.181, b = 82.213, c = 41.176 Å, β = 97.48°, were obtained by the sitting-drop vapour-diffusion method and an X-ray diffraction data set was collected to 2.1 Å resolution. Structure refinement and model building are in progress.
Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong
2003-07-27
In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.
Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects
Nguema-Ona, Eric; Coimbra, Sílvia; Vicré-Gibouin, Maïté; Mollet, Jean-Claude; Driouich, Azeddine
2012-01-01
Background Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. Scope In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes. PMID:22786747
NASA Astrophysics Data System (ADS)
Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.
2016-12-01
We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.
Weissler-Snir, Adaya; Kornowski, Ran; Sagie, Alexander; Vaknin-Assa, Hana; Perl, Leor; Porter, Avital; Lev, Eli; Assali, Abid
2014-11-15
Little is known regarding gender differences in left ventricular (LV) function after anterior wall ST-segment elevation myocardial infarction (STEMI), despite it being a major determinant of patients' morbidity and mortality. We therefore sought to investigate the impact of gender on LV function after primary percutaneous coronary intervention (PCI) for first anterior wall STEMI. Seven hundred eighty-nine consecutive patients (625 men) with first anterior STEMI were included in the analysis. All patients underwent an echocardiographic study within 48 hours of PCI. Women were older and more likely to have diabetes, hypertension, chronic renal failure, and a higher Killip score. Women had prolonged ischemic time, which was driven by prolonged symptom-to-presentation time (2.75 [interquartile range 1.5 to 4] vs 2 [interquartile range 1 to 3.5] hours, p = 0.005). A higher percentage of women had moderate or worse LV dysfunction (LV ejection fraction <40%; 61.6% vs 48%, p = 0.002). In a univariable analysis female gender was associated with moderate or worse LV function (p = 0.002). However, after accounting for variable baseline risk profiles between the 2 groups using multivariable and propensity score techniques, ischemic time >3.5 hours, leukocytosis, and pre-PCI Thrombolysis In Myocardial Infarction flow grade <2 were independent predictors of moderate or worse LV dysfunction, whereas female gender was not. Data on LV function recovery at 6 months, which were available for 45% of female and male patients with moderate or worse LV dysfunction early after PCI, showed no significant gender related difference in LV function recovery. In conclusion, women undergoing PCI for the first event of anterior STEMI demonstrate worse LV function than that of men, which might be partially attributed to delay in presentation. Hence greater efforts should be devoted to increasing women's awareness of cardiac symptoms during the prehospital course of STEMI. Copyright © 2014 Elsevier Inc. All rights reserved.
Cai, Wei; Li, Yi; Niu, Lihua; Zhang, Wenlong; Wang, Chao; Wang, Peifang; Meng, Fangang
2017-10-15
The composition and distribution characteristics of bacterial communities in biofilms attached to hydraulic concrete structure (HCS) surfaces were investigated for the first time in four reservoirs in the middle and lower reaches of the Yangtze River Basin using 16S rRNA Miseq sequencing. High microbial diversity was found in HCS biofilms, and notable differences were observed in different types of HCS. Proteobacteria, Cyanobacteria and Chloroflexi were the predominant phyla, with respective relative abundances of 35.3%, 25.4% and 13.0%. The three most abundant genera were Leptolyngbya, Anaerolineaceae and Polynucleobacter. The phyla Beta-proteobacteria and Firmicutes and genus Lyngbya were predominant in CGP, whereas the phyla Cyanobacteria and Chloroflexi and genera Leptolyngbya, Anaerolinea and Polynucleobacter survived better in land walls and bank slopes. Dissolved oxygen, ammonia nitrogen and temperature were characterized as the main factors driving the bacterial community composition. The most abundant groups of metabolic functions were also identified as ammonia oxidizers, sulphate reducers, and dehalogenators. Additionally, functional groups related to biocorrosion were found to account for the largest proportion (14.0% of total sequences) in gate piers, followed by those in land walls (11.5%) and bank slopes (10.2%). Concrete gate piers were at the greatest risk of biocorrosion with the most abundant negative bacterial groups, especially for sulphate reducers. Thus, it should be paid high attention to the biocorrosion prevention of concrete gate piers. Overall, this study contributed to the optimization of microbial control and the improvement of the safety management for water conservation structures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predictors of Renal Denervation Efficacy in the Treatment of Resistant Hypertension.
Ripp, Tatiana M; Mordovin, Victor F; Pekarskiy, Stanislav E; Ryabova, Tamara R; Zlobina, Marina V; Baev, Andrei E; Anfinogenova, Yana; Popov, Sergey V
2015-12-01
The aims of the study were to evaluate the effects of renal sympathetic denervation (RSD) on the heart and to identify the predictors of RSD efficacy in patients with resistant arterial hypertension. The study comprised 60 RSD patients (54.6 ± 9.5 years) who received full-dose antihypertensive therapy (4.1 drugs) including diuretics. Initially, 58.6% of patients had abnormal left ventricular (LV) diastolic function. All patients received echocardiography before and 24 weeks after RSD. Renal sympathetic denervation was achieved through the endovascular radiofrequency ablation (RFA) of the renal arteries. Drug therapy continued for the entire period of observation. After RSD, all patients were retrospectively assigned to two groups: group 1 comprised patients (n = 22; 36.7%) in whom the myocardial mass (MM) of the left ventricle decreased by more than 10 g after RSD; group 2 comprised patients (n = 38; 63.3%) in whom LV MM increased or decreased by less than 10 g. Anthropometry, arterial blood pressure, heart rate, therapy, and LV end-diastolic dimensions (EDD) were comparable in these groups. After RSD, the values of office blood pressure significantly decreased and MM regressed by more than 10 g in 36.7% of patients; LV diastolic function normalized in 31% of patients, and diastolic dysfunction improved in 14% of patients. The study found the associations between the initial LV wall dimensions and LV MM changes. Unlike LV EDD, arterial blood pressure, or heart rate, the initial values of LV wall thickness predicted LV MM regress. #NCT01499810 https://clinicaltrials.gov/ct2/show/NCT01499810.
Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A
2017-06-01
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Keguang; Lyu, Huiying; Xie, Youzhou; Yang, Lin; Zhang, Tianyu; Dai, Peidong
2015-01-01
The aim of this study was to measure the round window niche (RWN) among congenital aural atresia (CAA), congenital aural stenosis (CAS) and control groups and to analyze whether differences exist between them. Computed tomography images of 10 normal subjects (20 ears), 27 CAS patients (30 ears) and 25 CAA patients (30 ears) were analyzed. We measured RWN on the basis of 3-dimensional reconstruction. The anterior wall length and the depth of RWN were smaller in control group than those in the CAS group; furthermore, the anterior wall length and the depth of RWN in CAS group were smaller than those in CAA group (P < 0.05). The posterior wall length of RWN was found smaller in the control group than that in both hCAS and CAA groups (P < 0.05). The superior and inferior wall lengths of RWN were found smaller in control group than those in the CAA group (P < 0.05). There were no statistically significant differences in the sizes of the round window membrane and niche opening or the angle between the plane of the RWN opening and the round window membrane plane among all groups. The RWN walls lengths and its depth tended to be longer with the aggravation of the aural malformations. Our calculation results may provide some information for a better design and a safer implantation of the floating mass transducer in the area of RWN.
Modeling of digestive processes in the stomach as a Fluid-Structure Interaction (FSI) phenomenon
NASA Astrophysics Data System (ADS)
Acharya, Shashank; Kou, Wenjun; Kahrilas, Peter J.; Pandolfino, John E.; Patankar, Neelesh A.
2017-11-01
The process of digestion in the gastro-intestinal (GI) tract is a complex mechanical and chemical process. Digestion in the stomach involves substantial mixing and breakup of food into smaller particles by muscular activity. In this work, we have developed a fully resolved model of the stomach (along with the esophagus) and its various muscle groups that deform the wall to agitate the contents inside. We use the Immersed Boundary finite-element method to model this FSI problem. From the resulting simulations, the mixing intensity is analyzed as a function of muscle deformation. As muscle deformation is controlled by changing the intensity of the neural signal, the material properties of the stomach wall will have a significant effect on the resultant kinematics. Thus, the model is then used to identify the source of common GI tract motility pathologies by replicating irregular motions as a consequence of varying the mechanical properties of the wall and the related activation signal patterns. This approach gives us an in-silico framework that can be used to study the effect of tissue properties & muscle activity on the mechanical response of the stomach wall. This work is supported by NIH Grant 5R01DK079902-09.
Sabna, V; Thampi, Santosh G; Chandrakaran, S
2016-12-01
Synthetic dyes present in effluent from textile, paper and paint industries contain crystal violet (CV), a known carcinogenic agent. This study investigates the modification of multiwalled carbon nanotubes by acid reflux method and equilibrium and kinetic behaviour of adsorption of CV onto functionalized multi-walled carbon nanotubes (fMWNTs) in batch system. High stability of the fMWNTs suspension in water indicates the hydrophilicity of fMWNTs induced due to the formation of functional groups that make hydrogen bonds with water molecules. fMWNTs were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and the functional groups present on the fMWNTs were confirmed. Characteristic variation was observed in the FTIR spectra of fMWNTs after adsorption of crystal violet onto it. Adsorption characteristics were evaluated as a function of system variables such as contact time, dosage of fMWNTs and initial concentration and pH of the crystal violet solution. Adsorption capacity of fMWNTs and percentage removal of the dye increased with increase in contact time, adsorbent dosage and pH but declined with increase in initial concentration of the dye. fMWNTs showed higher adsorption capacity compared to that of pristine MWNTs. Data showed good fit with the Langmuir and Freundlich isotherm models and the pseudo-second order kinetic model; the maximum adsorption capacity was 90.52mg/g. Kinetic parameters such as rate constants, equilibrium adsorption capacities and regression coefficients were estimated. Results indicate that fMWNTs are an effective adsorbent for the removal of crystal violet from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.
Computational Study of Separating Flow in a Planar Subsonic Diffuser
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.
2005-01-01
A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.
Regadas, F S P; Murad-Regadas, S M; Wexner, S D; Rodrigues, L V; Souza, M H L P; Silva, F R; Lima, D M R; Regadas Filho, F S P
2007-01-01
The anatomy of the anal canal, the anorectal junction and the lower rectum was studied with 3-D ultrasound. Seventeen women with normal bowel transit, without rectocele (group 1) and 17 female patients with a large anterior rectocele (group 2) were examined with a B&K Medical Rawk. Mean age was 44.5 and 51.6 years respectively. In group 1, one (5.8%) patient was nuliparous, five (29.4%) had a caesarian section, 11 (64.7%) had a vaginal delivery while in group 2, two (11.7%) patients were nuliparous, four (23.5%) had a caesarian section and 11 (64.7%) had a vaginal delivery. Images were reconstructed in midline longitudinal (ML) and transverse (T) planes. The external (EAS) and internal (IAS) anal sphincters were measured in both projections. In the ML plane, the EAS length was longer in group 1 (1.94 cm vs 1.61 cm, P < 0.05), the gap length was shorter (1.54 cm vs 1.0 cm P < 0.01) and the wall thickness was shorter in group 2 (0.40 cm vs 0.50 cm P < 0.01). The IAS (0.18 cm vs 0.23 cm P < 0.01) and EAS thickness (0.68 cm vs 0.77 cm, P < 0.05) (left lateral of the posterior quadrant) was greater in group 2. In group 1, the anterior upper anal canal wall in normal females was an extension of the rectal wall and the circular muscle was thicker in the mid-anal canal to form the IAS. In group 2, however, the wall layers were not identified and the IAS was found to be more distal. The differences were not statistically significant in the anal canal resting and squeeze pressures in the two groups. Obstetric trauma does not seem to play any role in rectocele pathogenesis because the anal sphincter muscles are anatomically and functionally normal and rectocele is also present in nuliparous and in women with caesarian sections. It seems that it is associated with the absence of EAS and thinner IAS in the anterior upper anal canal. Herniation starts at the upper anal canal extending to the lower rectum in high or large rectoceles and maybe produced by rectal intussusception because of excessive and prolonged straining during defecation. In fact, the denomination 'rectocele' should be changed to 'anorectocele'.
Measuring the space between vagina and rectum as it relates to rectocele
Liu, Jin; Zhai, Li-Dong; Li, Yun-Sheng; Liu, Wan-Xiang; Wang, Rui-Hua
2009-01-01
AIM: To measure the normal space between the posterior wall of the vagina and the anterior wall of the respectively rectum using computed tomography (CT) and reveal its were relationship to rectocele. METHODS: A total of twenty female volunteers without rectocele were examined by CT scan. We performed a middle level continuous horizontal pelvic scan from the upper part to the lower part and collected the measurement data to analyze the results using t-test. RESULTS: Twenty volunteers were enrolled in the study. The space between the posterior wall of the vagina and the anterior wall of the rectum was measured at three levels (upper 1/3, middle, lower 1/3 level of vagina). The results showed that the space from the posterior wall of the vagina to the anterior wall of the rectum at the upper 1/3 level and the middle level was 3.896 ± 0.3617 mm and 4.6575 ± 0.3052 mm, respectively. When the two groups of data were compared, we found the space at the upper 1/3 level was shorter than at the middle level (P < 0.01). Moreover, at the lower 1/3 level the space measured was 10.058 ± 0.4534 mm. The results revealed that the space at the lower 1/3 level was longer than that at the middle level (P < 0.01). CONCLUSION: These measurement data may be helpful in assessing rectocele clinical diagnosis and functional outcomes of rectocele repair. PMID:19554660
Das, Hiranmoy; George, Jon C.; Joseph, Matthew; Das, Manjusri; Abdulhameed, Nasreen; Blitz, Anna; Khan, Mahmood; Sakthivel, Ramasamy; Mao, Hai-Quan; Hoit, Brian D.; Kuppusamy, Periannan; Pompili, Vincent J.
2009-01-01
Background Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP). Methods and Findings Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. Conclusion Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction. PMID:19809493
An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae.
Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard
2005-02-16
In S. cerevisiae the beta-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)
1996-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis
In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.
Subclinical atherosclerosis in obese adolescents with normal left ventricular function.
Abdel-Wahab, Amina M; Atwa, Hoda A; El-Eraky, Azza Z; El-Aziz, Mohamed A
2011-09-01
To assess the impact of obesity on carotid intima media thickness and left ventricular (LV) mass in obese adolescents. The study included 52 obese adolescents (mean age 14.16+/-2.64 years) and 52 healthy adolescents who served as a control group (mean age 12+/-2.3 years), who were attended the outpatient clinic at Suez Canal University Hospital, Ismailia, Egypt. The study population was submitted for medical history, clinical examination, laboratory investigations (fasting blood sugar and lipid profile), and echocardiographic examination of LV mass and dimensions. Assessment of carotid intima-media thickness was carried out by using carotid duplex. All children had normal LV function. Obese adolescents had a significant increase in total cholesterol, triglyceride, LDL-C, and low HDL-C compared to the control group. Also, there was a significant increase in blood pressure, carotid intima media thickness, LV mass, and LV mass index. There was a significant correlation between BMI and dyslipidemia, blood pressure, carotid intima/media thickness, LV mass, and posterior wall thickness. Carotid intima-media thickness had a significant correlation with increased LDL-C and low HDL-C, blood pressure, LV mass, and posterior wall thickness. Obesity in childhood and adolescents is associated with subclinical atherosclerosis. Although obese children had no LV dysfunction, yet there are LV structure changes.
Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Liu, Lei; Ling, Fei; Wang, Gao-Xue; Xu, Xin-Gang
2015-01-01
To reduce the economic losses caused by diseases in aquaculture industry, more efficient and economic prophylactic measures should be urgently investigated. In this research, the effects of a novel functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for recombinant Aeromonas hydrophila vaccine administration via bath or injection in juvenile grass carp were studied. The results showed that SWCNT as a vector for the recombinant protein aerA, augmented the production of specific antibodies, apparently stimulated the induction of immune-related genes, and induced higher level of survival rate compared with free aerA subunit vaccine. Furthermore, we compared the routes of bath and intramuscular injection immunization by SWCNTs-aerA vaccine, and found that similar antibody levels induced by SWCNTs-aerA were observed in both immunization routes. Meanwhile, a similar relative percentage survival (approximately 80%) was found in both a 40 mg/L bath immunization group, and a 20 μg injection group. The results indicate that functionalized SWCNTs could be a promising delivery vehicle to potentiate the immune response of recombinant vaccines, and might be used to vaccinate juvenile fish by bath administration method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.
Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892
Li, Xingxing; Huang, Shixin; Van de Meene, Allison M.L.; Tran, Mai L.; Killeavy, Erin; Mercure, Danielle; Burton, Rachel A.
2017-01-01
The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis. PMID:28768816
Autonomous multifunctional nanobrushes-autonomous materials
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.
2007-04-01
In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).
Combined Orbital Fractures: Surgical Strategy of Sequential Repair
Hur, Su Won; Kim, Sung Eun; Chung, Kyu Jin; Lee, Jun Ho; Kim, Tae Gon
2015-01-01
Background Reconstruction of combined orbital floor and medial wall fractures with a comminuted inferomedial strut (IMS) is challenging and requires careful practice. We present our surgical strategy and postoperative outcomes. Methods We divided 74 patients who underwent the reconstruction of the orbital floor and medial wall concomitantly into a comminuted IMS group (41 patients) and non-comminuted IMS group (33 patients). In the comminuted IMS group, we first reconstructed the floor stably and then the medial wall by using separate implant pieces. In the non-comminuted IMS group, we reconstructed the floor and the medial wall with a single large implant. Results In the follow-up of 6 to 65 months, most patients with diplopia improved in the first-week except one, who eventually improved at 1 year. All patients with an EOM limitation improved during the first month of follow-up. Enophthalmos (displacement, 2 mm) was observed in two patients. The orbit volume measured on the CT scans was statistically significantly restored in both groups. No complications related to the surgery were observed. Conclusions We recommend the reconstruction of orbit walls in the comminuted IMS group by using the following surgical strategy: usage of multiple pieces of rigid implants instead of one large implant, sequential repair first of the floor and then of the medial wall, and a focus on the reconstruction of key areas. Our strategy of step-by-step reconstruction has the benefits of easy repair, less surgical trauma, and minimal stress to the surgeon. PMID:26217562
Abdominal wall dysfunction in adult bladder exstrophy: a treatable but under-recognized problem.
Manahan, M A; Campbell, K A; Tufaro, A P
2016-08-01
Bladder exstrophy is defined by urogenital and skeletal abnormalities with cosmetic and functional deformity of the lower anterior abdominal wall. The primary management objectives have historically been establishment of urinary continence with renal function preservation, reconstruction of functional and cosmetically acceptable external genitalia, and abdominal wall closure of some variety. The literature has focused on the challenges of neonatal approaches to abdominal wall closure; however, there has been a paucity of long-term followup to identify the presence and severity of abdominal wall defects in adulthood. Our goal was to characterize the adult disease and determine effective therapy. A retrospective review of a consecutive series of six patients was performed. We report and characterize the presence of severe abdominal wall dysfunction in these adult exstrophy patients treated as children. We tailored an abdominal wall and pelvic floor reconstruction with long-term success to highlight a need for awareness of the magnitude of the problem and its solvability. The natural history of abdominal wall laxity and the long-term consequences of cloacal exstrophy closure have gone unexplored and unreported. Evaluation of our series facilitates understanding in this complex area and may be valuable for patients who are living limited lives thinking that no solution is available.
Liu, Xiaoli; Pachori, Alok S; Ward, Christopher A; Davis, J Paul; Gnecchi, Massimiliano; Kong, Deling; Zhang, Lunan; Murduck, Jared; Yet, Shaw-Fang; Perrella, Mark A; Pratt, Richard E; Dzau, Victor J; Melo, Luis G
2006-02-01
We reported previously that predelivery of the anti-oxidant gene heme oxygenase-1 (HO-1) to the heart by adeno associated virus (AAV) markedly reduces injury after acute myocardial infarction (MI). However, the effect of HO-1 gene delivery on postinfarction recovery has not been investigated. In the current study, we assessed the effect of HO-1 gene delivery on post-MI left ventricle (LV) remodeling and function using echocardiographic imaging and histomorphometric approaches. Two groups of Sprague-Dawley rats were injected with 4 x 10(11) particles of AAV-LacZ (control) or AAV-hHO-1 in the LV wall. Eight wk after gene transfer, the animals were subjected to 30 min of ischemia by ligation of left anterior descending artery (LAD) followed by reperfusion. Echocardiographic measurements were obtained in a blinded fashion prior and at 1.5 and 3 months after I/R. Ejection fraction (EF) was reduced by 13% and 40% in the HO-1 and LacZ groups, respectively at 1.5 months after MI. Three months after MI, EF recovered fully in the HO-1, but only partially in the LacZ-treated animals. Post-MI LV dimensions were markedly increased and the anterior wall was markedly thinned in the LacZ-treated animals compared with the HO-1-treated animals. Significant myocardial scarring and fibrosis were observed in the LacZ-group in association with elevated levels of interstitial collagen I and III and MMP-2 activity. Post-MI myofibroblast accumulation was reduced in the HO-1-treated animals, and retroviral overexpression of HO-1 reduced proliferation of isolated cardiac fibroblasts. Our data indicate that rAAV-HO-1 gene transfer markedly reduces fibrosis and ventricular remodeling and restores LV function and chamber dimensions after myocardial infarction.
Stabilini, Cesare; Bracale, Umberto; Pignata, Giusto; Frascio, Marco; Casaccia, Marco; Pelosi, Paolo; Signori, Alessio; Testa, Tommaso; Rosa, Gian Marco; Morelli, Nicola; Fornaro, Rosario; Palombo, Denise; Perotti, Serena; Bruno, Maria Santina; Imperatore, Mikaela; Righetti, Carolina; Pezzato, Stefano; Lazzara, Fabrizio; Gianetta, Ezio
2013-10-28
Re-approximation of the rectal muscles along the midline is recommended by some groups as a rule for incisional and ventral hernia repairs. The introduction of laparoscopic repair has generated a debate because it is not aimed at restoring abdominal wall integrity but instead aims just to bridge the defect. Whether restoration of the abdominal integrity has a real impact on patient mobility is questionable, and the available literature provides no definitive answer. The present study aims to compare the functional results of laparoscopic bridging with those of re-approximation of the rectal muscle in the midline as a mesh repair for ventral and incisional abdominal defect through an "open" access. We hypothesized that, for the type of defect suitable for a laparoscopic bridging, the effect of an anatomical reconstruction is near negligible, thus not a fixed rule. The LABOR trial is a multicenter, prospective, two-arm, single-blinded, randomized trial. Patients of more than 60 years of age with a defect of less than 10 cm at its greatest diameter will be randomly submitted to open Rives or laparoscopic defect repair. All the participating patients will have a preoperative evaluation of their abdominal wall strength and mobility along with volumetry, respiratory function test, intraabdominal pressure and quality of life assessment.The primary outcome will be the difference in abdominal wall strength as measured by a double leg-lowering test performed at 12 months postoperatively. The secondary outcomes will be the rate of recurrence and changes in baseline abdominal mobility, respiratory function tests, intraabdominal pressure, CT volumetry and quality of life at 6 and 12 months postoperatively. The study will help to define the most suitable treatment for small-medium incisional and primary hernias in patients older than 60 years. Given a similar mid-term recurrence rate in both groups, if the trial shows no differences among treatments (acceptance of the null-hypothesis), then the choice of whether to submit a patient to one intervention will be made on the basis of cost and the surgeon's experience. Current Controlled Trials ISRCTN93729016.
Wang, Rui; Meinel, Felix G; Schoepf, U Joseph; Canstein, Christian; Spearman, James V; De Cecco, Carlo N
2015-12-01
To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. • Cardiac computed tomography (CCT) can accurately assess segmental left ventricular wall function. • A novel automated software permits accurate and fast evaluation of wall function. • The software may improve the clinical implementation of segmental functional analysis.
Evaluating the Potential of the GeoWall for Geographic Education
ERIC Educational Resources Information Center
Slocum, Terry A.; Dunbar, Matthew D.; Egbert, Stephen L.
2007-01-01
This article discusses modern stereoscopic displays for geographic education, focusing on a large-format display--the GeoWall. To evaluate the potential of the GeoWall, geography instructors were asked to express their reactions to images viewed on the GeoWall during a focus group experiment. Instructors overwhelmingly supported using the GeoWall,…
NASA Astrophysics Data System (ADS)
Yao, Jiming; Lin, Bin; Guo, Yu
2017-01-01
Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.
Characterizing visible and invisible cell wall mutant phenotypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpita, Nicholas C.; McCann, Maureen C.
2015-04-06
About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basismore » of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.« less
An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis
Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM
2014-01-01
Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953
NASA Astrophysics Data System (ADS)
Gifford, Brendan Joel
Single-walled carbon nanotubes (SWCNTs) are unique materials that exhibit chirality-specific properties due to their one-dimensional confinement. As a result, they are explored for a wide range of applications including single-photon sources in communications devices. Despite progress in this area, SWCNTs still suffer from a relatively narrow range of energies of emission features that fall short of the 1500 nm desired for long-distance lossless data transfer. One approach that is frequently used to resolve this involves chemical functionalization with aryl groups. However, this approach is met with a number of fundamental issues. First, chirality-specific SWCNTs must be acquired for subsequent functionalization. Synthesis of such samples has thus far eluded experimental efforts. As such, post-synthetic non-covalent functionalization is required to break bundles and create disperse SWCNTs that can undergo further separation, processing, and functionalization. Second, a number of low-energy emission features are introduced upon functionalization across a 200 nm range. The origin of such diverse emission features remains unknown. The research presented here focuses on computationally addressing these issues. A series of polyfluorene polymers possessing sidechains of varying length are explored using molecular mechanics to determine the impact of alkyl sidechains on SWCNT-conjugated polymer interaction strength and morphology. Additionally, density functional theory (DFT) and linear-response time-dependent DFT (TDDFT) are used to explore the effect of functionalization on emission features. A prerequisite to these calculations involves constructing finite-length SWCNT systems with similar electronic structure to their infinite counterparts: a methodological approach for the formation of such systems is presented. The optical features for aryl-functionalized SWCNTs are then explored. It is shown that the predominant effect on the energies of emission features involves the configuration of functionalization, with the identity of the functional group only playing a minor role. While the qualitative effect of such functionalization is determined, a quantitative comparison to experiment requires correction for several sources of computational error. A model to correct for such effects is also developed. This research not only explains the origin of the multiple emission features in functionalized SWCNTs for the first time but also lays the groundwork for their further computational exploration.
Mine, Ichiro; Kinoshita, Urara; Kawashima, Shigetaka; Sekida, Satoko
2018-01-22
The cells in the foliose thallus of trebouxiophycean alga Prasiola japonica apparently develop into 2 × 2 cell groups composed of two two-celled groups, each of which is a pair of derivative cells of the latest cell division. In the present study, the structural features of cell walls of the alga P. japonica concerning the formation of the cell groups were investigated using histochemical methods. Thin cell layers stained by Calcofluor White appeared to envelope the two-celled and four-celled groups separately and, hence, separated them from neighboring cell groups, and the Calcofluor White-negative gaps between neighboring four-celled groups were specifically stained by lectins, such as soybean agglutinin, jacalin, and Vicia villosa lectin conjugated with fluorescein. These results indicated that the Calcofluor White-positive cell wall layer of parent cell that existed during two successive cell divisions structurally distinguished two-celled and four-celled groups from others in this alga. Moreover, the results suggested that the cell wall components of the Calcofluor White-negative gaps would possibly contribute to the formation of the planar thallus through lateral union of the cell groups.
The effect of childhood obesity on cardiac functions.
Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar
2014-03-01
Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.
Zhang, Hui-Ming; Wheeler, Simon L.; Xia, Xue; Colyvas, Kim; Offler, Christina E.; Patrick, John W.
2017-01-01
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport. PMID:29234338
Zhang, Hui-Ming; Wheeler, Simon L; Xia, Xue; Colyvas, Kim; Offler, Christina E; Patrick, John W
2017-01-01
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H 2 O 2 ) and cytosolic Ca 2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans -differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log 2 fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans -differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H 2 O 2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca 2+ (21%), auxin (18%) and ethylene (5%). The dominance by H 2 O 2 was evident across all functional categories, but became more attenuated once trans -differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H 2 O 2 /Ca 2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.
Marjanovic, Goran; Kuvendziska, Jasmina; Holzner, Philipp Anton; Glatz, Torben; Sick, Olivia; Seifert, Gabriel; Kulemann, Birte; Küsters, Simon; Fink, Jodok; Timme, Sylvia; Hopt, Ulrich Theodor; Wellner, Ulrich; Keck, Tobias; Karcz, Wojciech Konrad
2014-12-01
To examine bowel wall edema development in laparoscopic and open major visceral surgery. In a prospective study, 47 consecutively operated patients with gastric and pancreatic resections were included. Twenty-seven patients were operated in a conventional open procedure (open group) and 20 in a laparoscopic fashion (lap group). In all procedures, a small jejunal segment was resected during standard preparation, of which we measured the dry-wet ratio. Furthermore, HE staining was performed for measuring of bowel wall thickness and edema assessment. Mean value (±std) of dry-wet ratio was significantly lower in the open than in the lap group (0.169 ± 0.017 versus 0.179 ± 0.015; p = 0.03) with the same amount of fluid administration in both groups and a longer infusion interval during laparoscopic surgery. Subgroup analyses (only pancreatic resections) still showed similar results. Histologic examination depicted a significantly larger bowel wall thickness in the open group. Laparoscopic surgery does not seem to lead to the bowel wall edema observed to occur in open surgery regardless of the degree of intravenous fluid administration, thus supporting its use even in major visceral surgery.
NASA Astrophysics Data System (ADS)
Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios
2018-03-01
A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.
Johnson, Christopher; Forsythe, Lynsey; Somauroo, John; Papadakis, Michael; George, Keith; Oxborough, David
2018-05-01
The aim of this exploratory study was to define the Athletes Heart (AH) phenotype in Native Hawaiian & Pacific Islander (NH&PI) Rugby Football League (RFL) athletes. Specifically, (1) to describe conventional echocardiographic indices of left ventricle (LV) and right ventricle (RV) structure and function in NH&PI RFL players and matched RFL Caucasian controls (CC) and (2) to demonstrate LV and RV mechanics in these populations. Ethnicity is a contributory factor to the phenotypical expression of the AH. There are no data describing the cardiac phenotype in NH&PI athletes. Twenty-one male elite NH&PI RFL athletes were evaluated using conventional echocardiography and myocardial speckle tracking, allowing the assessment of global longitudinal strain (ε) and strain rate (SR); and basal, mid and global radial and circumferential ε and SR. Basal and apical rotation and twist were also assessed. Results were compared with age-matched Caucasian counterparts (CC; n = 21). LV mass [42 ± 9 versus 37 ± 4 g/(m 2.7 )], mean LV wall thickness (MWT: 9.5 ± 0.7 and 8.7 ± 0.4 mm), relative wall thickness (RWT: 0.35 ± 0.04 and 0.31 ± 0.03) and RV wall thickness (5 ± 1 and 4 ± 1 mm, all p < 0.05) were greater in NH&PI compared with CC. LV and RV cavity dimensions and standard indices of LV and RV systolic and diastolic function were similar between groups. NH&PI demonstrated reduced peak LV mid circumferential ε and early diastolic SR, as well as reduced global radial ε. There was reduced basal rotation at 25-35% systole, reduced apical rotation at 25-40% and 60-100% systole and reduced twist at 85-95% systole in NH&PI athletes. There were no differences between the two groups in RV wall mechanics. When compared to Caucasian controls, NH&PI rugby players have a greater LV mass, MWT and RWT with concomitant reductions in circumferential and twist mechanics. This data acts to prompt further research in NH&PI athletes.
[Use and versatility of titanium for the reconstruction of the thoracic wall].
Córcoles Padilla, Juan Manuel; Bolufer Nadal, Sergio; Kurowski, Krzysztof; Gálvez Muñoz, Carlos; Rodriguez Paniagua, José Manuel
2014-02-01
Chest wall deformities/defects and chest wall resections, as well as complex rib fractures require reconstruction with various prosthetic materials to ensure the basic functions of the chest wall. Titanium provides many features that make it an ideal material for this surgery. The aim is to present our initial results with this material in several diseases. From 2008 to 2012, 14 patients were operated on and titanium was used for reconstruction of the chest wall. A total of 7 patients had chest wall tumors, 2 with sternal resection, 4 patients with chest wall deformities/defects and 3 patients with severe rib injury due to traffic accident. The reconstruction was successful in all cases, with early extubation without detecting problems in the functionality of the chest wall at a respiratory level. Patients with chest wall tumors including sternal resections were extubated in the operating room as well as the chest wall deformities. Chest trauma cases were extubated within 24h from internal rib fixation. There were no complications related to the material used and the method of implementation. Titanium is an ideal material for reconstruction of the chest wall in several clinical situations allowing for great versatility and adaptability in different chest wall reconstructions. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.
Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J
2016-01-01
The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG_Ef1, which demonstrated low M values across heterogeneous tissues. By contrast, metabolic pathway genes MGG_Fad (FAD binding domain-containing protein) and MGG_Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) performed poorly, due to their lack of expression stability across samples.
Functional duality of the cell wall.
Latgé, Jean-Paul; Beauvais, Anne
2014-08-01
The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy
Nelson, Donna J.; Kumar, Ravi
2013-01-01
Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779
Arterial wall histology in chronic pulsatile-flow and continuous-flow device circulatory support.
Potapov, Evgenij V; Dranishnikov, Nikolay; Morawietz, Lars; Stepanenko, Alexander; Rezai, Sajjad; Blechschmidt, Cristiane; Lehmkuhl, Hans B; Weng, Yuguo; Pasic, Miralem; Hübler, Michael; Hetzer, Roland; Krabatsch, Thomas
2012-11-01
Continuous-flow (CF) ventricular assist devices (VAD) are an established option for treatment of end-stage heart failure. However, the effect of long-term CF with lack of peripheral arterial wall motions on blood pressure regulation and end-organ arterial wall sclerosis, especially in the case of long-term support (> 3 years), remains unclear. Tissue samples obtained at autopsy from liver, kidney, coronary arteries, and brain from 27 VAD recipients supported for > 180 days between 2000 and 2010 were histologically examined to assess vascular alterations, including perivascular infiltrate, intravascular infiltrate, wall thickness, thrombosis, endothelial cell swelling, vessel wall necrosis, and peri-vascular fibrosis. Pulsatile-flow (PF) devices had been inserted in 9 patients and CF devices had been inserted in 16. The pathologist was blinded to the group distribution. Demographic, pharmacologic, and clinical data were retrospectively analyzed before surgery and during the follow-up period of up to 24 months. Median duration of support was 467 days (range, 235-1,588 days) in the PF group and 263 days (range, 182-942 days) in the CF group. Demographic and clinical data before and after surgery were similar. Amiodarone was more often used during follow-up in CF group than in the PF group (61% vs 10%, p = 0.009). Throughout the follow-up period, mean arterial pressure did not differ between recipients of the 2 pump types, nor did systolic and diastolic pressure, except at 2 weeks after VAD implantation, when systolic blood pressure was higher (p = 0.05) and diastolic lower (p = 0.03) in the PF group. Histologic studies did not identify any relevant differences in arterial wall characteristics between the 2 groups. Long-term mechanical circulatory support with CF devices does not adversely influence arterial wall properties of the end-organ vasculature. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis
NASA Astrophysics Data System (ADS)
Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.
2011-04-01
Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.
Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin
2011-09-16
In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules. Copyright © 2011 Elsevier B.V. All rights reserved.
Biological response to purification and acid functionalization of carbon nanotubes
NASA Astrophysics Data System (ADS)
Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe
2014-07-01
Acid functionalization has been considered as an easy way to enhance the dispersion and biodegradation of carbon nanotubes (CNT). However, inconsistencies between toxicity studies of acid functionalized CNT remain unexplained. This could be due to a joint effect of the main physicochemical modifications resulting from an acid functionalization: addition of surface acid groups and purification from catalytic metallic impurities. In this study, the impact on CNT biotoxicity of these two physiochemical features was assessed separately. The in vitro biological response of RAW 264.7 macrophages was evaluated after exposure to 15-240 µg mL-1 of two types of multi-walled CNT. For each type of CNT (small: 20 nm diameter, and big: 90 nm diameter), three different surface chemical properties were studied (total of six CNT samples): pristine, acid functionalized and desorbed. Desorbed CNT were purified by the acid functionalization but presented a very low amount of surface acid groups due to a thermal treatment under vacuum. A Janus effect of acid functionalization with two opposite impacts is highlighted. The CNT purification decreased the overall toxicity, while the surface acid groups intensified it when present at a specific threshold. These acid groups especially amplified the pro-inflammatory response. The threshold mechanism which seemed to regulate the impact of acid groups should be further studied to determine its value and potential link to the other physicochemical state of the CNT. The results suggest that, for a safer-design approach, the benefit-risk balance of an acid functionalization has to be considered, depending on the CNT primary state of purification. Further research should be conducted in this direction.
Sarubbo, Silvio; De Benedictis, Alessandro; Milani, Paola; Paradiso, Beatrice; Barbareschi, Mattia; Rozzanigo, Umbero; Colarusso, Enzo; Tugnoli, Valeria; Farneti, Marco; Granieri, Enrico; Duffau, Hugues; Chioffi, Franco
2015-01-01
Even if different dissection, tractographic and connectivity studies provided pure anatomical evidences about the optic radiations (ORs), descriptions of both the anatomical structure and the anatomo-functional relationships of the ORs with the adjacent bundles were not reported. We propose a detailed anatomical and functional study with ‘post mortem’ dissections and ‘in vivo’ direct electrical stimulation (DES) of the OR, demonstrating also the relationships with the adjacent eloquent bundles in a neurosurgical ‘connectomic’ perspective. Six human hemispheres (three left, three right) were dissected after a modified Klingler's preparation. The anatomy of the white matter was analysed according to systematic and topographical surgical perspectives. The anatomical results were correlated to the functional responses collected during three resections of tumours guided by cortico-subcortical DES during awake procedures. We identified two groups of fibres forming the OR. The superior component runs along the lateral wall of the occipital horn, the trigone and the supero-medial wall of the temporal horn. The inferior component covers inferiorly the occipital horn and the trigone, the lateral wall of the temporal horn and arches antero-medially to form the Meyer's Loop. The inferior fronto-occipital fascicle (IFOF) covers completely the superior OR along its entire course, as confirmed by the subcortical DES. The inferior longitudinal fascicle runs in a postero-anterior and inferior direction, covering the superior OR posteriorly and the inferior OR anteriorly. The IFOF identification allows the preservation of the superior OR in the anterior temporal resection, avoiding post-operative complete hemianopia. The identification of the superior OR during the posterior temporal, inferior parietal and occipital resections leads to the preservation of the IFOF and of the eloquent functions it subserves. The accurate knowledge of the OR course and the relationships with the adjacent bundles is crucial to optimize quality of resection and functional outcome. PMID:25402811
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugger, W.M.; Bartnicki-Garcia, S.
Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)
Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra
Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18more » cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.« less
NASA Astrophysics Data System (ADS)
Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak
2015-08-01
The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.
The effects of nicotine administration on the pathophysiology of rat aortic wall.
Kugo, H; Zaima, N; Tanaka, H; Urano, T; Unno, N; Moriyama, T
2017-01-01
Abdominal aortic aneurysm (AAA) is the progressive dilation of the abdominal aorta. Nicotine is reported to be associated with the development and rupture of AAA, but the pathological effects of nicotine on normal rat aorta have not been determined. We investigated pathological changes in the aortic wall of rats caused by the administration of nicotine. Nicotine administration weakened the vascular wall, increased gelatinolytic activity and promoted the destruction of elastin and collagen in the rat abdominal aorta. There were no differences in the areas positive for matrix metalloproteinase (MMP)-2 and MMP-9 between the control and nicotine treated groups. The areas positive for MMP-12 in the nicotine group were significantly greater than for the control group. Gelatinolytic activity in the aortic wall was increased significantly in the nicotine group. Our findings suggest that MMP-12 is sensitive to nicotine exposure in rats.
2016-07-01
Abstract Flexible approach walls are being considered for retrofits, replacements, or upgrades to Corps lock structures that have exceeded their...case of Lock and Dam 3, the peak reaction force for any individual pile group was 11% of the peak impact load. DISCLAIMER: The contents of this...Generation Flexible Approach Walls ......................................... 1 1.2.1 Lock and Dam 3
[Oocyst structure and problem of coccidian taxonomy].
Beĭer, T B; Svezhova, N V; Sidorenko, N V
2001-01-01
A comparative ultrastructural study was made of both thin- and thick-walled oocysts of Cryptosporidium parvum. According to the authors' findings, all the oocysts in C. parvum should be considered as thin-walled, since their walls have been composed of a single membrane or of two, closely apposed membranes without any additional substance in between. Despite the presence of two types of wall-forming bodies (WFB) in the maturing macrogamete or zygote, there is no evidence of their involvement in oocyst wall formation. In this concern, the function and destiny of WFB in C. parvum oocysts still remain obscure. Similar structure of the oocysts wall was reported elsewhere for thin-walled oocysts of fish coccidia of the genera Goussia and Eimeria. In C. parvum, the "thick-walled" oocysts differ from oocysts with thin walls in the availability in the former of a single sporocyst. The sporocyst wall consists of two unequal layers: a thin outer layer and a thicker inner one, in which a characteristic suture line is occasionally seen. By this feature the thick-walled oocysts of C. parvum bear similarities with oocysts of the cyst-forming coccidia (Cystoisospora, Toxoplasma, Sarcocystis) and of the genus Goussia: in all these the valves making up the sporocyst wall are joint just along the suture line. The literary and the authors' own data make it possible to suppose that the suture detected in C. parvum oocysts is located in the sporocyst wall, joining its valves, rather than in the oocyst wall proper, known to be composed of one or two, closely apposed unit membranes. Again, the availability of a suture (or sutures) in the sporocyst hardly provides enough reason to relate C. parvum with either cyst-forming, or fish coccidia, since this structure itself may be of a convergency character, rather than of systematic value. This may be substantiated, at least in part, by the authors' previous findings (Beyer, Sidorenko, 1984) of a similar structure, originally referred to as a "slit channel", in the intraerythrocytic capsule around gamont stage of haemogregarines--the adeleid coccidia of the genus Karyolysus. The suture-like structure could have originated in the evolution independently in different groups of parasitic protozoa to serve eventually as a suitable mechanism for immediate separation of elements involved in protective formation harbouring different developmental stages, including, for example, sporozoites in the eimeriid coccidia, or gamonts in the adeleid coccidia.
Human Uterine Wall Tension Trajectories and the Onset of Parturition
Sokolowski, Peter; Saison, Francis; Giles, Warwick; McGrath, Shaun; Smith, David; Smith, Julia; Smith, Roger
2010-01-01
Uterine wall tension is thought to be an important determinant of the onset of labor in pregnant women. We characterize human uterine wall tension using ultrasound from the second trimester of pregnancy until parturition and compare preterm, term and twin pregnancies. A total of 320 pregnant women were followed from first antenatal visit to delivery during the period 2000–2004 at the John Hunter Hospital, NSW, Australia. The uterine wall thickness, length, anterior-posterior diameter and transverse diameter were determined by serial ultrasounds. Subjects were divided into three groups: women with singleton pregnancies and spontaneous labor onset, either preterm or term and women with twin pregnancies. Intrauterine pressure results from the literature were combined with our data to form trajectories for uterine wall thickness, volume and tension for each woman using the prolate ellipsoid method and the groups were compared at 20, 25 and 30 weeks gestation. Uterine wall tension followed an exponential curve, with results increasing throughout pregnancy with the site of maximum tension on the anterior wall. For those delivering preterm, uterine wall thickness was increased compared with term. For twin pregnancies intrauterine volume was increased compared to singletons (), but wall thickness was not. There was no evidence for increased tension in those delivering preterm or those with twin gestations. These data are not consistent with a role for high uterine wall tension as a causal factor in preterm spontaneous labor in singleton or twin gestations. It seems likely that hormonal differences in multiple gestations are responsible for increased rates of preterm birth in this group rather than increased tension. PMID:20585649
DOING Physics: Physics Activities for Groups.
ERIC Educational Resources Information Center
Zwicker, Earl, Ed.
1985-01-01
Recommends an experiment which will help students experience the physical evidence that floors, tables, and walls actually bend when pressure is exerted against them. Set-up includes: laser, radio, solar cell, and wall-mounted mirror. When the beam is moved by pressure on the wall, participants can "hear the wall bend." (DH)
Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana
Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.
2017-01-01
The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422
Prévost, G; Bulckaen, H; Gaxatte, C; Boulanger, E; Béraud, G; Creusy, C; Puisieux, F; Fontaine, P
2011-04-01
Vascular accelerated aging represents the major cause of morbidity and mortality in subjects with diabetes mellitus. In the present study, our aim was to compare premature functional and morphological changes in the arterial wall resulting from streptozotocin (STZ)-induced diabetes mellitus in mice over a short-term period with those that develop during physiological aging. The effect of aminoguanidine (AG) on the prevention of these alterations in the diabetic group was also analyzed. The vascular relaxation response to acetylcholine (ACh) in the mouse was tested in isolated segments of phenylephrine (Phe)-precontracted aorta at 2, 4 and 8 weeks (wk) of STZ-induced diabetes and compare to 12- and 84-wk-old mice. Aortic structural changes were investigated, and receptor for AGE (RAGE) aortic expression was quantified by western blot. Compared to the 12-wk control group (76 ± 5%), significant endothelium-dependant relaxation (EDR) impairment was found in the group of 12-wk-old mice, which underwent a 4-wk diabetes-inducing STZ treatment (12wk-4WD) (52 ± 4%; P < 0.01) and was yet more apparent in the group of 16-wk-old mice, which underwent an 8-wk diabetes-inducing STZ treatment (16wk-8WD) (34 ± 4%; P < 0.001). The alteration in EDR was relatively comparable between the diabetic 12wk-4WD group and the 84-wk-old group (52.7 ± 4 vs. 48 ± 4%). Intima/media aortic thickening and aortic structural changes were significantly increased in the diabetic 12wk-4WD group and were even more apparent in the 84-wk group compared to the 12-wk controls. AG treatment in the 12wk-4WD+AG diabetic group significantly improved EDR, decreased RAGE expression and showed an aging preventive effect on the structural changes of the arterial wall. Our study compared EDR linked to physiological aging with that observed in the case of STZ-induced diabetes over a short-term period, and demonstrated the beneficial effect of AG. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Antennal sensilla of the stonefly Dinocras cephalotes (Plecoptera: Perlidae).
Rebora, Manuela; Tierno de Figueroa, José Manuel; Piersanti, Silvana
2016-11-01
Plecoptera, one of the most primitive groups of Neoptera, are important aquatic insects usually employed as bioindicators of high water quality. Notwithstanding the well-developed antennae of the adult, its sensory abilities are so far not well known. The present paper describes at ultrastructural level under scanning and transmission electron microscopy the antennal sensilla of the adult stonefly Dinocras cephalotes (Plecoptera, Perlidae). Adult males and females show a filiform antenna constituted of a scape, a pedicel and a flagellum composed of very numerous segments with no clear sexual dimorphism in the number and distribution of the antennal sensilla. The most represented sensilla are sensilla trichodea, with different length, whose internal structure reveal their mechanosensory function, sensilla chaetica, with an apical pore, with an internal structure revealing a typical gustatory function, porous pegs representing single-walled olfactory sensilla, digitated pegs with hollow cuticular spoke channels representing double-walled olfactory sensilla, pegs in pits for which we hypothesize a thermo-hygrosensory function. The diversity of described sensilla is discussed in relation to known biological aspects of the studied species. This opens new perspectives in the study of the behavior of these aquatic insects during their adult stage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina
2017-12-25
The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yoshizawa, Nobuko; Ueda, Yukio; Nasu, Hatsuko; Ogura, Hiroyuki; Ohmae, Etsuko; Yoshimoto, Kenji; Takehara, Yasuo; Yamashita, Yutaka; Sakahara, Harumi
2016-11-01
Optical imaging and spectroscopy using near-infrared light have great potential in the assessment of tumor vasculature. We previously measured hemoglobin concentrations in breast cancer using a near-infrared time-resolved spectroscopy system. The purpose of the present study was to evaluate the effect of the chest wall on the measurement of hemoglobin concentrations in normal breast tissue and cancer. We measured total hemoglobin (tHb) concentration in both cancer and contralateral normal breast using a near-infrared time-resolved spectroscopy system in 24 female patients with breast cancer. Patients were divided into two groups based on menopausal state. The skin-to-chest wall distance was determined using ultrasound images obtained with an ultrasound probe attached to the spectroscopy probe. The apparent tHb concentration of normal breast increased when the skin-to-chest wall distance was less than 20 mm. The tHb concentration in pre-menopausal patients was higher than that in post-menopausal patients. Although the concentration of tHb in cancer tissue was statistically higher than that in normal breast, the contralateral normal breast showed higher tHb concentration than cancer in 9 of 46 datasets. When the curves of tHb concentrations as a function of the skin-to-chest wall distance in normal breast were applied for pre- and post-menopausal patients separately, all the cancer lesions plotted above the curves. The skin-to-chest wall distance affected the measurement of tHb concentration of breast tissue by near-infrared time-resolved spectroscopy. The tHb concentration of breast cancer tissue was more precisely evaluated by considering the skin-to-chest wall distance.
Gaikwad, Bhushan Satish; Nazirkar, Girish; Dable, Rajani; Singh, Shailendra
2018-01-01
The present study aims to compare and evaluate the marginal fit and axial wall adaptability of Co-Cr copings fabricated by metal laser sintering (MLS) and lost-wax (LW) techniques using a stereomicroscope. A stainless steel master die assembly was fabricated simulating a prepared crown; 40 replicas of master die were fabricated in gypsum type IV and randomly divided in two equal groups. Group A coping was fabrication by LW technique and the Group B coping fabrication by MLS technique. The copings were seated on their respective gypsum dies and marginal fit was measured using stereomicroscope and image analysis software. For evaluation of axial wall adaptability, the coping and die assembly were embedded in autopolymerizing acrylic resin and sectioned vertically. The discrepancies between the dies and copings were measured along the axial wall on each halves. The data were subjected to statistical analysis using unpaired t -test. The mean values of marginal fit for copings in Group B (MLS) were lower (24.6 μm) than the copings in Group A (LW) (39.53 μm), and the difference was statistically significant ( P < 0.05). The mean axial wall discrepancy value was lower for Group B (31.03 μm) as compared with Group A (54.49 μm) and the difference was statistically significant ( P < 0.05). The copings fabricated by MLS technique had better marginal fit and axial wall adaptability in comparison with copings fabricated by the LW technique. However, the values of marginal fit of copings fabricated that the two techniques were within the clinically acceptable limit (<50 μm).
Bigot, Julien; Rémy-Jardin, Martine; Duhamel, Alain; Gorgos, Andréi-Bogdan; Faivre, Jean-Baptiste; Rémy, Jacques
2010-02-01
To evaluate the impact of pulmonary arterial wall distensibility on the assessment of a computed tomography (CT) score in patients with nonmassive pulmonary embolism (PE) (ie, Mastora score). The arterial wall distensibility of five central pulmonary arteries (pulmonary artery trunk, right and left main pulmonary arteries, right and left interlobar pulmonary arteries) was studied on ECG-gated CT angiographic studies of the chest in 15 patients with no pulmonary arterial hypertension (group 1; mean pulmonary artery pressure: 17.2 mm Hg) and 9 patients with nonmassive PE (group 2), using 2D reconstructions at every 10% of the R-R interval. The systolic and diastolic reconstruction time windows of the examined arteries were identical in the 2 groups, obtained at 20% and 80% of the R-R interval, respectively. No statistically significant difference was observed between the mean values of the pulmonary arterial wall distensibility between the 2 groups, varying between 20.5% and 24% in group 1 and between 23.3% and 25.9% in group 2. The coefficients of variation of the average arterial surfaces were found to vary between 4.30% and 6.50% in group 1 and 4.2% and 8.4% in group 2. Except the pulmonary artery trunk in group 2, all the intraclass correlation coefficients were around 0.8 or greater than 0.8, that is the cutoff for good homogeneity of measurements. The pulmonary arterial wall systolic-diastolic distensibility does not interfere with the assessment of a CT obstruction score in the setting of nonmassive PE.
Free-electron gas at charged domain walls in insulating BaTiO3
Sluka, Tomas; Tagantsev, Alexander K.; Bednyakov, Petr; Setter, Nava
2013-01-01
Hetero interfaces between metal-oxides display pronounced phenomena such as semiconductor-metal transitions, magnetoresistance, the quantum hall effect and superconductivity. Similar effects at compositionally homogeneous interfaces including ferroic domain walls are expected. Unlike hetero interfaces, domain walls can be created, displaced, annihilated and recreated inside a functioning device. Theory predicts the existence of 'strongly' charged domain walls that break polarization continuity, but are stable and conduct steadily through a quasi-two-dimensional electron gas. Here we show this phenomenon experimentally in charged domain walls of the prototypical ferroelectric BaTiO3. Their steady metallic-type conductivity, 109 times that of the parent matrix, evidence the presence of stable degenerate electron gas, thus adding mobility to functional interfaces. PMID:23651996
The influence of "preparedness" on autoshaping, schedule performance, and choice.
Burns, J D; Malone, J C
1992-11-01
Two groups of experimentally naive pigeons were exposed to an autoshaping procedure in which the response key was mounted on the wall (the conventional location) or on the floor of the chamber. In two experiments, subjects readily responded to the wall key, but floor-key subjects required shaping. A subsequent experiment compared performance of wall- and floor-key groups on an ascending series of fixed-ratio schedule values, resistance to extinction, differential reinforcement of other behavior, and reversal of key assignment. Each experiment was followed by several sessions of fixed-ratio training; the performance of the wall- and floor-key groups was almost identical throughout. In the final experiment, a fixed-ratio requirement could be completed on either or both keys. Birds initially chose the key on which they had responded during the preceding (reversal of key assignment) experiment. However, within a few sessions both groups showed almost exclusive preference for the floor key. Preference for a key located on the floor may follow from the fact that pigeons are ground feeders and may thus be more "prepared" to peck the floor than to peck a wall. However, autoshaping, under the conditions prevailing here, occurred much more readily to the wall key, suggesting that pecking a vertical surface is more highly prepared. Difficulties in determining relative preparedness seem moot, however, given the lack of between-group differences in the intervening experiments. It is thus unlikely that schedule performances critically depend upon the specific operant response involved.
Hydrogen gas improves left ventricular hypertrophy in Dahl rat of salt-sensitive hypertension.
Matsuoka, Hiroki; Miyata, Seiko; Okumura, Nozomi; Watanabe, Takuya; Hashimoto, Katsunori; Nagahara, Miki; Kato, Kazuko; Sobue, Sayaka; Takeda, Kozue; Ichihara, Masatoshi; Iwamoto, Takashi; Noda, Akiko
2018-06-14
Hypertension is an important risk factor for death resulting from stroke, myocardial infarction, and end-stage renal failure. Hydrogen (H 2 ) gas protects against many diseases, including ischemia-reperfusion injury and stroke. The effects of H 2 on hypertension and its related left ventricular (LV) function have not been fully elucidated. The purpose of this study was to investigate the effects of H 2 gas on hypertension and LV hypertrophy using echocardiography. Dahl salt-sensitive (DS) rats were randomly divided into three groups: those fed an 8% NaCl diet until 12 weeks of age (8% NaCl group), those additionally treated with H 2 gas (8% NaCl + H 2 group), and control rats maintained on a diet containing 0.3% NaCl until 12 weeks of age (0.3% NaCl group). H 2 gas was supplied through a gas flowmeter and delivered by room air (2% hydrogenated room air, flow rate of 10 L/min) into a cage surrounded by an acrylic chamber. We evaluated interventricular septal wall thickness (IVST), LV posterior wall thickness (LVPWT), and LV mass using echocardiography. IVST, LVPWT, and LV mass were significantly higher in the 8% NaCl group than the 0.3% NaCl group at 12 weeks of age, whereas they were significantly lower in the 8% NaCl + H 2 group than the 8% NaCl group. There was no significant difference in systolic blood pressure between the two groups. Our findings suggest that chronic H 2 gas inhalation may help prevent LV hypertrophy in hypertensive DS rats.
Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
2011-12-15
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less
Alizade, Elnur; Avci, Anil; Tabakcı, Mehmet Mustafa; Toprak, Cuneyt; Zehir, Regayip; Acar, Goksel; Kargin, Ramazan; Emiroğlu, Mehmet Yunas; Akçakoyun, Mustafa; Pala, Selçuk
2016-08-01
Right ventricular (RV) effects of long-term use of anabolic-androgenic steroids (AAS) are not clearly known. The aim of this study was to assess RV systolic functions by two-dimensional speckle tracking echocardiography (2DSTE) in AAS user and nonuser bodybuilders. A total of 33 competitive male bodybuilders (15 AAS users, 18 AAS nonusers) were assessed. To assess RV systolic functions, all participants underwent standard two-dimensional and Doppler echocardiography, and 2DSTE. Interventricular septal thickness, left ventricle posterior wall thickness, relative wall thickness, and left ventricle mass index were significantly higher in AAS users than nonusers. While standard diastolic parameters were not statistically different between the groups, tissue Doppler parameters including RV E' and E'/A' were lower in AAS users than nonusers (10.1 ± 2.0 vs. 12.7 ± 2.1; P = 0.001, 1.1 ± 0.1 vs. 1.5 ± 0.4; P = 0.009, respectively). Tricuspid annular plane systolic excursion, RV fractional area change, and RV S' were in normal ranges. However, RV S' was found to be lower in users than nonusers (12.2 ± 2.2 vs. 14.6 ± 2.8, P = 0.011). RV free wall longitudinal strain and strain rate were decreased in AAS users in comparison with nonusers (-20.2 ± 3.1 vs. -23.3 ± 3.5; P = 0.012, -3.2 ± 0.1 vs. -3.4 ± 0.1; P = 0.022, respectively). In addition, there were good correlations between 2DSTE parameters and RV S', E', and E'/A'. Despite normal standard systolic echo parameters, peak systolic RV free wall strain and strain rate were reduced in AAS user bodybuilders in comparison with nonusers. Strain and strain rate by 2DSTE may be useful for early determination of subclinical RV dysfunction in AAS user bodybuilders. © 2016, Wiley Periodicals, Inc.
2011-01-01
Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs. PMID:22078230
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2009-12-01
By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.
[Experience with Clotteau-Prémont's technique in abdominal wall hernias. Preliminary report].
Soto-Dávalos, Baltazar Alberto; Del Pozzo-Magaña, José Antonio; Luna-Martínez, Javier
2006-01-01
Incisional hernias account for at least a third of abdominal wall hernias. There are different techniques of repair that include the use of prosthetic materials, which has lowered the hernia recurrence rate. Nonetheless, its use in case of rejection or infection requires other techniques with local tissue. The use of prosthetic material in a contaminated environment is contraindicated because the risk of infection and recurrence rate is unacceptably high. In order to compare two repair techniques for abdominal wall hernias in terms of complications and recurrence to be used as an alternative for hernia repair in patients with abdominal wall hernias, we conducted, between January 2000 and January 2004, an observational, longitudinal, retrospective, non-randomized matched control case study in patients with abdominal wall hernia. A total of 30 patients were studied and were divided into two groups of 15 patients each. Subjects were matched for sex, age and hernia type (group A, mesh treated and group B, Clotteau-Prémont treated) who had at least a 5-month postoperative follow-up. Complication and recurrence rate was assessed and compared. There were no differences between the two groups in complications or recurrence (p <0.05). The average follow-up time was 18.9 +/- 8 months for group A and 15 +/- 7.9 months for group B. Clotteau-Prémont's technique is a safe and feasible alternative procedure with indications in selected patients.
de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues
2007-10-01
The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.
Pirat, B; Bozbas, H; Demirtas, S; Simsek, V; Sayin, B; Colak, T; Sade, E; Ulucam, M; Muderrisoglu, H; Haberal, M
2008-01-01
Tissue Doppler echocardiography has been introduced as a useful tool to assess systolic myocardial function. In this study we sought to compare patients with end-stage renal disease (ESRD), with renal transplantations and control subjects with regard to tissue Doppler parameters. Thirty recipients with functional grafts of overall mean age 36 +/- 7 years included 24 men. An equal number of patients with ESRD of overall mean age 35 +/- 7 years included 20 men. A third cohort was comprised of 20 age- and gender matched control subjects. Tissue Doppler imaging from the septal and lateral mitral annulus of the left ventricle and free wall of the right ventricle was performed from a 4-chamber view. Mean systolic and diastolic blood pressures were similar among the groups during imaging. Peak systolic velocity (S wave) at the septal annulus was similar in control subjects and recipients. S waves were significantly lower among ESRD patients compared with recipients (10.3 +/- 2.1 vs 12.0 +/- 2.5 cm/s, P = .04, respectively). Isovolumic contraction velocity of the septum and the right ventricular wall were significantly lower in ESRD patients than recipients or controls: 10.2 +/- 2.6 vs 12.5 +/- 2.8 vs 11.4 +/- 1.8 cm/s for septal wall (P = .008) and 13.9 +/- 3.6 vs 17.9 +/- 5.1 vs 16.8 +/- 5.8, for right ventricle (P = .01). Systolic indices of tissue Doppler echocardiography in recipients demonstrated similar values as control subjects and increased values compared with ESRD patients. These results suggested improvement in systolic myocardial function following renal transplantation.
Quantitative analysis of airway abnormalities in CT
NASA Astrophysics Data System (ADS)
Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen
2010-03-01
A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke
We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.
Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh
2017-07-01
Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.
Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh
2017-01-01
Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode. PMID:28671561
The distribution of galaxies within the 'Great Wall'
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1992-01-01
The galaxy distribution within the 'Great Wall', the most striking feature in the first three 'slices' of the CfA redshift survey extension is examined. The Great Wall is extracted from the sample and is analyzed by counting galaxies in cells. The 'local' two-point correlation function within the Great Wall is computed and the local correlation length, is estimated 15/h Mpc, about 3 times larger than the correlation length for the entire sample. The redshift distribution of galaxies in the pencil-beam survey by Broadhurst et al. (1990) shows peaks separated about by large 'voids', at least to a redshift of about 0.3. The peaks might represent the intersections of their about 5/h Mpc pencil beams with structures similar to the Great Wall. Under this hypothesis, sampling of the Great Walls shows that l approximately 12/h Mpc is the minimum projected beam size required to detect all the 'walls' at redshifts between the peak of the selection function and the effective depth of the survey.
Di Petta, Antonio; Simas, Rafael; Ferreira, Clebson L; Capelozzi, Vera L; Salemi, Vera M C; Moreira, Luiz F P; Sannomiya, Paulina
2015-10-01
Chronic obstructive pulmonary disease is often associated with chronic comorbid conditions of cardiovascular disease, diabetes mellitus and hypertension. This study aimed to investigate the effects of the association of diabetes and pulmonary emphysema on cardiac structure and function in rats. Wistar rats were divided into control non-diabetic instilled with saline (CS) or elastase (CE), diabetic instilled with saline (DS) or elastase (DE), DE treated with insulin (DEI) groups and echocardiographic measurements, morphometric analyses of the heart and lungs, and survival analysis conducted 50 days after instillation. Diabetes mellitus was induced [alloxan, 42 mg/kg, intravenously (iv)] 10 days before the induction of emphysema (elastase, 0.25 IU/100 g). Rats were treated with NPH insulin (4 IU before elastase plus 2 IU/day, 50 days). Both CE and DE exhibited similar increases in mean alveolar diameter, which are positively correlated with increases in right ventricular (RV) wall thickness (P = 0.0022), cavity area (P = 0.0001) and cardiomyocyte thickness (P = 0.0001). Diabetic saline group demonstrated a reduction in left ventricular (LV) wall, interventricular (IV) septum, cardiomyocyte thickness and an increase in cavity area, associated with a reduction in LV fractional shortening (P < 0.05), and an increase in LViv relaxation time (P < 0.05). Survival rate decreased from 80% in DS group to 40% in DE group. In conclusion, alloxan diabetes did not affect RV hypertrophy secondary to chronic emphysema, even in the presence of insulin. Diabetes per se induced left ventricular dysfunction, which was less evident in the presence of RV hypertrophy. Survival rate was substantially reduced as a consequence, at least in part, of the coexistence of RV hypertrophy and diabetic cardiomyopathy. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.
Villalobos-Duno, Héctor; San-Blas, Gioconda; Paulinkevicius, Maryan; Sánchez-Martín, Yolanda; Nino-Vega, Gustavo
2013-01-01
α-1,3-Glucan is present as the outermost layer of the cell wall in the pathogenic yeastlike (Y) form of Paracoccidioides brasiliensis. Based on experimental evidence, this polysaccharide has been proposed as a fungal virulence factor. To degrade α-1,3-glucan and allow remodeling of the cell wall, α-1,3-glucanase is required. Therefore, the study of this enzyme, its encoding gene, and regulatory mechanisms, might be of interest to understand the morphogenesis and virulence process in this fungus. A single gene, orthologous to other fungal α-1,3-glucanase genes, was identified in the Paracoccidioides genome, and labeled AGN1. Transcriptional levels of AGN1 and AGS1 (α-1,3-glucan synthase-encoding gene) increased sharply when the pathogenic Y phase was cultured in the presence of 5% horse serum, a reported booster for cell wall α-1,3-glucan synthesis in this fungus. To study the biochemical properties of P. brasiliensis Agn1p, the enzyme was heterologously overexpressed, purified, and its activity profile determined by means of the degradation of carboxymethyl α-1,3-glucan (SCMG, chemically modified from P. brasiliensis α-1,3-glucan), used as a soluble substrate for the enzymatic reaction. Inhibition assays, thin layer chromatography and enzymatic reactions with alternative substrates (dextran, starch, chitin, laminarin and cellulose), showed that Agn1p displays an endolytic cut pattern and high specificity for SCMG. Complementation of a Schizosaccharomyces pombe agn1Δ strain with the P. brasiliensis AGN1 gene restored the wild type phenotype, indicating functionality of the gene, suggesting a possible role of Agn1p in the remodeling of P. brasiliensis Y phase cell wall. Based on amino acid sequence, P. brasiliensis Agn1p, groups within the family 71 of fungal glycoside hydrolases (GH-71), showing similar biochemical characteristics to other members of this family. Also based on amino acid sequence alignments, we propose a subdivision of fungal GH-71 into at least five groups, for which specific conserved sequences can be identified. PMID:23825576
Stueckle, Todd A; Davidson, Donna C; Derk, Ray; Wang, Peng; Friend, Sherri; Schwegler-Berry, Diane; Zheng, Peng; Wu, Nianqiang; Castranova, Vince; Rojanasakul, Yon; Wang, Liying
2017-06-01
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 μg/cm 2 to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NH x ). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NH x possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NH x -exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.
Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P
2016-11-01
Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.
Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph
2015-06-24
Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.
Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D
2016-12-01
Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.
Characterizing visible and invisible cell wall mutant phenotypes.
Carpita, Nicholas C; McCann, Maureen C
2015-07-01
About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
An Arabidopsis gene regulatory network for secondary cell wall synthesis
Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...
2014-12-24
The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less
NASA Astrophysics Data System (ADS)
Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.
2012-01-01
Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.
Left ventricular myocardial velocities and deformation indexes in top-level athletes.
D'Andrea, Antonello; Cocchia, Rosangela; Riegler, Lucia; Scarafile, Raffaella; Salerno, Gemma; Gravino, Rita; Golia, Enrica; Pezzullo, Enrica; Citro, Rodolfo; Limongelli, Giuseppe; Pacileo, Giuseppe; Cuomo, Sergio; Caso, Pio; Russo, Maria Giovanna; Bossone, Eduardo; Calabrò, Raffaele
2010-12-01
The aim of this study was to define the range of left ventricular (LV) velocities and deformation indexes in highly trained athletes, analyzing potential differences induced by different long-term training protocols. Standard echocardiography, pulsed-wave tissue Doppler echocardiography, and two-dimensional strain echocardiography of the interventricular septum and lateral wall were performed in 370 endurance athletes and 280 power athletes. Using pulsed-wave tissue Doppler, the following parameters of myocardial function were assessed: systolic peak velocities (S(m)), early (E(m)) and late (A(m)) diastolic velocities, and the E(m)/A(m) ratio. By two-dimensional strain echocardiography, peaks of regional systolic strain and LV global longitudinal strain were calculated. LV mass index and ejection fraction did not significantly differ between the two groups. However, power athletes showed an increased sum of wall thicknesses (P < .01) and relative wall thickness, while LV stroke volume and LV end-diastolic diameter (P < .001) were greater in endurance athletes. By pulsed-wave tissue Doppler analysis, E(m) and E(m)/A(m) at both the septal and lateral wall levels were higher in endurance athletes. By two-dimensional strain echocardiography, myocardial deformation indexes were comparable between the two groups. E(m)/A(m) ratios ≥ 1 were found in the overall population, while 90 % of athletes had an E(m) ≥ 16 cm/sec, S(m) ≥ 10 cm/sec, and global longitudinal strain ≤ -16%. Multivariate analyses evidenced independent positive association between Em peak velocity and LV end-diastolic volume (P < .001) and an independent correlation of global longitudinal strain with the sum of LV wall thicknesses (P < .005). This study describes the full spectrum of systolic and diastolic myocardial velocities and deformation indexes in a large population of competitive athletes. Copyright © 2010 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Canclini, S; Terzi, A; Rossini, P; Vignati, A; La Canna, G; Magri, G C; Pizzocaro, C; Giubbini, R
2001-01-01
Multigated radionuclide ventriculography (MUGA) is a simple and reliable tool for the assessment of global systolic and diastolic function and in several studies it is still considered a standard for the assessment of left ventricular ejection fraction. However the evaluation of regional wall motion by MUGA is critical due to two-dimensional imaging and its clinical use is progressively declining in favor of echocardiography. Tomographic MUGA (T-MUGA) is not widely adopted in clinical practice. The aim of this study was to compare T-MUGA to planar MUGA (P-MUGA) for the assessment of global ejection fraction and to transthoracic echocardiography for the evaluation of regional wall motion. A 16-segment model was adopted for the comparison with echo regional wall motion. For each one of the 16 segments the normal range of T-MUGA ejection fraction was quantified and a normal data file was defined; the average value -2.5 SD was used as the lower threshold to identify abnormal segments. In addition, amplitude images from Fourier analysis were quantified and considered abnormal according to three different thresholds (25, 50 and 75% of the maximum). In a study group of 33 consecutive patients the ejection fraction values of T-MUGA highly correlated with those of P-MUGA (r = 0.93). The regional ejection fraction (according to the normal database) and the amplitude analysis (50% threshold) allowed for the correct identification of 203/226 and 167/226 asynergic segments by echocardiography, and of 269/302 and 244/302 normal segments, respectively. Therefore sensitivity, specificity and overall accuracy to detect regional wall motion abnormalities were 90, 89, 89% and 74, 81, 79% for regional ejection fraction and amplitude analysis, respectively. T-MUGA is a reliable tool for regional wall motion evaluation, well correlated with echocardiography, less subjective and able to provide quantitative data.
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Chang, Shu-Yu; Huang, Winn-Jung; Lu, Ben-Ren; Fang, Guor-Cheng; Chen, Yeah; Chen, Hsiu-Lin; Chang, Ming-Chin; Hsu, Cheng-Feng
2015-01-01
Cyanobacteria were inactivated under sunlight using mixed phase silver (Ag) and deposited titanium dioxide (TiO2) coated on the surface of diatomite (DM) as a hybrid photocatalyst (Ag-TiO2/DM). The endpoints of dose-response experiments were chlorophyll a, photosynthetic efficiency, and flow cytometry measurements. In vitro experiments revealed that axenic cultures of planktonic cyanobacteria lost their photosynthetic activity following photocatalyzed exposure to sunlight for more than 24 h. Nearly 92% of Microcystis aeruginosa cells lost their photosynthetic activity, and their cell morphology was severely damaged within 24 h of the reaction. Preliminary carbon-14 (14CO3−2) results suggest that the complete inactivation of cyanobacteria arises from damage to cell wall components (peroxidation). A small concomitant increase in cell wall disorder and a consequent decrease in cell wall functional groups increase the cell wall fluidity prior to cell lysis. A high dosage of Ag-TiO2/DM during photocatalysis increased the concentration of extracellular polymeric substances (EPSs) in the Microcystis aeruginosa suspension by up to approximately 260%. However, photocatalytic treatment had a small effect on the disinfection by-product (DBP) precursor, as revealed by only a slight increase in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). PMID:26690465
A Versatile Click-Compatible Monolignol Probe to Study Lignin Deposition in Plant Cell Walls
Pandey, Jyotsna L.; Wang, Bo; Diehl, Brett G.; Richard, Tom L.; Chen, Gong; Anderson, Charles T.
2015-01-01
Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly. PMID:25884205
Plotkin, Marian; Vaibavi, Srirangam Ramanujam; Rufaihah, Abdul Jalil; Nithya, Venkateswaran; Wang, Jing; Shachaf, Yonatan; Kofidis, Theo; Seliktar, Dror
2014-02-01
This study compares the effect of four injectable hydrogels with different mechanical properties on the post-myocardial infarction left ventricle (LV) remodeling process. The bioactive hydrogels were synthesized from Tetronic-fibrinogen (TF) and PEG-fibrinogen (PF) conjugates; each hydrogel was supplemented with two levels of additional cross-linker to increase the matrix stiffness as measured by the shear storage modulus (G'). Infarcts created by ligating the left anterior descending coronary artery in a rodent model were treated with the hydrogels, and all four treatment groups showed an increase in wall thickness, arterial density, and viable cardiac tissue in the peri-infarct areas of the LV. Echocardiography and hemodynamics data of the PF/TF treated groups showed significant improvement of heart function associated with the attenuated effects of the remodeling process. Multi-factorial regression analysis indicated that the group with the highest modulus exhibited the best rescue of heart function and highest neovascularization. The results of this study demonstrate that multiple properties of an injectable bioactive biomaterial, and notably the matrix stiffness, provide the multifaceted stimulation necessary to preserve cardiac function and prevent adverse remodeling following a heart attack. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mitsos, A.P.; Giannakopoulou, M.D.; Kaklamanos, I.G.; Kapritsou, M.; Konstantinou, M.I.; Fotis, T.; Mamoura, K.V.; Mariolis-Sapsakos, T.; Ntountas, I.T.; Konstantinou, E.A.
2013-01-01
We report our two-year experience in the endovascular treatment of brain aneurysms in relation to their parent artery wall. We prospectively recorded patients with intracranial aneurysms (107 ruptured - 38 unruptured) treated with coiling during a two-year period: 145 patients, 94 females and 51 males - mean age 56 years. The aneurysms were divided into side-wall (A) and bifurcation (B) groups. A total occlusion rate was noted in post-embolization angiograms in 101 aneurysms (70%) with a morbidity of 4%. No angiographic recurrence arose in the six-month follow-up. The two groups had a similar total occlusion rate (68.31% and 71.8% respectively), while the complication rate was 3% in group A and 4.7% in group B. Significant differences between the two groups were noted in the number of assisted coiling cases: 28 out of 60 cases (46.7%) in group A - 14 out of 85 cases (16.5%) in group B. Further statistical analysis showed strong dependencies for the type of endovascular procedure between the ruptured and unruptured aneurysms in both groups (p 0.000<0.05), but no dependencies between the aneurysm occlusion rate and the ruptured or non-ruptured aneurysms, or between the occlusion rate and the type of endovascular procedure (p 0.552 >0.05 and 0.071 >0.05 respectively). In conclusion, the anatomic relation of the aneurysm sac with the wall of the parent artery is important, as significant differences in endovascular practice, devices and techniques were noted between side-wall and bifurcation aneurysms. PMID:23859171
Navarre, William Wiley; Schneewind, Olaf
1999-01-01
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836
Structural remodeling of coronary resistance arteries: effects of age and exercise training
Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.
2014-01-01
Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239
Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats
Sayapina, Nina V.; Sergievich, Alexander A.; Kuznetsov, Vladimir L.; Chaika, Vladimir V.; Lisitskaya, Irina G.; Khoroshikh, Pavel P.; Batalova, Tatyana A.; Tsarouhas, Kostas; Spandidos, Demetrios; Tsatsakis, Aristidis M.; Fenga, Concettina; Golokhvast, Kirill S.
2016-01-01
Studies of the neurobehavioral effects of carbon nanomaterials, particularly those of multi-walled carbon nanotubes (MWCNTs), have concentrated on cognitive effects, but data are scarce. The aim of this study was to assess the influence of MWCNTs on a number of higher nervous system functions of Wistar rats. For a period of 10 days, two experimental groups were fed with MWCNTs of different diameters (MWCNT-1 group, 8–10 nm; MWCNT-2 group, 18–20 nm) once a day at a dosage of 500 mg/kg. In the open-field test, reductions of integral indications of researching activity were observed for the two MWCNT-treated groups, with a parallel significant (P<0.01) increase in stress levels for these groups compared with the untreated control group. In the elevated plus-maze test, integral indices of researching activity in the MWCNT-1 and MWCNT-2 groups reduced by day 10 by 51 and 62%, respectively, while rat stress levels remained relatively unchanged. In the universal problem solving box test, reductions in motivation and energy indices of researching activity were observed in the two experimental groups. Searching activity in the MWCNT-1 group by day 3 was reduced by 50% (P<0.01) and in the MWCNT-2 group the relevant reduction reached 11.2%. By day 10, the reduction compared with controls, was 64% (P<0.01) and 58% (P<0.01) for the MWCNT-1 and MWCNT-2 groups, respectively. In conclusion, a series of specific tests demonstrated that MWCNT-treated rats experienced a significant reduction of some of their cognitive abilities, a disturbing and worrying finding, taking into consideration the continuing and accelerating use of carbon nanotubes in medicine and science. PMID:27588053
Derba-Maceluch, Marta; Awano, Tatsuya; Takahashi, Junko; Lucenius, Jessica; Ratke, Christine; Kontro, Inkeri; Busse-Wicher, Marta; Kosik, Ondrej; Tanaka, Ryo; Winzéll, Anders; Kallas, Åsa; Leśniewska, Joanna; Berthold, Fredrik; Immerzeel, Peter; Teeri, Tuula T; Ezcurra, Ines; Dupree, Paul; Serimaa, Ritva; Mellerowicz, Ewa J
2015-01-01
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
ANTIGENIC STRUCTURE OF THE ACTINOMYCETALES VII.
Kwapinski, J. B.
1964-01-01
Kwapinski, J. B. (The University of New England, Armidale, Australia). Antigenic structure of the Actinomycetales. VII. Chemical and serological similarities of cell walls from 100 Actinomycetales strains. J. Bacteriol. 88:1211–1219. 1964.—Cell walls prepared mechanically from 100 strains of Actinomycetales were studied by chromatographic and serological methods. The cell walls of Actinomyces were found to be serologically related to those of the corynebacteria and to some strains of mycobacteria and nocardiae. The cell walls of nocardiae appeared to be more closely related to those of the mycobacteria, Streptomyces, Micromonospora, and Waksmania. The cell walls of Micromonospora and Waksmania showed certain serological similarities to those of Thermoactinomyces and nocardiae. Micropolyspora was antigenically different from other species of the Actinomycetales. Three serological groups of mycobacteria and four groups of nocardiae were distinguished. PMID:14234773
Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F
2017-11-07
The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.
Plasma Theory and Simulation Group Annual Progress Report for 1991
1991-12-31
beam formation analitically : i) the resistance of the (low-density) to the final, high-density cylindrical wall can be approximated by the regime...model is developed that predicts the ion angular distribution function in a highly collisional sheath. In a previous study2, the normal ion velocity...gets a linear dispersion relation of the form W2 = k 2 (T + Ti/m. + m,), (40) which predicts ion acoustic waves. These waves have the highest frequency
Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing
2017-07-01
: L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel-Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis.
Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing
2017-01-01
L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel–Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis. PMID:28306627
Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.
Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A
2016-08-01
Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.
Landmann, Alessandra; Visoiu, Mihaela; Malek, Marcus M
2018-03-01
Abdominal wall nerve blocks have been gaining popularity for the treatment of perioperative pain in children. Our aim was to compare a technique of surgeon-performed, laparoscopic abdominal wall nerve blocks to anesthesia-placed, ultrasound-guided abdominal wall nerve blocks and the current standard of local wound infiltration. After institutional review board approval was obtained, a retrospective chart review was performed of pediatric patients treated at a single institution during a 2-year period. Statistics were calculated using analysis of variance with post-hoc Bonferonni t tests for pair-wise comparisons. Included in this study were 380 patients who received ultrasound-guided abdominal wall nerve blocks (n = 125), laparoscopic-guided abdominal wall nerve blocks (n = 88), and local wound infiltration (n = 117). Groups were well matched for age, sex, and weight. There was no significant difference in pain scores within the first 8 hours or narcotic usage between groups. Local wound infiltration demonstrated the shortest overall time required to perform (P < .0001). Patients who received a surgeon-performed abdominal wall nerve block demonstrated a shorter duration of hospital stay when compared to the other groups (P = .02). Our study has demonstrated that laparoscopic-guided abdominal wall nerve blocks show similar efficacy to ultrasound-guided nerve blocks performed by pain management physicians without increasing time in the operating room. Copyright © 2017 Elsevier Inc. All rights reserved.
Rovenská, E; Michalka, P; Papincák, J; Durdík, S; Jakubovský, J
2005-01-01
The morphological relationship of chondroitin sulphates A, B, and C, collagen types I-IV and fibronectin in the wall of venous sinuses of the red pulp in human spleen has not been a focus of interest among morphologists. Regarding the hypothesis that the structure of the spleen lends it the function of a blood filter the substances described in our study might play a significant role in the functional morphology. Of 146 human spleen surgical specimens, groups of 12 specimens each were examined under a light microscope using the method of antibodies against fibronectin, against collagen types I-IV and against chondroitin sulphates A, B, and C. The sections of the red pulp of human spleen stained with hematoxylin and eosin provided limited information about the wall of the sinuses. Chondroitin sulphates A and B were observed on the surface of sinus-lining cells (SLC), and fibronectin was detected on the surface of the annular fibers. Collagen type 11 was observed almost in the same places as chondroitin sulphates A and B. Collagen type IV was present in annular fibers of the wall of the sinus and in the basement membrane, like fibronectin. Chondroitin sulphate was not present in the walls of sinuses. Binding of antibodies against chondroitin sulphate A and against chondroitin sulphate B indicates the presence of chondroitin sulfates on the surface of SLC, where they probably play a role in helping the human organism to recognize alien and self substances. The presence of chondroitin,sulphates A and B probably affects inhibition of binding of cells with collagen type I, but not with fibronectin.
Barreda, Santiago; Kidder, Ian J; Mudery, Jordan A; Bailey, E Fiona
2015-03-01
Neonates at risk for sudden infant death syndrome (SIDS) are hospitalized for cardiorespiratory monitoring however, monitoring is costly and generates large quantities of averaged data that serve as poor predictors of infant risk. In this study we used a traditional autocorrelation function (ACF) testing its suitability as a tool to detect subtle alterations in respiratory patterning in vivo. We applied the ACF to chest wall motion tracings obtained from rat pups in the period corresponding to the mid-to-end of the third trimester of human pregnancy. Pups were drawn from two groups: nicotine-exposed and saline-exposed at each age (i.e., P7, P8, P9, and P10). Respiratory-related motions of the chest wall were recorded in room air and in response to an arousal stimulus (FIO2 14%). The autocorrelation function was used to determine measures of breathing rate and respiratory patterning. Unlike alternative tools such as Poincare plots that depict an averaged difference in a measure breath to breath, the ACF when applied to a digitized chest wall trace yields an instantaneous sample of data points that can be used to compare (data) points at the same time in the next breath or in any subsequent number of breaths. The moment-to-moment evaluation of chest wall motion detected subtle differences in respiratory pattern in rat pups exposed to nicotine in utero and aged matched saline-exposed peers. The ACF can be applied online as well as to existing data sets and requires comparatively short sampling windows (∼2 min). As shown here, the ACF could be used to identify factors that precipitate or minimize instability and thus, offers a quantitative measure of risk in vulnerable populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Lipshultz, Steven E; Williams, Paige L; Zeldow, Bret; Wilkinson, James D; Rich, Kenneth C; van Dyke, Russell B; Seage, George R; Dooley, Laurie B; Kaltman, Jonathan R; Siberry, George K; Mofenson, Lynne M; Shearer, William T; Colan, Steven D
2015-01-02
We evaluated the potential cardiac effects of in-utero exposures to antiretroviral drugs in HIV-exposed but uninfected (HEU) children. We compared echocardiographic parameters of left ventricular function (ejection fraction, fractional shortening, and stress-velocity index) and structure (left ventricular dimension, posterior wall/septal thickness, mass, thickness-to-dimension ratio, and wall stress) (expressed as Z-scores to account for age and body surface area) between HEU and HIV-unexposed cohorts from the Pediatric HIV/AIDS Cohort Study's Surveillance Monitoring for ART Toxicities study. Within the HEU group, we investigated the associations between the echocardiographic Z-scores and in-utero exposures to maternal antiretroviral drugs. There were no significant differences in echocardiographic Z-scores between 417 HEU and 98 HIV-unexposed children aged 2-7 years. Restricting the analysis to HEU children, first-trimester exposures to combination antiretroviral therapy (a regimen including at least three antiretroviral drugs) and to certain specific antiretroviral drugs were associated with significantly lower stress-velocity Z-scores (mean decreases of 0.22-0.40 SDs). Exposure to combination antiretroviral therapy was also associated with lower left ventricular dimension Z-scores (mean decrease of 0.44 SD). First-trimester exposure to combination antiretroviral therapy was associated with higher mean left ventricular posterior wall thickness and lower mean left ventricular wall stress Z-scores. There was no evidence of significant cardiac toxicity of perinatal combination antiretroviral therapy exposure in HEU children. Subclinical differences in left ventricular structure and function with specific in-utero antiretroviral exposures indicate the need for a longitudinal cardiac study in HEU children to assess long-term cardiac risk and cardiac monitoring recommendations.
Cho, Eun Jeong; Park, Sung-Ji; Kim, Eun Kyoung; Lee, Ga Yeon; Chang, Sung-A; Choi, Jin-Oh; Lee, Sang-Chol; Park, Seung Woo
2017-04-01
The aim of this study was to determine the capability of real time three-dimensional echocardiography (RT3DE) and two-dimensional (2D) multilayer speckle tracking echocardiography (MSTE) for evaluation of early myocardial dysfunction triggered by increased left ventricular (LV) wall thickness in severe aortic stenosis (AS) with normal LV ejection fraction (EF≥55%). Conventional, RT3D STE and 2D MSTE were performed in 45 patients (mean 68.9±9.0 years) with severe AS (aortic valve area <1 cm 2 , aortic velocity Vmax >4 m/s or mean PG >40 mm Hg) and normal left ventricular ejection fraction (LVEF) without overt coronary artery disease and in 18 age-, sex-matched healthy controls. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were calculated using RT3DE and MSTE. The severe AS group had lower 3D GLS, GRS, GAS and 2D epicardium, and mid-wall and endocardium GLS compared to healthy controls. In MSTE analysis, 2D LS and CS values decreased from the endocardial layer toward the epicardial layer. Severe AS patients with increased LV wall thickness had lower 3D GLS and 2D epicardium, and mid-wall and endocardium GLS compared with severe AS patients without LV wall thickening. GLS on RT3D STE was correlated with GLS on 2D MSTE, left ventricular mass index, LVEF, left atrial volume index, and lnNT-proBNP. RT3DE and 2D MSTE can be used to identify subtle contractile dysfunction triggered by increased LV wall thickness in severe AS with normal LVEF. Therefore, RT3D STE and 2D MSTE may provide additional information that can facilitate decision-making regarding severe AS patients with increased LV wall thickness and normal LV function. © 2017, Wiley Periodicals, Inc.
Sass, Peter; Jansen, Andrea; Szekat, Christiane; Sass, Vera; Sahl, Hans-Georg; Bierbaum, Gabriele
2008-01-01
Background The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin acts by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby inhibiting the transglycosylation reaction of peptidoglycan biosynthesis. Results Here, we studied the growth of Staphylococcus aureus in the presence of subinhibitory concentrations of mersacidin. Transcriptional data revealed an extensive induction of the cell wall stress response, which is partly controlled by the two-component regulatory system VraSR. In contrast to other cell wall-active antibiotics such as vancomycin, very low concentrations of mersacidin (0.15 × MIC) were sufficient for induction. Interestingly, the cell wall stress response was equally induced in vancomycin intermediately resistant S. aureus (VISA) and in a highly susceptible strain. Since the transcription of the VraDE ABC transporter genes was induced up to 1700-fold in our experiments, we analyzed the role of VraDE in the response to mersacidin. However, the deletion of the vraE gene did not result in an increased susceptibility to mersacidin compared to the wild type strain. Moreover, the efficacy of mersacidin was not affected by an increased cell wall thickness, which is part of the VISA-type resistance mechanism and functions by trapping the vancomycin molecules in the cell wall before they reach lipid II. Therefore, the relatively higher concentration of mersacidin at the membrane might explain why mersacidin is such a strong inducer of VraSR compared to vancomycin. Conclusion In conclusion, mersacidin appears to be a strong inducer of the cell wall stress response of S. aureus at very low concentrations, which reflects its general mode of action as a cell wall-active peptide as well as its use of a unique target site on lipid II. Additionally, mersacidin does not seem to be a substrate for the resistance transporter VraDE. PMID:18947397
Setaro, Antonio; Adeli, Mohsen; Glaeske, Mareen; Przyrembel, Daniel; Bisswanger, Timo; Gordeev, Georgy; Maschietto, Federica; Faghani, Abbas; Paulus, Beate; Weinelt, Martin; Arenal, Raul; Haag, Rainer; Reich, Stephanie
2017-01-30
Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp 2 network and destroying the tubes electronic and optoelectronic features. Here we present a non-destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new [2+1] cycloaddition. The reaction rebuilds the extended π-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission.
Goodrum, K J
1987-01-01
Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987
Harris, Kevin M; Schum, Kevin R; Knickelbine, Thomas; Hurrell, David G; Koehler, Jodi L; Longe, Terrence F
2003-08-01
Motion Picture Experts Group-2 (MPEG2) is a broadcast industry standard that allows high-level compression of echocardiographic data. Validation of MPEG2 digital images compared with super VHS videotape has not been previously reported. Simultaneous super VHS videotape and MPEG2 digital images were acquired. In all, 4 experienced echocardiographers completed detailed reporting forms evaluating chamber size, ventricular function, regional wall-motion abnormalities, and measures of valvular regurgitation and stenosis in a blinded fashion. Comparisons between the 2 interpretations were then performed and intraobserver concordance was calculated for the various categories. A total of 80 paired comparisons were made. The overall concordance rate was 93.6% with most of the discrepancies being minor (4.1%). Concordance was 92.4% for left ventricle, 93.2% for right ventricle, 95.2% for regional wall-motion abnormalities, and 97.8% for valve stenosis. The mean grade of valvular regurgitation was similar for the 2 techniques. MPEG2 digital imaging offers excellent concordance compared with super VHS videotape.
Yan, Chenyu; Chen, Chengqun; Hou, Lin; Zhang, Huijuan; Che, Yingyu; Qi, Yuedong; Zhang, Xiaojian; Cheng, Jingliang; Zhang, Zhenzhong
2017-02-01
An aspargine-glycine-arginine (NGR) peptide modified single-walled carbon nanotubes (SWCNTs) system, developed by a simple non-covalent approach, could be loaded with the anticancer drug doxorubicin (DOX) and magnetic resonance imaging (MRI) contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). This DOX- and Gd-DTPA-loaded NGR functionalized SWCNTs (DOX/NGR-SWCNTs/Gd-DPTA) retained both cytotoxicity of DOX and MRI contrast effect of Gd-DPTA. This drug delivery system showed excellent stability in physiological solutions. This DOX/NGR-SWCNTs/Gd-DPTA system could accumulate in tumors and enter into tumor cells, which facilitated combination chemotherapy with diagnosis of tumor in one system. An excellent in vitro anti-tumor effect was shown in MCF-7 cells treated by DOX/NGR-SWCNTs/Gd-DPTA, compared with DOX solution, DOX/SWCNTs and DOX/SWCNTs/Gd-DPTA. In vivo data of DOX/NGR-SWCNTs/Gd-DPTA group in tumor-bearing mice further confirmed that this system performed much higher tumor targeting capacity and anti-tumor efficacy than other control groups.
Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR.
Zhang, Jing; Lei, Jianping; Xu, Chuanlai; Ding, Lin; Ju, Huangxian
2010-02-01
A sensitive electrochemical immunosensor was proposed by functionalizing single-walled carbon nanohorns (SWNHs) with analyte for microcystin-LR (MC-LR) detection. The functionalization of SWNHs was performed by covalently binding MC-LR to the abundant carboxylic groups on the cone-shaped tips of SWNHs in the presence of linkage reagents and characterized with Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and a transmission electron micrograph. Compared with single-walled carbon nanotubes, SWNHs as immobilization matrixes showed a better sensitizing effect. Using home-prepared horseradish peroxidase-labeled MC-LR antibody for the competitive immunoassay, under optimal conditions, the immunosensor exhibited a wide linear response to MC-LR ranging from 0.05 to 20 microg/L with a detection limit of 0.03 microg/L at a signal-to-noise of 3. This method showed good accuracy, acceptable precision, and reproducibility. The assay results of MC-LR in polluted water were in a good agreement with the reference values. The proposed strategy provided a biocompatible immobilization and sensitized recognition platform for analytes as small antigens and possessed promising application in food and environmental monitoring.
Zeng, Yin-Xin; Yu, Yong; Qiao, Zong-Yun; Jin, Hai-Yan; Li, Hui-Rong
2014-02-01
The bacterioplankton not only serves critical functions in marine nutrient cycles, but can also serve as indicators of the marine environment. The compositions of bacterial communities in the surface seawater of Ardley Cove and Great Wall Cove were analyzed using a 16S rRNA multiplex 454 pyrosequencing approach. Similar patterns of bacterial composition were found between the two coves, in which Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria were the dominant members of the bacterioplankton communities. In addition, a large fraction of the bacterial sequence reads (on average 5.3 % per station) could not be assigned below the domain level. Compared with Ardley Cove, Great Wall Cove showed higher chlorophyll and particulate organic carbon concentrations and exhibited relatively lower bacterial richness and diversity. Inferred metabolisms of summer bacterioplankton in the two coves were characterized by chemoheterotrophy and photoheterotrophy. Results suggest that some cosmopolitan species (e.g., Polaribacter and Sulfitobacter) belonging to a few bacterial groups that usually dominate in marine bacterioplankton communities may have similar ecological functions in similar marine environments but at different geographic locations.
Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation
NASA Technical Reports Server (NTRS)
Lebron-Colon, Marisabel; Meador, Michael A.
2010-01-01
new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.
Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung
2012-07-01
A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.
NASA Astrophysics Data System (ADS)
Apolikhin, O. I.; Khodyreva, L. A.; Mudraya, I. S.; Kirpatovsky, V. I.; Serdyuk, A. A.
2010-04-01
The study of distal ureter function was carried out on patients with stones in the upper urinary tract, who underwent ureteroscopy and lithotripsy procedures. The parameters of ureteral peristalsis such as peristalsis amplitude, peristalsis rate, ureteral wall tone, contractile wave duration, and its direction obtained by multichannel impedance ureterography were assessed and compared from two groups of patients. The group I patients received tamsulosin in addition to standard regimen, while the group II patients matched according to the stone size and location were managed without tamsulosin medical therapy. In comparison with group II, the group I patients demonstrated smaller average peristalsis amplitude (0.60±0.08 vs 0.81±0.06 Ohm), shorter contractions (7.1±0.3 vs 7.7±0.3 s), greater peristalsis rate (3.3±0.3 vs 2.8±0.2 per minute), and diminished ureteral tone (4.0±0.5 vs 4.7±0.2 Ohm-1). Incidence of the retrograde contractile waves was two-fold greater in the group II, while normal antegrade regular contractions were 30% more frequent in the group I. In addition, our results showed that the effect of tamsulosin on ureteral function was manifested in the patients with different stone size and location in the upper urinary tract, and it depended pronouncedly on individual ureteral tone and contractility parameters.
Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter
2014-09-01
Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.
2015-02-09
Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less
NASA Astrophysics Data System (ADS)
Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.
2012-06-01
Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.
An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae
Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard
2005-01-01
Background In S. cerevisiae the β-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Results Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Conclusion Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded roles for Chs4p, Chs5p and Chs6p in secretory protein trafficking and of Bni4p in bud neck organization. PMID:15715908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Nidhi; Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025; Niazi, Asad
2014-10-13
We report the fabrication of a single-walled carbon nanotube (SWNT) based ultrasensitive label-free chemiresistive biosensor for the detection of human cardiac biomarker, myoglobin (Ag-cMb). Poly(pyrrole-co-pyrrolepropylic acid) with pendant carboxyl groups was electrochemically deposited on electrophoretically aligned SWNT channel, as a conducting linker, for biomolecular immobilization of highly specific cardiac myoglobin antibody. The device was characterized by scanning electron microscopy, source-drain current-voltage (I-V), and charge-transfer characteristic studies. The device exhibited a linear response with a change in conductance in SWNT channel towards the target, Ag-cMb, over the concentration range of 1.0 to 1000 ng ml{sup −1} with a sensitivity of ∼118% per decademore » with high specificity.« less
NASA Astrophysics Data System (ADS)
Saar Dover, Ron; Bitler, Arkady; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel
2015-05-01
Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.
L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats.
de Aguiar Picanço, Etiene; Lopes-Paulo, Francisco; Marques, Ruy G; Diestel, Cristina F; Caetano, Carlos Eduardo R; de Souza, Mônica Vieira Mano; Moscoso, Gabriela Mendes; Pazos, Helena Maria F
2011-05-01
Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.
Tian, Yi; Jiang, Yanan; Shang, Yanpeng; Zhang, Yu-Peng; Geng, Chen-Fan; Wang, Li-Qiang; Chang, Ya-Qing
2017-06-01
The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K + and Cl - concentration after lysozyme RNAi injection was lower than in the PC and NC group. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bahari, Ali; jalalinejad, Amir; Bagheri, Mosahhar; Amiri, Masoud
2017-11-01
In this paper, structural and electronic properties and stability of (10, 0) born nitride nanotube (BNNT) are considered within density functional theory by doping group IV elements of the periodic table. The HOMO-LUMO gap has been strongly modified and treated a dual manner by choosing B or N sites for dopant atoms. Formation energy calculation shows that B site doping is more stable than N site doping. Results also show that all dopants turn the pristine BNNT into a p-type semiconductor except for carbon-doped BNNT at B site.
An Immunoglobulin G1 Monoclonal Antibody Highly Specific to the Wall of Cryptosporidium Oocysts
Weir, C.; Vesey, G.; Slade, M.; Ferrari, B.; Veal, D. A.; Williams, K.
2000-01-01
The detection of Cryptosporidium oocysts in drinking water is critically dependent on the quality of immunofluorescent reagents. Experiments were performed to develop a method for producing highly specific antibodies to Cryptosporidium oocysts that can be used for water testing. BALB/c mice were immunized with six different antigen preparations and monitored for immunoglobulin G (IgG) and IgM responses to the surface of Cryptosporidium oocysts. One group of mice received purified oocyst walls, a second group received a soluble protein preparation extracted from the outside of the oocyst wall, and the third group received whole inactivated oocysts. Three additional groups were immunized with sequentially prepared oocyst extracts to provide for a comparison of the immune response. Mice injected with the soluble protein extract demonstrated an IgG response to oocysts surface that was not seen in the whole-oocyst group. Mice injected with whole oocysts showed an IgM response only, while mice injected with purified oocyst walls showed little increase in IgM or IgG levels. Of the additional reported preparations only one, BME (2-mercaptoethanol treated), produced a weak IgM response to the oocyst wall. A mouse from the soluble oocyst extract group yielding a high IgG response was utilized to produce a highly specific IgG1 monoclonal antibody (Cry104) specific to the oocyst surface. Comparative flow cytometric analysis indicated that Cry104 has a higher avidity and specificity to oocysts in water concentrates than other commercially available antibodies. PMID:10973448
The effect of simvastatin, aspirin, and their combination in reduction of atheroma plaque
NASA Astrophysics Data System (ADS)
Kurniati, Neng Fisheri; Permatasari, Anita
2015-09-01
Atherosclerosis is one of the risk factors of cardiovascular disease. Atherosclerosis is a chronic inflammatory disease caused by high level of cholesterol especially low density lipoprotein (LDL) and accumulation of neutrophil and macrophage in the artery wall. Thickness of aortic wall is an early stage of atherosclerosis plaque formation. Identification of atherosclerosis plaque formation was done by measuring level of total cholesterol, triglycerides, HDL, LDL, interleukin-18 (IL-18), myeloperoxidase (MPO) and measuring the thickness of aortic wall. Atherosclerosis's model induced by high fat diet and CCT (cholesterol, cholic acid, and propyltiouracil) oral administration. Rats induced cholesterol divided into positive control, simvastatin 25 mg/kg bw, aspirin 20 mg/kg bw, and combination simvastatin 25 mg/kg and aspirin 20 mg/kg bw group for 3 weeks. In the third week, therapy was given to atherosclerosis's model. Then, in the fourth and fifth week, therapy was given but induction of high cholesterol was stopped due to the massive loss of body weight. Total cholesterol, triglycerides, HDL, LDL, MPO, and IL-18 measured by uv-vis spectrophotometry and ELISA. In the end of therapy, aorta's rats was isolated to identify the thickness of aorta wall. In the fourth week, after 1 week of treatment, only combination group showed significantly higher total cholesterol, LDL and MPO compared to positive control group. Level of triglycerides and HDL in all groups did not significantly differ compared to positive control group. After 2 weeks continuing drug treatment, the level of total cholesterol, MPO, and IL-18 were decreased in all groups, and aspirin group showed the lowest level. The level of triglycerides was decreased in simvastatin and aspirin group, and aspirin group showed the lowest. Only combination group showed the lowest level of LDL. Based on histopathology result, the thickness of aortic wall was reduced in all groups and aspirin group showed the lowest.
Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.
Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji
2012-10-01
In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.
Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
Zhong, Ruiqin; Ye, Zheng-Hua
2015-02-01
Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development.
Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L; Vega-Sánchez, Miguel E; Williams, Brian; Chiniquy, Dawn M; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G; Willats, William G T; Scheller, Henrik V; Ronald, Pamela C; Bartley, Laura E
2016-10-01
Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun
2016-10-01
The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Wallace, Simon; Chater, Caspar C; Kamisugi, Yasuko; Cuming, Andrew C; Wellman, Charles H; Beerling, David J; Fleming, Andrew J
2015-01-01
The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Zhang, Qunhui; Yu, Feng; Zhang, Haoliang; Gong, Huicheng; Lin, Ying
2015-11-01
To evaluate the osteogenetic character and repairing maxillary sinus superior wall fractures capability of calcium phosphate cement (CPC) before and after combined with recombinant human bone morphogenetie protein-7(rhBMP-7). A 10 mmX5 mm bone defect in the maxillary sinus superior wall was induced by surgery in all 24 New Zealand white rabbits. These 24 rabbits were randomly divided into two groups. The defects were repaired with CPC group (n = 12) and CPC/rhBMP-7 group (n = 12). The osteogenesis of bone defect was monitored by gro'ss observation, histological examination, observation under scanning electron microscope and measurement of ALP activity at 6 and 12 weeks after the implantation. In group CPC,new bone was found to form slowly and little by little. In group CPC/rhBMP-7, however, new bone was observed to form early and massively. The ALP activity in group CPC showed significant statistical difference with that of group CPC/rhBMP-7 (P < 0.05). The CPC/rhBMP-7 composite has osteoconductibility and osteoinductibility, comparing the use of CPC/rhBMP-7 with CPC for the repair of orbital fracture, the former show obvious advantage repairing ability in maxillary sinus superior wall defect.
Evaluation of the safety of irreversible electroporation on the stomach wall using a pig model
Li, Jiannan; Zeng, Jianying; Chen, Jibing; Shi, Jian; Luo, Xiaomei; Fang, Gang; Chai, Wei; Zhang, Wenlong; Liu, Tongjun; Niu, Lizhi
2017-01-01
The aim of the present study was to evaluate the effects of irreversible electroporation (IRE) on the stomach wall following the direct application of IRE onto the organ surface. IRE ablation was performed in 8 Tibetan mini-pigs, which were randomly assigned into two groups based on their ablated areas: Group A, gastric cardia, fundus of stomach, gastric body and group B, lesser gastric curvature, greater gastric curvature, stomach pylorus. Two IRE needles were placed in the space between the stomach wall and the liver (not inserted into the stomach tissue), and three lesions were created in each pig. Serum aminotransferase and white blood cell (WBC) levels were measured. Gastroscopy and endoscopic ultrasonography were performed. From each group, 2 pigs were sacrificed on day 7 post-IRE; the remaining pigs were sacrificed on day 28 post-IRE. There were no signs of perforation on the stomach wall. Serum aminotransferase and WBC levels increased in both groups on day 1 post-IRE and decreased gradually thereafter. The gastroscopy procedure revealed oval ulcers on day 7 post-IRE and smaller ulcers on day 28 post-IRE. Transmural necrosis, inflammation and fibrosis were observed at 7 days post-IRE. Healing ulcers were observed at 28 days post-IRE. In conclusion, IRE ablation caused damage to the stomach wall; however, IRE did not induce any perforation. PMID:28672987
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.
2018-06-01
For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.
O-Acetylation of Plant Cell Wall Polysaccharides
Gille, Sascha; Pauly, Markus
2011-01-01
Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638
Markose, Aji; Krishnan, Ramesh; Ramesh, Maya; Singh, Shishir
2016-10-01
In multiple-appointment root canal treatment, a temporary filling material is used to seal the access cavity between visits. The primary function of this material is to prevent the contamination of the root canal system by fluids, organic debris, and bacteria from the oral cavity. A total of fifty extracted noncarious unrestored human maxillaryanterior teeth with intact crowns and roots were selected The canals were instrumented using stepback technique and sodium hypochlorite (3%) and hydrogen peroxide (3%) were used as irrigants for each specimen alternatively. The coronal two-thirds of each canal were flared using Gates-Glidden drills up to no. 3 size and obturated with Gutta-percha using zinc oxide-eugenol (ZnOE) as sealer. The teeth were then randomly selected and divided into six groups out of which four were experimental groups and two control groups. The teeth were then immersed in 2% methylene blue dye solution for 3 days. All sealing materials and Gutta-percha were gently removed from the walls of the canal, and the entire circumference of the canal wall examined for dye penetration. The lowest mean leakage was in the Fermit-N group followed by Cavit-W, ZnOE, intermediate restorative materials (IRM), and positive control. Fermit-N showed better sealing ability compared to cavit, ZnOE and IRM.
Eicher, S D; Wesley, I V; Sharma, V K; Johnson, T R
2010-03-01
The objectives were to ascertain whether a yeast cell-wall derivative that was 1.8% beta-glucan in combination with ascorbyl-2-polyphosphate could improve innate immunity and mediate transportation stress in neonatal calves, and to compare the 1.8% beta-glucan yeast cell-wall derivative with a more purified yeast cell-wall derivative (70% beta-glucan). Treatments were 1) an unsupplemented control (CNT); 2) 113 g of a 1.8% (approximately 2%) beta-glucan derivative of yeast cell walls plus 250 mg of l-ascorbic acid phosphate (BG2); or 3) 150 mg of a purified beta-glucan fraction from yeast cell walls (approximately 70% beta-glucan) plus 250 mg/feeding of l-ascorbic acid phosphate (BG70). Calves (n = 39) were transported for 4 h, placed in outdoor hutches, and randomly assigned to treatments. Treatments (mixed with a milk replacer) were individually fed twice daily for 28 d. Calves were offered calf starter, free choice, throughout the study. Weekly starter intake and BW were measured, and fecal samples were collected for Salmonella Typhimurium and Escherichia coli O157:H7 PCR analysis. Blood was collected immediately before transport (d 0) and on d 3, 7, 10, 14, 21, and 28 after transport. Starter intake and DMI were less (P < 0.05) at d 28 for the BG2 and BG70 treatments compared with the CNT treatment. Hematocrit percentages increased (P = 0.002) throughout the experiment. White blood cell counts (treatment x time interaction, P = 0.066) were less for the calves supplemented with BG70 than for those supplemented with BG2 (P = 0.01) or for CNT calves (P = 0.04) on d 28. Granulocyte counts changed (P = 0.04) throughout the experiment. A trend (P = 0.077) for a treatment x time interaction was detected for peripheral blood mononuclear cell counts (PBMC). Counts of PBMC were greater (P = 0.006) for the BG2 treatment compared with the CNT treatment on d 3. Calves given the BG70 supplement had fewer PBMC than those given the BG2 supplement on d 21 (P = 0.03) and 28 (P = 0.05). Fibrinogen concentrations were affected only by time (P = 0.002). Time effects were detected for phagocytosis (P = 0.005), oxidative burst (P < 0.001), expression of cluster of differentiation 18 (P = 0.001), and increased cluster of differentiation 18 (P = 0.006). Phagocytosis was less (P = 0.05) for calves in the BG70 group than for those in the CNT group. Percentage of calves positive for E. coli O157:H7 was greatest (P
Kannaiyan, Lavanya; Chacko, Jacob; George, Alice; Sen, Sudipta
2009-08-01
Cervicovaginal or vaginal agenesis with functioning endometrial tissue is rare. We report the construction of a colon conduit which is anastomosed to posterior uterine wall or upper vaginal pouch to allow menstruation. We report seven girls with cervicovaginal agenesis and four with lower vaginal agenesis (aged 12-20 years) who presented with painful cryptomenorrheoa. All the girls wanted to conserve their uterus and menstruate normally. A colon conduit was constructed for the egress of menstrual blood. The colon conduit was anastomosed to the posterior uterine wall in the seven girls with cervicovaginal agenesis and to the distended upper vaginal pouch in the four girls with vaginal agenesis. Utero-colonic neovaginal anastomosis was performed only after excising a circular portion of the posterior myometrium to prevent stenosis. The colon conduit functioned effectively, providing an egress for regular painless menstruation. One patient had stenosis of the perineal neovaginal orifice for which dilations were done. One girl has married and reports satisfactory intercourse. The mean follow up is 2.2 years. This group of patients forms a separate subgroup needing a conduit not only for sexual function but also for menstruation. However, if treated by the method described herein, they should be cautioned against pregnancy if they have cervicovaginal agenesis and against vaginal delivery if they have vaginal agenesis.
Optimal feedback control of turbulent channel flow
NASA Technical Reports Server (NTRS)
Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz
1993-01-01
Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.
Song, Yuxiang; Chen, Feng; Xiong, Jiang; Guo, Wei; Pan, Xiujie; Jia, Senhao; Liu, Jie
2013-07-01
By observation of the diameter, progression rate, wall thickness, and the opening angle of the abnormal aortic of abdominal aortic aneurysm (AAA) in rats, to observe the effect of saturated hydrogen saline on residual strain of AAA rats, and to investigate its inhibition effect on AAA formation. Twenty healthy male Sprague Dawley rats (weighing, 200-220 g) were randomly divided into 2 groups, which was made the AAA model by infiltration of the abdominal arota with 0.5 mol/L calcium chloride. Saturated hydrogen saline (5 mL/kg) or saline (5 mL/kg) was injected intraperitoneally in the experimental group or control group respectively, every day for 28 days. At 28 days, the diameter, progression rate, wall thickness, and opening angle of the abnormal aorta were mearsured. The aortic tissue was harvested for histological examination (HE staining and aldehyde-fuchsin staining). At 28 days after operation, the diameter of abnormal aorta in 2 groups were significantly higher than preoperative ones (P < 0.05), the progression rate in experimental group (65% +/- 15%) was significantly lower than that in control group (128% +/- 54%) (t=3.611, P=0.005). The opening angle and the wall thickness in experimental group were (88.78 +/- 29.20) degrees and (0.14 +/- 0.03) mm respectively, had significant differences when compared with the values in control group [(44.23 +/- 28.52) degrees and (0.36 +/- 0.05) mm respectively] (P < 0.01). The integrity and continuity of the aortic wall in experimental group were superior to that in the control group. Compared with the control group, the injury of elastic fiber in aortic wall and the infiltration of inflammation were all reduced. Saturated hydrogen saline can maintain good mechanical properties and reduce dilatation of the aorta by increasing residual strain and reducing the remodeling of it.
Emanuelsson, Peter; Gunnarsson, Ulf; Dahlstrand, Ursula; Strigård, Karin; Stark, Birgit
2016-11-01
The primary aim of this prospective, randomized, clinical, 2-armed trial was to evaluate the risk for recurrence using 2 different operative techniques for repair of abdominal rectus diastasis. Secondary aims were comparison of pain, abdominal muscle strength, and quality of life and to compare those outcomes to a control group receiving physical training only. Eighty-six patients were enrolled. Twenty-nine patients were allocated to retromuscular polypropylene mesh and 27 to double-row plication with Quill technology. Thirty-two patients participated in a 3-month training program. Diastasis was evaluated with computed tomography scan and clinically. Pain was assessed using the ventral hernia pain questionnaire, a quality-of-life survey, SF-36, and abdominal muscle strength using the Biodex System-4. One early recurrence occurred in the Quill group, 2 encapsulated seromas in the mesh group, and 3 in the suture group. Significant improvements in perceived pain, the ventral hernia pain questionnaire, and quality of life appeared at the 1-year follow-up with no difference between the 2 operative groups. Significant muscular improvement was obtained in all groups (Biodex System-4). Patient perceived gain in muscle strength assessed with a visual analog scale improved similarly in both operative groups. This improvement was significantly greater than that seen in the training group. Patients in the training group still experienced bodily pain at follow-up. There was no difference between the Quill technique and retromuscular mesh in the effect on abdominal wall stability, with a similar complication rate 1 year after operation. An operation improves functional ability and quality of life. Training strengthens the abdominal muscles, but patients still experience discomfort and pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Jin, Ye; Ni, Di-An; Ruan, Yong-Ling
2009-07-01
Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.
Limited transport of functionalized multi-walled carbon nanotubes in two natural soils
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...
This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pre-treated multi-walled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanopart...
Han, Li-Bo; Li, Yuan-Bao; Wang, Hai-Yun; Wu, Xiao-Min; Li, Chun-Li; Luo, Ming; Wu, Shen-Jie; Kong, Zhao-Sheng; Pei, Yan; Jiao, Gai-Li; Xia, Gui-Xian
2013-01-01
LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase–box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits. PMID:24220634
Business Re-Engineering: Lessons Learned From the U.S. Army Corps of Engineers Modernization Program
1992-10-01
34Boeing Knocks Down the Wall Between the Dreamers and the Doers", Business , 28 Oct 1991, p. 120. "The Cost Based Activity Modeling Project...Whatever shortcomings this study may have - for which we take full responsibility, of course - the results have been immeasurably improved by their help...This was done with little or no high-level support or direction. The resulting "stovepipe" systems may have met the needs of individual functional groups
Eeckhout, Sharon; Leroux, Olivier; Willats, William G. T.; Popper, Zoë A.; Viane, Ronald L. L.
2014-01-01
Background and Aims Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii ‘C-Fern’, a widely used model system for ferns. Methods Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of ‘C-Fern’ sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. Key Results While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. Conclusions The differences and similarities in glycan cell-wall composition between ‘C-Fern’ gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. PMID:24699895
Genetic resources for maize cell wall biology.
Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C
2009-12-01
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.
Carneiro, Renê G S; Oliveira, Denis C; Isaias, Rosy M S
2014-12-01
The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine; ...
2016-03-01
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Intraventricular flow alterations due to dyssynchronous wall motion
NASA Astrophysics Data System (ADS)
Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2015-11-01
Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).
Ando, Akira; Nakamura, Toshihide; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun
2007-03-01
Yeasts used in bread making are exposed to freeze-thaw stress during frozen-dough baking. To clarify the genes required for freeze-thaw tolerance, genome-wide screening was performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 58 gene deletions that conferred freeze-thaw sensitivity. These genes were then classified based on their cellular function and on the localization of their products. The results showed that the genes required for freeze-thaw tolerance were frequently involved in vacuole functions and cell wall biogenesis. The highest numbers of gene products were components of vacuolar H(+)-ATPase. Next, the cross-sensitivity of the freeze-thaw-sensitive mutants to oxidative stress and to cell wall stress was studied; both of these are environmental stresses closely related to freeze-thaw stress. The results showed that defects in the functions of vacuolar H(+)-ATPase conferred sensitivity to oxidative stress and to cell wall stress. In contrast, defects in gene products involved in cell wall assembly conferred sensitivity to cell wall stress but not to oxidative stress. Our results suggest the presence of at least two different mechanisms of freeze-thaw injury: oxidative stress generated during the freeze-thaw process, and defects in cell wall assembly.
The plant secretory pathway seen through the lens of the cell wall.
van de Meene, A M L; Doblin, M S; Bacic, Antony
2017-01-01
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred
2015-01-01
The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954
NASA Astrophysics Data System (ADS)
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodenough, D; Olafsdottir, H; Olafsson, I
Purpose: To automatically quantify the amount of missing tissue in a digital breast tomosynthesis system using four stair-stepped chest wall missing tissue gauges in the Tomophan™ from the Phantom Laboratory and image processing from Image Owl. Methods: The Tomophan™ phantom incorporates four stair-stepped missing tissue gauges by the chest wall, allowing measurement of missing chest wall in two different locations along the chest wall at two different heights. Each of the four gauges has 12 steps in 0.5 mm increments rising from the chest wall. An image processing algorithm was developed by Image Owl that first finds the two slicesmore » containing the steps then finds the signal through the highest step in all four gauges. Using the signal drop at the beginning of each gauge the distance to the end of the image gives the length of the missing tissue gauge in millimeters. Results: The Tomophan™ was imaged in digital breast tomosynthesis (DBT) systems from various vendors resulting in 46 cases used for testing. The results showed that on average 1.9 mm of 6 mm of the gauges are visible. A small focus group was asked to count the number of visible steps for each case which resulted in a good agreement between observer counts and computed data. Conclusion: First, the results indicate that the amount of missing chest wall can differ between vendors. Secondly it was shown that an automated method to estimate the amount of missing chest wall gauges agreed well with observer assessments. This finding indicates that consistency testing may be simplified using the Tomophan™ phantom and analysis by an automated image processing named Tomo QA. In general the reason for missing chest wall may be due to a function of the beam profile at the chest wall as DBT projects through the angular sampling. Research supported by Image Owl, Inc., The Phantom Laboratory, Inc. and Raforninn ehf; Mallozzi and Healy employed by The Phantom Laboratory, Inc.; Goodenough is a consultant to The Phantom Laboratory, Inc.; Fredriksson, Kristbjornsson, Olafsson, Oskarsdottir and Olafsdottir are employed by Raforninn, Ehf.« less
NASA Astrophysics Data System (ADS)
Pagonis, D.; Deming, B.; Krechmer, J. E.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.
2017-12-01
Recently it has been shown that gas-phase organic compounds partition to and from the walls of Teflon environmental chambers. This process is fast, reversible, and can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning inside Teflon tubing by introducing step function changes in the concentration of compounds being sampled and measuring the delay in the response of a proton transfer reaction-mass spectrometer (PTR-MS). We find that these delays are significant for compounds with a saturation vapor concentration (c*) below 106 μg m-3, and that the Teflon tubing and the PTR-MS both contribute to the delays. Tubing delays range from minutes to hours under common sampling conditions and can be accurately predicted by a simple chromatography model across a range of tubing lengths and diameters, flow rates, compound functional groups, and c*. This method also allows one to determine the volatility-dependent response function of an instrument, which can be convolved with the output of the tubing model to correct for delays in instrument response time for these "sticky" compounds. This correction is expected to be of particular interest to researchers utilizing and developing chemical ionization mass spectrometry (CIMS) techniques, since many of the multifunctional organic compounds detected by CIMS show significant tubing and instrument delays. These results also enable better design of sampling systems, in particular when fast instrument response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. Additional results presented here extend this method to quantify the relative sorptive capacities for other commonly used tubing materials, including PFA, FEP, PTFE, PEEK, glass, copper, stainless steel, and passivated steel.
Zlatanovic, Maja; Tadic, Marijana; Celic, Vera; Ivanovic, Branislava; Stevanovic, Ana; Damjanov, Nemanja
2017-01-01
We aimed to determine left ventricular (LV) and right ventricular (RV) structure, function and mechanics, as well as heart rate variability (HRV), and their relationship, in patients with systemic sclerosis (SSc). The study included 41 SSc patients and 30 age-matched healthy volunteers. All the patients underwent clinical examination, serological tests, pulmonary function testing, 24-h Holter monitoring and complete two-dimensional echocardiography including strain analysis. The parameters of LV structure (interventricular septum thickness and LV mass index) and RV structure (RV wall thickness) were significantly higher in SSc patients. LV and RV diastolic function (estimated by mitral and tricuspid E/e' ratio) was significantly impaired in SSc group comparing with the healthy controls. LV and RV longitudinal function was significantly deteriorated in SSc patients. LV circumferential strain was also significantly lower in SSc group, whereas LV radial strain was similar between the observed groups. All parameters of time and frequency domain of HRV were decreased in SSc patients. LV and RV cardiac remodeling parameters, particularly diastolic function and longitudinal strain, were associated with HRV indices without regard to the main demographic or the clinical and echocardiographic characteristics. Rodnan Skin Score was also independently associated with biventricular cardiac remodeling in SSc patients. LV and RV structure, function and mechanics, as well as autonomic nervous function, were significantly impaired in SSc patients. There is the significant association between biventricular cardiac remodeling and autonomic function in these patients, which could be useful for their everyday clinical assessment.
Microsurgical Chest Wall Reconstruction After Oncologic Resections
Sauerbier, Michael; Dittler, S.; Kreutzer, C.
2011-01-01
Defect reconstruction after radical oncologic resection of malignant chest wall tumors requires adequate soft tissue reconstruction with function, stability, integrity, and an aesthetically acceptable result of the chest wall. The purpose of this article is to describe possible reconstructive microsurgical pathways after full-thickness oncologic resections of the chest wall. Several reliable free flaps are described, and morbidity and mortality rates of patients are discussed. PMID:22294944
Adaptive-Wall Wind-Tunnel Investigations
1981-02-01
boundary condition for unconfined flow. In this way, theory and experiment are combined to minimize wall interference. The concept of an adaptive wall...should be noted that although shock waves extend to the walls, the exterior-flow calculation was based on subcritical-flow theory . Goodyer’s configuration...and v by aerodynamic probes. Both subsonic and transonic small- disturbance theory were used, as appropriate, to evaluate the functional rela
Zhang, Yuntong; Zhao, Xue; Tang, Yang; Zhang, Chuncai; Xu, Shuogui; Xie, Yang
2014-04-01
Posterior wall fractures are one of the most common acetabular fractures. However, only 30% of these fractures involve a single large fragment, and comminuted acetabular posterior wall fractures pose a particular surgical challenge. The purpose of this study was to compare outcomes between patients who received fixation for comminuted posterior wall fracture using the Acetabular Tridimensional Memory Fixation System (ATMFS) and patients who underwent fixation with conventional screws and buttress plates (Plates group). Between April 2003 and May 2007, 196 consecutive patients who sustained a comminuted posterior wall fracture of acetabulum were treated with ATMFS or conventional screws and buttress plates. Operative time, fluoroscopy time, blood loss, and any intra-operative complications were recorded. Plain AP and lateral radiographs were obtained at all visits (Matta's criteria). Modified Merle d' Aubigne-Postel score, and Mos SF-36 score were compared between groups. Fifty patients were included in the analysis with 26 in the ATMFS group and 24 in the Plates group. The mean follow-up time was 57.5 months, ranging from 31 to 69 months. All patients had fully healed fractures at the final follow-up. There was no difference in clinical outcomes or radiological evaluations between groups. Patients with comminuted posterior wall fractures of the acetabulum treated with the ATMFS or conventional screws and buttress plate techniques achieve a good surgical result. Both techniques are safe, reliable, and practical. Use of the ATMFS technique may reduce blood loss and improve rigid support to marginal bone impaction. The use ATMFS may need additional support when fractures involve the superior roof. Copyright © 2013 Elsevier Ltd. All rights reserved.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
Zhao, Zilin; Luo, Jianchun; Ma, Lixian; Luo, Xia; Huang, Liangyan
2015-01-01
To study the changes of cardiac function and myocardial energy expenditure following treatment with granulocyte colony stimulating factor (G-CSF) in patients with heart failure after myocardial infarction. Thirty-eight patients with heart failure after myocardial infarction were randomized into G-CSF treatment group and control group. All the patients received conventional treatment (medication and interventional therapy), and the patients in treatment group were given additional G-CSF (600 μg/day) for 7 consecutive days. The plasma level of brain-type natriuretic peptide (BNP) and the number of endothelial progenitor cells (EPC) in the peripheral blood were detected before and at 7 days and 4 months after the treatment. The cardiac functions (LVEF, FS, LVIDs, PWTs, EDV, SV, ET) was evaluated by ultrasonic imaging before and at 2 weeks and 4 months after the treatment. The MEE and circumferential end-systolic wall stress (cESS) were calculated by correlation formula. The number of EPC was significantly higher in the treatment group than in the control group after the treatment especially at 7 days (P<0.01). In both groups, BNP level was lowered significantly after the treatment to recover the normal level (P<0.01). The cardiac functions and myocardial energy expenditure were improved in all the patients at 2 weeks and 4 months after the treatment, and the improvement was more obvious in the treatment group (P<0.05), especially in terms of the MEE and cESS was significantly lowered in the treatment group than in the control group after the treatment at 2 weeks (P<0.01), the LVEF and FS was significantly increased in the treatment group than in the control group after the treatment at 4 months (P<0.01). EPC mobilization by G-CSF can effectively improve the cardiac functions, lessen ventricular remodeling and reduce myocardial energy expenditure in patients with heart failure after myocardial infarction.
Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki
2013-04-01
The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.
Arun-Chinnappa, Kiruba S.; McCurdy, David W.
2016-01-01
Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nutrient transport in plants, little is known of the transcriptional regulation of wall ingrowth formation. Here, we used RNA-Seq to identify transcription factors putatively involved in regulating epidermal TC development in cotyledons of Vicia faba. Comparing cotyledons cultured for 0, 3, 9, and 24 h to induce trans-differentiation of epidermal TCs identified 43 transcription factors that showed either epidermal-specific or epidermal–enhanced expression, and 10 that showed epidermal-specific down regulation. Members of the WRKY and ethylene-responsive families were prominent in the cohort of transcription factors showing epidermal-specific or epidermal–enhanced expression, consistent with the initiation of TC development often representing a response to stress. Members of the MYB family were also prominent in these categories, including orthologs of MYB genes involved in localized secondary wall deposition in Arabidopsis thaliana. Among the group of transcription factors showing down regulation were various homeobox genes and members of the MADs-box and zinc-finger families of poorly defined functions. Collectively, this study identified several transcription factors showing expression characteristics and orthologous functions that indicate likely participation in transcriptional regulation of epidermal TC development in V. faba cotyledons. PMID:27252730
Chasing the reflected wave back into the heart: a new hypothesis while the jury is still out
Codreanu, Ion; Robson, Matthew D; Rider, Oliver J; Pegg, Tammy J; Jung, Bernd A; Dasanu, Constantin A; Clarke, Kieran; Holloway, Cameron J
2011-01-01
Background: Arterial stiffness directly influences cardiac function and is independently associated with cardiovascular risk. However, the influence of the aortic reflected pulse pressure wave on left ventricular function has not been well characterized. The aim of this study was to obtain detailed information on regional ventricular wall motion patterns corresponding to the propagation of the reflected aortic wave on ventricular segments. Methods: Left ventricular wall motion was investigated in a group of healthy volunteers (n = 14, age 23 ± 3 years), using cardiac magnetic resonance navigator-gated tissue phase mapping. The left ventricle was divided into 16 segments and regional wall motion was studied in high temporal detail. Results: Corresponding to the expected timing of the reflected aortic wave reaching the left ventricle, a characteristic “notch” of regional myocardial motion was seen in all radial, circumferential, and longitudinal velocity graphs. This notch was particularly prominent in septal segments adjacent to the left ventricular outflow tract on radial velocity graphs and in anterior and posterior left ventricular segments on circumferential velocity graphs. Similarly, longitudinal velocity graphs demonstrated a brief deceleration in the upward recoil motion of the entire ventricle at the beginning of diastole. Conclusion: These results provide new insights into the possible influence of the reflected aortic waves on ventricular segments. Although the association with the reflected wave appears to us to be unambiguous, it represents a novel research concept, and further studies enabling the actual recording of the pulse wave are required. PMID:21731888
The configuration of 2,6-diamino-3-hydroxypimelic acid in microbial cell walls
Perkins, H. R.
1969-01-01
β-Hydroxydiaminopimelic acid, together with some diaminopimelic acid, occurs in the cell-wall mucopeptide of certain Actinomycetales. These components were converted into their di-DNP derivatives and separated by chromatography. Hence the relative proportions present in the cell walls of a number of species were measured. The problem of acid-induced inversion of configuration was studied. Of the diaminohydroxypimelic acids isomer B (see Scheme 2; amino groups meso, hydroxy group threo to its neighbouring amino group) always predominated but a small proportion of isomer D (amino groups l, hydroxy group erythro) also occurred. The configuration of the diaminohydroxypimelic acids was determined by periodate oxidation to glutamic γ-semialdehyde, which underwent spontaneous ring-closure. Reduction with sodium borohydride produced optically active proline, the configuration of which was determined by direct measurement of the optical rotation of DNP-proline. Un-cross-linked diaminohydroxypimelic acid in the cell wall was oxidized with periodate in the presence of ammonia. Since the remaining amino group was bound in peptide linkage, ring-closure was prevented and borohydride reduction of the aldehyde–ammonia presumed to be present resulted in the formation of ornithine. The quantity of ornithine was used as a measure of the degree of cross-linking. PMID:4311441
Effect of sodium overload on renal function of offspring from diabetic mothers.
Rocco, Luigi; Gil, Frida Zaladek; da Fonseca Pletiskaitz, Thaís Maria; de Fátima Cavanal, Maria; Gomes, Guiomar Nascimento
2008-11-01
The aim if this study was to evaluate the effect of sodium overload on blood pressure and renal function in the offspring of diabetic rat mothers. Diabetes was induced with a single dose of streptozotocin before mating. Experimental groups were control (C), offspring from diabetic mother (D), control with sodium chloride (NaCl) overload (CS), and offspring from diabetic mother submitted to NaCl overload (DS). After weaning, all groups received food ad libitum; groups C and D had water ad libitum, and CS and DS received NaCl 0.15 M as drinking water. Renal morphology and function were evaluated in 3-month-old rats. Glomerular area, macrophage infiltration, interlobular artery wall thickness, and renal vascular resistance were significantly increased in CS, D, and DS compared with C. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were decreased in CS and D compared with C. In DS, GFR and fractional filtration were increased, suggesting a state of hyperfiltration. Hypertension was observed in groups D, CS, and DS from 2 months on and was more severe in DS. Our data suggest that diabetes during intrauterine development and salt overload beginning at an early age can cause hypertension and renal injury. When these conditions were associated, morphological and functional changes were much more intense, suggesting acceleration in the process of kidney injury.
Siedentop, Karl H; O'Grady, Kevin; Bhattacharyya, Tapan K; Shah, Ami
2004-05-01
We conducted this study to prove that fibrin tissue adhesive (FTA) is safe, efficacious, biocompatible, and readily biodegradable with no deleterious side effects for fixation of a cartilage graft to bone along the chinchilla canal wall. A posterior-superior canal defect was created in 12 chinchillas. The canal walls of six chinchillas were closed with autologous concha cartilage alone, whereas the canal wall of the remaining six animals were closed with cartilage in conjunction with fibrin tissue adhesive. Animals were killed 8 weeks postoperatively. Three of six cartilage grafts were displaced in the graft alone group, whereas all six grafts in the cartilage with FTA group healed without displacement. Fibrin tissue adhesive was found to be effective, biocompatible, biodegradable, and without any deleterious side effects for reconstruction of the superior-posterior canal wall of chinchillas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, T.
A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.
Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad
Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.
2016-01-01
During natural exploration, rats exhibit two particularly conspicuous vibrissal-mediated behaviors: they follow along walls, and “dab” their snouts on the ground at frequencies related to the whisking cycle. In general, the walls and ground may be located at any distance from, and at any orientation relative to, the rat’s head, which raises the question of how the rat might determine the position and orientation of these surfaces. Previous studies have compellingly demonstrated that rats can accurately determine the horizontal angle at which a vibrissa first touches an object, and we therefore asked whether this parameter could provide the rat with information about the pitch, distance, and yaw of a surface relative to its head. We used a three-dimensional model of the whisker array to construct mappings between the horizontal angle of contact of each vibrissa and every possible (pitch, distance, and yaw) configuration of the head relative to a flat surface. The mappings revealed striking differences in the patterns of contact for vibrissae in different regions of the array. The exterior (A, D, E) rows provide information about the relative pitch of the surface regardless of distance. The interior (B, C) rows provide distance cues regardless of head pitch. Yaw is linearly correlated with the difference between the number of right and left whiskers touching the surface. Compared to the long reaches that whiskers can make to the side and below the rat, the reachable distance in front of the rat’s nose is relatively small. We confirmed key predictions of these functional groupings in a behavioral experiment that monitored the contact patterns that the vibrissae made with a flat vertical surface. These results suggest that vibrissae in different regions of the array are not interchangeable sensors, but rather functionally grouped to acquire particular types of information about the environment. PMID:26745501
Pirat, Bahar; Bozbas, Huseyin; Simsek, Vahide; Sade, L Elif; Sayin, Burak; Muderrisoglu, Haldun; Haberal, Mehmet
2015-04-01
Velocity vector imaging allows quantitation of myocardial strain and strain rate from 2-dimensional images based on speckle tracking echocardiography. The aim of this study was to analyze the changes in myocardial strain and strain rate patterns in patients with end-stage renal disease and renal transplant recipients. We studied 33 patients with end-stage renal disease on hemodialysis (19 men; mean age, 36 ± 8 y), 24 renal transplant recipients with functional grafts (21 men; mean age, 36 ± 7 y) and 26 age- and sex-matched control subjects. Longitudinal peak systolic strain and strain rate for basal, mid, and apical segments of the left ventricular wall were determined by velocity vector imaging from apical 4- and 2-chamber views. The average longitudinal strain and strain rate for the left ventricle were noted. From short-axis views at the level of papillary muscles, average circumferential, and radial strain, and strain rate were assessed. Mean heart rate and systolic and diastolic blood pressure during imaging were similar between the groups. Longitudinal peak systolic strain and strain rate at basal and mid-segments of the lateral wall were significantly higher in renal transplant recipients and control groups than endstage renal disease patients. Average longitudinal systolic strain from the 4-chamber view was highest in control subjects (-14.5% ± 2.9%) and was higher in renal transplant recipients (-12.5% ± 3.0%) than end-stage renal disease patients (-10.2% ± 1.6%; P ≤ .001). Radial and circumferential strain and strain rate at the level of the papillary muscle were lower in patients with end-stage renal disease than other groups. Differences in myocardial function in patients with end-stage renal disease, renal transplant recipients, and normal controls can be quantified by strain imaging. Myocardial function is improved in renal transplant recipients compared with end-stage renal disease patients.
Ogino, Atsushi; Takemura, Genzou; Hashimoto, Ayako; Kanamori, Hiromitsu; Okada, Hideshi; Nakagawa, Munehiro; Tsujimoto, Akiko; Goto, Kazuko; Kawasaki, Masanori; Nagashima, Kenshi; Miyakoda, Goro; Fujiwara, Takako; Yabuuchi, Youichi; Fujiwara, Hisayoshi; Minatoguchi, Shinya
2015-07-01
Although OPC-28326, 4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl) piperidine hydrochloride monohydrate, was developed as a selective peripheral vasodilator with α2-adrenergic antagonist properties, it also reportedly exhibits angiogenic activity in an ischemic leg model. The purpose of this study was to examine the effect of OPC-28326 on the architectural dynamics and function of the infarcted left ventricle during the chronic stage of myocardial infarction. Myocardial infarction was induced in male C3H/He mice, after which the mice were randomly assigned into two groups: a control group receiving a normal diet and an OPC group whose diet contained 0.05% OPC-28326. The survival rate among the mice (n = 18 in each group) 4 wk postinfarction was significantly greater in the OPC than control group (83 vs. 44%; P < 0.05), and left ventricular remodeling and dysfunction were significantly mitigated. Histologically, infarct wall thickness was significantly greater in the OPC group, due in part to an abundance of nonmyocyte components, including blood vessels and myofibroblasts. Five days postinfarction, Ki-67-positive proliferating cells were more abundant in the granulation tissue in the OPC group, and there were fewer apoptotic cells. These effects were accompanied by activation of myocardial Akt and endothelial nitric oxide synthase. Hypoxia within the infarct issue, assessed using pimonidazole staining, was markedly attenuated in the OPC group. In summary, OPC-28326 increased the nonmyocyte population in infarct tissue by increasing proliferation and reducing apoptosis, thereby altering the tissue dynamics such that wall stress was reduced, which might have contributed to a mitigation of postinfarction cardiac remodeling and dysfunction. Copyright © 2015 the American Physiological Society.
Quantum entanglement in de Sitter space with a wall and the decoherence of bubble universes
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Kanno, Sugumi; Sasaki, Misao
2018-04-01
We study the effect of a bubble wall on the entanglement entropy of a free massive scalar field between two causally disconnected open charts in de Sitter space. We assume there is a delta-functional wall between the open charts. This can be thought of as a model of pair creation of bubble universes in de Sitter space. We first derive the Euclidean vacuum mode functions of the scalar field in the presence of the wall in the coordinates that respect the open charts. We then derive the Bogoliubov transformation between the Euclidean vacuum and the open chart vacua that makes the reduced density matrix diagonal. We find that larger walls lead to less entanglement. Our result may be regarded as evidence of decoherence of bubble universes from each other. We also note an interesting relationship between our results and discussions of the black hole firewall problem.
Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects
NASA Astrophysics Data System (ADS)
Kuster, Martin; de Vries, Diemer
2006-12-01
It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
Wall interference correction improvements for the ONERA main wind tunnels
NASA Technical Reports Server (NTRS)
Vaucheret, X.
1982-01-01
This paper describes improved methods of calculating wall interference corrections for the ONERA large windtunnels. The mathematical description of the model and its sting support have become more sophisticated. An increasing number of singularities is used until an agreement between theoretical and experimental signatures of the model and sting on the walls of the closed test section is obtained. The singularity decentering effects are calculated when the model reaches large angles of attack. The porosity factor cartography on the perforated walls deduced from the measured signatures now replaces the reference tests previously carried out in larger tunnels. The porosity factors obtained from the blockage terms (signatures at zero lift) and from the lift terms are in good agreement. In each case (model + sting + test section), wall corrections are now determined, before the tests, as a function of the fundamental parameters M, CS, CZ. During the windtunnel tests, the corrections are quickly computed from these functions.
Yang, Yan; Zhu, Li-Min; Xu, Jian-Zhong; Tang, Xiao-Feng; Gao, Ping-Jin
2017-03-01
Primary aldosteronism (PA) is the most common secondary cause of hypertension. The present study investigated differences in left ventricular structure and function between hypertensive patients with PA and sucjects with essential hypertension (EH). One hundred patients with PA and 100 controls with EH were matched for age, gender, and 24-h ambulatory monitoring blood pressure (BP). Left ventricular mass index (LVMI), left atrial volume index (LAVI) and ejection fraction were calculated. LV diastolic function was estimated as the ratio of the early diastolic velocities (E) from transmitral inflow to the early diastolic velocities (e') of tissue Doppler at mitral annulus. PA and EH patients had similar LV dimensions, LV wall thicknesses, LVMI and LV systolic function. PA was associated with greater impairment in diastolic function, as reflected by the lower e' (P=0.004), higher E/e' ratio (P=0.005) and higher LAVI (P=0.02). The LV geometric dimensions and patterns of LV hypertrophy were similar between male patients from the PA and EH groups. However, in female patients, PA was correlated with higher LV internal dimensions (P=0.001), higher LVMI (P=0.04) and lower relative wall thickness (RWT, P=0.001). Multivariate analysis showed that LV diastolic function was independently correlated with age (β=0.416, P<0.001), 24-h systolic BP (β=0.238, P=0.016) and serum potassium (β=-0.201, P=0.036) in PA patients. In conclusion, PA appears to contribute to the impairment of LV diastolic function in both sexes as well as the higher prevalence of eccentric hypertrophy in women than in men compared with EH. Age, 24-h systolic BP and serum potassium levels are independent risk factors for LV diastolic function in PA patients.
SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging
Marion-Letellier, Rachel; Bohn, Pierre; Modzelewski, Romain; Vera, Pierre; Aziz, Moutaz; Guérin, Charlène; Savoye, Guillaume; Savoye-Collet, Céline
2017-01-01
AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics. METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score. RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively). CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats. PMID:28127195
USDA-ARS?s Scientific Manuscript database
Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...
Experience with k-epsilon turbulence models for heat transfer computations in rotating
NASA Technical Reports Server (NTRS)
Tekriwal, Prabbat
1995-01-01
This viewgraph presentation discusses geometry and flow configuration, effect of y+ on heat transfer computations, standard and extended k-epsilon turbulence model results with wall function, low-Re model results (the Lam-Bremhorst model without wall function), a criterion for flow reversal in a radially rotating square duct, and a summary.
NASA Technical Reports Server (NTRS)
Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.
2010-01-01
The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".
NASA Astrophysics Data System (ADS)
Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei
2001-08-01
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.
Binding mechanism of patulin to heat-treated yeast cell.
Guo, C; Yuan, Y; Yue, T; Hatab, S; Wang, Z
2012-12-01
This study aims to assess the removal mechanism of patulin using heat-treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process. In order to understand the binding mechanism, viable cells, heat-treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat-treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (P < 0·05) the ability of heat-treated cells to remove patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat-treated cells. Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes. Heat-treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation. © 2012 The Society for Applied Microbiology.
An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less
An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14
Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan; ...
2015-06-04
Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less
NASA Astrophysics Data System (ADS)
Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.
2018-04-01
The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.
A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yijun; Zhang, Jun; Li, Ting
With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational basemore » of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.« less
Spahlinger, D M; Newcomb, L; Ashton-Miller, J A; DeLancey, J O L; Chen, Luyun
2014-07-01
To develop and test a method for measuring the relationship between the rise in intra-abdominal pressure and sagittal plane movements of the anterior and posterior vaginal walls during Valsalva in a pilot sample of women with and without prolapse. Mid-sagittal MRI images were obtained during Valsalva while changes in intra-abdominal pressure were measured via a bladder catheter in 5 women with cystocele, 5 women with rectocele, and 5 controls. The regional compliance of the anterior and posterior vagina wall support systems were estimated from the ratio of displacement (mm) of equidistant points along the anterior and posterior vaginal walls to intra-abdominal pressure rise (mmHg). The compliance of both anterior and posterior vaginal wall support systems varied along different regions of vaginal wall for all three groups, with the highest compliance found near the vaginal apex and the lowest near the introitus. Women with cystocele had more compliant anterior and posterior vaginal wall support systems than women with rectocele. The movement direction differs between cystocele and rectocele. In cystocele, the anterior vaginal wall moves mostly toward the vaginal orifice in the upper vagina, but in a ventral direction in the lower vagina. In rectocele, the direction of the posterior vaginal wall movement is generally toward the vaginal orifice. Movement of the vaginal wall and compliance of its support is quantifiable and was found to vary along the length of the vagina. Compliance was greatest in the upper vagina of all groups. Women with cystocele demonstrated the most compliant vaginal wall support.
Plant and algal cell walls: diversity and functionality
Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.
2014-01-01
Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research. PMID:25453142
Plant and algal cell walls: diversity and functionality.
Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S
2014-10-01
Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.
Edaravone enhances the viability of ischemia/reperfusion flaps.
Zhang, Dong-Yi; Kang, Shen-Song; Zhang, Zheng-Wen; Wu, Rui
2017-02-01
The purpose of the experiment was to study the efficacy of edaravone in enhancing flap viability after ischemia/reperfusion (IR) and its mechanism. Forty-eight adult male SD rats were randomly divided into 3 groups: control group (n=16), IR group (n=16), and edaravone-treated IR group (n=16). An island flap at left lower abdomen (6.0 cm×3.0 cm in size), fed by the superficial epigastric artery and vein, was created in each rat of all the three groups. The arterial blood flow of flaps in IR group and edaravone-treated IR group was blocked for 10 h, and then the blood perfusion was restored. From 15 min before reperfusion, rats in the edaravone-treated IR group were intraperitoneally injected with edaravone (10 mg/kg), once every 12 h, for 3 days. Rats in the IR group and control group were intraperitoneally injected with saline, with the same method and frequency as the rats in the edaravone-treated IR group. In IR group and edaravone-treated IR group, samples of flaps were harvested after reperfusion of the flaps for 24 h. In the control group, samples of flaps were harvested 34 h after creation of the flaps. The content of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) were determined, and changes in organizational structure and infiltration of inflammatory cells were observed by hematoxylin-eosin (HE) staining, apoptotic cells of vascular wall were marked by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, and the apoptotic rate of cells in vascular wall was calculated. The ultrastructural changes of vascular endothelial cells were observed by transmission electron microscopy (TEM). Seven days after the operation, we calculated the flap viability of each group, and marked vessels of flaps by immunohistochemical staining for calculating the average number of subcutaneous vessels. The results showed that the content of MDA, the number of multicore inflammatory cells and apoptotic rate of cells in vascular wall in the edaravone-treated IR group were significantly lower than those in the IR group. The activity of SOD, flap viability and average number of subcutaneous vessels in the edaravone-treated IR group were significantly higher than those in the IR group. All the differences were statistically significant. The ultrastructure injury of vascular endothelial cells in the edaravone-treated IR group was slighter than that in IR group. It was concluded that edaravone can significantly enhance IR flap viability and protect flap vessels, which is related to scavenging oxygen free radicals, reducing the consumption of SOD, reducing the extent of lipid peroxidation and inflammation, and protecting functional structure of vessels in the early stages of reperfusion.
2013-01-01
Background Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. Results Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains in the future. Conclusions Using nine typical pairs of wheat and rice samples having distinct cell wall compositions and wide biomass saccharification, Ara substitution degree and monolignin H proportion have been revealed to be the dominant factors positively determining biomass digestibility upon various chemical pretreatments. The results demonstrated the potential of genetic modification of plant cell walls for high biomass saccharification in bioenergy crops. PMID:24341349
Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S; Kristich, Christopher J
2017-05-01
Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis , exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. Copyright © 2017 American Society for Microbiology.
Pogorelko, Gennady V; Reem, Nathan T; Young, Zachary T; Chambers, Lauran; Zabotina, Olga A
2016-01-01
Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses.
Kellogg, Stephanie L.; Little, Jaime L.; Hoff, Jessica S.
2017-01-01
ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. PMID:28223383
The finite layer method for modelling the sound transmission through double walls
NASA Astrophysics Data System (ADS)
Díaz-Cereceda, Cristina; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio
2012-10-01
The finite layer method (FLM) is presented as a discretisation technique for the computation of noise transmission through double walls. It combines a finite element method (FEM) discretisation in the direction perpendicular to the wall with trigonometric functions in the two in-plane directions. It is used for solving the Helmholtz equation at the cavity inside the double wall, while the wall leaves are modelled with the thin plate equation and solved with modal analysis. Other approaches to this problem are described here (and adapted where needed) in order to compare them with the FLM. They range from impedance models of the double wall behaviour to different numerical methods for solving the Helmholtz equation in the cavity. For the examples simulated in this work (impact noise and airborne sound transmission), the former are less accurate than the latter at low frequencies. The main advantage of FLM over the other discretisation techniques is the possibility of extending it to multilayered structures without changing the interpolation functions and with an affordable computational cost. This potential is illustrated with a calculation of the noise transmission through a multilayered structure: a double wall partially filled with absorbing material.
Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth
Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud
2013-01-01
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369
Carbon nanotube-DNA nanoarchitectures and electronic functionality.
Wang, Xu; Liu, Fei; Andavan, G T Senthil; Jing, Xiaoye; Singh, Krishna; Yazdanpanah, Vahid R; Bruque, Nicolas; Pandey, Rajeev R; Lake, Roger; Ozkan, Mihrimah; Wang, Kang L; Ozkan, Cengiz S
2006-11-01
Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single-walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single-stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical-functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrical measurements (I-V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I-V characterization on platinum-metallized SWNT-ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.
Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis.
Frisk, Michael; Ruud, Marianne; Espe, Emil K S; Aronsen, Jan Magnus; Røe, Åsmund T; Zhang, Lili; Norseng, Per Andreas; Sejersted, Ole M; Christensen, Geir A; Sjaastad, Ivar; Louch, William E
2016-10-01
Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Biomechanics of Cardiac Function
Voorhees, Andrew P.; Han, Hai-Chao
2015-01-01
The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462
Hübner, Neele Saskia; Merkle, Annette; Jung, Bernd; von Elverfeldt, Dominik; Harsan, Laura-Adela
2015-01-01
Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology. Copyright © 2014 John Wiley & Sons, Ltd.
Janić, Miodrag; Lunder, Mojca; Cerkovnik, Petra; Prosenc Zmrzljak, Uršula; Novaković, Srdjan; Šabovič, Mišo
2016-04-01
Previously, we have shown that slightly to moderately aged arteries in middle-aged males can be rejuvenated functionally by sub-therapeutic, low-dose fluvastatin and valsartan treatment. Here, we explore whether this treatment could also increase telomerase activity. We hypothesized that telomerase activity might be associated with (1) an improvement of arterial wall properties and (2) a reduction of inflammatory/oxidative stress parameters (both observed in our previous studies). The stored blood samples from 130 apparently healthy middle-aged males treated with fluvastatin (10 mg daily), valsartan (20 mg daily), fluvastatin and valsartan combination (10 and 20 mg), respectively, and placebo (control), were analyzed. The samples were taken before and after treatment lasting 30 days, and 5 months after treatment discontinuation. Telomerase activity was measured in blood leukocytes by a TaqMan Gene Expression Assay. Low-dose fluvastatin or valsartan increased telomerase activity (106.9% and 59.5% respectively; both p < 0.05, vs. control), whereas their combination was even more effective (an increase of 228.0%; p < 0.001, vs. control). No change was noted in the control group. Importantly, increased telomerase activity obtained in the combination group significantly correlated with arterial function, measured by flow-mediated dilation (FMD) (r = 0.79; p < 0.001) and C-reactive protein concentration (r = -0.54; p = 0.02) and total anti-oxidative status (r = 0.50; p = 0.03). We found that a low-dose combination of fluvastatin and valsartan substantially increased telomerase activity, which significantly correlated with an improvement of endothelial function and a decrease of inflammation/oxidative stress. These findings could lead to a new innovative approach to arterial rejuvenation.
Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...
2015-12-24
Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less
Eeckhout, Sharon; Leroux, Olivier; Willats, William G T; Popper, Zoë A; Viane, Ronald L L
2014-10-01
Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii 'C-Fern', a widely used model system for ferns. Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of 'C-Fern' sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. The differences and similarities in glycan cell-wall composition between 'C-Fern' gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Genetic Resources for Maize Cell Wall Biology1[C][W][OA
Penning, Bryan W.; Hunter, Charles T.; Tayengwa, Reuben; Eveland, Andrea L.; Dugard, Christopher K.; Olek, Anna T.; Vermerris, Wilfred; Koch, Karen E.; McCarty, Donald R.; Davis, Mark F.; Thomas, Steven R.; McCann, Maureen C.; Carpita, Nicholas C.
2009-01-01
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802
Nonlocality and Short-Range Wetting Phenomena
NASA Astrophysics Data System (ADS)
Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.
2004-08-01
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Nonlocality and short-range wetting phenomena.
Parry, A O; Romero-Enrique, J M; Lazarides, A
2004-08-20
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Wang, Haibin; Liu, Zhiqiang; Li, Dexue; Guo, Xuan; Kasper, F Kurtis; Duan, Cuimi; Zhou, Jin; Mikos, Antonios G; Wang, Changyong
2012-01-01
Abstract In this study, an injectable, biodegradable hydrogel composite of oligo[poly(ethylene glycol) fumarate] (OPF) was investigated as a carrier of mouse embryonic stem cells (mESCs) for the treatment of myocardial infarction (MI). The OPF hydrogels were used to encapsulate mESCs. The cell differentiation in vitro over 14 days was determined via immunohistochemical examination. Then, mESCs encapsulated in OPF hydrogels were injected into the LV wall of a rat MI model. Detailed histological analysis and echocardiography were used to determine the structural and functional consequences after 4 weeks of transplantation. With ascorbic acid induction, mESCs could differentiate into cardiomyocytes and other cell types in all three lineages in the OPF hydrogel. After transplantation, both the 24-hr cell retention and 4-week graft size were significantly greater in the OPF + ESC group than that of the PBS + ESC group (P < 0.01). Four weeks after transplantation, OPF hydrogel alone significantly reduced the infarct size and collagen deposition and improved the cardiac function. The heart function and revascularization improved significantly, while the infarct size and fibrotic area decreased significantly in the OPF + ESC group compared with that of the PBS + ESC, OPF and PBS groups (P < 0.01). All treatments had significantly reduced MMP2 and MMP9 protein levels compared to the PBS control group, and the OPF + ESC group decreased most by Western blotting. Transplanted mESCs expressed cardiovascular markers. This study suggests the potential of a method for heart regeneration involving OPF hydrogels for stem cell encapsulation and transplantation. PMID:21838774
2017-05-03
AS A FUNCTION OF SCALING INTO THE QUASI -QUANTUM REGIME Naz Islam University of Missouri Electrical and Computer Engineering 319 Engineering...Carrier Transport Properties in Strained Crystalline Si Wall-Like Structures as a Function of Scaling into the Quasi -Quantum Regime 5b. GRANT NUMBER...curves) and their comparisons with experimental data (black dots in both panels......................................... 16 Approved for public
NASA Technical Reports Server (NTRS)
Ferri, A.; Roffe, G.
1975-01-01
A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgar, Rebecca J.; Chen, Jing; Kant, Sashi
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less
Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia
2016-01-01
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.
Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; ...
2016-10-13
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Sutliff, Daniel L.
2007-01-01
A technique is presented for the analysis of measured data obtained from a rotating microphone rake system. The system is designed to measure the interaction modes of ducted fans. A Fourier analysis of the data from the rotating system results in a set of circumferential mode levels at each radial location of a microphone inside the duct. Radial basis functions are then least-squares fit to this data to obtain the radial mode amplitudes. For ducts with soft walls and mean flow, the radial basis functions must be numerically computed. The linear companion matrix method is used to obtain both the eigenvalues of interest, without an initial guess, and the radial basis functions. The governing equations allow for the mean flow to have a boundary layer at the wall. In addition, a nonlinear least-squares method is used to adjust the wall impedance to best fit the data in an attempt to use the rotating system as an in-duct wall impedance measurement tool. Simulated and measured data are used to show the effects of wall impedance and mean flow on the computed results.
Oprea, V; Matei, O; Gheorghescu, D; Leuca, D; Buia, F; Rosianu, M; Dinca, M
2014-01-01
forced repair of a giant abdominal wall defect end with unsatisfactory results despite development of prosthetics materials. The enlargement of abdominal wall dimensions could be realized altogether other methods with the aid of pneumo-peritoneum. The aim of the study is to evaluate early results of the method used for patients with giant incisional hernias. between june 1998 - june 2013, 17 patients (4 males) with giant abdominal wall defects (incisional and inguinal hernias) were prepaired for radical surgery with pneumoperitoneum. Average age was 64.35 years. We reevaluated the standard constants of the pulmonary function,blood gases, and intra-vesical pressure in 3 moments: before the first gas insuflation, 24 hours before surgery and in the 7th daypost operatively. the method was free of accidents or incidents, no mortality was recorded. The respiratory function was significantly increased and also the intra-abdominal pressure. our results suggest that the method of progressive pneumoperitoneum is safe, costless of choice for creating a clear compatibility between the wall and abdominal content inpatients with giant abdominal wall defects. Also ensures a longterm and stable improvement of the respiratory function in all its components. Celsius.
The Green's function in a channel with a sound-absorbing cover in the case of a uniform flow
NASA Astrophysics Data System (ADS)
Sobolev, A. F.
2012-07-01
We study the modal structure of an acoustic field of a point source as function of channel wall admittance in the case of a two-dimensional channel. The characteristic equation for determining the eigen-values corresponding to the boundary problem is studied in the form of this equation's dependence on the admittance, which varies in the entire complex plane. All modes, without exception, existing in the channel and forming the source field are classified based on the obtained topography of the characteristic equation. The expressions that describe the amplitudes and spatial distribution of the hydrodynamic modes, attenuation rate (for stable modes), or increment (for unstable modes) were obtained as functions of the wall admittance and flow velocity. It is shown that in addition to the hydrodynamic unstable modes existing downstream from the source, hydrodynamic unstable modes exist upstream from the source at any admittance. They appear only when the admittance has an elastic character. It is shown that hydrodynamic modes are induced only in the case when the source is located close to the wall or on the wall. The amplitude of these modes decreases exponentially with distance from the wall.
Sawani, Shefali; Arora, Vipin; Jaiswal, Shikha; Nikhil, Vineeta
2014-01-01
Background: Evaluation of microleakage is important for assessing the success of new restorative materials and methods. Aim and Objectives: Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials. Materials and Methods: Standardized mesi-occlusal (MO) and distoocclusal (DO) Class II tooth preparations were preparedon 53 molars and samples were randomly divided into six experimental groups and one control group for restorations. Group 1: Open-Sandwich technique (OST) with flowable composite at the gingival seat. Group 2: OST with resin-modified glass ionomer cement (RMGIC) at the gingival seat. Group 3: Closed-Sandwich technique (CST) with flowable composite at the pulpal floor and axial wall. Group 4: CST with RMGIC at the pulpal floor and axial wall. Group 5: OST with flowable composite at the pulpal floor, axial wall, and gingival seat. Group 6: OST with RMGIC at the pulpal floor, axial wall, and gingival seat. Group 7: Control — no lining material, centripetal technique only. After restorations and thermocycling, apices were sealed and samples were immersed in 0.5% basic fuchsin dye. Sectioning was followed by stereomicroscopic evaluation. Results: Results were analyzed using Post Hoc Bonferroni test (statistics is not a form of tabulation). Cervical scores of control were more than the exprimental groups (P < 0.05). Less microleakage was observed in CST than OST in all experimental groups (P < 0.05). However, insignificant differences were observed among occlusal scores of different groups (P > 0.05). Conclusion: Class II composite restorations with centripetal build-up alone or when placed with CST reduces the cervical microleakage when compared to OST. PMID:25125847
Structural heat pipe. [for spacecraft wall thermal insulation system
NASA Technical Reports Server (NTRS)
Ollendorf, S. (Inventor)
1974-01-01
A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.
Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.
Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G
2018-06-19
The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.
2011-01-01
Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms. PMID:21722365
Fokin, A A; Borsuk, D A; Kazachkov, E L; Gorelik, G L; Bagaev, K V
The purpose of the study was to assess the depth of damage to the venous wall after endovenous laser coagulation (EVLC) at different power of the unit - 5, 7 and 10 W and similar linear density of energy (LDE) - approximately 70 J/cm. Our prospective comparative morphological study with blinding included a total of 30 patients subjected to EVLC of the great saphenous vein using the unit with a wavelength of 1,470 nm and radial light guides with automatic traction. The patients were divided into three groups, each comprising 10 patients. The unit's power (W) during EVLC and velocity of light guide traction (mm/s) in group one amounted to 5 and 0.7 (LDE - 71.4 J/cm), in group two to 7 and 1.0 (LDE - 70 J/cm) and in group tree to 10 and 1.5 (LDE - 66.7 J/cm), respectively. The coagulated veins were then procured from mini approaches and subjected to three sections made at a distance of 2 mm from each other. Specimens were stained with haematoxylin-eosin and picrofuxin according to the van Gieson technique. Then, in four places of each section (at 3, 6, 9 and 12 hours) we assessed the depth of the damage to the venous wall and calculated the average percentage of alteration - the ratio of the depth of the lesion to the venous wall thickness. The average depth of damage to the venous wall (μm) amounted in the first group to 122.9 ?m, in the second group to 182.9 μm, and in the third group to 267 μmm. The index of alteration (%) averagely amounted: in group one to 25.7, in group two to 37.9 and in group three (at a power of 10 W) to 55.5 (p=0.0001 when comparing each of the groups (the Kruskal-Wallis test)). Hence, despite an inconsiderable decrease of the LDE from the first to the third group, as power increased, the depth and percentage of damage to venous walls increased statistically significantly. It follows from the above-mentioned that: 1) an increase in power (from 5 to 10 W) of the unit during EVLC at comparable LDE (approximately 70 J/cm) leads to a deeper damage of the venous wall; 2) it is necessary to carry out a clinical study aimed at comparing different modes of coagulation, with the assessment of the frequency of recanalization and the level of pain syndrome.
Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...
Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado
2018-01-29
The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.
Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D
2016-08-01
Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III expression, whereas this effect was not observed in rats with VO+EtOH. In conclusion, chronic EtOH accelerates the development of elevated wall stress and promotes early eccentric remodeling in rats with VO. Our data indicate that these effects may be due to disruptions in compensatory hypertrophy and extracellular matrix remodeling in response to volume overload. Copyright © 2016 Elsevier Ltd. All rights reserved.
Self similarity of two point correlations in wall bounded turbulent flows
NASA Technical Reports Server (NTRS)
Hunt, J. C. R.; Moin, P.; Moser, R. D.; Spalart, P. R.
1987-01-01
The structure of turbulence at a height y from a wall is affected by the local mean shear at y, by the direct effect of the wall on the eddies, and by the action of other eddies close to or far from the wall. Some researchers believe that a single one of these mechanisms is dominant, while others believe that these effects have to be considered together. It is important to understand the relative importance of these effects in order to develop closure models, for example for the dissipation or for the Reynolds stress equation, and to understand the eddy structure of cross correlation functions and other measures. The specific objective was to examine the two point correlation, R sub vv, of the normal velocity component v near the wall in a turbulent channel flow and in a turbulent boundary layer. The preliminary results show that even in the inhomogeneous turbulent boundary layer, the two-point correlation function may have self similar forms. The results also show that the effects of shear and of blocking are equally important in the form of correlation functions for spacing normal to the wall. But for spanwise spacing, it was found that the eddy structure is quire different in these near flows. So any theory for turbulent structure must take both these effects into account.
Martín, I; Jiménez, T; Hernández-Nistal, J; Dopico, B; Labrador, E
2011-09-01
We report localisation of the chickpea βI-Gal, a member of the chickpea β-galactosidase family, which contains at least four members. After generation of specific antibodies, the distribution and cellular immunolocalisation of the protein in different organs and developmental stages of the plant was studied. βI-Gal protein is much longer than the other chickpea β-galactosidases because of the presence of a lectin-like domain in the carboxyl terminus of the protein. Western blot experiments indicated that the active βI-Gal retains this lectin-like domain for its function in the plant. The βI-Gal protein was mainly detected in cell walls of elongating organs, such as seedling epicotyls and stem internodes. An immunolocation study indicated a very good correlation between the presence of this βΙ-galactosidase and cells whose walls are thickening, not only in aged epicotyls and mature internodes in the final phase of elongation, but mostly in cells with a support function, such as collenchyma cells, xylem and phloem fibres and a layer of sclerenchyma cells surrounding the vascular cylinder (perivascular fibres). These results could suggest a function for the βI-Gal in modification of cell wall polymers, leading to thicker walls than the primary cell walls. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)
2006-08-01
flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow
NASA Astrophysics Data System (ADS)
Cui, Zhihua; Ai, Chi; Feng, Fuping
2017-01-01
When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.
NASA Astrophysics Data System (ADS)
Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.
2009-03-01
The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203
Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory
Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; ...
2016-03-30
Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr 2O 3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr 2O 3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr 2O 3. These major drawbacks for device implementationmore » can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less
A defect stream function, law of the wall/wake method for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.
1989-01-01
The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.
Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; ...
2016-04-15
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less
Priti, Kumari; Ranwa, Bhanwar L; Gokhroo, Rajendra K; Kishore, Kamal; Bisht, Devendra Singh; Gupta, Sajal
2017-08-01
Atrioventricular (AV) blocks are of concern with the use of beta blockers in inferior wall myocardial infarction (MI). Ivabradine lowers heart rate with a lesser risk of AV blocks. To compare ivabradine with metoprolol in acute inferior wall MI in terms of feasibility, tolerability, and efficacy. It was a prospective double-blind single-center randomized controlled study. Of 1032 patients with acute inferior wall MI, 468 eligible patients were randomized in 1:1 manner to ivabradine (group A) and metoprolol (group B). Intention to treat analysis of 426 patients (group A-232 and group B-232) was performed. The primary endpoint was 30-day incidence of major adverse cardiovascular events including death, reinfarction, complete heart block (CHB), and heart failure. Secondary endpoints included 30 days incidence of recurrent angina, readmission, first- or second-degree AV block, and tachyarrhythmias. Both the drugs decreased the mean heart rate to 62.22±2.95 (group A) vs 62.53±3.59 (group B) beats per minute (P=0.33). Ejection fraction improved in both the groups (5.15±1.93% in group A vs 5.52±2.18% in group B, P=0.065). The two groups did not differ significantly in their primary endpoints in terms of death (group A=1.72% vs group B=1.72%, OR=1.00, 95% CI=0.25-4.05, P=1.00), reinfarction (group A=0.86% vs group B=0.86%, OR=1.00, 95% CI=0.14-7.16, P=1.00), heart failure (group A=4.31% vs group B=2.59%, OR=1.70, 95% CI=0.61-4.75, P=0.31), or CHB (0% vs 2.59%, OR=0.07, 95% CI=0.00-1.34, P=0.08). There were no significant differences in the secondary endpoints of recurrent angina, readmission, and tachyarrhythmias except for more first- and second-degree AV blocks with metoprolol (12.93% vs 2.59%, OR=5.59, 95% CI=2.28-13.72, P=0.0002). Ivabradine is well tolerated and equally effective as metoprolol in acute inferior wall ST elevation myocardial infarction patients for lowering the heart rate with lesser risk of AV blocks. © 2017 John Wiley & Sons Ltd.
Shen, Jiaqi; Zhou, Qiao; Liu, Yue; Luo, Runlan; Tan, Bijun; Li, Guangsen
2016-08-23
Iron-deficiency anemia (IDA) is a global health problem and a common medical condition that can be seen in everyday clinical practice. And two-dimensional speckle tracking echocardiography (2D-STE) has been reported very useful in evaluating left atrial (LA) function, as well as left ventricular (LV) function. The aim of our study is to evaluate the LA function in patients with IDA by 2D-STE. 65 patients with IDA were selected. This group of patients was then divided into two groups according to the degree of hemoglobin: group B (Hb > 90 g/L) and group C (Hb60 ~ 90 g/L). Another 30 healthy people were also selected as control group A. Conventional echocardiography parameters, such as left atrial diameter (LAD), peak E and A of mitralis (E, A), E/A, end-diastolic thickness of ventricular septum (IVST d), end-diastolic thickness of LV posterior wall (PWTd) and left ventricular end-diastolic dimension (LVDd) were obtained from these three groups. Left atrial minimum volume (LAVmin), left atrial pre-atrial contraction volume (LAVp) and left atrial maximum volume (LAVmax) were measured by Simpson's rule, whereas left atrial active ejection fraction (LAAEF) and left atrial passive ejection fraction (LAPEF) were obtained from calculation. Two-dimensional images were acquired from apical four-chamber view and two-chamber view to store images for offline analysis. The global peak atrial longitudinal strain and strain rate of systolic LV (GLSs, GLSRs) as well as early and late diastolic LV strain rate (GLSRe, GLSRa) curves of LA were acquired in each LA segment from basal segment to top segment of LA by 2D-STE. Compared with group A, there were no differences between group B and group A (all P > 0.05). The LAAEF and GLSRa were significantly higher in group C compared with those of group A and group B (all P < 0.01). The LAPEF, GLSs, GLSRs and GLSRe were significantly lower in group C compared with those of group A and group B (all P < 0.01). 2D-STE could evaluate the LA function in patients with IDA.
Management of complex abdominal wall defects associated with penetrating abdominal trauma.
Arul, G Suren; Sonka, B J; Lundy, J B; Rickard, R F; Jeffery, S L A
2015-03-01
The paradigm of Damage Control Surgery (DCS) has radically improved the management of abdominal trauma, but less well described are the options for managing the abdominal wall itself in an austere environment. This article describes a series of patients with complex abdominal wall problems managed at the UK-led Role 3 Medical Treatment Facility (MTF) in Camp Bastion, Afghanistan. Contemporaneous review of a series of patients with complex abdominal wall injuries who presented to the Role 3 MTF between July and November 2012. Five patients with penetrating abdominal trauma associated with significant damage to the abdominal wall were included. All patients were managed using DCS principles, leaving the abdominal wall open at the end of the first procedure. Subsequent management of the abdominal wall was determined by a multidisciplinary team of general and plastic surgeons, intensivists and specialist nurses. The principles of management identified included minimising tissue loss on initial laparotomy by joining adjacent wounds and marginal debridement of dead tissue; contraction of the abdominal wall was minimised by using topical negative pressure dressing and dermal-holding sutures. Definitive closure was timed to allow oedema to settle and sepsis to be controlled. Closure techniques include delayed primary closure with traction sutures, components separation, and mesh closure with skin grafting. A daily multidisciplinary team discussion was invaluable for optimal decision making regarding the most appropriate means of abdominal closure. Dermal-holding sutures were particularly useful in preventing myostatic contraction of the abdominal wall. A simple flow chart was developed to aid decision making in these patients. This flow chart may prove especially useful in a resource-limited environment in which returning months or years later for closure of a large ventral hernia may not be possible. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Zhang, Yuanzheng; Fang, Shuo; Dai, Jiezhi; Zhu, Lei; Fan, Hao; Tang, Weiya; Fan, Yongjie; Dai, Haiying; Zhang, Peipei; Wang, Ying; Xing, Xin; Yang, Chao
2017-01-01
To explore the repairing effect of combination of adipose stem cells (ASCs) and composite scaffolds on CWR, the electrospun Poly 1, 8-octanediol-co-citric acid (POC)-poly-L-lactide acid (PLA) composite scaffolds were prepared, followed by in vitro and in vivo biocompatibility evaluation of the scaffolds. Afterwards, ASCs were seeded on POC-PLA to construct the POC-PLA-ASCs scaffolds, and the POC-PLA, POC-PLA-ASCs, and traditional materials expanded polytetrafluoroethylene (ePTFE) were adopt for CWR in New Zealand white (NZW) rabbit models. As results, the POC-PLA-ASCs patches possessed good biocompatibility as the high proliferation ability of cells surrounding the patches. Rabbits in POC-PLA-ASCs groups showed better pulmonary function, less pleural adhesion, higher degradation rate and more neovascularization when compared with that in other two groups. The results of western blot indicated that POC-PLA-ASCs patches accelerated the expression of VEGF and Collagen I in rabbit models. From the above, our present study demonstrated that POC-PLA material was applied for CWR successfully, and ASCs seeded on the sheets could improve the pleural adhesions and promote the reparation of chest wall defects.
Ameri, Rihab; Laville, Elisabeth; Potocki-Véronèse, Gabrielle; Trabelsi, Sahar; Mezghani, Monia; Elgharbi, Fatma
2018-01-01
Dromedaries are capable of digesting plant cell wall with high content of lignocellulose of poor digestibility. Consequently, their intestinal microbiota can be a source of novel carbohydrate-active enzymes (CAZymes). To the best of our knowledge, no data are available describing the biochemical analysis of enzymes in dromedary intestinal microbiota. To investigate new hydrolytic enzymes from the dromedary gut, a fosmid library was constructed using metagenomic DNA from feces of non-domestic adult dromedary camels living in the Tunisian desert. High-throughput functional screening of 13756 clones resulted in 47 hit clones active on a panel of various chromogenic and non-chromogenic glycan substrates. Two of them, harboring multiple activities, were retained for further analysis. Clone 26H3 displayed activity on AZO-CM-cellulose, AZCL Carob galactomannan and Tween 20, while clone 36A23 was active on AZCL carob galactomannan and AZCL barley β-glucan. The functional annotation of their sequences highlighted original metagenomic loci originating from bacteria of the Bacteroidetes/Chlorobi group, involved in the metabolization of mannosides and β-glucans thanks to a complete battery of endo- and exo-acting glycoside hydrolases, esterases, phosphorylases and transporters. PMID:29601586
Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis.
Schneeweis, Christopher; Schnackenburg, Bernhard; Stuber, Matthias; Berger, Alexander; Schneider, Udo; Yu, Jing; Gebker, Rolf; Weiss, Robert G; Fleck, Eckart; Kelle, Sebastian
2012-01-01
Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34-45 minutes after low-dose gadolinium administration. No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear.
Kirkpatrick, A W; Nickerson, D; Roberts, D J; Rosen, M J; McBeth, P B; Petro, C C; Berrevoet, Frederik; Sugrue, M; Xiao, Jimmy; Ball, C G
2017-06-01
Reconstruction with reconstitution of the container function of the abdominal compartment is increasingly being performed in patients with massive ventral hernia previously deemed inoperable. This situation places patients at great risk of severe intra-abdominal hypertension and abdominal compartment syndrome if organ failure ensues. Intra-abdominal hypertension and especially abdominal compartment syndrome may be devastating systemic complications with systematic and progressive organ failure and death. We thus reviewed the pathophysiology and reported clinical experiences with abnormalities of intra-abdominal pressure in the context of abdominal wall reconstruction. Bibliographic databases (1950-2015), websites, textbooks, and the bibliographies of previously recovered articles for reports or data relating to intra-abdominal pressure, intra-abdominal hypertension, and the abdominal compartment syndrome in relation to ventral, incisional, or abdominal hernia repair or abdominal wall reconstruction. Surgeons should thus consider and carefully measure intra-abdominal pressure and its resultant effects on respiratory parameters and function during abdominal wall reconstruction. The intra-abdominal pressure post-operatively will be a result of the new intra-peritoneal volume and the abdominal wall compliance. Strategies surgeons may utilize to ameliorate intra-abdominal pressure rise after abdominal wall reconstruction including temporizing paralysis of the musculature either temporarily or semi-permanently, pre-operative progressive pneumoperitoneum, permanently removing visceral contents, or surgically releasing the musculature to increase the abdominal container volume. In patients without complicating shock and inflammation, and in whom the abdominal wall anatomy has been so functionally adapted to maximize compliance, intra-abdominal hypertension may be transient and tolerable. Intra-abdominal hypertension/abdominal compartment syndrome in the specific setting of abdominal wall reconstruction without other complication may be considered as a quaternary situation considering the classification nomenclature of the Abdominal Compartment Society. Greater awareness of intra-abdominal pressure in abdominal wall reconstruction is required and ongoing study of these concerns is required.
Hirako, Ayano; Furukawa, Satoshi; Takeuchi, Takashi; Sugiyama, Akihiko
2016-02-01
Pregnant rats were treated with 30 mg/kg of methotrexate (MTX) on gestation day (GD) 16, and fetal brains were examined time-dependently. On GD 20, the appearance of the telencephalon in the MTX group was different from that in the control group, and the major axis of the telencephalon of the MTX group was shortened, compared to that of the control group. In the sagittal section of the telencephalon in the MTX group on GD 20, histopathological findings of deformation and narrowing of the cerebral ventricle, the disturbance of the arrangement of the marginal cell layer of subventricular zone (SVZ) and thickening of telencephalic wall, cortical plate and ventricular zone (VZ)/SVZ were possibly attributable to neuronal migration disorders by MTX. Through all the experimental period, few pyknotic cells or TUNEL-positive cells were observed in the VZ/SVZ of the telencephalic wall and striatum in the control group. On the other hand, in the VZ/SVZ of the telencephalic wall and striatum in the MTX group, pyknotic cells or TUNEL-positive cells were observed on GD 17, and they increased significantly on GD18 and then decreased to the control levels from GD 19 onward. The phospho-Histone H3-positive rate decreased remarkedly in the VZ/SVZ of the telencephalic wall and striatum of the MTX group on GDs 17 and 18, compared to the control group, but they recovered on and after GD 19. These results suggested that there was a high possibility that development of the telencephalon in this period required strong folic acid.
Bintivanou, Aimilia; Pissiotis, Argirios; Michalakis, Konstantinos
2017-04-01
Parallel labiolingual walls and the preservation of the cingulum in anterior tooth preparations have been advocated. However, their contribution to retention and resistance form has not been evaluated. The purpose of this in vitro study was to evaluate the retention and resistance failure loads of 2 preparation designs for maxillary anterior teeth. Forty metal restorations were fabricated and paired with 40 cobalt-chromium prepared tooth analogs. Twenty of the specimens had parallel buccolingual walls at the cervical part (group PBLW; the control group), whereas the remaining 20 had converging buccolingual walls (group CBLW; the experimental group). The restorations were cemented to the tooth analogs with a resin-modified glass ionomer luting agent. Ten specimens from each group were subjected to tensile loading with a universal testing machine; the rest were subjected to compression loading until failure. Descriptive statistics and the independent t test (α=.05) were used to determine the effect of failure loads in the tested groups. The independent t test revealed statistically significant differences between the tested groups in tensile loading (P<.001) and in compressive loading (P<.001). The PBLW group presented a higher tensile failure load than the CBLW. On the contrary, the PBLW group presented a smaller compression failure load than the CBLW. Parallelism of the buccolingual axial walls in anterior maxillary teeth increased the retention form but decreased the resistance form. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.